1
|
Hu Z, He Q, Zhao H, Wang L, Cheng Y, Ji X, Guo Y, Hu W, Li M. Organic carbon compounds removal and phosphate immobilization for internal pollution control: Sediment microbial fuel cells, a prospect technology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125110. [PMID: 39395732 DOI: 10.1016/j.envpol.2024.125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
As a current technology that can effectively remove organic carbon compounds and immobilize phosphorus in sediment, sediment microbial fuel cells (SMFCs) can combine sediment remediation with power generation. This review discusses the removal efficiency of SMFCs on organic carbon compounds, including sediment organic matter, antibiotics, oil-contaminated sediments, methane, persistent organic pollutants, and other organic pollutants in sediment, with more comprehensive and targeted summaries, and it also emphasizes the mitigation of phosphorus pollution in water from the perspective of controlling endogenous phosphorus. In this review, the microbial community is used as a starting point to explore more about its roles on phosphorus and organic carbon compounds under SMFCs. Electrode modification, addition of exogenous substances and combinations with other technologies to improve the performance of SMFCs are also reviewed. It is further demonstrated that SMFCs have the prospect of long-term sustainability, but more attention needs to be paid to the study of the mechanism of SMFCs and the continuous improvement of devices for further application in practice.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lingjun Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuxin Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Sarma R, Kakati BK. Hydrothermal synthesis of tungsten oxide photo/electrocatalysts: precursor-driven morphological tailoring and electrochemical performance for hydrogen evolution and oxygen reduction reaction application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35607-6. [PMID: 39592533 DOI: 10.1007/s11356-024-35607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
A hydrothermal approach was adopted to synthesize tungsten oxide (WO3) nanocatalysts with tailored morphology, using oxalic acid (H2C2O4) and hydrochloric acid (HCl) as precursors. This precursor-driven method yielded two distinct WO3 catalysts with unique structural and functional properties, viz. rod-shaped WO3-ox and nanoflower-shaped WO3-h. Characterization by FESEM and XRD revealed variations in morphology and crystallite size, contributing to their specialized catalytic applications. UV-Vis spectroscopy confirmed strong UV absorption by WO3-ox at 283.57 nm with an optical band gap of 2.86 eV, making it ideal for photocatalytic activities. Electrochemical analysis demonstrated that WO3-ox effectively drives the hydrogen evolution reaction (HER), while WO3-h is more suitable for the oxygen reduction reaction (ORR), an essential process in microbial fuel cells (MFCs). In practical applications, WO3-ox achieved an 83.9% degradation efficiency of methylene blue (MB) within 3 h, validating its high photocatalytic efficacy for wastewater treatment. Meanwhile, WO3-h, utilized as a cathode catalyst in MFCs, significantly enhanced system performance, elevating chemical oxygen demand (COD) removal efficiency to 78.7% and improving coulombic efficiency by 3%. These findings underscore the potential of precursor-driven hydrothermal synthesis for optimizing WO3 catalysts tailored for energy and environmental applications, specifically in hydrogen production and sustainable wastewater treatment systems.
Collapse
Affiliation(s)
- Rahul Sarma
- Department of Energy, Tezpur University, Tezpur, 784 028, India
| | | |
Collapse
|
3
|
Ji L, Wang F, Qi Y, Qiao F, Xiong X, Liu Y. Detection of pathogenic gram-negative bacteria using an antimicrobial peptides-modified bipolar electrode-electrochemiluminescence platform. Mikrochim Acta 2024; 191:648. [PMID: 39367972 DOI: 10.1007/s00604-024-06685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
Real-time, label-free detection of gram-negative bacteria with high selectivity and sensitivity is demonstrated using a bipolar electrode-electrochemiluminescence (BPE-ECL) platform. This platform utilizes anode luminescence and cathode modification of antimicrobial peptides (AMPs) to effectively capture bacteria. Magainin I, basic AMP from Xenopus skin, boasting an α-helix structure, exhibits a preferential affinity for the surface of gram-negative pathogens. The covalent attachment of the peptide's C-terminal carboxylic acid to the free amines of a previously thiolated linker ensures its secure immobilization onto the surface of the interdigitated gold-plated cathode of BPE. The AMP-modified BPE sensor, when exposed to varying concentrations of gram-negative bacteria, produces reproducible ECL intensities, allowing for the detection of peptide-bacteria interactions within the range 1 to 104 CFU mL-1. Furthermore, this AMP-modified BPE sensor demonstrates a selective capacity to detect Escherichia coli O157:H7 amidst other gram-negative strains, even at a concentration of 1-CFU mL-1. This study underscores the high selectivity of Magainin I in bacterial detection, and the AMP-modified BPE-ECL system holds significant promise for rapid detection of gram-negative bacteria in various applications. The AMP-modified BPE sensor generated reproducible ECL intensity that detected peptide-bacteria interactions in the range 1 to 104 CFU mL-1. The AMP-modified BPE sensor also selectively detected E. coli O157:H7 from other gram-negative strains at a concentration of 1-CFU mL-1. In this paper, AMP demonstrated high selectivity in bacterial detection. The AMP-modified BPE-ECL system prepared has a great potential for application in the field of rapid detection of gram-negative bacteria.
Collapse
Affiliation(s)
- Lei Ji
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Fengyang Wang
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Yan Qi
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Fanglin Qiao
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Xiaohui Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Yuanjian Liu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
4
|
Crowther TW, Rappuoli R, Corinaldesi C, Danovaro R, Donohue TJ, Huisman J, Stein LY, Timmis JK, Timmis K, Anderson MZ, Bakken LR, Baylis M, Behrenfeld MJ, Boyd PW, Brettell I, Cavicchioli R, Delavaux CS, Foreman CM, Jansson JK, Koskella B, Milligan-McClellan K, North JA, Peterson D, Pizza M, Ramos JL, Reay D, Remais JV, Rich VI, Ripple WJ, Singh BK, Smith GR, Stewart FJ, Sullivan MB, van den Hoogen J, van Oppen MJH, Webster NS, Zohner CM, van Galen LG. Scientists' call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024; 187:5195-5216. [PMID: 39303686 DOI: 10.1016/j.cell.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.
Collapse
Affiliation(s)
- Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Restor Eco AG, Zürich 8001, Switzerland.
| | - Rino Rappuoli
- Fondazione Biotecnopolo di Siena, Siena 53100, Italy.
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona 60131, Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberto Danovaro
- National Biodiversity Future Center, Palermo 90133, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Timothy J Donohue
- Wisconsin Energy Institute, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 94240, the Netherlands
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - James Kenneth Timmis
- Institute of Political Science, University of Freiburg, Freiburg 79085, Germany; Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081, the Netherlands
| | - Kenneth Timmis
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Matthew Z Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas 1433, Norway
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Cheshire, Neston CH64 7TE, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Ian Brettell
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Camille S Delavaux
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Christine M Foreman
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT 59718, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kat Milligan-McClellan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Devin Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Mariagrazia Pizza
- Department of Life Sciences, CBRB Center, Imperial College, London SW7 2AZ, UK
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada 18008, Spain
| | - David Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Virginia I Rich
- Center of Microbiome Science, Byrd Polar and Climate Research, and Microbiology Department, The Ohio State University, Columbus, OH 43214, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gabriel Reuben Smith
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Center of Microbiome Science, and EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Constantin M Zohner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Laura G van Galen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA.
| |
Collapse
|
5
|
Gao X, Liu K, Zhang C, Cao X, Sakamakic T, Li X. Diversity in mechanisms of natural humic acid enhanced current production in soil bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2024; 406:131057. [PMID: 38945502 DOI: 10.1016/j.biortech.2024.131057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
The quinoid component of humic acids (HAs) had been studied as exogenous electron mediators (EMs), but the redox-mediating abilities of other functional groups remained unclear. This study evaluated the effects of various HAs functional groups on cellular respiration and extracellular electron transfer. The three EMs increased the current density compared to the control. Current density increased significantly after adding ultraviolet-irradiated HAs (UV-HAs), suggesting that nitrogenous group-mediated redox reactions contributed to high-density current generation. Structural equation model (SEM) results indicated that the contribution of nitrogen-containing groups to electron transfer could exceed 20%. This study proposed a synergistic mechanism: in the soil microbial fuel cells (soil-MFCs), HAs accelerated their component evolution through irreversible redox reactions and promoted extracellular electron transfer. Additionally, HAs-induced high expression of c-Cyts could further enhance high-density current generation. This study demonstrates that humic acids enhance electron transfer and current in bioelectrochemical systems, aiding sustainable energy optimization.
Collapse
Affiliation(s)
- Xintong Gao
- College of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Kaixuan Liu
- College of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Chong Zhang
- College of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xian Cao
- College of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Takashi Sakamakic
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan
| | - Xianning Li
- College of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Hornik T, Terry M, Krause M, Catterlin JK, Joiner KL, Aragon S, Sarmiento A, Arias-Thode YM, Kartalov EP. Experimental Proof of Principle of 3D-Printed Microfluidic Benthic Microbial Fuel Cells (MBMFCs) with Inbuilt Biocompatible Carbon-Fiber Electrodes. MICROMACHINES 2024; 15:870. [PMID: 39064381 PMCID: PMC11278569 DOI: 10.3390/mi15070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Microbial fuel cells (MFCs) represent a promising avenue for sustainable energy production by harnessing the metabolic activity of microorganisms. In this study, a novel design of MFC-a Microfluidic Benthic Microbial Fuel Cell (MBMFC)-was developed, fabricated, and tested to evaluate its electrical energy generation. The design focused on balancing microfluidic architecture and wiring procedures with microbial community dynamics to maximize power output and allow for upscaling and thus practical implementation. The testing phase involved experimentation to evaluate the performance of the MBMFC. Microbial feedstock was varied to assess its impact on power generation. The designed MBMFC represents a promising advancement in the field of bioenergy generation. By integrating innovative design principles with advanced fabrication techniques, this study demonstrates a systematic approach to optimizing MFC performance for sustainable and clean energy production.
Collapse
Affiliation(s)
- Terak Hornik
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| | - Maxwell Terry
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| | - Michael Krause
- MOVES Institute, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA;
| | - Jeffrey K. Catterlin
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| | - Kevin L. Joiner
- Naval Information Warfare Center, San Diego, CA 92152, USA; (K.L.J.); (S.A.); (A.S.); (Y.M.A.-T.)
| | - Samuel Aragon
- Naval Information Warfare Center, San Diego, CA 92152, USA; (K.L.J.); (S.A.); (A.S.); (Y.M.A.-T.)
| | - Angelica Sarmiento
- Naval Information Warfare Center, San Diego, CA 92152, USA; (K.L.J.); (S.A.); (A.S.); (Y.M.A.-T.)
| | | | - Emil P. Kartalov
- Physics Department, Naval Postgraduate School, 1 University Circle, Monterey, CA 93943, USA; (T.H.); (M.T.); (J.K.C.)
| |
Collapse
|
7
|
Malekmohammadi S, Mirbagheri SA. Scale-up single chamber of microbial fuel cell using agitator and sponge biocarriers. ENVIRONMENTAL TECHNOLOGY 2024; 45:2935-2943. [PMID: 37006176 DOI: 10.1080/09593330.2023.2197126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Despite the high efficiency of microbial fuel cells (MFCs), MFCs cannot be a suitable alternative for treatment plants because of insufficient power generation and tiny reactors. Additionally, the increased reactor size and MFC stack result in a reduction in production power and reverse voltage. In this study, a larger MFC with a volume of 1.5 L has been designed called LMFC. A conventional MFC, called SMFC, with a volume of 0.157 L, was constructed and compared with LMFC. Moreover, the designed LMFC can be integrated with other treatment systems and generate significant electricity. In order to evaluate MFC's ability to integrate with other treatment systems, the LMFC reactor was converted into MFC-MBBR by adding sponge biocarriers. A 9.5 percent increase in reactor volume resulted in a 60 percent increase in power density from 290 (SMFC) to 530 (LMFC). An agitator effect was also investigated for better mixing and circulating substrate, which positively affected the power density by about 18%. Compared with LMFCs, the reactor with biocarriers generated a 28% higher power density. The COD removal efficiency of SMFC, LMFC, and MFC-MBBR reactors after 24 h was 85, 66, and 83%, respectively. After 80 h of operation, the Coulombic efficiency of the SMFC, LMFC, and MFC-MBBR reactors was 20.9, 45.43, and 47.28%, respectively. The doubling of coulombic efficiency from SMFC to LMFC reactor shows the design's success. The reduction of COD removal efficiency in LMFC is the reason for integrating this reactor with other systems, which was compensated by adding biocarriers.
Collapse
Affiliation(s)
- Sima Malekmohammadi
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Seyed Ahmad Mirbagheri
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Umar A, Abid I, Antar M, Dufossé L, Hajji-Hedfi L, Elshikh MS, Shahawy AE, Abdel-Azeem AM. Electricity generation and oxidoreductase potential during dye discoloration by laccase-producing Ganoderma gibbosum in fungal fuel cell. Microb Cell Fact 2023; 22:258. [PMID: 38098010 PMCID: PMC10720082 DOI: 10.1186/s12934-023-02258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Color chemicals contaminate pure water constantly discharged from different points and non-point sources. Physical and chemical techniques have certain limitations and complexities for bioenergy production, which motivated the search for a novel sustainable production approaches during dye wastewater treatment. The emerging environmental problem of dye decolorization has attracted scientist's attention to a new, cheap, and economical way to treat dye wastewater and power production via fungal fuel cells. Ganoderma gibbosum was fitted in the cathodic region with laccase secretion in the fuel cell. At the same time, dye water was placed in the anodic region to move electrons and produce power. This study treated wastewater using the oxidoreductase enzymes released extracellularly from Ganoderma gibbosum for dye Remazol Brilliant Blue R (RBBR) degradation via fungal-based fuel cell. The maximum power density of 14.18 mW/m2 and the maximum current density of 35 mA/m2 were shown by the concentration of 5 ppm during maximum laccase activity and decolorization of RBBR. The laccase catalysts have gained considerable attention because of eco-friendly and alternative easy handling approaches to chemical methods. Fungal Fuel Cells (FFCs) are efficiently used in dye treatment and electricity production. This article also highlighted the construction of fungal catalytic cells and the enzymatic performance of fungal species in energy production during dye water treatment.
Collapse
Affiliation(s)
- Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed Antar
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, Quebec, H9X 3V9, Canada
| | - Laurent Dufossé
- Laboratoire CHEMBIOPRO (Chimie et Biotechnologie des Produits Naturels), Université de La Réunion, ESIROI Département Agroalimentaire, 15 Avenue René Cassin, 97490, Saint-Denis, France
| | - Lobna Hajji-Hedfi
- Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, 357, 9100, Sidi Bouzid, Tunisia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 2455, 11451, Riyadh, Saudi Arabia
| | - Abeer El Shahawy
- Department of Civil Engineering, Faculty of Engineering, Suez Canal University, 41522, Ismailia, Egypt
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, Republic of South Africa
| |
Collapse
|
9
|
Cross J, Honnavar P, Quidet XLT, Butler T, Shivaprasad A, Christian L. Assessing Freshwater Microbiomes from Different Storage Sources in the Caribbean Using DNA Metabarcoding. Microorganisms 2023; 11:2945. [PMID: 38138089 PMCID: PMC10745428 DOI: 10.3390/microorganisms11122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Next-generation sequencing (NGS) and the technique of DNA metabarcoding have provided more efficient and comprehensive options for testing water quality compared to traditional methods. Recent studies have shown the efficacy of DNA metabarcoding in characterizing the bacterial microbiomes of varied sources of drinking water, including rivers, reservoirs, wells, tanks, and lakes. We asked whether DNA metabarcoding could be used to characterize the microbiome of different private sources of stored freshwater on the Caribbean Island nation of Antigua and Barbuda. Two replicate water samples were obtained from three different private residential sources in Antigua: a well, an above-ground tank, and a cistern. The bacterial microbiomes of different freshwater sources were assessed using 16S rRNA metabarcoding. We measured both alpha diversity (species diversity within a sample) and beta diversity (species diversity across samples) and conducted a taxonomic analysis. We also looked for the presence of potentially pathogenic species. Major differences were found in the microbiome composition and relative abundances depending on the water source. A lower alpha diversity was observed in the cistern sample compared to the others, and distinct differences in the microbiome composition and relative abundance were noted between the samples. Notably, pathogenic species, or genera known to harbor such species, were detected in all the samples. We conclude that DNA metabarcoding can provide an effective and comprehensive assessment of drinking water quality and has the potential to identify pathogenic species overlooked using traditional methods. This method also shows promise for tracing the source of disease outbreaks due to waterborne microorganisms. This is the first study from small island countries in the Caribbean where metabarcoding has been applied for assessing freshwater water quality.
Collapse
Affiliation(s)
- Joseph Cross
- Department of Biochemistry, Cell Biology and Genetics, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda;
- Department of Microbial Pathogenesis and Immunology, Texas A&M University School of Medicine, College Station, TX 77843, USA
| | - Prasanna Honnavar
- Department of Microbiology and Immunology, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda;
| | - Xegfred Lou T. Quidet
- Basic Medical Sciences, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda; (X.L.T.Q.); (T.B.)
| | - Travis Butler
- Basic Medical Sciences, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda; (X.L.T.Q.); (T.B.)
| | - Aparna Shivaprasad
- Department of Microbiology and Immunology, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda;
| | - Linroy Christian
- Department of Analytical Services, St. Johns 1451, Antigua and Barbuda;
| |
Collapse
|
10
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
11
|
Pan P, Bhattacharyya N. Bioelectricity Production from Microbial Fuel Cell (MFC) Using Lysinibacillus xylanilyticus Strain nbpp1 as a Biocatalyst. Curr Microbiol 2023; 80:252. [PMID: 37354374 DOI: 10.1007/s00284-023-03338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/22/2023] [Indexed: 06/26/2023]
Abstract
Microbial fuel cells (MFCs) function by using microorganisms to decompose the substrate at the anode, producing electrons and protons. These charges are then transported to the cathode, where electricity is generated. Previous studies have shown their promising probabilities for practical applications. MFCs are praised for their ability to address energy shortages and environmental pollution simultaneously. They have the potential to generate electricity directly from organic substances, reducing energy losses that occur during intermediate conversion steps. The main challenge lies in transitioning these technologies from the laboratory setting to practical systems that can be implemented on a large scale for bioenergy production along with various engineering hurdles. This study focused on investigating the power production potential of a soil-isolated bacterial strain taxonomically classified as Lysinibacillus xylanilyticus nbpp1, which is a relatively new addition to the extensive range of biocatalysts known for their ability to generate electricity. The study analyzed the electrochemical performance of an H-type MFC setup. LB broth was used as the substrate, while aluminum and graphite served as electrode materials. Other parameters, such as Coulombic efficiency, internal resistance, and electrode corrosion rate, were also measured. The MFC produced a high open circuit voltage of 1127 mV and achieved a maximum power density of 6.71 mW/cm2 at a current density of 11.14 mA/cm2. The MFC setup successfully powered LED lamps when connected in a joint circuit, showcasing its potential for practical applications. These findings suggest the promising high electrochemical performance of the MFC system in terms of electricity generation using the specified conditions.
Collapse
Affiliation(s)
- Palash Pan
- Department of Biotechnology, Panskura Banamali College, P.O. Panskura R.S, Purba Medinipur, West Bengal, 721152, India
| | - Nandan Bhattacharyya
- Department of Biotechnology, Panskura Banamali College, P.O. Panskura R.S, Purba Medinipur, West Bengal, 721152, India.
| |
Collapse
|
12
|
Ghosh A, Kumar S, Das J. Impact of leachate and landfill gas on the ecosystem and health: Research trends and the way forward towards sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117708. [PMID: 36913859 DOI: 10.1016/j.jenvman.2023.117708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Globally, a whopping increase in solid waste (SW) generation and the risks posed by climate change are major concerns. A wide spread practice for disposal of municipal solid waste (MSW) is landfill, which swells with population and urbanization. Waste, if treated properly, can be used to produce renewable energy. The recent global event COP 27 mainly stressed on production of renewable energy to achieve the Net Zero target. The MSW landfill is the most significant anthropogenic source of methane (CH4) emission. On one side, CH4 is a greenhouse gas (GHG), and on the other it is a main component of biogas. Wastewater that collects due to rainwater percolation in landfills creates landfill leachate. There is a need to understand global landfill management practices thoroughly for implementation of better practices and policies related to this threat. This study critically reviews recent publications on leachate and landfill gas. The review discusses leachate treatment and landfill gas emissions, focusing on the possible reduction technology of CH4 emission and its impact on the environment. Mixed leachate will benefit from the combinational therapy method because of its intricate combination. Implementation of circular material management, entrepreneurship ideas, blockchain, machine learning, LCA usage in waste management, and economic benefits from CH4 production have been emphasized. Bibliometric analysis of 908 articles from the last 37 years revealed that industrialized nations dominate this research domain, with the United States having the highest number of citations.
Collapse
Affiliation(s)
- Arpita Ghosh
- Indian Institute of Management Sirmaur, Paonta Sahib, 173 025, Himachal Pradesh, India
| | - Sunil Kumar
- College of Sciences and Engineering, University of Tasmania, Launceston Campus, Australia Private Bag 51, Hobart, TAS, 7001, Australia.
| | - Jit Das
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713 209, India
| |
Collapse
|
13
|
Matsuki M, Hirakawa S. Development of overlying water aeration system powered by sediment-microbial-fuel-cell for nutrient suppression. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2553-2563. [PMID: 37257109 PMCID: wst_2023_145 DOI: 10.2166/wst.2023.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sediment microbial fuel cells (SMFCs) represent a burgeoning technology that allows the remediation of sediments, such as nutrient suppression, while concurrently generating electricity. However, there is a limitation in that the nutrient suppression effect is restricted to a narrow range near the electrode. To address this issue, we developed an SMFC-aeration system, which intermittently aerates the overlying water with the power of SMFCs, thereby enhancing the nutrient suppression effect of SMFCs. The SMFC-aeration system achieved stable charge/discharge cycles through a capacitor-based circuit and aerated the overlying water. The dissolved NH4+ and NO2- concentrations in the overlying water decreased. Suppression in the dissolved NH4+ concentration near the anodes was also noticed compared to a consortium that employed only SMFCs. These findings were brought about by the synergistic effect of the SMFC-aeration system, which enabled the remediation of sediments and overlying water. To our knowledge, this is the first report on the intermittent operation of pumps by SMFCs, the increase of DO, and nutrient suppression. The SMFC-aeration system holds great potential as an environmental remediation method in closed-water areas in the future.
Collapse
Affiliation(s)
- Masaya Matsuki
- Fukuoka Institute of Health and Environmental Sciences, 39, Mukaizano, Dazaifu, Fukuoka, Japan E-mail:
| | - Shusaku Hirakawa
- Fukuoka Institute of Health and Environmental Sciences, 39, Mukaizano, Dazaifu, Fukuoka, Japan E-mail:
| |
Collapse
|
14
|
Ortiz-Medina JF, Poole MR, Grunden AM, Call DF. Nitrogen Fixation and Ammonium Assimilation Pathway Expression of Geobacter sulfurreducens Changes in Response to the Anode Potential in Microbial Electrochemical Cells. Appl Environ Microbiol 2023; 89:e0207322. [PMID: 36975810 PMCID: PMC10132095 DOI: 10.1128/aem.02073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Nitrogen gas (N2) fixation in the anode-respiring bacterium Geobacter sulfurreducens occurs through complex, multistep processes. Optimizing ammonium (NH4+) production from this bacterium in microbial electrochemical technologies (METs) requires an understanding of how those processes are regulated in response to electrical driving forces. In this study, we quantified gene expression levels (via RNA sequencing) of G. sulfurreducens growing on anodes fixed at two different potentials (-0.15 V and +0.15 V versus standard hydrogen electrode). The anode potential had a significant impact on the expression levels of N2 fixation genes. At -0.15 V, the expression of nitrogenase genes, such as nifH, nifD, and nifK, significantly increased relative to that at +0.15 V, as well as genes associated with NH4+ uptake and transformation, such as glutamine and glutamate synthetases. Metabolite analysis confirmed that both of these organic compounds were present in significantly higher intracellular concentrations at -0.15 V. N2 fixation rates (estimated using the acetylene reduction assay and normalized to total protein) were significantly larger at -0.15 V. Genes expressing flavin-based electron bifurcation complexes, such as electron-transferring flavoproteins (EtfAB) and the NADH-dependent ferredoxin:NADP reductase (NfnAB), were also significantly upregulated at -0.15 V, suggesting that these mechanisms may be involved in N2 fixation at that potential. Our results show that in energy-constrained situations (i.e., low anode potential), the cells increase per-cell respiration and N2 fixation rates. We hypothesize that at -0.15 V, they increase N2 fixation activity to help maintain redox homeostasis, and they leverage electron bifurcation as a strategy to optimize energy generation and use. IMPORTANCE Biological nitrogen fixation coupled with ammonium recovery provides a sustainable alternative to the carbon-, water-, and energy-intensive Haber-Bosch process. Aerobic biological nitrogen fixation technologies are hindered by oxygen gas inhibition of the nitrogenase enzyme. Electrically driving biological nitrogen fixation in anaerobic microbial electrochemical technologies overcomes this challenge. Using Geobacter sulfurreducens as a model exoelectrogenic diazotroph, we show that the anode potential in microbial electrochemical technologies has a significant impact on nitrogen gas fixation rates, ammonium assimilation pathways, and expression of genes associated with nitrogen gas fixation. These findings have important implications for understanding regulatory pathways of nitrogen gas fixation and will help identify target genes and operational strategies to enhance ammonium production in microbial electrochemical technologies.
Collapse
Affiliation(s)
- Juan F. Ortiz-Medina
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mark R. Poole
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Amy M. Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Douglas F. Call
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Yashiro Y, Yamamoto M, Muneta Y, Sawada H, Nishiura R, Arai S, Takamatsu S, Itoh T. Comparative Studies on Electrodes for Rumen Bacteria Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:4162. [PMID: 37112502 PMCID: PMC10141067 DOI: 10.3390/s23084162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Microbial fuel cells (MFCs) using rumen bacteria have been proposed as a power source for running devices inside cattle. In this study, we explored the key parameters of the conventional bamboo charcoal electrode in an attempt to improve the amount of electrical power generated by the microbial fuel cell. We evaluated the effects of the electrode's surface area, thickness, and rumen content on power generation and determined that only the electrode's surface area affects power generation levels. Furthermore, our observations and bacterial count on the electrode revealed that rumen bacteria concentrated on the surface of the bamboo charcoal electrode and did not penetrate the interior, explaining why only the electrode's surface area affected power generation levels. A Copper (Cu) plate and Cu paper electrodes were also used to evaluate the effect of different electrodes on measuring the rumen bacteria MFC's power potential, which had a temporarily higher maximum power point (MPP) compared to the bamboo charcoal electrode. However, the open circuit voltage and MPP decreased significantly over time due to the corrosion of the Cu electrodes. The MPP for the Cu plate electrode was 775 mW/m2 and the MPP for the Cu paper electrode was 1240 mW/m2, while the MPP for bamboo charcoal electrodes was only 18.7 mW/m2. In the future, rumen bacteria MFCs are expected to be used as the power supply of rumen sensors.
Collapse
Affiliation(s)
- Yusuke Yashiro
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Tokyo, Japan
| | - Michitaka Yamamoto
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Tokyo, Japan
| | - Yoshihiro Muneta
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan
| | - Hiroshi Sawada
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan
| | - Reina Nishiura
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan
| | - Shozo Arai
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan
| | - Seiichi Takamatsu
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Tokyo, Japan
| | - Toshihiro Itoh
- Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Tokyo, Japan
| |
Collapse
|
16
|
Umar A, Smółka Ł, Gancarz M. The Role of Fungal Fuel Cells in Energy Production and the Removal of Pollutants from Wastewater. Catalysts 2023. [DOI: 10.3390/catal13040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Pure water, i.e., a sign of life, continuously circulates and is contaminated by different discharges. This emerging environmental problem has been attracting the attention of scientists searching for methods for the treatment of wastewater contaminated by multiple recalcitrant compounds. Various physical and chemical methods are used to degrade contaminants from water bodies. Traditional methods have certain limitations and complexities for bioenergy production, which motivates the search for new ways of sustainable bioenergy production and wastewater treatment. Biological strategies have opened new avenues to the treatment of wastewater using oxidoreductase enzymes for the degradation of pollutants. Fungal-based fuel cells (FFCs), with their catalysts, have gained considerable attention among scientists worldwide. They are a new, ecofriendly, and alternative approach to nonchemical methods due to easy handling. FFCs are efficiently used in wastewater treatment and the production of electricity for power generation. This article also highlights the construction of fungal catalytic cells and the enzymatic performance of different fungal species in energy production and the treatment of wastewater.
Collapse
Affiliation(s)
- Aisha Umar
- Institute of the Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Łukasz Smółka
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
17
|
Barakat NAM, Ali RH, Kim HY, Nassar MM, Fadali OA, Tolba GMK, Moustafa HM, Ali MA. Carbon Nanofibers-Sheathed Graphite Rod Anode and Hydrophobic Cathode for Improved Performance Industrial Wastewater-Driven Microbial Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3961. [PMID: 36432248 PMCID: PMC9696571 DOI: 10.3390/nano12223961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanofiber-decorated graphite rods are introduced as effective and low-cost anodes for industrial wastewater-driven microbial fuel cells. Carbon nanofiber deposition on the surface of the graphite rods could be performed by the electrospinning of polyacrylonitrile/N,N-Dimethylformamide solution using the rod as nanofiber collector, which was calcined under inert atmosphere. The experimental results indicated that at 10 min electrospinning time, the proposed graphite anode demonstrates very good performance compared to the commercial anodes. Typically, the generated power density from sugarcane industry wastewater-driven air cathode microbial fuel cells were 13 ± 0.3, 23 ± 0.7, 43 ± 1.3, and 185 ± 7.4 mW/m2 using carbon paper, carbon felt, carbon cloth, and graphite rod coated by 10-min electrospinning time carbon nanofibers anodes, respectively. The distinct performance of the proposed anode came from creating 3D carbon nanofiber layer filled with the biocatalyst. Moreover, to annihilate the internal cell resistance, a membrane-less cell was assembled by utilizing a poly(vinylidene fluoride) electrospun nanofiber layer-coated cathode. This novel strategy inspired a highly hydrophobic layer on the cathode surface, preventing water leakage to avoid utilizing the membrane. However, in both anode and cathode modifications, the electrospinning time should be optimized. The best results were obtained at 5 and 10 min for the cathode and anode, respectively.
Collapse
Affiliation(s)
- Nasser A. M. Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Rasha H. Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Mamdouh M. Nassar
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Olfat A. Fadali
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Gehan M. K. Tolba
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Hager M. Moustafa
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| | - Marwa A. Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
| |
Collapse
|
18
|
Wang B, Liu W, Liang B, Jiang J, Wang A. Microbial fingerprints of methanation in a hybrid electric-biological anaerobic digestion. WATER RESEARCH 2022; 226:119270. [PMID: 36323204 DOI: 10.1016/j.watres.2022.119270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China.
| | - Bin Liang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, 518055 Shenzhen, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| |
Collapse
|
19
|
Rossi R, Logan BE. Impact of reactor configuration on pilot-scale microbial fuel cell performance. WATER RESEARCH 2022; 225:119179. [PMID: 36206685 DOI: 10.1016/j.watres.2022.119179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Different microbial fuel cell (MFC) configurations have been successfully operated at pilot-scale levels (>100 L) to demonstrate electricity generation while accomplishing domestic or industrial wastewater treatment. Two cathode configurations have been primarily used based on either oxygen transfer by aeration of a liquid catholyte or direct oxygen transfer using air-cathodes. Analysis of several pilot-scale MFCs showed that air-cathode MFCs outperformed liquid catholyte reactors based on power density, producing 233% larger area-normalized power densities and 181% higher volumetric power densities. Reactors with higher electrode packing densities improved performance by enabling larger power production while minimizing the reactor footprint. Despite producing more power than the liquid catholyte MFCs, and reducing energy consumption for catholyte aeration, pilot MFCs based on air-cathode configuration failed to produce effluents with chemical oxygen demand (COD) levels low enough to meet typical threshold for discharge. Therefore, additional treatment would be required to further reduce the organic matter in the effluent to levels suitable for discharge. Scaling up MFCs must incorporate designs that can minimize electrode and solution resistances to maximize power and enable efficient wastewater treatment.
Collapse
Affiliation(s)
- Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
Al-Sahari M, Al-Gheethi AA, Radin Mohamed RMS, Yashni G, Vo DVN, Ismail N. Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems. CHEMOSPHERE 2022; 298:134244. [PMID: 35278440 DOI: 10.1016/j.chemosphere.2022.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innovational developing vision for MFC systems. The convergent results in most of the previous conventional studies (12,643 studies according to the WOS database) have reduced the value of MFCs by drawing an incomplete image for the performance of the systems. Therefore, this paper aimed to provide a comprehensive comparison between the highly reliable studies that innovatively developed the MFC systems and the conventional MFCs studies. The current paper discusses the novel MFCs development history, designs, efficiency, and challenges compared to conventional MFCs. The discussion has displayed the high efficiency of the novel MFCs in removing over 90% of substrates and generating power of 800 mW m-2. The paper also analyzed the literature trends, history and suggested recommendations for future studies. This is the first paper highlighting the substantial differences between the innovative and conventional MFC systems, nominating it to be a vital reference for novel MFCs studies in the future.
Collapse
Affiliation(s)
- Mohammed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Adel Ali Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - G Yashni
- School of Applied Sciences, Faculty of Engineering, Science and Technology, Nilai University, Malaysia.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Norli Ismail
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia
| |
Collapse
|
21
|
Barakat NAM, Amen MT, Ali RH, Nassar MM, Fadali OA, Ali MA, Kim HY. Carbon Nanofiber Double Active Layer and Co-Incorporation as New Anode Modification Strategies for Power-Enhanced Microbial Fuel Cells. Polymers (Basel) 2022; 14:1542. [PMID: 35458291 PMCID: PMC9030816 DOI: 10.3390/polym14081542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Co-doped carbon nanofiber mats can be prepared by the addition of cobalt acetate to the polyacrylonitrile/DMF electrospun solution. Wastewater obtained from food industries was utilized as the anolyte as well as microorganisms as the source in single-chamber batch mode microbial fuel cells. The results indicated that the single Co-free carbon nanofiber mat was not a good anode in the used microbial fuel cells. However, the generated power can be distinctly enhanced by using double active layers of pristine carbon nanofiber mats or a single layer Co-doped carbon nanofiber mat as anodes. Typically, after 24 h batching time, the estimated generated power densities were 10, 92, and 121 mW/m2 for single, double active layers, and Co-doped carbon nanofiber anodes, respectively. For comparison, the performance of the cell was investigated using carbon cloth and carbon paper as anodes, the observed power densities were smaller than the introduced modified anodes at 58 and 62 mW/m2, respectively. Moreover, the COD removal and Columbic efficiency were calculated for the proposed anodes as well as the used commercial ones. The results further confirm the priority of using double active layer or metal-doped carbon nanofiber anodes over the commercial ones. Numerically, the calculated COD removals were 29.16 and 38.95% for carbon paper and carbon cloth while 40.53 and 45.79% COD removals were obtained with double active layer and Co-doped carbon nanofiber anodes, respectively. With a similar trend, the calculated Columbic efficiencies were 26, 42, 52, and 71% for the same sequence.
Collapse
Affiliation(s)
- Nasser A M Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Mohamed Taha Amen
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha H Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Mamdouh M Nassar
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Olfat A Fadali
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Marwa A Ali
- Chemical Engineering Department, Faculty of Engineering, Minia University, El-Minia 61519, Egypt
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
22
|
Malekmohammadi S, Mirbagheri SA. Optimization of an artificial neural network topology using response surface methodology for microbial fuel cell power prediction. Biotechnol Prog 2022; 38:e3258. [PMID: 35404543 DOI: 10.1002/btpr.3258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/11/2022]
Abstract
Microbial fuel cells (MFCs) are among the newest bioelectrical devices that have attracted significant attention because they convert biodegradable organic matter to electricity. MFC design can be improved by understanding and predicting the performance of MFC under different conditions and substrate concentrations. However, few mathematical models have been investigated due to problems caused by the high sensitivity of MFC systems. In this research, a multilayer neural network was used to predict the generated power of a cell with three inputs (concentration, time, and resistance). RSM with factors including the Number of first layer neurons, Number of second layer neurons, training epochs, validation check, and training percentage was used to obtain the optimum structure of the network, and mean squared error (MSE). neural network had the minimum MSE when the Number of neurons in the first and second hidden layers, the training epochs, validation check, training percentage were 28, 20, 1000, 100, and 70, respectively. This built network had an excellent ability to predict, and R2 was 98%. According to the results, increasing COD concentration increases generated power and system utilization time. In addition, reducing the external resistance up to 100 Ω can lead to more power obtained.
Collapse
Affiliation(s)
- Sima Malekmohammadi
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Seyed Ahmad Mirbagheri
- Department of Environmental Engineering, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Ferreira MR, Fernandes TM, Turner DL, Salgueiro CA. Molecular geometries of the heme axial ligands from the triheme cytochrome PpcF from Geobacter metallireducens reveal a conserved heme core architecture. Arch Biochem Biophys 2022; 723:109220. [DOI: 10.1016/j.abb.2022.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 11/02/2022]
|
24
|
Mohyudin S, Farooq R, Jubeen F, Rasheed T, Fatima M, Sher F. Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. ENVIRONMENTAL RESEARCH 2022; 204:112387. [PMID: 34785206 DOI: 10.1016/j.envres.2021.112387] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/17/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment and electricity generation have been the major concerns for the last few years. The scarcity of fossil fuels has led to the development of unconventional energy resources that are pollution-free. Microbial fuel cell (MFC) is an environmental and eco-friendly technology that harvests energy through the oxidation of organic substrates and transform into the electric current with the aid of microorganisms as catalysts. This review presents power output and colour removal values by designing various configurations of MFCs and highlights the importance of materials for the fabrication of anode and cathode electrodes playing vital roles in the formation of biofilm and redox reactions taking place in both chambers. The electron transfer mechanism from microbes towards the electrode surface and the generation of electric current are also highlighted. The effect of various parameters affecting the cell performance such as type and amount of substrate, pH and temperature maintained within the chambers have also been discussed. Although this technology presents many advantages, it still needs to be used in combination with other processes to enhance power output.
Collapse
Affiliation(s)
- Sidra Mohyudin
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Robina Farooq
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan; Department of Chemistry, COMSATS University, Islamabad, Lahore, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Masoom Fatima
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan; Department of Biology and Environmental Science, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
25
|
Ramya M, Senthil Kumar P. A review on recent advancements in bioenergy production using microbial fuel cells. CHEMOSPHERE 2022; 288:132512. [PMID: 34634275 DOI: 10.1016/j.chemosphere.2021.132512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The generation of energy and its efficient use in industries and agriculture are critical to any country's growth. A country like India, which is still developing, faces a major challenge in terms of generating adequate electricity. With the current crisis and environmental concerns, the government must look past carbon-based energy sources and into long-term energy sources. Microbial fuel cells (MFCs) are a form of technology that can be used to both treat wastewater and generate electricity on a large scale. Researchers play a critical role in making this technology practical and effective enough to be implemented. However, since the charge of building microbial fuel cells is superior than the cost of fossil fuels, it is unlikely that power production will continually be aggressive with existing energy generation approaches. However, improvements in power densities and lower material expenses could render microbial fuel cells a viable option for energy making in the future. Following a thorough literature review, the analysis resumes the role of micro-organisms and substrates in the anode chamber. Microbial fuel cells are discussed in terms of their forms, materials, mechanism, and activity. This analysis discusses the various factors that influence microbial fuel cells, as well as contemporary challenges and applications in the development of sustainable electrical power.
Collapse
Affiliation(s)
- M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| |
Collapse
|
26
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
27
|
Hu Y, Wang Y, Han X, Shan Y, Li F, Shi L. Biofilm Biology and Engineering of Geobacter and Shewanella spp. for Energy Applications. Front Bioeng Biotechnol 2021; 9:786416. [PMID: 34926431 PMCID: PMC8683041 DOI: 10.3389/fbioe.2021.786416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Geobacter and Shewanella spp. were discovered in late 1980s as dissimilatory metal-reducing microorganisms that can transfer electrons from cytoplasmic respiratory oxidation reactions to external metal-containing minerals. In addition to mineral-based electron acceptors, Geobacter and Shewanella spp. also can transfer electrons to electrodes. The microorganisms that have abilities to transfer electrons to electrodes are known as exoelectrogens. Because of their remarkable abilities of electron transfer, Geobacter and Shewanella spp. have been the two most well studied groups of exoelectrogens. They are widely used in bioelectrochemical systems (BESs) for various biotechnological applications, such as bioelectricity generation via microbial fuel cells. These applications mostly associate with Geobacter and Shewanella biofilms grown on the surfaces of electrodes. Geobacter and Shewanella biofilms are electrically conductive, which is conferred by matrix-associated electroactive components such as c-type cytochromes and electrically conductive nanowires. The thickness and electroactivity of Geobacter and Shewanella biofilms have a significant impact on electron transfer efficiency in BESs. In this review, we first briefly discuss the roles of planktonic and biofilm-forming Geobacter and Shewanella cells in BESs, and then review biofilm biology with the focus on biofilm development, biofilm matrix, heterogeneity in biofilm and signaling regulatory systems mediating formation of Geobacter and Shewanella biofilms. Finally, we discuss strategies of Geobacter and Shewanella biofilm engineering for improving electron transfer efficiency to obtain enhanced BES performance.
Collapse
Affiliation(s)
- Yidan Hu
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yinghui Wang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xi Han
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yawei Shan
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan, China
| |
Collapse
|
28
|
Structural and functional insights of GSU0105, a unique multiheme cytochrome from G. sulfurreducens. Biophys J 2021; 120:5395-5407. [PMID: 34688593 DOI: 10.1016/j.bpj.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and β-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (-154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.
Collapse
|
29
|
Sharif HMA, Farooq M, Hussain I, Ali M, Mujtaba M, Sultan M, Yang B. Recent innovations for scaling up microbial fuel cell systems: Significance of physicochemical factors for electrodes and membranes materials. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Yadav A, Jadhav DA, Ghangrekar MM, Mitra A. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 29:51117-51129. [PMID: 34826088 DOI: 10.1007/s11356-021-17517-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Constructed wetlands (CWs) have gained a lot of attention for wastewater treatment due to robustness and natural pollutant mitigation characteristics. This widely acknowledged technology possesses enough merits to derive direct electricity in collaboration with microbial fuel cell (MFC), thus taking advantage of microbial metabolic activities in the anoxic zone of CWs. In the present study, two identical lab-scale CWs were selected, each having 56 L capacity. One of the CW integrated with MFC (CW-MFC) contains two pairs of electrodes, i.e., carbon felt and graphite plate. The first pair of CW-MFC consists of a carbon felt cathode with a graphite plate anode, and the second pair contains a graphite plate cathode with a carbon felt anode. The other CW was not integrated with MFC and operated as a traditional CW for evaluating the performance. CW-MFC and CW were operated in continuous up-flow mode with a hydraulic retention time of 3 days and at different organic loading rates (OLRs) per unit surface area, such as 1.45 g m-2 day-1 (OLR-1), 2.43 g m-2 day-1 (OLR-2), and 7.25 g m-2 day-1 (OLR-3). The CW-MFC was able to reduce the organic matter, phosphate, and total nitrogen by 92%, 93%, and 70%, respectively, at OLR of 1.45 g m-2 day-1, which was found to be higher than that obtained in conventional CW. With increase in electrochemical redox activities, the second pair of electrodes made way for 3 times higher power density of 16.33 mW m-2 as compared to the first pair of electrodes in CW-MFC (5.35 mW m-2), asserting carbon felt as a good anode material to be used in CW-MFC. The CW-MFC with carbon felt as an anode material is proposed to improve the electro-kinetic activities for scalable applications to achieve efficient domestic wastewater treatment and electricity production.
Collapse
Affiliation(s)
- Anamika Yadav
- Department of Agricultural Engineering, Triguna Sen School of Technology, Assam University Silchar, Assam, 788011, India
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Dipak A Jadhav
- School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra, 431010, India.
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Arunabha Mitra
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
31
|
Management of Cattle Dung and Novel Bioelectricity Generation Using Microbial Fuel Cells: An Ingenious Experimental Approach. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/5536221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Microbial fuel cells (MFCs) are the rising modern equipment for the generation of bioelectricity from organic matters. In this study, MFCs in two formats are assembled and concurrently operated for a 30-day period in a batch mode manner. Natural biowaste cattle dung slurry with mediators is used as a substrate persistently for the enhancement of electron transfer rate and additionally for the augmentation of required electrical parameters. Under similar conditions, the MFC setups are experimented with a variety of anode-cathode material combinations, namely carbon-carbon, copper-carbon, and zinc-carbon. The performance of these MFCs during the testing period is evaluated independently and compared by plotting polarization data generated by them. It is revealed that maximum current and power densities are achieved from all these MFCs and the best attained values are 1858 mA/m2 and 1465 mW/m2, respectively, for the novel single-chamber zinc-carbon electrode MFC. The corresponding findings present that the MFC with zinc-carbon electrodes has the better power density than other MFCs. Being conductive and higher standard potential metal electrodes have improved the capability to act in place of carbon family electrodes for MFC-based power applications. Although the MFC power generation is low, but modifications in configurations, electrodes, microbe-rich biowaste, mediators, and power management may enhance the power output to a significant level for commercialization of this technology. The unique feature of this research is to explore the pertinent use of conductive metal electrodes to enhance the power generation capability of MFCs through biowaste as an alternative power source for small applications. The novelty of this research is presented through usage of conductive metal electrodes for the performance analysis of MFCs.
Collapse
|
32
|
Avci O, Büyüksünetçi YT, Güley Z, Anik Ü. L. Lactis
Subsp
. Lactis
of Cheese Origin Based Microbial Fuel Cell. ChemistrySelect 2021. [DOI: 10.1002/slct.202102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Okan Avci
- Mugla Sitki Kocman University Faculty of Science Chemistry Department 48000- Kotekli, Mugla Turkey
| | - Yudum T. Büyüksünetçi
- Mugla Sitki Kocman University Faculty of Science Chemistry Department 48000- Kotekli, Mugla Turkey
| | - Ziba Güley
- Alanya Alaaddin Keykubat University Rafet Kayıs Engineering Faculty Department of Food Engineering 07425- Alanya, Antalya Turkey
| | - Ülkü Anik
- Mugla Sitki Kocman University Faculty of Science Chemistry Department 48000- Kotekli, Mugla Turkey
| |
Collapse
|
33
|
Xiao Y, Lin S, Hao T. Investigating the response of electrogenic metabolism to salinity in saline wastewater treatment for optimal energy output via microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147092. [PMID: 34088164 DOI: 10.1016/j.scitotenv.2021.147092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
In the current study, MFCs treating saline wastewater with the different conductivities of 5.0 ± 0.2, 7.7 ± 0.6, 10.5 ± 0.9, 13.0 ± 1.0, 15.3 ± 1.0, and 16.0 ± 0.1 mS/cm were investigated. Increasing salinity drives a considerable shift of microbial communities, and it also affects metabolic pathways in MFCs. Overwhelming acetate oxidizing electron transfer with moderate conductivities between 7.7 and 13.0 mS/cm led to high energy outputs. Power generation at the low conductivities of less than 7.7 mS/cm was restricted by the competition between fermentative bacteria (e.g., Lactobacillus) and exoelectrogens (e.g., Pseudomonas and Shewanella) for substrate utilization. Increasing salinity beyond 13 mS/cm suppressed the fermentation of glucose to butyrate. It also induced sulfidogenesis; sulfide oxidizing bacteria Desulfovibrio (5.2%), Desulfuromonas (3.7%) and exoelectrogen Pseudomonas (1.1%) formed a sulfur-driven current production, thereby resulting in low energy outputs. The present study revealed the effects of ionic conductivity on electrical energy production and provided insights into the dynamics of the MFCs substrate utilization.
Collapse
Affiliation(s)
- Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau.
| |
Collapse
|
34
|
Xian J, Ma H, Li Z, Ding C, Liu Y, Yang J, Cui F. α-FeOOH nanowires loaded on carbon paper anodes improve the performance of microbial fuel cells. CHEMOSPHERE 2021; 273:129669. [PMID: 33524763 DOI: 10.1016/j.chemosphere.2021.129669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Nanowires synthesized from metal oxides exhibit better conductivity than nanoparticles due to their greater aspect ratio which means that they can transmit electrons over longer distances; in addition, they are also more widely available than pili because their synthesis is not affected by the bacteria themselves. However, there is still little research on the application of metal oxides nanowires to enhance power generation of microbial fuel cells (MFC). In this study, a simple hydrothermal synthesis method was adopted to synthesize α-FeOOH nanowires on carbon paper (α-FeOOH-NWs), which serve as an anode to explore the mechanism of power generation enhancement of MFC. Characterization results reveal α-FeOOH-NWs on carbon paper are approximately 30-50 nm in diameter, with goethite structure. Electrochemical test results indicate that α-FeOOH nanowires could enhance the electrochemical activity of carbon paper and reduce the electron transfer resistance (Rct). Furthermore, α-FeOOH-NWs made the power density of MFC 3.2 times of the control device. SEM result demonstrates that nanowires are beneficial to the formation of biofilms and increase biomass on the electrode surface. Our results demonstrate that nanowires not only improve the electrochemical activity and conductivity of carbon paper but also facilitate the formation of biofilms and increase the biomass of the anode surface. These two mechanisms work together to boost extracellular electron transfer and power generation efficiency of MFC with α-FeOOH-NWs. Our study provides further evidence for the electrical conductivity of metal nanowires, promoting their potential applications in electricity generation such as MFC or other energy development fields.
Collapse
Affiliation(s)
- Jiali Xian
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Hua Ma
- College of Environment and Ecology, Chongqing University, Chongqing, China.
| | - Zhe Li
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Chenchen Ding
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yan Liu
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Jixiang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
35
|
Fernandes TM, Morgado L, Turner DL, Salgueiro CA. Protein Engineering of Electron Transfer Components from Electroactive Geobacter Bacteria. Antioxidants (Basel) 2021; 10:844. [PMID: 34070486 PMCID: PMC8227773 DOI: 10.3390/antiox10060844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
Electrogenic microorganisms possess unique redox biological features, being capable of transferring electrons to the cell exterior and converting highly toxic compounds into nonhazardous forms. These microorganisms have led to the development of Microbial Electrochemical Technologies (METs), which include applications in the fields of bioremediation and bioenergy production. The optimization of these technologies involves efforts from several different disciplines, ranging from microbiology to materials science. Geobacter bacteria have served as a model for understanding the mechanisms underlying the phenomenon of extracellular electron transfer, which is highly dependent on a multitude of multiheme cytochromes (MCs). MCs are, therefore, logical targets for rational protein engineering to improve the extracellular electron transfer rates of these bacteria. However, the presence of several heme groups complicates the detailed redox characterization of MCs. In this Review, the main characteristics of electroactive Geobacter bacteria, their potential to develop microbial electrochemical technologies and the main features of MCs are initially highlighted. This is followed by a detailed description of the current methodologies that assist the characterization of the functional redox networks in MCs. Finally, it is discussed how this information can be explored to design optimal Geobacter-mutated strains with improved capabilities in METs.
Collapse
Affiliation(s)
- Tomás M. Fernandes
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (T.M.F.); (L.M.)
| | - Leonor Morgado
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (T.M.F.); (L.M.)
| | - David L. Turner
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal;
| | - Carlos A. Salgueiro
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (T.M.F.); (L.M.)
| |
Collapse
|
36
|
Guo F, Luo H, Shi Z, Wu Y, Liu H. Substrate salinity: A critical factor regulating the performance of microbial fuel cells, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143021. [PMID: 33131858 DOI: 10.1016/j.scitotenv.2020.143021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 05/11/2023]
Abstract
Substrate salinity is a critical factor influencing microbial fuel cells (MFCs) performance and various studies have suggested that increasing substrate salinity first improves MFC performance. However, a further increase in salinity that exceeds the salinity tolerance of exoelectrogens shows negative effects because of inhibited bacterial activity and increased activation losses. In this review, electricity generation and contaminant removal from saline substrates using MFCs are summarized, and results show different optimal salinities for obtaining maximum performance. Then, electroactive bacteria capable of tolerating saline environments and strategies for improving salinity tolerance are discussed. In addition to ohmic resistance and bacterial activity, membrane resistance and catalyst performance will also be affected by substrate salinity, all of which jointly contribute the final overall MFC performance. Therefore, the combined effect of salinity is analyzed to illustrate how the MFC performance changes with increasing salinity. Finally, the challenges and perspectives of MFCs operated in saline environments are discussed.
Collapse
Affiliation(s)
- Fei Guo
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huiqin Luo
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Zongyang Shi
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Yan Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu 610039, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
37
|
Ye JY, Pan Y, Wang Y, Wang YC. Enhanced hydrogen production of Rhodobacter sphaeroides promoted by extracellular H+ of Halobacterium salinarum. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
This study utilized the principle that the bacteriorhodopsin (BR) produced by Halobacterium salinarum could increase the hydrogen production of Rhodobacter sphaeroides. H. salinarum are co-cultured with R. sphaeroides to determine the impact of purple membrane fragments (PM) on R. sphaeroides and improve its hydrogen production capacity.
Methods
In this study, low-salinity in 14 % NaCl domesticates H salinarum. Then, 0–160 nmol of different concentration gradient groups of bacteriorhodopsin (BR) and R. sphaeroides was co-cultivated, and the hydrogen production and pH are measured; then, R. sphaeroides and immobilized BR of different concentrations are used to produce hydrogen to detect the amount of hydrogen. Two-chamber microbial hydrogen production system with proton exchange membrane-assisted proton flow was established, and the system was operated. As additional electricity added under 0.3 V, the hydrogen production rate increased with voltages in the coupled system.
Results
H salinarum can still grow well after low salt in 14% NaCl domestication. When the BR concentration is 80 nmol, the highest hydrogen production reached 217 mL per hour. Both immobilized PC (packed cells) and immobilized PM (purple membrane) of H. salinarum could promote hydrogen production of R. sphaeroides to some extent. The highest production of hydrogen was obtained by the coupled system with 40 nmol BR of immobilized PC, which increased from 127 to 232 mL, and the maximum H2 production rate was 18.2 mL−1 h−1 L culture. In the 192 h experiment time, when the potential is 0.3 V, the hydrogen production amount can reach 920 mL, which is 50.3% higher than the control group.
Conclusions
The stability of the system greatly improved after PC was immobilized, and the time for hydrogen production of R. sphaeroides significantly extended on same condition. As additional electricity added under 0.3 V, the hydrogen production rate increased with voltages in the coupled system. These results are helpful to build a hydrogen production-coupled system by nitrogenase of R. sphaeroides and proton pump of H. salinarum.
Graphical abstract
Collapse
|
38
|
Yanuka-Golub K, Dubinsky V, Korenblum E, Reshef L, Ofek-Lalzar M, Rishpon J, Gophna U. Anode Surface Bioaugmentation Enhances Deterministic Biofilm Assembly in Microbial Fuel Cells. mBio 2021; 12:e03629-20. [PMID: 33653887 PMCID: PMC8092319 DOI: 10.1128/mbio.03629-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022] Open
Abstract
Microbial fuel cells (MFCs) generate energy while aiding the biodegradation of waste through the activity of an electroactive mixed biofilm. Metabolic cooperation is essential for MFCs' efficiency, especially during early colonization. Thus, examining specific ecological processes that drive the assembly of anode biofilms is highly important for shortening startup times and improving MFC performance, making this technology cost-effective and sustainable. Here, we use metagenomics to show that bioaugmentation of the anode surface with a taxonomically defined electroactive consortium, dominated by Desulfuromonas, resulted in an extremely rapid current density generation. Conversely, the untreated anode surface resulted in a highly stochastic and slower biofilm assembly. Remarkably, an efficient anode colonization process was obtained only if wastewater was added, leading to a nearly complete replacement of the bioaugmented community by Geobacter lovleyi Although different approaches to improve MFC startup have been investigated, we propose that only the combination of anode bioaugmentation with wastewater inoculation can reduce stochasticity. Such an approach provides the conditions that support the growth of specific newly arriving species that positively support the fast establishment of a highly functional anode biofilm.IMPORTANCE Mixed microbial communities play important roles in treating wastewater, in producing renewable energy, and in the bioremediation of pollutants in contaminated environments. While these processes are well known, especially the community structure and biodiversity, how to efficiently and robustly manage microbial community assembly remains unknown. Moreover, it has been shown that a high degree of temporal variation in microbial community composition and structure often occurs even under identical environmental conditions. This heterogeneity is directly related to stochastic processes involved in microbial community organization, similarly during the initial stages of biofilm formation on surfaces. In this study, we show that anode surface pretreatment alone is not sufficient for a substantial improvement in startup times in microbial fuel cells (MFCs), as previously thought. Rather, we have discovered that the combination of applying a well-known consortium directly on the anode surface together with wastewater (including the bacteria that they contain) is the optimized management scheme. This allowed a selected colonization process by the wastewater species, which improved the functionality relative to that of untreated systems.
Collapse
Affiliation(s)
- Keren Yanuka-Golub
- The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Dubinsky
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elisa Korenblum
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Leah Reshef
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Judith Rishpon
- The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Chandrasekhar K, Naresh Kumar A, Kumar G, Kim DH, Song YC, Kim SH. Electro-fermentation for biofuels and biochemicals production: Current status and future directions. BIORESOURCE TECHNOLOGY 2021; 323:124598. [PMID: 33401164 DOI: 10.1016/j.biortech.2020.124598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Electro-fermentation is an emerging bioporcess that could regulate the metabolism of electrochemically active microorganisms. The provision of electrodes for the fermentation process that functions as an electron acceptor and supports the formation and transportation of electrons and protons, consequently producing bioelectricity and value-added chemicals. The traditional method of fermentation has several limitations in usability and economic feasibility. Subsequently, a series of metabolic processes occurring in conventional fermentation processes are most often redox misaligned. In this regard, electro-fermentation emerged as a hybrid technology which can regulate a series of metabolic processes occurring in a bioreactor by regulating the redox instabilities and boosting the overall metabolic process towards high biomass yield and enhanced product formation. The present article deals with microorganisms-electrode interactions, various types of electro-fermentation systems, comparative evaluation of pure and mixed culture electro-fermentation application, and value-added fuels and chemical synthesis.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
40
|
Yang X, Chen S. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144145. [PMID: 33303196 DOI: 10.1016/j.scitotenv.2020.144145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
A sediment microbial fuel cell (SMFC) is a device that harvests electrical energy from sediments rich in organic matter. SMFCs have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. The microorganisms inhabiting sediments and the overlying water play a pivotal role in SMFCs. Since the SMFC is applied in an open environment rather than in an enclosed chamber, the effects of the environment on the microbes should be intense and the microbial community succession should be extremely complex. Thus, this review aims to provide an overview of the microorganisms in SMFCs, which few previous review papers have reported. In this study, the anodic and cathodic niches for the microorganisms in SMFCs are summarized, how the microbial population and community interact with the SMFC environment is discussed, a new microbial succession strategy called the electrode stimulation succession is proposed, and recent developments in the environmental functions of SMFCs are discussed from the perspective of microorganisms. Future studies are needed to investigate the electrode stimulation succession, the environmental function and the electron transfer mechanism in order to boost the application of SMFCs for power generation and environmental remediation.
Collapse
Affiliation(s)
- Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
41
|
Wang S, Wang D, Yu Z, Dong X, Liu S, Cui H, Sun B. Advances in research on petroleum biodegradability in soil. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:9-27. [PMID: 33393551 DOI: 10.1039/d0em00370k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increased demand for petroleum and petroleum products from all parts of the society, environmental pollution caused by petroleum development and production processes is becoming increasingly serious. Soil pollution caused by petroleum seriously affects environmental quality in addition to human lives and productivity. At present, petroleum in soil is mainly degraded by biological methods. In their natural state, native bacteria in the soil spontaneously degrade petroleum pollutants that enter the soil; however, when the pollution levels increase, the degradation rates decrease, and it is necessary to add nutrients, dissolved oxygen, biosurfactants and other additives to improve the degradation ability of the native bacteria in the soil. The degradation process can also be enhanced by adding exogenous petroleum-degrading bacteria, microbial immobilization technologies, and microbial fuel cell technologies.
Collapse
Affiliation(s)
- Song Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Dan Wang
- School of Earth Science, Northeast Petroleum University, Daqing, China
| | - Zhongchen Yu
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Xigui Dong
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Shumeng Liu
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| | - Hongmei Cui
- School of Civil Architecture Engineering, Northeast Petroleum University, Daqing, China.
| | - Bing Sun
- 2nd Oil Production Plant Daqing Oilfield Co. Ltd, Daqing, China
| |
Collapse
|
42
|
Zhu TT, Zhang YB, Liu YW, Zhao ZS. Electrostimulation enhanced ammonium removal during Fe(III) reduction coupled with anaerobic ammonium oxidation (Feammox) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141703. [PMID: 32882553 DOI: 10.1016/j.scitotenv.2020.141703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Ammonium removal in wastewater treatment plants requires a large number of energy input, such as aeration and the addition of organics. Alternative, more economical technologies for nitrogen removal from wastewater are required. This study comprehensively investigated the feasible of microbial electricity coupled with Fe(III) reduction promoting the anaerobic ammonium removal. It was found that electrostimulation coupled with Fe(III) reduction (bioelectrochemical systems-Fe(III) (BES-Fe(III)) reactor) enhanced the anaerobic ammonium removal by 50.38% and 38.8% compared with the BES reactor and Fe(III) reactor, respectively. The ammonium removal rate reached the highest value of 80.62 ± 0.26 g N m-3·d-1 in the Fe(III)-BES reactor comparable to conventional wastewater treatment plants (WWWTPs). The improvement of ammonium removal might be the synergistic effect of BES and Feammox process on reaction process and microorganisms. Firstly, the addition of Fe2O3 could improve the electrochemical characteristics by enriching iron-reducing bacterial (FeRB). Secondly, the improved ammonium removal could be due to nitrite generated from Feammox process driving the anodic ammonium oxidation. Additionally, the ammonium removal improvement might be the effect of BES on the Fe2+ leaching so as to accelerate the Fe (II)/Fe(III) cycle. In agreement, higher abundance of FeRB and iron-oxidizing bacteria was detected in the Fe(III)-BES reactor. This study provides a lower energy consumption and operational cost technology compared with the conventional partial nitrification/denitrification, which was more than 800 times less than for the conventional wastewater treatment.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yao-Bin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yi-Wen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zi-Sheng Zhao
- School of Ecology and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China
| |
Collapse
|
43
|
Removal of benzo[a]pyrene from soil in a novel permeable electroactive well system: Optimal integration of filtration, adsorption and bioelectrochemical degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
George DM, Vincent AS, Mackey HR. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00563. [PMID: 33304839 PMCID: PMC7714679 DOI: 10.1016/j.btre.2020.e00563] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Collapse
Key Words
- ALA, 5-Aminolevulinic acid
- APB, Anoxygenic phototrophic bacteria
- Anoxygenic phototrophic bacteria (APB)
- BChl, Bacteriochlorophyll
- BES, Bioelectrochemical systems
- BPV, Biophotovoltaic
- BPh, Bacteriopheophytin
- Bacteriochlorophyll (BChl)
- Chl, Chlorophyll
- CoQ10, Coenzyme Q10
- DET, Direct electron transfer
- DNA, Deoxyribonucleic acid
- DO, Dissolved oxygen
- DXP, 1 deoxy-d-xylulose 5-phosphate
- FPP, Farnesyl pyrophosphate
- Fe-S, Iron-Sulfur
- GNSB, Green non sulfur bacteria
- GSB, Green sulfur bacteria
- IPP, Isopentenyl pyrophosphate isomerase
- LED, light emitting diode
- LH2, light-harvesting component II
- MFC, Microbial fuel cell
- MVA, Mevalonate
- PH3B, Poly-3-hydroxybutyrate
- PHA, Poly-β-hydroxyalkanoates
- PHB, Poly-β-hydroxybutyrate
- PNSB, Purple non sulfur bacteria
- PPB, Purple phototrophic bacteria
- PSB, Purple sulfur bacteria
- Pheo-Q, Pheophytin-Quinone
- Photo-BES, Photosynthetic bioelectrochemical systems
- Photo-MFC, Photo microbial fuel cell
- Poly-β-hydroxyalkanoates (PHA)
- Purple phototrophic bacteria (PPB)
- Resource recovery
- RuBisCO, Ribulose-1,5-biphosphate carboxylase/oxygenase
- SCP, Single-cell protein
- SOB, Sulfide oxidizing bacteria
- SRB, Sulfate reducing bacteria
- Single-cell proteins (SCP)
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Annette S. Vincent
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
45
|
Seto M, Iwasa Y. How Thermodynamics Illuminates Population Interactions in Microbial Communities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.602809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In traditional population models of microbial ecology, there are two central players: producers and consumers (including decomposers that depend on organic carbon). Producers support surface ecosystems by generating adenosine triphosphate (ATP) from sunlight, part of which is used to build new biomass from carbon dioxide. In contrast, the productivity of subsurface ecosystems with a limited supply of sunlight must rely on bacteria and archaea that are able generate ATP solely from chemical or electric energy to fix inorganic carbon. These “light-independent producers” are frequently not included in traditional food webs, even though they are ubiquitous in nature and interact with one another through the utilization of the by-products of others. In this review, we introduce theoretical approaches based on population dynamics that incorporate thermodynamics to highlight characteristic interactions in the microbial community of subsurface ecosystems, which may link community structures and ecosystem expansion under conditions of a limited supply of sunlight. In comparison with light-dependent producers, which compete with one another for light, the use of Gibbs free energy (chemical energy) can lead cooperative interactions among light-independent producers through the effects of the relative quantities of products and reactants on the available chemical energy, which is termed abundant resource premium. The development of a population theory that incorporates thermodynamics offers fundamental ecological insights into subsurface microbial ecosystems, which may be applied to fields of study such as environmental science/engineering, astrobiology, or the microbial ecosystems of the early earth.
Collapse
|
46
|
Li Y, Yang W, Liu X, Guan W, Zhang E, Shi X, Zhang X, Wang X, Mao X. Diffusion-layer-free air cathode based on ionic conductive hydrogel for microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140836. [PMID: 32758853 DOI: 10.1016/j.scitotenv.2020.140836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
High hydraulic pressure in air-cathode microbial fuel cells (MFCs) can lead to severe cathodic water leakage and power reduction, thereby hindering the practical applications of MFCs. In this study, an alternative air cathode without a diffusion layer was developed using a cross-linked hydrogel, oxidized konjac glucomannan/2-hydroxypropytrimethyl ammonium chloride chitosan (OKH), for ion bridging. The cathode was placed horizontally to avoid hydraulic pressure on its surface. Ion transportation was sustained with a minimal OKH hydrogel loading of 10 mg/cm2. A maximum power density of 1.0 ± 0.04 W/m2 was achieved, which was only slightly lower than the 1.28 ± 0.02 W/m2 of common air cathodes. Moreover, the cost of the OKH hydrogel is only $0.12/m2, which can reduce ~85% of the cathode cost without using the advanced polyvinylidene fluoride diffusion layer. Therefore, the development of this new diffusion-layer-free air cathode using conductive ionic hydrogel provides a low-cost strategy for stable MFC operation, thereby demonstrating great potential for practical applications of MFC technology.
Collapse
Affiliation(s)
- Yi Li
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Wulin Yang
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Weikai Guan
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Enren Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City 225002, PR China
| | - Xiaowen Shi
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Xinquan Zhang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Xu Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China.
| | - Xuhui Mao
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| |
Collapse
|
47
|
Ferreira MR, Fernandes TM, Salgueiro CA. Thermodynamic properties of triheme cytochrome PpcF from Geobacter metallireducens reveal unprecedented functional mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148271. [PMID: 32692985 DOI: 10.1016/j.bbabio.2020.148271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
Abstract
The bacterium Geobacter metallireducens is highly efficient in long-range extracellular electron transfer, a process that relies on an efficient bridging between the cytoplasmic electron donors and the extracellular acceptors. The periplasmic triheme cytochromes are crucial players in these processes and thus the understanding of their functional mechanism is crucial to elucidate the extracellular electron transfer processes in this microorganism. The triheme cytochrome PpcF from G. metallireducens has the lowest amino acid sequence identity with the remaining cytochromes from the PpcA-family of G. sulfurreducens and G. metallireducens, making it an interesting target for structural and functional studies. In this work, we performed a detailed functional and thermodynamic characterization of cytochrome PpcF by the complementary usage of NMR and visible spectroscopic techniques. The results obtained show that the heme reduction potentials are negative, different from each other and are also modulated by the redox and redox-Bohr interactions that assure unprecedented mechanistic features to the protein. The results showed that the order of oxidation of the hemes in cytochrome PpcF is maintained in the entire physiological pH range. The considerable separation of the hemes' redox potential values facilitates a sequential transfer within the chain of redox centers in PpcF, thus assuring electron transfer directionality to the electron acceptors.
Collapse
Affiliation(s)
- Marisa R Ferreira
- UCIBIO-Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Tomás M Fernandes
- UCIBIO-Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Carlos A Salgueiro
- UCIBIO-Requimte, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
48
|
Izadi P, Fontmorin JM, Godain A, Yu EH, Head IM. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. NPJ Biofilms Microbiomes 2020; 6:40. [PMID: 33056998 PMCID: PMC7560852 DOI: 10.1038/s41522-020-00151-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
Cathode-driven applications of bio-electrochemical systems (BESs) have the potential to transform CO2 into value-added chemicals using microorganisms. However, their commercialisation is limited as biocathodes in BESs are characterised by slow start-up and low efficiency. Understanding biosynthesis pathways, electron transfer mechanisms and the effect of operational variables on microbial electrosynthesis (MES) is of fundamental importance to advance these applications of a system that has the capacity to convert CO2 to organics and is potentially sustainable. In this work, we demonstrate that cathodic potential and inorganic carbon source are keys for the development of a dense and conductive biofilm that ensures high efficiency in the overall system. Applying the cathodic potential of -1.0 V vs. Ag/AgCl and providing only gaseous CO2 in our system, a dense biofilm dominated by Acetobacterium (ca. 50% of biofilm) was formed. The superior biofilm density was significantly correlated with a higher production yield of organic chemicals, particularly acetate. Together, a significant decrease in the H2 evolution overpotential (by 200 mV) and abundant nifH genes within the biofilm were observed. This can only be mechanistically explained if intracellular hydrogen production with direct electron uptake from the cathode via nitrogenase within bacterial cells is occurring in addition to the commonly observed extracellular H2 production. Indeed, the enzymatic activity within the biofilm accelerated the electron transfer. This was evidenced by an increase in the coulombic efficiency (ca. 69%) and a 10-fold decrease in the charge transfer resistance. This is the first report of such a significant decrease in the charge resistance via the development of a highly conductive biofilm during MES. The results highlight the fundamental importance of maintaining a highly active autotrophic Acetobacterium population through feeding CO2 in gaseous form, which its dominance in the biocathode leads to a higher efficiency of the system.
Collapse
Affiliation(s)
- Paniz Izadi
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | | | - Alexiane Godain
- School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| | - Eileen H Yu
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK.
- Department of Chemical Engineering, Loughborough University, Loughborough, UK.
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Enhancing xylose and glucose utilization as well as solvent production using a simplified three-electrode potentiostat system during Clostridium fermentation. J Ind Microbiol Biotechnol 2020; 47:889-895. [PMID: 33026637 DOI: 10.1007/s10295-020-02313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
A simple potentiostat was constructed as a strategy to enhance solvent production in a mediatorless and oxygen-exposed fermentation inoculated with the aerotolerant strain Clostridium sp. C10. Elevated n-butanol and acetone titers were recorded in all fermentations with either glucose or xylose in the presence of electrodes poised at + 500 mV (+ 814 mV vs SHE) relative to cells plus substrate only controls. Respective butanol titers and volumetric butanol productivities in studies performed with 30 g/L glucose or 30 g/L xylose were 1.67 and 2.27 times and 1.90 and 6.13 times greater in the presence of electrodes compared to controls. Glucose and xylose utilization in the presence of electrodes was 61 and 125% greater than no-electrode controls, respectively. Increasing substrate concentrations to 60 g/L decreased the butanol yields relative to the studies performed at 30 g/L. These data suggest that it may be more efficient to alter reactor reduction potential than increase substrate concentration for solvent output during industrial fermentations, which favors higher yield with few additional inputs.
Collapse
|
50
|
Algar CK, Howard A, Ward C, Wanger G. Sediment microbial fuel cells as a barrier to sulfide accumulation and their potential for sediment remediation beneath aquaculture pens. Sci Rep 2020; 10:13087. [PMID: 32753606 PMCID: PMC7403589 DOI: 10.1038/s41598-020-70002-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/20/2020] [Indexed: 11/30/2022] Open
Abstract
Sediment microbial fuel cells (SMFCs) generate electricity through the oxidation of reduced compounds, such as sulfide or organic carbon compounds, buried in anoxic sediments. The ability to remove sulfide suggests their use in the remediation of sediments impacted by point source organic matter loading, such as occurs beneath open pen aquaculture farms. However, for SMFCs to be a viable technology they must remove sulfide at a scale relevant to the environmental contamination and their impact on the sediment geochemistry as a whole must be evaluated. Here we address these issues through a laboratory microcosm experiment. Two SMFCs placed in high organic matter sediments were operated for 96 days and compared to open circuit and sediment only controls. The impact on sediment geochemistry was evaluated with microsensor profiling for oxygen, sulfide, and pH. The SMFCs had no discernable effect on oxygen profiles, however porewater sulfide was significantly lower in the sediment microcosms with functioning SMFCs than those without. Depth integrated sulfide inventories in the SMFCs were only 20% that of the controls. However, the SMFCs also lowered pH in the sediments and the consequences of this acidification on sediment geochemistry should be considered if developing SMFCs for remediation. The data presented here indicate that SMFCs have potential for the remediation of sulfidic sediments around aquaculture operations.
Collapse
Affiliation(s)
- Christopher K Algar
- Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| | - Annie Howard
- Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Colin Ward
- Faculty of Engineering and Design, Carlton University, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|