1
|
Liu P, Lin T, Fischer H, Feifel D, Ebner NC. Effects of four-week intranasal oxytocin administration on large-scale brain networks in older adults. Neuropharmacology 2024; 260:110130. [PMID: 39182569 DOI: 10.1016/j.neuropharm.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oxytocin (OT) is a crucial modulator of social cognition and behavior. Previous work primarily examined effects of acute intranasal oxytocin administration (IN-OT) in younger males on isolated brain regions. Not well understood are (i) chronic IN-OT effects, (ii) in older adults, (iii) on large-scale brain networks, representative of OT's wider-ranging brain mechanisms. To address these research gaps, 60 generally healthy older adults (mean age = 70.12 years, range = 55-83) were randomly assigned to self-administer either IN-OT or placebo twice daily via nasal spray over four weeks. Chronic IN-OT reduced resting-state functional connectivity (rs-FC) of both the right insula and the left middle cingulate cortex with the salience network but enhanced rs-FC of the left medial prefrontal cortex with the default mode network as well as the left thalamus with the basal ganglia-thalamus network. No significant chronic IN-OT effects were observed for between-network rs-FC. However, chronic IN-OT increased selective rs-FC of the basal ganglia-thalamus network with the salience network and the default mode network, indicative of more specialized, efficient communication between these networks. Directly comparing chronic vs. acute IN-OT, reduced rs-FC of the right insula with the salience network and between the default mode network and the basal ganglia-thalamus network, and greater selective rs-FC of the salience network with the default mode network and the basal ganglia-thalamus network, were more pronounced after chronic than acute IN-OT. Our results delineate the modulatory role of IN-OT on large-scale brain networks among older adults.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, SE-106 91, Sweden; Stockholm University Brain Imaging Centre (SUBIC), Stockholm University, Stockholm, SE-106 91, Sweden; Aging Research Centre, Karolinska Institute, Stockholm, SE-171 77, Stockholm, Sweden
| | - David Feifel
- Department of Psychiatry, University of California, San Diego, CA, 92093, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA; Institute on Aging, University of Florida, Gainesville, FL, 32611, USA; Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Wang W, Yan X, He X, Qian J. Evidence for the Beneficial Effect of Reward on Working Memory: A Meta-Analytic Study. J Intell 2024; 12:88. [PMID: 39330467 PMCID: PMC11433210 DOI: 10.3390/jintelligence12090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Rewards act as external motivators and can improve performance in various cognitive tasks. However, previous research demonstrated mixed findings regarding the effect of reward on working memory (WM) performance, and the question of whether reward enhances WM performance is arguable. It remains unclear how the effect of reward on WM can be influenced by various factors, such as types of reward and experimental paradigms. In this meta-analytic study, we systematically investigated the effect of reward on WM by analyzing data from 51 eligible studies involving a total of 1767 participants. Our results showed that reward robustly enhanced WM performance, with non-monetary rewards inducing more benefits than monetary rewards. This may be because, while both types of reward could induce extrinsic motivation, non-monetary rewards enhanced intrinsic motivation while monetary rewards reduced it. Notably, all three reward methods-reward binding, reward expectation, and subliminal reward-effectively improved WM performance, with the reward binding paradigm exhibiting the greatest effects. This finding suggests that the reward effect can be attributed to both increasing the total amount of WM resources and improving the flexibility of resource reallocation. Moreover, the type of WM, the experimental paradigms, and the outcome measures are three moderators that should be jointly considered when assessing the reward effects on WM. Overall, this meta-analytic study provides solid evidence that reward improves WM performance and reveals possible mechanisms underlying these improvements.
Collapse
Affiliation(s)
- Weiyu Wang
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| | - Xin Yan
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| | - Xinyu He
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| | - Jiehui Qian
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
3
|
Woods SJ, Silcox JW, Payne BR. Evaluating aperiodic and periodic neural activity as markers of listening effort in speech perception. AUDITORY PERCEPTION & COGNITION 2024; 7:203-218. [PMID: 39397860 PMCID: PMC11469580 DOI: 10.1080/25742442.2024.2395217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/08/2024] [Indexed: 10/15/2024]
Abstract
Listening effort (LE) is critical to understanding speech perception in acoustically challenging environments. EEG alpha power has emerged as a potential neural correlate of LE. However, the magnitude and direction of the relationship between acoustic challenge and alpha power has been inconsistent in the literature. In the current study, a secondary data analysis of Silcox and Payne (2021), we examine the broadband 1/f-like exponent and offset of the EEG power spectrum as measures of aperiodic neural activity during effortful speech perception and the influence of this aperiodic activity on reliable estimation of periodic (i.e., alpha) neural activity. EEG was continuously recorded during sentence listening and the broadband (1-40 Hz) EEG power spectrum was computed for each participant for quiet and noise trials separately. Using the specparam algorithm, we decomposed the power spectrum into both aperiodic and periodic components and found that broadband aperiodic activity was sensitive to background noise during speech perception and additionally impacted the measurement of noise-induced changes on alpha oscillations. We discuss the implications of these results for the LE and neural speech processing literatures.
Collapse
Affiliation(s)
| | | | - Brennan R Payne
- Department of Psychology, University of Utah
- Department of Communication Sciences and Disorders, University of Utah
- Interdepartmental Program in Neuroscience, University of Utah
| |
Collapse
|
4
|
Wu W, Hoffman P. Functional integration and segregation during semantic cognition: Evidence across age groups. Cortex 2024; 178:157-173. [PMID: 39013249 DOI: 10.1016/j.cortex.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/05/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Semantic cognition is underpinned by ventral anterior temporal lobe (vATL) which encodes knowledge representations and inferior frontal gyrus (IFG), which controls activation of knowledge based on the needs of the current context. This core semantic network has been validated in substantial empirical findings in the past. However, it remains unclear how these core semantic areas dynamically communicate with each other, and with other neural networks, to achieve successful semantic processing. Here, we investigated this question by testing functional connectivity in the core semantic network during semantic tasks and whether these connections were affected by cognitive ageing. Compared to a non-semantic task, semantic tasks increased the connectivity between left and right IFGs, indicating a bilateral semantic control system. Strengthened connectivity was also found between left IFG and left vATL, and this effect was stronger in the young group. At a whole-brain scale, IFG and vATL increased their coupling with multiple-demand regions during semantic tasks, even though these areas were deactivated relative to non-semantic tasks. This suggests that the domain-general executive network contributes to semantic processing. In contrast, IFG and vATL decreased their interaction with default mode network (DMN) areas during semantic tasks, even though these areas were positively activated by the task. This suggests that DMN areas do not contribute to all semantic tasks: their activation may sometimes reflect automatic retrieval of task-irrelevant memories and associations. Taken together, our study characterizes a dynamic connectivity mechanism supporting semantic cognition within and beyond core semantic regions.
Collapse
Affiliation(s)
- Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK; Department of Music, Durham University, Durham, UK.
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Guo ZC, McHaney JR, Parthasarathy A, Chandrasekaran B. Reduced neural distinctiveness of speech representations in the middle-aged brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609778. [PMID: 39253477 PMCID: PMC11383304 DOI: 10.1101/2024.08.28.609778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Speech perception declines independent of hearing thresholds in middle-age, and the neurobiological reasons are unclear. In line with the age-related neural dedifferentiation hypothesis, we predicted that middle-aged adults show less distinct cortical representations of phonemes and acoustic-phonetic features relative to younger adults. In addition to an extensive audiological, auditory electrophysiological, and speech perceptual test battery, we measured electroencephalographic responses time-locked to phoneme instances (phoneme-related potential; PRP) in naturalistic, continuous speech and trained neural network classifiers to predict phonemes from these responses. Consistent with age-related neural dedifferentiation, phoneme predictions were less accurate, more uncertain, and involved a broader network for middle-aged adults compared with younger adults. Representational similarity analysis revealed that the featural relationship between phonemes was less robust in middle-age. Electrophysiological and behavioral measures revealed signatures of cochlear neural degeneration (CND) and speech perceptual deficits in middle-aged adults relative to younger adults. Consistent with prior work in animal models, signatures of CND were associated with greater cortical dedifferentiation, explaining nearly a third of the variance in PRP prediction accuracy together with measures of acoustic neural processing. Notably, even after controlling for CND signatures and acoustic processing abilities, age-group differences in PRP prediction accuracy remained. Overall, our results reveal "fuzzier" phonemic representations, suggesting that age-related cortical neural dedifferentiation can occur even in middle-age and may underlie speech perceptual challenges, despite a normal audiogram.
Collapse
Affiliation(s)
- Zhe-chen Guo
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jacie R. McHaney
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | | | - Bharath Chandrasekaran
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Gao Y, Roessner V, Stock AK, Mückschel M, Colzato L, Hommel B, Beste C. Catecholaminergic Modulation of Metacontrol Is Reflected by Changes in Aperiodic EEG Activity. Int J Neuropsychopharmacol 2024; 27:pyae033. [PMID: 39096235 PMCID: PMC11348007 DOI: 10.1093/ijnp/pyae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/02/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND "Metacontrol" describes the ability to maintain an optimal balance between cognitive control styles that are either more persistent or more flexible. Recent studies have shown a link between metacontrol and aperiodic EEG patterns. The present study aimed to gain more insight into the neurobiological underpinnings of metacontrol by using methylphenidate (MPH), a compound known to increase postsynaptic catecholamine levels and modulate cortical noise. METHODS In a double-blind, randomized, placebo-controlled study design, we investigated the effect of MPH (0.5 mg/kg) on aperiodic EEG activity during a flanker task in a sample of n = 25 neurotypical adults. To quantify cortical noise, we employed the fitting oscillations and one over f algorithm. RESULTS Compared with placebo, MPH increased the aperiodic exponent, suggesting that it reduces cortical noise in 2 ways. First, it did so in a state-like fashion, as the main effect of the drug was visible and significant in both pre-trial and within-trial periods. Second, the electrode-specific analyses showed that the drug also affects specific processes by dampening the downregulation of noise in conditions requiring more control. CONCLUSIONS Our findings suggest that the aperiodic exponent provides a neural marker of metacontrol states and changes therein. Further, we propose that the effectiveness of medications targeting catecholaminergic signaling can be evaluated by studying changes of cortical noise, fostering the idea of using the quantification of cortical noise as an indicator in pharmacological treatment.
Collapse
Affiliation(s)
- Yang Gao
- School of Psychology, Shandong Normal University, Jinan, China
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Lorenza Colzato
- School of Psychology, Shandong Normal University, Jinan, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Guerreiro MJS, Puschmann S, Eck J, Rienäcker F, Van Gerven PWM, Thiel CM. The effect of hearing loss on age-related differences in neural distinctiveness. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:627-645. [PMID: 37306610 DOI: 10.1080/13825585.2023.2223904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Age differences in cognitive performance have been shown to be overestimated if age-related hearing loss is not taken into account. Here, we investigated the role of age-related hearing loss on age differences in functional brain organization by assessing its impact on previously reported age differences in neural differentiation. To this end, we analyzed the data of 36 younger adults, 21 older adults with clinically normal hearing, and 21 older adults with mild-to-moderate hearing loss who had taken part in a functional localizer task comprising visual (i.e., faces, scenes) and auditory stimuli (i.e., voices, music) while undergoing functional magnetic resonance imaging. Evidence for reduced neural distinctiveness in the auditory cortex was observed only in older adults with hearing loss relative to younger adults, whereas evidence for reduced neural distinctiveness in the visual cortex was observed both in older adults with normal hearing and in older adults with hearing loss relative to younger adults. These results indicate that age-related dedifferentiation in the auditory cortex is exacerbated by age-related hearing loss.
Collapse
Affiliation(s)
- Maria J S Guerreiro
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sebastian Puschmann
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Judith Eck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Franziska Rienäcker
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pascal W M Van Gerven
- Department of Educational Development & Research, School of Health Professions Education (SHE), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Kang KYL, Rosenkranz R, Altinsoy ME, Li SC. Cortical processes of multisensory plausibility modulation of vibrotactile perception in virtual environments in middled-aged and older adults. Sci Rep 2024; 14:13366. [PMID: 38862559 PMCID: PMC11166973 DOI: 10.1038/s41598-024-64054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Digital technologies, such as virtual or augmented reality, can potentially support neurocognitive functions of the aging populations worldwide and complement existing intervention methods. However, aging-related declines in the frontal-parietal network and dopaminergic modulation which progress gradually across the later periods of the adult lifespan may affect the processing of multisensory congruence and expectancy based contextual plausibility. We assessed hemodynamic brain responses while middle-aged and old adults experienced car-riding virtual-reality scenarios where the plausibility of vibrotactile stimulations was manipulated by delivering stimulus intensities that were either congruent or incongruent with the digitalized audio-visual contexts of the respective scenarios. Relative to previous findings observed in young adults, although highly plausible vibrotactile stimulations confirming with contextual expectations also elicited higher brain hemodynamic responses in middle-aged and old adults, this effect was limited to virtual scenarios with extreme expectancy violations. Moreover, individual differences in plausibility-related frontal activity did not correlate with plausibility violation costs in the sensorimotor cortex, indicating less systematic frontal context-based sensory filtering in older ages. These findings have practical implications for advancing digital technologies to support aging societies.
Collapse
Affiliation(s)
- Kathleen Y L Kang
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany.
- Faculty of Psychology, Technische Universität Dresden, Zellerscher Weg 17 Room A232/233, 01069, Dresden, Germany.
- School of Psychology and Vision Sciences, University of Leicester, Leicester, UK.
| | - Robert Rosenkranz
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Mehmet Ercan Altinsoy
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany.
- Faculty of Psychology, Technische Universität Dresden, Zellerscher Weg 17 Room A232/233, 01069, Dresden, Germany.
| |
Collapse
|
9
|
Arif Y, Son JJ, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Modulation of movement-related oscillatory signatures by cognitive interference in healthy aging. GeroScience 2024; 46:3021-3034. [PMID: 38175521 PMCID: PMC11009213 DOI: 10.1007/s11357-023-01057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Age-related changes in the neurophysiology underlying motor control are well documented, but whether these changes are specific to motor function or more broadly reflect age-related alterations in fronto-parietal circuitry serving attention and other higher-level processes remains unknown. Herein, we collected high-density magnetoencephalography (MEG) in 72 healthy adults (age 28-63 years) as they completed an adapted version of the multi-source interference task that involved two subtypes of cognitive interference (i.e., flanker and Simon) and their integration (i.e., multi-source). All MEG data were examined for age-related changes in neural oscillatory activity using a whole-brain beamforming approach. Our primary findings indicated robust behavioral differences in task performance based on the type of interference, as well as stronger beta oscillations with increasing age in the right dorsolateral prefrontal cortices (flanker and multi-source conditions), left parietal (flanker and Simon), and medial parietal regions (multi-source). Overall, these data indicate that healthy aging is associated with alterations in higher-order association cortices that are critical for attention and motor control in the context of cognitive interference.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA.
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, 68010, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
10
|
Koyun AH, Wendiggensen P, Roessner V, Beste C, Stock AK. Effects of Catecholaminergic and Transcranial Direct Current Stimulation on Response Inhibition. Int J Neuropsychopharmacol 2024; 27:pyae023. [PMID: 38742426 PMCID: PMC11184454 DOI: 10.1093/ijnp/pyae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The principle of gain control determines the efficiency of neuronal processing and can be enhanced with pharmacological or brain stimulation methods. It is a key factor for cognitive control, but the degree of how much gain control may be enhanced underlies a physical limit. METHODS To investigate whether methylphenidate (MPH) and transcranial direct current stimulation (tDCS) share common underlying mechanisms and cognitive effects, we administered MPH and anodal tDCS (atDCS) over the right inferior frontal gyrus both separately and combined, while healthy adult participants (n = 104) performed a response selection and inhibition task. The recorded EEG data were analyzed with a focus on theta band activity, and source estimation analyses were conducted. RESULTS The behavioral data show that MPH and atDCS revealed interactive effects on the ability to inhibit responses. Both MPH and atDCS modulated task-related theta oscillations in the supplementary motor area when applied separately, making a common underlying mechanism likely. When both stimulation methods were combined, there was no doubling of effects in the supplementary motor area but a shift to inferior frontal areas in the cortical network responsible for theta-driven processing. CONCLUSIONS The results indicate that both MPH and atDCS likely share a common underlying neuronal mechanism, and interestingly, they demonstrate interactive effects when combined, which are most likely due to the physical limitations of gain control increases. The current study provides critical groundwork for future combined applications of MPH and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Anna Helin Koyun
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Paul Wendiggensen
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
11
|
Li H, Han Y, Niu H. Greater up-modulation of intra-individual brain signal variability makes a high-load cognitive task more arduous for older adults. Neuroimage 2024; 290:120577. [PMID: 38490585 DOI: 10.1016/j.neuroimage.2024.120577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
The extent to which brain responses are less distinctive across varying cognitive loads in older adults is referred to as neural dedifferentiation. Moment-to-moment brain signal variability, an emerging indicator, reveals not only the adaptability of an individual's brain as an inter-individual trait, but also the allocation of neural resources within an individual due to ever-changing task demands, thus shedding novel insight into the process of neural dedifferentiation. However, how the modulation of intra-individual brain signal variability reflects behavioral differences related to cognitively demanding tasks remains unclear. In this study, we employed functional near-infrared spectroscopy (fNIRS) imaging to capture the variability of brain signals, which was quantified by the standard deviation, during both the resting state and an n-back task (n = 1, 2, 3) in 57 healthy older adults. Using multivariate Partial Least Squares (PLS) analysis, we found that fNIRS signal variability increased from the resting state to the task and increased with working memory load in older adults. We further confirmed that greater fNIRS signal variability generally supported faster and more stable response time in the 2- and 3-back conditions. However, the intra-individual level analysis showed that the greater the up-modulation in fNIRS signal variability with cognitive loads, the more its accuracy decreases and mean response time increases, suggesting that a greater intra-individual brain signal variability up-modulation may reflect decreased efficiency in neural information processing. Taken together, our findings offer new insights into the nature of brain signal variability, suggesting that inter- and intra-individual brain signal variability may index distinct theoretical constructs.
Collapse
Affiliation(s)
- Hong Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, 100053, China; School of Biomedical Engineering, Hainan University, Haikou, 570228, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China; National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China.
| |
Collapse
|
12
|
Heled E, Levi O. Aging's Effect on Working Memory-Modality Comparison. Biomedicines 2024; 12:835. [PMID: 38672189 PMCID: PMC11048508 DOI: 10.3390/biomedicines12040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Research exploring the impact of development and aging on working memory (WM) has primarily concentrated on visual and verbal domains, with limited attention paid to the tactile modality. The current study sought to evaluate WM encompassing storage and manipulation across these three modalities, spanning from childhood to old age. The study included 134 participants, divided into four age groups: 7-8, 11-12, 25-35, and 60-69. Each participant completed the Visuospatial Span, Digit Span, and Tactual Span, with forward and backward recall. The findings demonstrated a consistent trend in both forward and backward stages. Performance improved until young adulthood, progressively diminishing with advancing age. In the forward stage, the Tactual Span performance was worse than that of the Digit and Visuospatial Span for all participants. In the backward stage, the Visuospatial Span outperformed the Digit and Tactual Span across all age groups. Furthermore, the Tactual Span backward recall exhibited significantly poorer performance than the other modalities, primarily in the youngest and oldest age groups. In conclusion, age impacts WM differently across modalities, with tactile storage capacity being the most vulnerable. Additionally, tactile manipulation skills develop later in childhood but deteriorate sooner in adulthood, indicating a distinct component within tactile WM.
Collapse
Affiliation(s)
- Eyal Heled
- Department of Psychology, Ariel University, Ariel 4077625, Israel;
- Department of Neurological Rehabilitation, Sheba Medical Center, Ramat Gan 5262160, Israel
| | - Ohad Levi
- Department of Psychology, Ariel University, Ariel 4077625, Israel;
| |
Collapse
|
13
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
14
|
Purcell J, Wiley R, Won J, Callow D, Weiss L, Alfini A, Wei Y, Carson Smith J. Increased neural differentiation after a single session of aerobic exercise in older adults. Neurobiol Aging 2023; 132:67-84. [PMID: 37742442 DOI: 10.1016/j.neurobiolaging.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Aging is associated with decreased cognitive function. One theory posits that this decline is in part due to multiple neural systems becoming dedifferentiated in older adults. Exercise is known to improve cognition in older adults, even after only a single session. We hypothesized that one mechanism of improvement is a redifferentiation of neural systems. We used a within-participant, cross-over design involving 2 sessions: either 30 minutes of aerobic exercise or 30 minutes of seated rest (n = 32; ages 55-81 years). Both functional Magnetic Resonance Imaging (fMRI) and Stroop performance were acquired soon after exercise and rest. We quantified neural differentiation via general heterogeneity regression. There were 3 prominent findings following the exercise. First, participants were better at reducing Stroop interference. Second, while there was greater neural differentiation within the hippocampal formation and cerebellum, there was lower neural differentiation within frontal cortices. Third, this greater neural differentiation in the cerebellum and temporal lobe was more pronounced in the older ages. These data suggest that exercise can induce greater neural differentiation in healthy aging.
Collapse
Affiliation(s)
- Jeremy Purcell
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA.
| | - Robert Wiley
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, TX, USA
| | - Daniel Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Lauren Weiss
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Alfonso Alfini
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Yi Wei
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| |
Collapse
|
15
|
Wu W, Hoffman P. Age differences in the neural processing of semantics, within and beyond the core semantic network. Neurobiol Aging 2023; 131:88-105. [PMID: 37603932 DOI: 10.1016/j.neurobiolaging.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Aging is associated with functional activation changes in domain-specific regions and large-scale brain networks. This preregistered Functional magnetic resonance imaging (fMRI) study investigated these effects within the domain of semantic cognition. Participants completed 1 nonsemantic and 2 semantic tasks. We found no age differences in semantic activation in core semantic regions. However, the right inferior frontal gyrus showed difficulty-related increases in both age groups. This suggests that age-related upregulation of this area may be a compensatory response to increased processing demands. At a network level, older people showed more engagement in the default mode network and less in the executive multiple-demand network, aligning with older people's greater knowledge reserves and executive declines. In contrast, activation was age-invariant in semantic control regions. Finally, older adults showed reduced demand-related modulation of multiple-demand network activation in the nonsemantic task but not the semantic tasks. These findings provide a new perspective on the neural basis of semantic cognition in aging, suggesting that preserved function in specialized semantic networks may help to maintain semantic cognition in later life.
Collapse
Affiliation(s)
- Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Belden A, Quinci MA, Geddes M, Donovan NJ, Hanser SB, Loui P. Functional Organization of Auditory and Reward Systems in Aging. J Cogn Neurosci 2023; 35:1570-1592. [PMID: 37432735 PMCID: PMC10513766 DOI: 10.1162/jocn_a_02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The intrinsic organization of functional brain networks is known to change with age, and is affected by perceptual input and task conditions. Here, we compare functional activity and connectivity during music listening and rest between younger (n = 24) and older (n = 24) adults, using whole-brain regression, seed-based connectivity, and ROI-ROI connectivity analyses. As expected, activity and connectivity of auditory and reward networks scaled with liking during music listening in both groups. Younger adults show higher within-network connectivity of auditory and reward regions as compared with older adults, both at rest and during music listening, but this age-related difference at rest was reduced during music listening, especially in individuals who self-report high musical reward. Furthermore, younger adults showed higher functional connectivity between auditory network and medial prefrontal cortex that was specific to music listening, whereas older adults showed a more globally diffuse pattern of connectivity, including higher connectivity between auditory regions and bilateral lingual and inferior frontal gyri. Finally, connectivity between auditory and reward regions was higher when listening to music selected by the participant. These results highlight the roles of aging and reward sensitivity on auditory and reward networks. Results may inform the design of music-based interventions for older adults and improve our understanding of functional network dynamics of the brain at rest and during a cognitively engaging task.
Collapse
Affiliation(s)
| | | | | | - Nancy J Donovan
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
17
|
Peng XR, Bundil I, Schulreich S, Li SC. Neural correlates of valence-dependent belief and value updating during uncertainty reduction: An fNIRS study. Neuroimage 2023; 279:120327. [PMID: 37582418 DOI: 10.1016/j.neuroimage.2023.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
Selective use of new information is crucial for adaptive decision-making. Combining a gamble bidding task with assessing cortical responses using functional near-infrared spectroscopy (fNIRS), we investigated potential effects of information valence on behavioral and neural processes of belief and value updating during uncertainty reduction in young adults. By modeling changes in the participants' expressed subjective values using a Bayesian model, we dissociated processes of (i) updating beliefs about statistical properties of the gamble, (ii) updating values of a gamble based on new information about its winning probabilities, as well as (iii) expectancy violation. The results showed that participants used new information to update their beliefs and values about the gambles in a quasi-optimal manner, as reflected in the selective updating only in situations with reducible uncertainty. Furthermore, their updating was valence-dependent: information indicating an increase in winning probability was underweighted, whereas information about a decrease in winning probability was updated in good agreement with predictions of the Bayesian decision theory. Results of model-based and moderation analyses showed that this valence-dependent asymmetry was associated with a distinct contribution of expectancy violation, besides belief updating, to value updating after experiencing new positive information regarding winning probabilities. In line with the behavioral results, we replicated previous findings showing involvements of frontoparietal brain regions in the different components of updating. Furthermore, this study provided novel results suggesting a valence-dependent recruitment of brain regions. Individuals with stronger oxyhemoglobin responses during value updating was more in line with predictions of the Bayesian model while integrating new information that indicates an increase in winning probability. Taken together, this study provides first results showing expectancy violation as a contributing factor to sub-optimal valence-dependent updating during uncertainty reduction and suggests limitations of normative Bayesian decision theory.
Collapse
Affiliation(s)
- Xue-Rui Peng
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.
| | - Indra Bundil
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Stefan Schulreich
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Department of Cognitive Psychology, Faculty of Psychology and Human Movement Science, Universität Hamburg, Hamburg, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
19
|
Belden A, Loui P. Graph Theoretical Network Structures Underlie Age-Related Differences in the Functional Connectome During Rest and Music Listening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552499. [PMID: 37609323 PMCID: PMC10441364 DOI: 10.1101/2023.08.08.552499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aging is associated with decreased functional connectivity within the default mode network, as well as auditory and reward systems which are involved in music listening. Understanding how music listening affects network organization of the aging brain, both globally and specific to the brain networks, will have implications for designing lifestyle interventions that tap into distinct networks in the brain. Here we apply graph-theory metrics of modularity, global efficiency, clustering coefficients, degrees, and betweenness centrality to compare younger and older adults (YA/OA, N=24 per group) in fMRI connectivity during rest and a music listening task. Results show a less modular but more globally efficient connectome in OAs, especially during music listening, resulting in main effects of group and task, as well as group-by-task interactions. ROI analyses indicated that the posterior cingulate is more centrally located than the medial prefrontal cortex in OAs. Overall, reduced modularity and increased global efficiency with age is in keeping with previously-observed functional reorganizations, and interaction effects show that age-related differences in baseline network organization are reflected in, potentially magnified by, music listening.
Collapse
|
20
|
Pauley C, Kobelt M, Werkle-Bergner M, Sander MC. Age differences in neural distinctiveness during memory encoding, retrieval, and reinstatement. Cereb Cortex 2023; 33:9489-9503. [PMID: 37365853 PMCID: PMC10431749 DOI: 10.1093/cercor/bhad219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Robust evidence points to mnemonic deficits in older adults related to dedifferentiated, i.e. less distinct, neural responses during memory encoding. However, less is known about retrieval-related dedifferentiation and its role in age-related memory decline. In this study, younger and older adults were scanned both while incidentally learning face and house stimuli and while completing a surprise recognition memory test. Using pattern similarity searchlight analyses, we looked for indicators of neural dedifferentiation during encoding, retrieval, and encoding-retrieval reinstatement. Our findings revealed age-related reductions in neural distinctiveness during all memory phases in visual processing regions. Interindividual differences in retrieval- and reinstatement-related distinctiveness were strongly associated with distinctiveness during memory encoding. Both item- and category-level distinctiveness predicted trial-wise mnemonic outcomes. We further demonstrated that the degree of neural distinctiveness during encoding tracked interindividual variability in memory performance better than both retrieval- and reinstatement-related distinctiveness. All in all, we contribute to meager existing evidence for age-related neural dedifferentiation during memory retrieval. We show that neural distinctiveness during retrieval is likely tied to recapitulation of encoding-related perceptual and mnemonic processes.
Collapse
Affiliation(s)
- Claire Pauley
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Malte Kobelt
- Department of Neuropsychology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
21
|
Pedersen R, Johansson J, Salami A. Dopamine D1-signaling modulates maintenance of functional network segregation in aging. AGING BRAIN 2023; 3:100079. [PMID: 37408790 PMCID: PMC10318303 DOI: 10.1016/j.nbas.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
Past research has shown that as individuals age, there are decreases in within-network connectivity and increases in between-network connectivity, a pattern known as functional dedifferentiation. While the mechanisms behind reduced network segregation are not fully understood, evidence suggests that age-related differences in the dopamine (DA) system may play a key role. The DA D1-receptor (D1DR) is the most abundant and age-sensitive receptor subtype in the dopaminergic system, known to modulate synaptic activity and enhance the specificity of the neuronal signals. In this study from the DyNAMiC project (N = 180, 20-79y), we set out to investigate the interplay among age, functional connectivity, and dopamine D1DR availability. Using a novel application of multivariate Partial Least squares (PLS), we found that older age, and lower D1DR availability, were simultaneously associated with a pattern of decreased within-network and increased between-network connectivity. Individuals who expressed greater distinctiveness of large-scale networks exhibited more efficient working memory. In line with the maintenance hypotheses, we found that older individuals with greater D1DR in caudate exhibited less dedifferentiation of the connectome, and greater working memory, compared to their age-matched counterparts with less D1DR. These findings suggest that dopaminergic neurotransmission plays an important role in functional dedifferentiation in aging with consequences for working memory function at older age.
Collapse
Affiliation(s)
- Robin Pedersen
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Koshino H, Osaka M, Shimokawa T, Kaneda M, Taniguchi S, Minamoto T, Yaoi K, Azuma M, Higo K, Osaka N. Cooperation and competition between the default mode network and frontal parietal network in the elderly. Front Psychol 2023; 14:1140399. [PMID: 37275713 PMCID: PMC10237017 DOI: 10.3389/fpsyg.2023.1140399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Recent research has shown that the Default Mode Network (DMN) typically exhibits increased activation during processing of social and personal information but shows deactivation during working memory (WM) tasks. Previously, we reported the Frontal Parietal Network (FPN) and DMN showed coactivation during task preparation whereas the DMN exhibited deactivation during task execution in working memory tasks. Aging research has shown that older adults exhibited decreased functional connectivity in the DMN relative to younger adults. Here, we investigated whether age-related cognitive decline is related to a reduced relationship between the FPN and DMN using a working memory task during the execution period. First, we replicated our previous finding that the FPN and DMN showed coactivation during the preparation period, whereas the DMN showed deactivation during the execution period. The older adults showed reduced DMN activity during task preparation and reduced deactivation during task execution; however, they exhibited a higher magnitude of activation in the FPN than the young individuals during task execution. Functional connectivity analyses showed that the elderly group, compared to the young group, showed weaker correlations within the FPN and the DMN, weaker positive correlations between the FPN and DMN during task preparation, and weaker negative correlations between the FPN and DMN during execution. The results suggest that cognitive decline in the older adults might be related to reduced connectivity within the DMN as well as between the FPN and DMN.
Collapse
Affiliation(s)
- Hideya Koshino
- Department of Psychology, California State University, San Bernardino, CA, United States
| | - Mariko Osaka
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Tetsuya Shimokawa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Mizuki Kaneda
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Seira Taniguchi
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Takehiro Minamoto
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Ken Yaoi
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Miyuki Azuma
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Katsuki Higo
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Naoyuki Osaka
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Steffen J, Marković D, Glöckner F, Neukam PT, Kiebel SJ, Li SC, Smolka MN. Shorter planning depth and higher response noise during sequential decision-making in old age. Sci Rep 2023; 13:7692. [PMID: 37169942 PMCID: PMC10175280 DOI: 10.1038/s41598-023-33274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Forward planning is crucial to maximize outcome in complex sequential decision-making scenarios. In this cross-sectional study, we were particularly interested in age-related differences of forward planning. We presumed that especially older individuals would show a shorter planning depth to keep the costs of model-based decision-making within limits. To test this hypothesis, we developed a sequential decision-making task to assess forward planning in younger (age < 40 years; n = 25) and older (age > 60 years; n = 27) adults. By using reinforcement learning modelling, we inferred planning depths from participants' choices. Our results showed significantly shorter planning depths and higher response noise for older adults. Age differences in planning depth were only partially explained by well-known cognitive covariates such as working memory and processing speed. Consistent with previous findings, this indicates age-related shifts away from model-based behaviour in older adults. In addition to a shorter planning depth, our findings suggest that older adults also apply a variety of heuristical low-cost strategies.
Collapse
Affiliation(s)
- Johannes Steffen
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Dimitrije Marković
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Franka Glöckner
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Philipp T Neukam
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefan J Kiebel
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Ren P, Hou G, Ma M, Zhuang Y, Huang J, Tan M, Wu D, Luo G, Zhang Z, Rong H. Enhanced putamen functional connectivity underlies altered risky decision-making in age-related cognitive decline. Sci Rep 2023; 13:6619. [PMID: 37095127 PMCID: PMC10126002 DOI: 10.1038/s41598-023-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Risky decision-making is critical to survival and development, which has been compromised in elderly populations. However, the neural substrates of altered financial risk-taking behavior in aging are still under-investigated. Here we examined the intrinsic putamen network in modulating risk-taking behaviors of Balloon Analogue Risk Task in healthy young and older adults using resting-state fMRI. Compared with the young group, the elderly group showed significantly different task performance. Based on the task performance, older adults were further subdivided into two subgroups, showing young-like and over-conservative risk behaviors, regardless of cognitive decline. Compared with young adults, the intrinsic pattern of putamen connectivity was significantly different in over-conservative older adults, but not in young-like older adults. Notably, age-effects on risk behaviors were mediated via the putamen functional connectivity. In addition, the putamen gray matter volume showed significantly different relationships with risk behaviors and functional connectivity in over-conservative older adults. Our findings suggest that reward-based risky behaviors might be a sensitive indicator of brain aging, highlighting the critical role of the putamen network in maintaining optimal risky decision-making in age-related cognitive decline.
Collapse
Affiliation(s)
- Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Manxiu Ma
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jiayin Huang
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Meiling Tan
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Guozhi Luo
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Han Rong
- Department of Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
25
|
Baeuchl C, Glöckner F, Koch C, Petzold J, Schuck NW, Smolka MN, Li SC. Dopamine differentially modulates medial temporal lobe activity and behavior during spatial navigation in young and older adults. Neuroimage 2023; 273:120099. [PMID: 37037380 DOI: 10.1016/j.neuroimage.2023.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.
Collapse
Affiliation(s)
- Christian Baeuchl
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Franka Glöckner
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course (LIFE), Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, German
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Lubec J, Hussein AM, Kalaba P, Feyissa DD, Arias-Sandoval E, Cybulska-Klosowicz A, Bezu M, Stojanovic T, Korz V, Malikovic J, Aher NY, Zehl M, Dragacevic V, Leban JJ, Sagheddu C, Wackerlig J, Pistis M, Correa M, Langer T, Urban E, Höger H, Lubec G. Low-Affinity/High-Selectivity Dopamine Transport Inhibition Sufficient to Rescue Cognitive Functions in the Aging Rat. Biomolecules 2023; 13:biom13030467. [PMID: 36979402 PMCID: PMC10046369 DOI: 10.3390/biom13030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The worldwide increase in cognitive decline, both in aging and with psychiatric disorders, warrants a search for pharmacological treatment. Although dopaminergic treatment approaches represent a major step forward, current dopamine transporter (DAT) inhibitors are not sufficiently specific as they also target other transporters and receptors, thus showing unwanted side effects. Herein, we describe an enantiomerically pure, highly specific DAT inhibitor, S-CE-123, synthetized in our laboratory. Following binding studies to DAT, NET and SERT, GPCR and kinome screening, pharmacokinetics and a basic neurotoxic screen, S-CE-123 was tested for its potential to enhance and/or rescue cognitive functions in young and in aged rats in the non-invasive reward-motivated paradigm of a hole-board test for spatial learning. In addition, an open field study with young rats was carried out. We demonstrated that S-CE-123 is a low-affinity but highly selective dopamine reuptake inhibitor with good bioavailability. S-CE-123 did not induce hyperlocomotion or anxiogenic or stereotypic behaviour in young rats. Our compound improved the performance of aged but not young rats in a reward-motivated task. The well-described impairment of the dopaminergic system in aging may underlie the age-specific effect. We propose S-CE-123 as a possible candidate for developing a tentative therapeutic strategy for age-related cognitive decline and cognitive dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ahmed M. Hussein
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Predrag Kalaba
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Daniel Daba Feyissa
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | | | - Anita Cybulska-Klosowicz
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology, 02093 Warsaw, Poland
| | - Mekite Bezu
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Nilima Y. Aher
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Vladimir Dragacevic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Johann Jakob Leban
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), 09042 Cagliari, Italy
| | - Merce Correa
- Department of Psychobiology, Universitat Jaume I, 12006 Castelló, Spain
- Department of Psychological Sciences, Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269, USA
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, 2325 Himberg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-676-569-4816
| |
Collapse
|
27
|
Ruel A, Bolenz F, Li SC, Fischer A, Eppinger B. Neural evidence for age-related deficits in the representation of state spaces. Cereb Cortex 2023; 33:1768-1781. [PMID: 35510942 DOI: 10.1093/cercor/bhac171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/12/2022] Open
Abstract
Under high cognitive demands, older adults tend to resort to simpler, habitual, or model-free decision strategies. This age-related shift in decision behavior has been attributed to deficits in the representation of the cognitive maps, or state spaces, necessary for more complex model-based decision-making. Yet, the neural mechanisms behind this shift remain unclear. In this study, we used a modified 2-stage Markov task in combination with computational modeling and single-trial EEG analyses to establish neural markers of age-related changes in goal-directed decision-making under different demands on the representation of state spaces. Our results reveal that the shift to simpler decision strategies in older adults is due to (i) impairments in the representation of the transition structure of the task and (ii) a diminished signaling of the reward value associated with decision options. In line with the diminished state space hypothesis of human aging, our findings suggest that deficits in goal-directed, model-based behavior in older adults result from impairments in the representation of state spaces of cognitive tasks.
Collapse
Affiliation(s)
- Alexa Ruel
- Department of Psychology, Concordia University, 7141 Sherbrooke Street W. Montreal, Quebec H4B 1R6, Canada
| | - Florian Bolenz
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Bürogebäude, Zi. 244 Strehlener Straße 22/24, Dresden 01069, Germany.,Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany.,Cluster of Excellence "Science of Intelligence", Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Bürogebäude, Zi. 244 Strehlener Straße 22/24, Dresden 01069, Germany.,Cluster of Excellence "Centre for Tactile Internet with Human-in-the-Loop", Technische Universität Dresden, Bürogebäude, Zi. 244 Strehlener Straße 22/24, Dresden 01069, Germany
| | - Adrian Fischer
- Department of Education and Psychology, Freie Universität Berlin, Habelschwerdter Allee 45, Berlin 14195, Germany
| | - Ben Eppinger
- Department of Psychology, Concordia University, 7141 Sherbrooke Street W. Montreal, Quebec H4B 1R6, Canada.,Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Bürogebäude, Zi. 244 Strehlener Straße 22/24, Dresden 01069, Germany.,PERFORM Center, Concordia University, 7200 Sherbrooke St. W. Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
28
|
Li SC, Fitzek FHP. Digitally embodied lifespan neurocognitive development and Tactile Internet: Transdisciplinary challenges and opportunities. Front Hum Neurosci 2023; 17:1116501. [PMID: 36845878 PMCID: PMC9950571 DOI: 10.3389/fnhum.2023.1116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Mechanisms underlying perceptual processing and inference undergo substantial changes across the lifespan. If utilized properly, technologies could support and buffer the relatively more limited neurocognitive functions in the still developing or aging brains. Over the past decade, a new type of digital communication infrastructure, known as the "Tactile Internet (TI)," is emerging in the fields of telecommunication, sensor and actuator technologies and machine learning. A key aim of the TI is to enable humans to experience and interact with remote and virtual environments through digitalized multimodal sensory signals that also include the haptic (tactile and kinesthetic) sense. Besides their applied focus, such technologies may offer new opportunities for the research tapping into mechanisms of digitally embodied perception and cognition as well as how they may differ across age cohorts. However, there are challenges in translating empirical findings and theories about neurocognitive mechanisms of perception and lifespan development into the day-to-day practices of engineering research and technological development. On the one hand, the capacity and efficiency of digital communication are affected by signal transmission noise according to Shannon's (1949) Information Theory. On the other hand, neurotransmitters, which have been postulated as means that regulate the signal-to-noise ratio of neural information processing (e.g., Servan-Schreiber et al., 1990), decline substantially during aging. Thus, here we highlight neuronal gain control of perceptual processing and perceptual inference to illustrate potential interfaces for developing age-adjusted technologies to enable plausible multisensory digital embodiments for perceptual and cognitive interactions in remote or virtual environments.
Collapse
Affiliation(s)
- Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany,Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany,*Correspondence: Shu-Chen Li,
| | - Frank H. P. Fitzek
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany,Deutsche Telekom Chair of Communication Networks, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
29
|
Between- and within-subject covariance perspectives matter for investigations into the relationship between single- and dual-tasking performance. METHODS IN PSYCHOLOGY 2023. [DOI: 10.1016/j.metip.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
30
|
Setton R, Mwilambwe-Tshilobo L, Girn M, Lockrow AW, Baracchini G, Hughes C, Lowe AJ, Cassidy BN, Li J, Luh WM, Bzdok D, Leahy RM, Ge T, Margulies DS, Misic B, Bernhardt BC, Stevens WD, De Brigard F, Kundu P, Turner GR, Spreng RN. Age differences in the functional architecture of the human brain. Cereb Cortex 2022; 33:114-134. [PMID: 35231927 PMCID: PMC9758585 DOI: 10.1093/cercor/bhac056] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales, from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation. Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality, consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches to characterize the architecture of functional brain aging.
Collapse
Affiliation(s)
- Roni Setton
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Laetitia Mwilambwe-Tshilobo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Amber W Lockrow
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Wen-Ming Luh
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
- Mila – Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Richard M Leahy
- Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - W Dale Stevens
- Department of Psychology, York University, Toronto, ON, Canada
| | - Felipe De Brigard
- Department of Philosophy, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience, Durham, NC, USA
| | - Prantik Kundu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|
31
|
Koch C, Baeuchl C, Glöckner F, Riedel P, Petzold J, Smolka MN, Li SC, Schuck NW. L-DOPA enhances neural direction signals in younger and older adults. Neuroimage 2022; 264:119670. [PMID: 36243268 PMCID: PMC9771830 DOI: 10.1016/j.neuroimage.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial cognition decline sharply during age, raising the question which effect dopamine has on directional signals in the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while undergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose specificity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances neural representations of direction. No evidence for differences between regions was found. In the hippocampus these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural responses during spatial navigation. SIGNIFICANCE STATEMENT: The sense of direction is an important aspect of spatial navigation, and neural representations of direction can be found throughout a large network of space-related brain regions. But what influences how well these representations track someone's true direction? Using a double-blind cross-over L-DOPA/Placebo intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline of dopamine. These results provide novel insights into how dopamine shapes the neural representations that underlie spatial navigation.
Collapse
Affiliation(s)
- Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course, Max Planck Institute for Human Development, Berlin, Germany.
| | - Christian Baeuchl
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Franka Glöckner
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
The impact of aging on human brain network target controllability. Brain Struct Funct 2022; 227:3001-3015. [DOI: 10.1007/s00429-022-02584-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
|
33
|
Hsu JH, Tan CH, Yu RL. Impact of catechol-O-methyltransferase genetic polymorphisms and age on empathy. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Chen HY, Lombardi G, Li SC, Hare TA. Older adults process the probability of winning sooner but weigh it less during lottery decisions. Sci Rep 2022; 12:11381. [PMID: 35790772 PMCID: PMC9256676 DOI: 10.1038/s41598-022-15432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Empirical evidence has shown that visually enhancing the saliency of reward probabilities can ease the cognitive demands of value comparisons and improve value-based decisions in old age. In the present study, we used a time-varying drift diffusion model that includes starting time parameters to better understand (1) how increasing the saliency of reward probabilities may affect the dynamics of value-based decision-making and (2) how these effects may interact with age. We examined choices made by younger and older adults in a mixed lottery choice task. On a subset of trials, we used a color-coding scheme to highlight the saliency of reward probabilities, which served as a decision-aid. The results showed that, in control trials, older adults started to consider probability relative to magnitude information sooner than younger adults, but that their evidence accumulation processes were less sensitive to reward probabilities than that of younger adults. This may indicate a noisier and more stochastic information accumulation process during value-based decisions in old age. The decision-aid increased the influence of probability information on evidence accumulation rates in both age groups, but did not alter the relative timing of accumulation for probability versus magnitude in either group.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany. .,Chair of Methods of Psychology and Cognitive Modelling, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Gaia Lombardi
- Department of Economics, Zurich Center for Neuroeconomics, University of Zurich, 8006, Zurich, Switzerland
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Todd A Hare
- Department of Economics, Zurich Center for Neuroeconomics, University of Zurich, 8006, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, 8006, Zurich, Switzerland
| |
Collapse
|
35
|
Dennis N, Koen J. Introduction to the special issue: advances in understanding the cognitive neuroscience of aging with multivariate methods. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:367-374. [PMID: 35343386 DOI: 10.1080/13825585.2022.2044447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Nancy Dennis
- The Pennsylvania State University, Department of Psychology, University Park, PA, USA
| | - Joshua Koen
- Department of Psychology, Notre Dame University, Cotabato City, Philippines
| |
Collapse
|
36
|
Koen JD. Age-related neural dedifferentiation for individual stimuli: an across-participant pattern similarity analysis. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:552-576. [PMID: 35189773 PMCID: PMC8960356 DOI: 10.1080/13825585.2022.2040411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Age-related neural dedifferentiation - reductions in the regional specificity and precision of neural representations - is proposed to compromise the ability of older adults to form sufficiently distinct neural representations to support episodic memory encoding. The computational model that spurred investigations of age-related neural dedifferentiation initially characterized this phenomenon as a reduction in the specificity of neural patterns for individual items or stimuli. Most investigations have focused on reductions in neural differentiation for patterns of neural activity associated with category-level information, such as reduced neural selectivity between categories of visual stimuli (e.g., scenes, objects, and faces). Here, I report a novel across-participant pattern similarity analysis method to measure neural distinctiveness for individual stimuli that were presented to participants on a single occasion. Measures of item-level pattern similarity during encoding showed a graded positive subsequent memory effect in younger, with no significant subsequent memory effect in older adults. These results suggest that age-related reductions in the distinctiveness of neural patterns for individual stimuli during age differences in memory encoding. Moreover, a measure of category-level similarity demonstrated a significant subsequent memory effect associated with item recognition (regardless of an object source memory detail), whereas the effect in older was associated with source memory. These results converge with predictions of computational models of dedifferentiation showing age-related reductions in the distinctiveness of neural patterns across multiple levels of representation.
Collapse
|
37
|
Naefgen C, Gaschler R. Trade-Off vs. Common Factor-Differentiating Resource-Based Explanations From Their Alternative. Front Psychol 2022; 13:774938. [PMID: 35360631 PMCID: PMC8962370 DOI: 10.3389/fpsyg.2022.774938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christoph Naefgen
- Abteilung Allgemeine Psychologie: Lernen, Motivation, Emotion, University of Hagen, Hagen, Germany
| | - Robert Gaschler
- Abteilung Allgemeine Psychologie: Lernen, Motivation, Emotion, University of Hagen, Hagen, Germany
| |
Collapse
|
38
|
Soutschek A, Bagaïni A, Hare TA, Tobler PN. Reconciling psychological and neuroscientific accounts of reduced motivation in aging. Soc Cogn Affect Neurosci 2022; 17:398-407. [PMID: 34450643 PMCID: PMC8972241 DOI: 10.1093/scan/nsab101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/04/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Motivation is a hallmark of healthy aging, but the motivation to engage in effortful behavior diminishes with increasing age. Most neurobiological accounts of altered motivation in older adults assume that these deficits are caused by a gradual decline in brain tissue, while some psychological theories posit a switch from gain orientation to loss avoidance in motivational goals. Here, we contribute to reconcile the psychological and neural perspectives by providing evidence that the frontopolar cortex (FPC), a brain region involved in cost-benefit weighting, increasingly underpins effort avoidance rather than engagement with age. Using anodal transcranial direct current stimulation together with effort-reward trade-offs, we find that the FPC's function in effort-based decisions remains focused on cost-benefit calculations but appears to switch from reward-seeking to cost avoidance with increasing age. This is further evidenced by the exploratory, independent analysis of structural brain changes, showing that the relationship between the density of the frontopolar neural tissue and the willingness to exert effort differs in young vs older adults. Our results inform aging-related models of decision-making by providing preliminary evidence that, in addition to cortical thinning, changes in goal orientation need to be considered in order to understand alterations in decision-making over the life span.
Collapse
Affiliation(s)
- Alexander Soutschek
- Department of Psychology, Ludwig Maximilian University Munich, Munich 80802, Germany
| | - Alexandra Bagaïni
- Department of Psychology, University of Basel, Basel 4055, Switzerland
| | - Todd A Hare
- Zurich Center for Neuroeconomics, University of Zurich, Zurich 8006, Switzerland
- Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Zurich 8006, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, University of Zurich, Zurich 8006, Switzerland
- Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Zurich 8006, Switzerland
| |
Collapse
|
39
|
Senk S, Ulbricht M, Tsokalo I, Rischke J, Li SC, Speidel S, Nguyen GT, Seeling P, Fitzek FHP. Healing Hands: The Tactile Internet in Future Tele-Healthcare. SENSORS 2022; 22:s22041404. [PMID: 35214306 PMCID: PMC8963047 DOI: 10.3390/s22041404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
In the early 2020s, the coronavirus pandemic brought the notion of remotely connected care to the general population across the globe. Oftentimes, the timely provisioning of access to and the implementation of affordable care are drivers behind tele-healthcare initiatives. Tele-healthcare has already garnered significant momentum in research and implementations in the years preceding the worldwide challenge of 2020, supported by the emerging capabilities of communication networks. The Tactile Internet (TI) with human-in-the-loop is one of those developments, leading to the democratization of skills and expertise that will significantly impact the long-term developments of the provisioning of care. However, significant challenges remain that require today’s communication networks to adapt to support the ultra-low latency required. The resulting latency challenge necessitates trans-disciplinary research efforts combining psychophysiological as well as technological solutions to achieve one millisecond and below round-trip times. The objective of this paper is to provide an overview of the benefits enabled by solving this network latency reduction challenge by employing state-of-the-art Time-Sensitive Networking (TSN) devices in a testbed, realizing the service differentiation required for the multi-modal human-machine interface. With completely new types of services and use cases resulting from the TI, we describe the potential impacts on remote surgery and remote rehabilitation as examples, with a focus on the future of tele-healthcare in rural settings.
Collapse
Affiliation(s)
- Stefan Senk
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Deutsche Telekom Chair of Communication Network, 01062 Dresden, Germany; (S.S.); (M.U.); (J.R.); (F.H.P.F.)
| | - Marian Ulbricht
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Deutsche Telekom Chair of Communication Network, 01062 Dresden, Germany; (S.S.); (M.U.); (J.R.); (F.H.P.F.)
| | | | - Justus Rischke
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Deutsche Telekom Chair of Communication Network, 01062 Dresden, Germany; (S.S.); (M.U.); (J.R.); (F.H.P.F.)
| | - Shu-Chen Li
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Stefanie Speidel
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), National Center for Tumor Diseases, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Giang T. Nguyen
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Chair of Haptic Communication Systems, 01062 Dresden, Germany;
| | - Patrick Seeling
- Department of Computer Science, Central Michigan University, Mount Pleasant, MI 48859, USA
- Correspondence:
| | - Frank H. P. Fitzek
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Deutsche Telekom Chair of Communication Network, 01062 Dresden, Germany; (S.S.); (M.U.); (J.R.); (F.H.P.F.)
| |
Collapse
|
40
|
Korkki SM, Papenberg G, Karalija N, Garrett DD, Riklund K, Lövdén M, Lindenberger U, Nyberg L, Bäckman L. Fronto-striatal dopamine D2 receptor availability is associated with cognitive variability in older individuals with low dopamine integrity. Sci Rep 2021; 11:21089. [PMID: 34702857 PMCID: PMC8548594 DOI: 10.1038/s41598-021-00106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Within-person, moment-to-moment, variability in behavior increases with advancing adult age, potentially reflecting the influence of reduced structural and neurochemical brain integrity, especially that of the dopaminergic system. We examined the role of dopamine D2 receptor (D2DR) availability, grey-, and white-matter integrity, for between-person differences in cognitive variability in a large sample of healthy older adults (n = 181; 64-68 years) from the Cognition, Brain, and Aging (COBRA) study. Intra-individual variability (IIV) in cognition was measured as across-trial variability in participants' response times for tasks assessing perceptual speed and working memory, as well as for a control task of motor speed. Across the whole sample, no associations of D2DR availability, or grey- and white-matter integrity, to IIV were observed. However, within-person variability in cognition was increased in two subgroups of individuals displaying low mean-level cognitive performance, one of which was characterized by low subcortical and cortical D2DR availability. In this latter group, fronto-striatal D2DR availability correlated negatively with within-person variability in cognition. This finding suggests that the influence of D2DR availability on cognitive variability may be more easily disclosed among individuals with low dopamine-system integrity, highlighting the benefits of large-scale studies for delineating heterogeneity in brain-behavior associations in older age.
Collapse
Affiliation(s)
- Saana M. Korkki
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Goran Papenberg
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Nina Karalija
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Douglas D. Garrett
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Katrine Riklund
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Martin Lövdén
- grid.8761.80000 0000 9919 9582Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Ulman Lindenberger
- grid.419526.d0000 0000 9859 7917Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Lars Nyberg
- grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- grid.10548.380000 0004 1936 9377Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
41
|
Hatzipanayioti A, Bodenstedt S, von Bechtolsheim F, Funke I, Oehme F, Distler M, Weitz J, Speidel S, Li SC. Associations Between Binocular Depth Perception and Performance Gains in Laparoscopic Skill Acquisition. Front Hum Neurosci 2021; 15:675700. [PMID: 34675789 PMCID: PMC8524002 DOI: 10.3389/fnhum.2021.675700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
The ability to perceive differences in depth is important in many daily life situations. It is also of relevance in laparoscopic surgical procedures that require the extrapolation of three-dimensional visual information from two-dimensional planar images. Besides visual-motor coordination, laparoscopic skills and binocular depth perception are demanding visual tasks for which learning is important. This study explored potential relations between binocular depth perception and individual variations in performance gains during laparoscopic skill acquisition in medical students naïve of such procedures. Individual differences in perceptual learning of binocular depth discrimination when performing a random dot stereogram (RDS) task were measured as variations in the slope changes of the logistic disparity psychometric curves from the first to the last blocks of the experiment. The results showed that not only did the individuals differ in their depth discrimination; the extent with which this performance changed across blocks also differed substantially between individuals. Of note, individual differences in perceptual learning of depth discrimination are associated with performance gains from laparoscopic skill training, both with respect to movement speed and an efficiency score that considered both speed and precision. These results indicate that learning-related benefits for enhancing demanding visual processes are, in part, shared between these two tasks. Future studies that include a broader selection of task-varying monocular and binocular cues as well as visual-motor coordination are needed to further investigate potential mechanistic relations between depth perceptual learning and laparoscopic skill acquisition. A deeper understanding of these mechanisms would be important for applied research that aims at designing behavioral interventions for enhancing technology-assisted laparoscopic skills.
Collapse
Affiliation(s)
- Adamantini Hatzipanayioti
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Bodenstedt
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Division of Translational Surgical Oncology, National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Felix von Bechtolsheim
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Isabel Funke
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Division of Translational Surgical Oncology, National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Florian Oehme
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marius Distler
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefanie Speidel
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Division of Translational Surgical Oncology, National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Shu-Chen Li
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Katsumi Y, Andreano JM, Barrett LF, Dickerson BC, Touroutoglou A. Greater Neural Differentiation in the Ventral Visual Cortex Is Associated with Youthful Memory in Superaging. Cereb Cortex 2021; 31:5275-5287. [PMID: 34190976 DOI: 10.1093/cercor/bhab157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Superagers are older adults who maintain youthful memory despite advanced age. Previous studies showed that superagers exhibit greater structural and intrinsic functional brain integrity, which contribute to their youthful memory. However, no studies, to date, have examined brain activity as superagers learn and remember novel information. Here, we analyzed functional magnetic resonance imaging data collected from 41 young and 40 older adults while they performed a paired associate visual recognition memory task. Superaging was defined as youthful performance on the long delay free recall of the California Verbal Learning Test. We assessed the fidelity of neural representations as participants encoded and later retrieved a series of word stimuli paired with a face or a scene image. Superagers, like young adults, exhibited more distinct neural representations in the fusiform gyrus and parahippocampal gyrus while viewing visual stimuli belonging to different categories (greater neural differentiation) and more similar category representations between encoding and retrieval (greater neural reinstatement), compared with typical older adults. Greater neural differentiation and reinstatement were associated with superior memory performance in all older adults. Given that the fidelity of cortical sensory processing depends on neural plasticity and is trainable, these mechanisms may be potential biomarkers for future interventions to promote successful aging.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Psychology, Northeastern University, Boston, MA 02115, USA.,Japan Society for the Promotion of Science, Tokyo 1020083, Japan.,Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joseph M Andreano
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
43
|
Hess TM, Freund AM, Tobler PN. Effort Mobilization and Healthy Aging. J Gerontol B Psychol Sci Soc Sci 2021; 76:S135-S144. [PMID: 34515772 DOI: 10.1093/geronb/gbab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Healthy aging is in part dependent upon people's willingness and ability to mobilize the effort necessary to support behaviors that promote health and well-being. People may have the best information relating to health along with the best intentions to stay healthy (e.g., health-related goals), but positive outcomes will ultimately be dependent upon them actually investing the necessary effort toward using this information to achieve their goals. In addition, the influences on effort mobilization may vary as a function of physical, psychological, and social changes experienced by the individual across the life span. Building on the overall theme of this special issue, we explore the relationships between motivation, effort mobilization, and healthy aging. We begin by characterizing the relationship between motivation and effort, and identify the factors that influence effort mobilization. We then consider the factors associated specifically with aging that may influence effort mobilization (e.g., changes in cardiovascular and neural mechanisms) and, ultimately, the health and well-being of older adults. Finally, distinguishing between those influential factors that are modifiable versus intractable, we identify ways to structure situations and beliefs to optimize mobilization in support of healthy aging.
Collapse
Affiliation(s)
- Thomas M Hess
- Department of Psychology, North Carolina State University, Raleigh, USA
| | - Alexandra M Freund
- Department of Psychology and University Research Priority Program "Dynamics of Healthy Aging," University of Zurich, Switzerland.,National Centre of Competence in Research (NCCR) LIVES, Zurich, Switzerland
| | | |
Collapse
|
44
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
45
|
Glöckner F, Schuck NW, Li SC. Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Sci Rep 2021; 11:15257. [PMID: 34315933 PMCID: PMC8316315 DOI: 10.1038/s41598-021-94530-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Spatial learning can be based on intramaze cues and environmental boundaries. These processes are predominantly subserved by striatal- and hippocampal-dependent circuitries, respectively. Maturation and aging processes in these brain regions may affect lifespan differences in their contributions to spatial learning. We independently manipulated an intramaze cue or the environment's boundary in a navigation task in 27 younger children (6-8 years), 30 older children (10-13 years), 29 adolescents (15-17 years), 29 younger adults (20-35 years) and 26 older adults (65-80 years) to investigate lifespan age differences in the relative prioritization of either information. Whereas learning based on an intramaze cue showed earlier maturation during the progression from younger to later childhood and remained relatively stable across adulthood, maturation of boundary-based learning was more protracted towards peri-adolescence and showed strong aging-related decline. Furthermore, individual differences in prioritizing intramaze cue- over computationally more demanding boundary-based learning was positively associated with cognitive processing fluctuations and this association was partially mediated by spatial working memory capacity during adult, but not during child development. This evidence reveals different age gradients of two modes of spatial learning across the lifespan, which seem further influenced by individual differences in cognitive processing fluctuations and working memory, particularly during aging.
Collapse
Affiliation(s)
- Franka Glöckner
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Nicolas W. Schuck
- grid.419526.d0000 0000 9859 7917Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195 Berlin, Germany ,grid.4372.20000 0001 2105 1091Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Shu-Chen Li
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany ,grid.4488.00000 0001 2111 7257CeTI - Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
46
|
Iran’s Scientific Publications on Neuromodulation. Neuromodulation 2021. [DOI: 10.5812/ipmn.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Mueller SG, Muller AM. Brainstem Dysfunction in Healthy Aging. Neuroimage 2021; 238:118241. [PMID: 34116149 DOI: 10.1016/j.neuroimage.2021.118241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The brainstem controls sub-cortical and cortical activity and influences the processing of incoming information. The goal of this study was to characterize age related alterations of brainstem-brain interactions during different brain states detected by dynamic analysis of task-free fMRI. 79 young (20-40 years) and 51 older adults (55-80 years) were studied. Internal brainstem structures were segmented using a new multi-contrast segmentation approach. Brain and brainstem gray matter segmentations were warped onto a population template. The ICV-corrected Jacobian determinants were converted into z-score maps and the means from 420 cortical/subcortical/brainstem rois extracted. The fMRI was preprocessed in SPM12/Conn18 and the BOLD signal from 420 cortical/subcortical/brainstem rois extracted. A dynamic task-free analysis approach based on hierarchical cluster analysis was used to identify 15 brain states that were characterized using graph analysis (strength, diversity, modularity). Kruskal-Wallis tests and Spearman correlations were used for statistical analysis. One brain state (cluster 21) occurred more often in older adults (p=0.008). It was characterized by a lower mean modular strength and brainstem-cortical strength in older adults compared to younger adults. Global age related gray matter differences were positively correlated with brain state 21's modular strength. Furthermore, brain state 21 duration was negatively correlated with working memory (r = -0.28, p=0.002). The findings suggest an age related weakening of the within and between network synchronization at the brainstem level during brain state 21 in older adults that negatively affects cortical and subcortical synchronization and working memory performance.
Collapse
Affiliation(s)
- S G Mueller
- Dept. of Radiology, University of California, San Francisco, CA.
| | - A M Muller
- Dept. of Radiology, University of California, San Francisco, CA.
| |
Collapse
|
48
|
Adelhöfer N, Stock AK, Beste C. Anodal tDCS modulates specific processing codes during conflict monitoring associated with superior and middle frontal cortices. Brain Struct Funct 2021; 226:1335-1351. [PMID: 33656578 PMCID: PMC8036188 DOI: 10.1007/s00429-021-02245-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Conflict monitoring processes are central for cognitive control. Neurophysiological correlates of conflict monitoring (i.e. the N2 ERP) likely represent a mixture of different cognitive processes. Based on theoretical considerations, we hypothesized that effects of anodal tDCS (atDCS) in superior frontal areas affect specific subprocesses in neurophysiological activity during conflict monitoring. To investigate this, young healthy adults performed a Simon task while EEG was recorded. atDCS and sham tDCS were applied in a single-blind, cross-over study design. Using temporal signal decomposition in combination with source localization analyses, we demonstrated that atDCS effects on cognitive control are very specific: the detrimental effect of atDCS on response speed was largest in case of response conflicts. This however only showed in aspects of the decomposed N2 component, reflecting stimulus-response translation processes. In contrast to this, stimulus-related aspects of the N2 as well as purely response-related processes were not modulated by atDCS. EEG source localization analyses revealed that the effect was likely driven by activity modulations in the superior frontal areas, including the supplementary motor cortex (BA6), as well as middle frontal (BA9) and medial frontal areas (BA32). atDCS did not modulate effects of proprioceptive information on hand position, even though this aspect is known to be processed within the same brain areas. Physiological effects of atDCS likely modulate specific aspects of information processing during cognitive control.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Faculty of Medicine, Department of Child and Adolescent Psychiatry, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
49
|
Lee HK, Kent JD, Wendel C, Wolinsky FD, Foster ED, Merzenich MM, Voss MW. Home-Based, Adaptive Cognitive Training for Cognitively Normal Older adults: Initial Efficacy Trial. J Gerontol B Psychol Sci Soc Sci 2021; 75:1144-1154. [PMID: 31140569 DOI: 10.1093/geronb/gbz073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES We examined whether a home-based, adaptive cognitive training (CT) program would lead to cognitive performance changes on a neuropsychological test battery in cognitively normal older adults. METHOD Sixty-eight older adults (age = 70.0, SD = 3.74) were randomly assigned to either CT or an active control group (AC, casual computer games). Participants were instructed to train on their assigned programs for 42 min per day, 5 days per week, over 10 weeks (35 hr of total program usage). Participants completed tests of processing speed, working memory, and executive control before and after 10 weeks of training. RESULTS Training groups did not differ in performance before training. After training, CT participants out-performed AC participants in the overall cognitive composite score, driven by processing speed and working memory domains. DISCUSSION Our results show that a limited dose of home-based CT can drive cognitive improvements as measured with neuropsychological test battery, suggesting potential cognitive health maintenance implications for cognitively normal older adults.
Collapse
Affiliation(s)
- Hyun Kyu Lee
- Department of Research and Development, Posit Science Inc., San Francisco, California
| | - James D Kent
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa
| | - Christopher Wendel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa
| | - Fredric D Wolinsky
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa
| | - Eric D Foster
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa
| | - Michael M Merzenich
- Department of Research and Development, Posit Science Inc., San Francisco, California
| | - Michelle W Voss
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa.,Department of Psychological and Brain Sciences, University of Iowa, Iowa
| |
Collapse
|
50
|
Blum L, Rosenbaum D, Röben B, Dehnen K, Maetzler W, Suenkel U, Fallgatter AJ, Ehlis AC, Metzger FG. Age-related deterioration of performance and increase of cortex activity comparing time- versus item-controlled fNIRS measurement. Sci Rep 2021; 11:6766. [PMID: 33762595 PMCID: PMC7991654 DOI: 10.1038/s41598-021-85762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
In our aging society, research into neurodegenerative processes is of great interest. Thereby, cortical activation under different neurocognitive conditions is considered to be a promising predictor. Against this background, the executive functions of a total of 250 healthy older adults (53–84 years) have been investigated using the Trail Making Test (TMT) and functional near-infrared spectroscopy in a block design. We investigated effects of age on the performance and cortical blood oxygenation during the TMT. Since it is assumed that older people may compensate for cognitive deficits by slowing their processing speed, we additionally analyzed the cortical blood oxygenation per solved item. Our results showed a significant decrease in processing speed in older participants compared to middle-aged individuals, however, also lower error rates during TMT part A. On a neurophysiological level, we observed increased cortical blood oxygenation in the older participants when completing the TMT. Finally, with respect to the combined measurement (O2Hb/item), no significantly higher hemodynamic cortical response per item was found within the older participants. The results confirm a deterioration of cognitive performance and an increase of cortical activity with increasing age. The findings are discussed in the light of current research.
Collapse
Affiliation(s)
- Leonore Blum
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany.
| | - David Rosenbaum
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Benjamin Röben
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Tuebingen, Germany
| | - Katja Dehnen
- Institute for General Medicine, University Hospital of Essen, Essen, Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Tuebingen, Germany.,Department of Neurology, Christian-Albrechts-University, Kiel, ,Kiel, Germany
| | - Ulrike Suenkel
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany.,LEAD Graduate School and Research Network, University of Tuebingen, Tuebingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany.,LEAD Graduate School and Research Network, University of Tuebingen, Tuebingen, Germany
| | - Florian G Metzger
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany.,Geriatric Center, University Hospital of Tuebingen, Tuebingen, Germany.,Vitos Hospital of Psychiatry and Psychotherapy Haina, Haina, Germany
| |
Collapse
|