1
|
Dere E. Insights into conscious cognitive information processing. Front Behav Neurosci 2024; 18:1443161. [PMID: 39135748 PMCID: PMC11318070 DOI: 10.3389/fnbeh.2024.1443161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
For over a century, the neuro- and pathophysiological, behavioral, and cognitive correlates of consciousness have been an active field of theoretical considerations and empirical research in a wide range of modern disciplines. Conscious cognitive processing of information cannot be observed directly, but might be inferred from step-like discontinuities in learning performance or sudden insight-based improvements in problem solving behavior. It is assumed that a sudden step of knowledge associated with insight requires a creative reorganization of mental representations of task- or problem-relevant information and the restructuration of the task, respectively problem to overcome an cognitive dead-end or impasse. Discontinuities in learning performance or problem solving after an insight event can be used as time-tags to capture the time window in which conscious cognitive information processing must have taken place. According to the platform theory of conscious cognitive information processing, the reorganization and restructuration processes, require the maintenance of task- or problem-relevant information in working memory for the operation of executive functions on these mental representations. Electrophysiological evidence suggests that the reorganization and restructuration processes in working memory, that precede insight-based problem solutions are accompanied by an increase in the power of gamma oscillations in cortical areas including the prefrontal cortex. Empirical evidence and theoretical assumptions argue for an involvement of gap junction channels and connexin hemichannels in cortical gamma-oscillations and working memory processes. Discontinuities in learning or problem solving performance might be used as time-tags to investigate the implication of gap junction channels and hemichannels in conscious cognitive processing.
Collapse
Affiliation(s)
- Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum, Bochum, Germany
- Unité de Formation et de Recherche des Sciences de la Vie (UFR 927), Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Riddle J, Schooler JW. Hierarchical consciousness: the Nested Observer Windows model. Neurosci Conscious 2024; 2024:niae010. [PMID: 38504828 PMCID: PMC10949963 DOI: 10.1093/nc/niae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Foremost in our experience is the intuition that we possess a unified conscious experience. However, many observations run counter to this intuition: we experience paralyzing indecision when faced with two appealing behavioral choices, we simultaneously hold contradictory beliefs, and the content of our thought is often characterized by an internal debate. Here, we propose the Nested Observer Windows (NOW) Model, a framework for hierarchical consciousness wherein information processed across many spatiotemporal scales of the brain feeds into subjective experience. The model likens the mind to a hierarchy of nested mosaic tiles-where an image is composed of mosaic tiles, and each of these tiles is itself an image composed of mosaic tiles. Unitary consciousness exists at the apex of this nested hierarchy where perceptual constructs become fully integrated and complex behaviors are initiated via abstract commands. We define an observer window as a spatially and temporally constrained system within which information is integrated, e.g. in functional brain regions and neurons. Three principles from the signal analysis of electrical activity describe the nested hierarchy and generate testable predictions. First, nested observer windows disseminate information across spatiotemporal scales with cross-frequency coupling. Second, observer windows are characterized by a high degree of internal synchrony (with zero phase lag). Third, observer windows at the same spatiotemporal level share information with each other through coherence (with non-zero phase lag). The theoretical framework of the NOW Model accounts for a wide range of subjective experiences and a novel approach for integrating prominent theories of consciousness.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, 1107 W Call St, Tallahassee, FL 32304, USA
| | - Jonathan W Schooler
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Psychological & Brain Sciences, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Goheen J, Anderson JAE, Zhang J, Northoff G. From Lung to Brain: Respiration Modulates Neural and Mental Activity. Neurosci Bull 2023; 39:1577-1590. [PMID: 37285017 PMCID: PMC10533478 DOI: 10.1007/s12264-023-01070-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Respiration protocols have been developed to manipulate mental states, including their use for therapeutic purposes. In this systematic review, we discuss evidence that respiration may play a fundamental role in coordinating neural activity, behavior, and emotion. The main findings are: (1) respiration affects the neural activity of a wide variety of regions in the brain; (2) respiration modulates different frequency ranges in the brain's dynamics; (3) different respiration protocols (spontaneous, hyperventilation, slow or resonance respiration) yield different neural and mental effects; and (4) the effects of respiration on the brain are related to concurrent modulation of biochemical (oxygen delivery, pH) and physiological (cerebral blood flow, heart rate variability) variables. We conclude that respiration may be an integral rhythm of the brain's neural activity. This provides an intimate connection of respiration with neuro-mental features like emotion. A respiratory-neuro-mental connection holds the promise for a brain-based therapeutic usage of respiration in mental disorders.
Collapse
Affiliation(s)
- Josh Goheen
- The Royal Ottawa Mental Health Centre, The University of Ottawa, Ottawa, K1Z 7K4, Canada.
- Department of Cognitive Science, Carleton University, Ottawa, K1S 5B6, Canada.
| | - John A E Anderson
- Department of Cognitive Science, Carleton University, Ottawa, K1S 5B6, Canada
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, 518060, China
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Georg Northoff
- The Royal Ottawa Mental Health Centre, The University of Ottawa, Ottawa, K1Z 7K4, Canada
| |
Collapse
|
4
|
Wei X, Yan Z, Cai L, Lu M, Yi G, Wang J, Dong Y. Aberrant temporal correlations of ongoing oscillations in disorders of consciousness on multiple time scales. Cogn Neurodyn 2023; 17:633-645. [PMID: 37265651 PMCID: PMC10229524 DOI: 10.1007/s11571-022-09852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
Changes in neural oscillation amplitude across states of consciousness has been widely reported, but little is known about the link between temporal dynamics of these oscillations on different time scales and consciousness levels. To address this question, we analyzed amplitude fluctuation of the oscillations extracted from spontaneous resting-state EEG recorded from the patients with disorders of consciousness (DOC) and healthy controls. Detrended fluctuation analysis (DFA) and measures of life-time and waiting-time were employed to characterize the temporal structure of EEG oscillations on long time scales (1-20 s) and short time scales (< 1 s), in groups with different consciousness states: patients in minimally conscious state (MCS), patients with unresponsive wakefulness syndrome (UWS) and healthy subjects. Results revealed increased DFA exponents that implies higher long-range temporal correlations (LRTC), especially in the central brain area in alpha and beta bands. On short time scales, declined bursts of oscillations were also observed. All the metrics exhibited lower individual variability in the UWS or MCS group, which may be attributed to the reduced spatial variability of oscillation dynamics. In addition, the temporal dynamics of EEG oscillations showed significant correlations with the behavioral responsiveness of patients. In summary, our findings shows that loss of consciousness is accompanied by alternation of temporal structure in neural oscillations on multiple time scales, and thus may help uncover the mechanism of underlying neuronal correlates of consciousness. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09852-9.
Collapse
Affiliation(s)
- Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Zhuang Yan
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Meili Lu
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Yueqing Dong
- Xincheng Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Falsaperla R, Collotta AD, Spatuzza M, Familiari M, Vitaliti G, Ruggieri M. Evidences of emerging pain consciousness during prenatal development: a narrative review. Neurol Sci 2022; 43:3523-3532. [PMID: 35246816 PMCID: PMC9120116 DOI: 10.1007/s10072-022-05968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The study of consciousness has always been considered a challenge for neonatologists, even more when considering the uterine period. Our review aimed to individuate at what gestational age the fetus, which later became a premature infant, can feel the perception of external stimuli. Therefore, the aim of our review was to study the onset of consciousness during the fetal life. MATERIALS AND METHODS A literature search was performed in Medline-PubMed database. We included all papers found with the following MeSH words: "consciousness or cognition or awareness or comprehension or cognitive or consciousness of pain" in combination with "embryo or fetus or fetal life or newborn." Studies were selected if titles and/or abstracts suggested an association between formation of consciousness (the basics of neurodevelopment) and preterm infant or fetus. Titles and abstracts were first screened by three independent reviewers according to Cochrane Collaboration's recommendations. RESULTS From the literature review, we found only 8 papers describing the onset of consciousness in the transition period from fetus to premature newborn. Therefore, according to these papers, we temporally analyzed the formation of the thalamocortical connections that are the basis of consciousness. CONCLUSIONS We can conclude that from a neuroanatomical point of view, it is rather unlikely that the infant can be seen as a conscious human before 24 weeks of gestational age, thus before all the thalamocortical connections are established. Further literature data have to confirm this hypothesis.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco," San Marco Hospital, University of Catania, Catania, Italy.
- Unit of Clinical PaediatricsAzienda Ospedaliero-Universitaria Policlinico"Rodolico-San Marco", San Marco Hospital, Catania, Italy.
| | - Ausilia Desiree Collotta
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation - The National Research Council of Italy (IRIB-CNR), Catania, Italy
| | - Maria Familiari
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanna Vitaliti
- Unit of Pediatrics, Department of Medical Sciences, Section of Pediatrics, University Hospital Sant'Anna, University of Ferrara, Ferrara, Italy.
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, AOU "Policlinico," PO "G. Rodolico," Via S. Sofia, 87, 95128, Catania, Italy
| |
Collapse
|
6
|
Golesorkhi M, Gomez-Pilar J, Çatal Y, Tumati S, Yagoub MCE, Stamatakis EA, Northoff G. From temporal to spatial topography: hierarchy of neural dynamics in higher- and lower-order networks shapes their complexity. Cereb Cortex 2022; 32:5637-5653. [PMID: 35188968 PMCID: PMC9753094 DOI: 10.1093/cercor/bhac042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
The brain shows a topographical hierarchy along the lines of lower- and higher-order networks. The exact temporal dynamics characterization of this lower-higher-order topography at rest and its impact on task states remains unclear, though. Using 2 functional magnetic resonance imaging data sets, we investigate lower- and higher-order networks in terms of the signal compressibility, operationalized by Lempel-Ziv complexity (LZC). As we assume that this degree of complexity is related to the slow-fast frequency balance, we also compute the median frequency (MF), an estimation of frequency distribution. We demonstrate (i) topographical differences at rest between higher- and lower-order networks, showing lower LZC and MF in the former; (ii) task-related and task-specific changes in LZC and MF in both lower- and higher-order networks; (iii) hierarchical relationship between LZC and MF, as MF at rest correlates with LZC rest-task change along the lines of lower- and higher-order networks; and (iv) causal and nonlinear relation between LZC at rest and LZC during task, with MF at rest acting as mediator. Together, results show that the topographical hierarchy of lower- and higher-order networks converges with their temporal hierarchy, with these neural dynamics at rest shaping their range of complexity during task states in a nonlinear way.
Collapse
Affiliation(s)
| | | | - Yasir Çatal
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa ON K1Z 7K4, Canada
| | - Shankar Tumati
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa ON K1Z 7K4, Canada
| | - Mustapha C E Yagoub
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa ON K1Z 7K4, Canada
| | - Emanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB1 0SP, United Kingdom
| | - Georg Northoff
- Corresponding author: Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada.
| |
Collapse
|
7
|
From Shorter to Longer Timescales: Converging Integrated Information Theory (IIT) with the Temporo-Spatial Theory of Consciousness (TTC). ENTROPY 2022; 24:e24020270. [PMID: 35205564 PMCID: PMC8871397 DOI: 10.3390/e24020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Time is a key element of consciousness as it includes multiple timescales from shorter to longer ones. This is reflected in our experience of various short-term phenomenal contents at discrete points in time as part of an ongoing, more continuous, and long-term ‘stream of consciousness.’ Can Integrated Information Theory (IIT) account for this multitude of timescales of consciousness? According to the theory, the relevant spatiotemporal scale for consciousness is the one in which the system reaches the maximum cause-effect power; IIT currently predicts that experience occurs on the order of short timescales, namely, between 100 and 300 ms (theta and alpha frequency range). This can well account for the integration of single inputs into a particular phenomenal content. However, such short timescales leave open the temporal relation of specific phenomenal contents to others during the course of the ongoing time, that is, the stream of consciousness. For that purpose, we converge the IIT with the Temporo-spatial Theory of Consciousness (TTC), which, assuming a multitude of different timescales, can take into view the temporal integration of specific phenomenal contents with other phenomenal contents over time. On the neuronal side, this is detailed by considering those neuronal mechanisms driving the non-additive interaction of pre-stimulus activity with the input resulting in stimulus-related activity. Due to their non-additive interaction, the single input is not only integrated with others in the short-term timescales of 100–300 ms (alpha and theta frequencies) (as predicted by IIT) but, at the same time, also virtually expanded in its temporal (and spatial) features; this is related to the longer timescales (delta and slower frequencies) that are carried over from pre-stimulus to stimulus-related activity. Such a non-additive pre-stimulus-input interaction amounts to temporo-spatial expansion as a key mechanism of TTC for the constitution of phenomenal contents including their embedding or nesting within the ongoing temporal dynamic, i.e., the stream of consciousness. In conclusion, we propose converging the short-term integration of inputs postulated in IIT (100–300 ms as in the alpha and theta frequency range) with the longer timescales (in delta and slower frequencies) of temporo-spatial expansion in TTC.
Collapse
|
8
|
Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G. The brain and its time: intrinsic neural timescales are key for input processing. Commun Biol 2021; 4:970. [PMID: 34400800 PMCID: PMC8368044 DOI: 10.1038/s42003-021-02483-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ,grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- grid.5239.d0000 0001 2286 5329Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- grid.5608.b0000 0004 1757 3470Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Nareg Berberian
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Annemarie Wolff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mustapha C. E. Yagoub
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XMental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
9
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
10
|
Northoff G, Lamme V. Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci Biobehav Rev 2020; 118:568-587. [PMID: 32783969 DOI: 10.1016/j.neubiorev.2020.07.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
Various theories for the neural basis of consciousness have been proposed, suggesting a diversity of neural signs and mechanisms. We ask to what extent this diversity is real, or whether many theories share the same basic ideas with a potential for convergence towards a more unified theory of the neural basis of consciousness. For that purpose, we review and compare the various neural signs, measures, and mechanisms proposed in the different theories. We demonstrate that different theories focus on neural signs and measures of distinct aspects of neural activity including stimulus-related, prestimulus, and resting state activity as well as on distinct features of consciousness. Therefore, the various mechanisms proposed in the different theories may, in part, complement each other. Together, we provide insight into the shared basis and convergences (and, in part, discrepancies) of the different theories of consciousness. We conclude that the different theories concern distinct aspects of both neural activity and consciousness which, as we suppose, may be integrated and nested within the brain's overall temporo-spatial dynamics.
Collapse
Affiliation(s)
- Georg Northoff
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; Centre for Research Ethics & Bioethics, University of Uppsala, Uppsala, Sweden.
| | - Victor Lamme
- Amsterdam Brain and Cognition (ABC), Department of Psychology, University of Amsterdam, the Netherlands
| |
Collapse
|
11
|
Glim S, Ries A, Sorg C, Wohlschläger AM. The temporal evolution of pre-stimulus slow cortical potentials is associated with an upcoming stimulus' access to visual consciousness. Conscious Cogn 2020; 84:102993. [PMID: 32771954 DOI: 10.1016/j.concog.2020.102993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023]
Abstract
Slow cortical potentials (SCPs) have been proposed to be essential for the formation of conscious experience. To examine their temporal characteristics, we recorded electroencephalography during a visual backward-masking task, which required participants to localize the missing part of a target stimulus. A subsequent confidence rating was used as a proxy for the target's access to consciousness. Event-related potentials (ERPs) of all correct trials were determined relative to a brief period immediately before the target and then compared among consciousness levels. In an interval ranging from 2 s prior to target presentation up to this period, a negative relationship between slowly fluctuating ERP values and the level of consciousness became evident. After target presentation, high conscious awareness was characterized by an enhanced visual awareness negativity, an increased P3 component, and associated positive SCPs. Together, these findings add new evidence to the proposed role of SCPs in the emergence of visual consciousness.
Collapse
Affiliation(s)
- Sarah Glim
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Anja Ries
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Afra M Wohlschläger
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Northoff G. Anxiety Disorders and the Brain's Resting State Networks: From Altered Spatiotemporal Synchronization to Psychopathological Symptoms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:71-90. [PMID: 32002923 DOI: 10.1007/978-981-32-9705-0_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anxiety disorders include a variety of different disorders including panic disorder (PD), social anxiety disorder (SAD), generalized anxiety disorder (GAD), and phobias. We here focus our review on GAD, SAD, and PD and put a specific emphasis on resting state networks and the coupling between the brain and the heart as all anxiety disorders exhibit abnormal perception of their own heartbeat in some way or the other. Resting state functional connectivity (rsFC) studies demonstrate abnormalities in default-mode network (DMN) in all anxiety disorders, e.g., mostly decreases in rsFC of DMN. In contrast, resting state fMRI shows increased rsFC in salience network (SN) (SAD, GAD) and/or somato-motor/sensory network (SMN) (PD). Since rsFC is coherence- or phase-based operating in the infraslow frequency domain (0.01-0.1 Hz), these data suggest spatiotemporal hypo- or hyper-synchronization in DMN and SMN/SN, respectively. These abnormalities in the neural network's spatiotemporal synchronization may, in turn, impact phase-based temporal synchronization of neural and cardiac activities resulting in decreased (DMN) or increased (SMN/SN) neuro-cardiac coupling in anxiety disorders. That, in turn, may be related to the various psychopathological symptoms like unstable sense of self (as based on unstable DMN showing spatiotemporal hypo-synchronization), increased emotions and specifically anxiety (as related to increased SN showing spatiotemporal hyper-synchronization), and increased bodily awareness (mediated by increased SMN with spatiotemporal hyper-synchronization) in anxiety disorders. Taken together, we here suggest altered spatiotemporal synchronization of neural and cardiac activity within the brain's resting state to underlie various psychopathological symptoms in anxiety disorders. Such spatiotemporal basis of psychopathological symptoms is well compatible with the recently suggested "Spatiotemporal Psychopathology."
Collapse
Affiliation(s)
- Georg Northoff
- EJLB-Michael Smith Chair for Neuroscience and Mental Health, Royal Ottawa Healthcare Group, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Mathematics and the Brain: A Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness. ENTROPY 2019. [PMCID: PMC7514579 DOI: 10.3390/e21121234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consciousness is a central issue in neuroscience, however, we still lack a formal framework that can address the nature of the relationship between consciousness and its physical substrates. In this review, we provide a novel mathematical framework of category theory (CT), in which we can define and study the sameness between different domains of phenomena such as consciousness and its neural substrates. CT was designed and developed to deal with the relationships between various domains of phenomena. We introduce three concepts of CT which include (i) category; (ii) inclusion functor and expansion functor; and, most importantly, (iii) natural transformation between the functors. Each of these mathematical concepts is related to specific features in the neural correlates of consciousness (NCC). In this novel framework, we will examine two of the major theories of consciousness, integrated information theory (IIT) of consciousness and temporospatial theory of consciousness (TTC). We conclude that CT, especially the application of the notion of natural transformation, highlights that we need to go beyond NCC and unravels questions that need to be addressed by any future neuroscientific theory of consciousness.
Collapse
|
14
|
Northoff G. Lessons From Astronomy and Biology for the Mind-Copernican Revolution in Neuroscience. Front Hum Neurosci 2019; 13:319. [PMID: 31607878 PMCID: PMC6761250 DOI: 10.3389/fnhum.2019.00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroscience made major progress in unravelling the neural basis of mental features like self, consciousness, affect, etc. However, we nevertheless lack what recently has been described as "missing ingredient" or "common currency" in the relationship between neuronal and mental activity. Rather than putting forward yet another theory of the neural basis of mental features, I here suggest a change in our methodological strategy how to approach the brain, that is, our view or vantage point of the brain. Learning from astronomy (Copernicus) and biology (Darwin), I suggest that we may want to change our currently pre-Copernican vantage point from within brain to a post-Copernican vantage point from beyond brain. Such post-Copernican vantage point from beyond brain allows us taking into view that what happens beyond the brain itself, e.g., the world, and how that shapes the brain and its neural activity, e.g., world-brain relation. We then lend empirical support to the world-brain relation by converging it with Karl Friston's free energy principle that, as we see it, provides a neuro-ecological and therefore post-Copernican view of the brain. That, in turn, allows us taking into view that mental features are shaped by both world and brain and are therefore truly neuro-ecological rather than merely neuronal. This raises the question for the link, e.g., the "missing ingredient" or "common currency" of world brain relation and mental features. Recent empirical evidence suggests that temporo-spatial dynamics may provide such link as it characterizes both the world-brain relation's free energy and mental features, e.g., their spatiotemporality as described in philosophy. Taken together, I here advocate a change in our methodological strategy on how to approach the brain, that is, a shift from a pre-Copernican vantage point from within brain to a post-Copernican vantage point from beyond brain. The latter allows us taking into view that what happens beyond the brain in the world and how that shapes the brain in such a way that it can yield mental features. This amounts to nothing less than a Copernican turn or revolution in neuroscience akin to the ones in astronomy (Copernicus) and biology (Darwin).
Collapse
Affiliation(s)
- Georg Northoff
- Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
15
|
Li Q, Liu G, Yuan G, Wang G, Wu Z, Zhao X. DC Shifts-fMRI: A Supplement to Event-Related fMRI. Front Comput Neurosci 2019; 13:37. [PMID: 31244636 PMCID: PMC6581730 DOI: 10.3389/fncom.2019.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Event-related fMRI have been widely used in locating brain regions which respond to specific tasks. However, activities of brain regions which modulate or indirectly participate in the response to a specific task are not event-related. Event-related fMRI can't locate these regulatory regions, detrimental to the integrity of the result that event-related fMRI revealed. Direct-current EEG shifts (DC shifts) have been found linked to the inner brain activity, a fusion DC shifts-fMRI method may have the ability to reveal a more complete response of the brain. In this study, we used DC shifts-fMRI to verify that even when responding to a very simple task, (1) The response of the brain is more complicated than event-related fMRI generally revealed and (2) DC shifts-fMRI have the ability of revealing brain regions whose responses are not in event-related way. We used a classical and simple paradigm which is often used in auditory cortex tonotopic mapping. Data were recorded from 50 subjects (25 male, 25 female) who were presented with randomly presented pure tone sequences with six different frequencies (200, 400, 800, 1,600, 3,200, 6,400 Hz). Our traditional fMRI results are consistent with previous findings that the activations are concentrated on the auditory cortex. Our DC shifts-fMRI results showed that the cingulate-caudate-thalamus network which underpins sustained attention is positively activated while the dorsal attention network and the right middle frontal gyrus which underpin attention orientation are negatively activated. The regional-specific correlations between DC shifts and brain networks indicate the complexity of the response of the brain even to a simple task and that the DC shifts can effectively reflect these non-event-related inner brain activities.
Collapse
Affiliation(s)
- Qiang Li
- Education Science College, Guizhou Normal College, Guiyang, China
| | - Guangyuan Liu
- College of Electronic and Information Engineering, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Southwest University, Chongqing, China
| | - Guangjie Yuan
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Gaoyuan Wang
- College of Music, Southwest University, Chongqing, China
| | - Zonghui Wu
- Southwest University Hospital, Southwest University, Chongqing, China
| | - Xingcong Zhao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Kortelainen J, Väyrynen E, Juuso I, Laurila J, Koskenkari J, Ala-Kokko T. Forehead electrodes sufficiently detect propofol-induced slow waves for the assessment of brain function after cardiac arrest. J Clin Monit Comput 2019; 34:105-110. [PMID: 30788811 PMCID: PMC6946726 DOI: 10.1007/s10877-019-00282-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
In a recent study, we proposed a novel method to evaluate hypoxic ischemic encephalopathy (HIE) by assessing propofol-induced changes in the 19-channel electroencephalogram (EEG). The study suggested that patients with HIE are unable to generate EEG slow waves during propofol anesthesia 48 h after cardiac arrest (CA). Since a low number of electrodes would make the method clinically more practical, we now investigated whether our results received with a full EEG cap could be reproduced using only forehead electrodes. Experimental data from comatose post-CA patients (N = 10) were used. EEG was recorded approximately 48 h after CA using 19-channel EEG cap during a controlled propofol exposure. The slow wave activity was calculated separately for all electrodes and four forehead electrodes (Fp1, Fp2, F7, and F8) by determining the low-frequency (< 1 Hz) power of the EEG. HIE was defined by following the patients’ recovery for six months. In patients without HIE (N = 6), propofol substantially increased (244 ± 91%, mean ± SD) the slow wave activity in forehead electrodes, whereas the patients with HIE (N = 4) were unable to produce such activity. The results received with forehead electrodes were similar to those of the full EEG cap. With the experimental pilot study data, the forehead electrodes were as capable as the full EEG cap in capturing the effect of HIE on propofol-induced slow wave activity. The finding offers potential in developing a clinically practical method for the early detection of HIE.
Collapse
Affiliation(s)
- Jukka Kortelainen
- Physiological Signal Analysis Team, Center for Machine Vision and Signal Analysis, MRC Oulu, University of Oulu, P.O. Box 4500, 90014, Oulu, Finland.
- Cerenion Oy, Elektroniikkatie 3, 90590, Oulu, Finland.
| | - Eero Väyrynen
- Cerenion Oy, Elektroniikkatie 3, 90590, Oulu, Finland
| | - Ilkka Juuso
- Cerenion Oy, Elektroniikkatie 3, 90590, Oulu, Finland
| | - Jouko Laurila
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Juha Koskenkari
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Tero Ala-Kokko
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| |
Collapse
|
17
|
Sánchez-Ramón S, Faure F. The Thymus/Neocortex Hypothesis of the Brain: A Cell Basis for Recognition and Instruction of Self. Front Cell Neurosci 2017; 11:340. [PMID: 29163052 PMCID: PMC5663735 DOI: 10.3389/fncel.2017.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
The recognition of internal and external sources of stimuli, the self from non-self, seems to be an intrinsic property to the adequate functioning of the immune system and the nervous system, both complex network systems that have evolved to safeguard the self biological identity of the organism. The mammalian brain development relies on dynamic and adaptive processes that are now well described. However, the rules dictating this highly constrained developmental process remain elusive. Here we hypothesize that there is a cellular basis for brain selfhood, based on the analogy of the global mechanisms that drive the self/non-self recognition and instruction by the immune system. In utero education within the thymus by multi-step selection processes discard overly low and high affinity T-lymphocytes to self stimuli, thus avoiding expendable or autoreactive responses that might lead to harmful autoimmunity. We argue that the self principle is one of the chief determinants of neocortical brain neurogenesis. According to our hypothesis, early-life education on self at the subcortical plate of the neocortex by selection processes might participate in the striking specificity of neuronal repertoire and assure efficiency and self tolerance. Potential implications of this hypothesis in self-reactive neurological pathologies are discussed, particularly involving consciousness-associated pathophysiological conditions, i.e., epilepsy and schizophrenia, for which we coined the term autophrenity.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Microbiology I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Florence Faure
- PSL Research University, INSERM U932, Institut Curie, Paris, France
| |
Collapse
|