1
|
Shi JT, Wu YY, Sun RZ, Hua Q, Wei LJ. Synthesis of β-ionone from xylose and lignocellulosic hydrolysate in genetically engineered oleaginous yeast Yarrowia lipolytica. Biotechnol Lett 2024; 46:1219-1236. [PMID: 39377872 DOI: 10.1007/s10529-024-03534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
β-ionone, an apocarotenoid derived from a C40 terpenoid has an intense, woody smell and a low odor threshold that has been widely used in as an ingredient in food and cosmetics. Yarrowia lipolytica is a promising host for β-ionone production because of its oleaginous nature, its ability to produce high levels of acetyl-CoA (an important precursor for terpenoids), and the availability of synthetic biology tools to engineer the organism. In this study, β-carotene-producing Y. lipolytica strain XK17 was employed for β-ionone biosynthesis. First, we explored the effect of different sources of carotenoid cleavage dioxygenase (CCD) genes on β-ionone production. A high-yielding strain rUinO-D14 with 122 mg/L of β-ionone was obtained by screening promoters combined with rDNA mediated multi-round iterative transformations to optimize the expression of the CCD gene of Osmanthus fragrans. Second, to further develop a high-level production strain for β-ionone, we optimized key genes in the mevalonate pathway by multi-round iterative transformations mediated by non-homologous end joining, combined with a protein tagging strategy. Finally, the introduction of a heterologous oxidoreductase pathway enabled the engineered Y. lipolytica strain to use xylose as a sole carbon source and produce β-ionone. In addition, the potential for use of lignocellulosic hydrolysate as the carbon source for β-ionone production showed that the NHA-A31 strain had a high β-ionone productivity level. This study demonstrates that engineered Y. lipolytica can be used for the efficient, green and sustainable production of β-ionone.
Collapse
Affiliation(s)
- Jiang-Ting Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying-Ying Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rong-Zi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Calderón CG, Gentina JC, Evrard O, Guzmán L. Bioconversion of L-Tyrosine into p-Coumaric Acid by Tyrosine Ammonia-Lyase Heterologue of Rhodobacter sphaeroides Produced in Pseudomonas putida KT2440. Curr Issues Mol Biol 2024; 46:10112-10129. [PMID: 39329955 PMCID: PMC11430055 DOI: 10.3390/cimb46090603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
p-Coumaric acid (p-CA) is a valuable compound with applications in food additives, cosmetics, and pharmaceuticals. However, traditional production methods are often inefficient and unsustainable. This study focuses on enhancing p-CA production efficiency through the heterologous expression of tyrosine ammonia-lyase (TAL) from Rhodobacter sphaeroides in Pseudomonas putida KT2440. TAL catalyzes the conversion of L-tyrosine into p-CA and ammonia. We engineered P. putida KT2440 to express TAL in a fed-batch fermentation system. Our results demonstrate the following: (i) successful integration of the TAL gene into P. putida KT2440 and (ii) efficient bioconversion of L-tyrosine into p-CA (1381 mg/L) by implementing a pH shift from 7.0 to 8.5 during fed-batch fermentation. This approach highlights the viability of P. putida KT2440 as a host for TAL expression and the successful coupling of fermentation with the pH-shift-mediated bioconversion of L-tyrosine. Our findings underscore the potential of genetically modified P. putida for sustainable p-CA production and encourage further research to optimize bioconversion steps and fermentation conditions.
Collapse
Affiliation(s)
- Carlos G Calderón
- Molecular Biotechnology Laboratory, Biotecnos S.A., Viña del Mar 2520000, Chile
- Fermentations Laboratory, Biochemical Engineering School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Juan C Gentina
- Fermentations Laboratory, Biochemical Engineering School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Oscar Evrard
- Molecular Biotechnology Laboratory, Biotecnos S.A., Viña del Mar 2520000, Chile
| | - Leda Guzmán
- Biological Chemistry Laboratory, Chemistry Institute, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| |
Collapse
|
3
|
Liang P, Peng X, Hu G, Wu R, Jin J, Ang S, Li D. Four new sesquiterpenoids from the aerial parts of Pogostemon cablin (Blanco.) Benth. and their hypoglycemic activity. Fitoterapia 2024; 177:106054. [PMID: 38852891 DOI: 10.1016/j.fitote.2024.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Four previously undescribed sesquiterpenoids (1-4), including two natural guaiane-type sesquiterpenoids (1-2), a rearranged guaiane-type sesquiterpenoid (3), and a norsesquiterpenoid (4), were isolated from the ethanol extract of the aerial parts of Pogostemon cablin (Blanco.) Benth. Their chemical structures were determined based on extensive spectroscopic data analysis, including UV, IR, NMR, HRESIMS, and CD spectroscopy. Compound 1 exhibited a good hypoglycemic activity with glucose uptake of 124.3% and 131.2% in myotubes, respectively, at the concentrations of 20 and 40 μM and showed no cytotoxicity. These findings provide a material basis for further research on P. cablin.
Collapse
Affiliation(s)
- Peiting Liang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Xingjia Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Gui'e Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jingwei Jin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Song Ang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Dongli Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
4
|
Majumder J, Subrahmanyeswari T, Gantait S. Natural biosynthesis, pharmacological applications, and sustainable biotechnological production of ornamental plant-derived anthocyanin: beyond colorants and aesthetics. 3 Biotech 2024; 14:175. [PMID: 38855146 PMCID: PMC11153417 DOI: 10.1007/s13205-024-04016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Flowers have long been admired for their aesthetic qualities and have even found their way to be included in the human diet. Among the many chemical compounds found in flowers, anthocyanins stand out for their versatile applications in the food, cosmetic, and nutraceutical industries. The biosynthetic pathway of anthocyanins has been thoroughly studied in certain flower species, leading to the detection of key regulatory genes that can be controlled to enhance the production of anthocyanins via biotechnological methods. Nevertheless, the quantity and form of anthocyanins found in natural sources differ, both qualitatively and quantitatively, depending on the ornamental plant species. For this reason, research on in vitro plant cultures has been conducted for years in an attempt to comprehend how these essential substances are produced. Different biotechnological systems, like in vitro plant cell, organ, and tissue cultures, and transgenic approaches, have been employed to produce anthocyanins under controlled conditions. However, multiple factors influence the production of anthocyanins and create challenges during large-scale production. Metabolic engineering techniques have also been utilized for anthocyanin production in microorganisms and recombinant plants. Although these techniques are primarily tested at lab- and pilot-scale, limited studies have focused on scaling up the production. This review analyses the chemistry and biosynthesis of anthocyanin along with the factors that influence the biosynthetic pathway. Further emphasis has been given on strategies for conventional and non-conventional anthocyanin production along with their quantification, addressing the prevailing challenges, and exploring ways to ameliorate the production using the in vitro plant cell and tissue culture systems and metabolic engineering to open up new possibilities for the cosmetic, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Jayoti Majumder
- Department of Floriculture and Landscaping, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Tsama Subrahmanyeswari
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| |
Collapse
|
5
|
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, Yan Y, Wang F, Zhang T, Zhuang WQ, Yu K. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100359. [PMID: 39221074 PMCID: PMC11361885 DOI: 10.1016/j.ese.2023.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 09/04/2024]
Abstract
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Yuanyuan Zhu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qing Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, 518081, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, 999077, Hong Kong, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| |
Collapse
|
6
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
7
|
Van Den Berghe M, Walworth NG, Dalvie NC, Dupont CL, Springer M, Andrews MG, Romaniello SJ, Hutchins DA, Montserrat F, Silver PA, Nealson KH. Microbial Catalysis for CO 2 Sequestration: A Geobiological Approach. Cold Spring Harb Perspect Biol 2024; 16:a041673. [PMID: 37788887 PMCID: PMC11065169 DOI: 10.1101/cshperspect.a041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
One of the greatest threats facing the planet is the continued increase in excess greenhouse gasses, with CO2 being the primary driver due to its rapid increase in only a century. Excess CO2 is exacerbating known climate tipping points that will have cascading local and global effects including loss of biodiversity, global warming, and climate migration. However, global reduction of CO2 emissions is not enough. Carbon dioxide removal (CDR) will also be needed to avoid the catastrophic effects of global warming. Although the drawdown and storage of CO2 occur naturally via the coupling of the silicate and carbonate cycles, they operate over geological timescales (thousands of years). Here, we suggest that microbes can be used to accelerate this process, perhaps by orders of magnitude, while simultaneously producing potentially valuable by-products. This could provide both a sustainable pathway for global drawdown of CO2 and an environmentally benign biosynthesis of materials. We discuss several different approaches, all of which involve enhancing the rate of silicate weathering. We use the silicate mineral olivine as a case study because of its favorable weathering properties, global abundance, and growing interest in CDR applications. Extensive research is needed to determine both the upper limit of the rate of silicate dissolution and its potential to economically scale to draw down significant amounts (Mt/Gt) of CO2 Other industrial processes have successfully cultivated microbial consortia to provide valuable services at scale (e.g., wastewater treatment, anaerobic digestion, fermentation), and we argue that similar economies of scale could be achieved from this research.
Collapse
Affiliation(s)
| | - Nathan G Walworth
- Vesta, San Francisco, California 94114, USA
- University of Southern California, Los Angeles, California 90007, USA
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Neil C Dalvie
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chris L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, California 92037, USA
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, California 92037, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | - David A Hutchins
- University of Southern California, Los Angeles, California 90007, USA
| | | | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kenneth H Nealson
- Vesta, San Francisco, California 94114, USA
- University of Southern California, Los Angeles, California 90007, USA
| |
Collapse
|
8
|
Zhu J, Yang S, Cao Q, Li X, Jiao L, Shi Y, Yan Y, Xu L, Yang M, Xie X, Madzak C, Yan J. Engineering Yarrowia lipolytica as a Cellulolytic Cell Factory for Production of p-Coumaric Acid from Cellulose and Hemicellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5867-5877. [PMID: 38446418 DOI: 10.1021/acs.jafc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.
Collapse
Affiliation(s)
- Jiarui Zhu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shu Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | | | - Xiaoyan Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liangcheng Jiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuanxing Shi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Catherine Madzak
- UMR 782 SayFood, INRAE, AgroParisTech, Paris-Saclay University, Palaiseau 91400, France
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
9
|
Mejía-Manzano LA, Ortiz-Alcaráz CI, Parra Daza LE, Suarez Medina L, Vargas-Cortez T, Fernández-Niño M, González Barrios AF, González-Valdez J. Saccharomyces cerevisiae biofactory to produce naringenin using a systems biology approach and a bicistronic vector expression strategy in flavonoid production. Microbiol Spectr 2024; 12:e0337423. [PMID: 38088543 PMCID: PMC10871697 DOI: 10.1128/spectrum.03374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Flavonoids are a group of compounds generally produced by plants with proven biological activity, which have recently beeen recommended for the treatment and prevention of diseases and ailments with diverse causes. In this study, naringenin was produced in adequate amounts in yeast after in silico design. The four genes of the involved enzymes from several organisms (bacteria and plants) were multi-expressed in two vectors carrying each two genes linked by a short viral peptide sequence. The batch kinetic behavior of the product, substrate, and biomass was described at lab scale. The engineered strain might be used in a more affordable and viable bioprocess for industrial naringenin procurement.
Collapse
Affiliation(s)
| | | | - Laura E. Parra Daza
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Lina Suarez Medina
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Teresa Vargas-Cortez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Miguel Fernández-Niño
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Andrés Fernando González Barrios
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
10
|
Guo M, Lv H, Chen H, Dong S, Zhang J, Liu W, He L, Ma Y, Yu H, Chen S, Luo H. Strategies on biosynthesis and production of bioactive compounds in medicinal plants. CHINESE HERBAL MEDICINES 2024; 16:13-26. [PMID: 38375043 PMCID: PMC10874775 DOI: 10.1016/j.chmed.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2024] Open
Abstract
Medicinal plants are a valuable source of essential medicines and herbal products for healthcare and disease therapy. Compared with chemical synthesis and extraction, the biosynthesis of natural products is a very promising alternative for the successful conservation of medicinal plants, and its rapid development will greatly facilitate the conservation and sustainable utilization of medicinal plants. Here, we summarize the advances in strategies and methods concerning the biosynthesis and production of natural products of medicinal plants. The strategies and methods mainly include genetic engineering, plant cell culture engineering, metabolic engineering, and synthetic biology based on multiple "OMICS" technologies, with paradigms for the biosynthesis of terpenoids and alkaloids. We also highlight the biosynthetic approaches and discuss progress in the production of some valuable natural products, exemplifying compounds such as vindoline (alkaloid), artemisinin and paclitaxel (terpenoids), to illustrate the power of biotechnology in medicinal plants.
Collapse
Affiliation(s)
- Miaoxian Guo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haizhou Lv
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongyu Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuting Dong
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianhong Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanjing Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liu He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yimian Ma
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hua Yu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shilin Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongmei Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
11
|
Biggs BW, Tyo KEJ. Aromatic natural products synthesis from aromatic lignin monomers using Acinetobacter baylyi ADP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554694. [PMID: 37662333 PMCID: PMC10473687 DOI: 10.1101/2023.08.24.554694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Achieving sustainable chemical synthesis and a circular economy will require process innovation to minimize or recover existing waste streams. Valorization of lignin biomass has the ability to advance this goal. While lignin has proved a recalcitrant feedstock for upgrading, biological approaches can leverage native microbial metabolism to simplify complex and heterogeneous feedstocks to tractable starting points for biochemical upgrading. Recently, we demonstrated that one microbe with lignin relevant metabolism, Acinetobacter baylyi ADP1, is both highly engineerable and capable of undergoing rapid design-build-test-learn cycles, making it an ideal candidate for these applications. Here, we utilize these genetic traits and ADP1's native β-ketoadipate metabolism to convert mock alkali pretreated liquor lignin (APL) to two valuable natural products, vanillin-glucoside and resveratrol. En route, we create strains with up to 22 genetic modifications, including up to 8 heterologously expressed enzymes. Our approach takes advantage of preexisting aromatic species in APL (vanillate, ferulate, and p-coumarate) to create shortened biochemical routes to end products. Together, this work demonstrates ADP1's potential as a platform for upgrading lignin waste streams and highlights the potential for biosynthetic methods to maximize the existing chemical potential of lignin aromatic monomers.
Collapse
Affiliation(s)
- Bradley W. Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Keith E. J. Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
12
|
Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T, Wang G. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Appl Microbiol Biotechnol 2023; 107:3391-3404. [PMID: 37126085 DOI: 10.1007/s00253-023-12549-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.
Collapse
Affiliation(s)
- Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
13
|
Raorane ML, Manz C, Hildebrandt S, Mielke M, Thieme M, Keller J, Bunzel M, Nick P. Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. PROTOPLASMA 2023; 260:349-369. [PMID: 35697946 PMCID: PMC9931846 DOI: 10.1007/s00709-022-01781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the anticancer drugs vinblastine and vincristine, Catharanthus roseus has been intensively studied for biosynthesis of several terpene indole alkaloids (TIAs). Due to their low abundance in plant tissues at a simultaneously high demand, modes of production alternative to conventional extraction are mandatory. Plant cell fermentation might become one of these alternatives, yet decades of research have shown limited success to certain product classes, leading to the question: how to preserve the intrinsic ability to produce TIAs (metabolic competence) in cell culture? We used the strategy to use the developmental potency of mature embryos to generate such strains. Two cell strains (C1and C4) from seed embryos of Catharanthus roseus were found to differ not only morphologically, but also in their metabolic competence. This differential competence became manifest not only under phytohormone elicitation, but also upon feeding with alkaloid pathway precursors. The more active strain C4 formed larger cell aggregates and was endowed with longer mitochondria. These cellular features were accompanied by higher alkaloid accumulation in response to methyl jasmonate (MeJA) elicitation. The levels of catharanthine could be increased significantly, while the concurrent vindoline branch of the pathway was blocked, such that no bisindole alkaloids were detectable. By feeding vindoline to MeJA-elicited C4 cells, vincristine became detectable; however, only to marginal amounts. In conclusion, these results show that cultured cells are not "de-differentiated", but can differ in metabolic competence. In addition to elicitation and precursor feeding, the cellular properties of the "biomatter" are highly relevant for the success of plant cell fermentation.
Collapse
Affiliation(s)
- Manish L Raorane
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
- Institute of Pharmacy, Martin-Luther-University, Hoher Weg 8, 06120, Halle-WittenbergHalle (Saale), Germany.
| | - Christina Manz
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sarah Hildebrandt
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Marion Mielke
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Marc Thieme
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Judith Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
14
|
Nguyen CNM, Nirmal NP, Sultanbawa Y, Ziora ZM. Antioxidant and Antibacterial Activity of Four Tannins Isolated from Different Sources and Their Effect on the Shelf-Life Extension of Vacuum-Packed Minced Meat. Foods 2023; 12:foods12020354. [PMID: 36673446 PMCID: PMC9858154 DOI: 10.3390/foods12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Four tannin samples extracted from chestnut wood (tannin oenologique, TO), grape (tannin VR grape, TVG), oak gall (tannin galalcool, TG), and oak tree (tannin VR supra elegance, TE) were evaluated for antioxidant and antibacterial activity. The highest total phenolic content (TPC) values were observed in the order of TVG > TG > TE > TO (p < 0.05). The antioxidant activities of all samples were determined in terms of DPPH radical scavenging activity, reducing power, metal-chelating activity, and linoleic acid peroxidation assay. The antioxidant activities of all samples vary and no correlation was observed with the respective TPC values of each sample. Antibacterial activities indicate that all samples showed more or less inhibitory effects against selected Gram-positive and Gram-negative bacteria. Based on antioxidant and antibacterial activity, TO and TVG were selected for the beef mince quality preservation study during refrigerated storage. Both TO and TVG at two different concentrations, 0.25 and 0.5%, could cease the chemical and microbial changes as compared to the control sample. Although total viable count (TVC) did not show a significant difference, the H2S-producing bacteria count was lower in all samples treated with TO and TVG compared to sodium metabisulfite (SMS) and the control sample (p < 0.05). Therefore, TO and TVG could be promising natural food preservatives during refrigerated storage.
Collapse
Affiliation(s)
- Chau Ngoc Minh Nguyen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Health and Food Science Precinct, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Nilesh Prakash Nirmal
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Health and Food Science Precinct, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-28002380-295; Fax: +66-24419344
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Health and Food Science Precinct, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Lim PK, Julca I, Mutwil M. Redesigning plant specialized metabolism with supervised machine learning using publicly available reactome data. Comput Struct Biotechnol J 2023; 21:1639-1650. [PMID: 36874159 PMCID: PMC9976193 DOI: 10.1016/j.csbj.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The immense structural diversity of products and intermediates of plant specialized metabolism (specialized metabolites) makes them rich sources of therapeutic medicine, nutrients, and other useful materials. With the rapid accumulation of reactome data that can be accessible on biological and chemical databases, along with recent advances in machine learning, this review sets out to outline how supervised machine learning can be used to design new compounds and pathways by exploiting the wealth of said data. We will first examine the various sources from which reactome data can be obtained, followed by explaining the different machine learning encoding methods for reactome data. We then discuss current supervised machine learning developments that can be employed in various aspects to help redesign plant specialized metabolism.
Collapse
Affiliation(s)
- Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Guo S, Li B, Wang D, Li L, Chen Y, Menghe B. Metabolomic analysis of cooperative adaptation between Co-cultured Lacticaseibacillus casei Zhang and Lactiplantibacillus plantarum P8. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Abo-Kadoum MA, Abouelela ME, Al Mousa AA, Abo-Dahab NF, Mosa MA, Helmy YA, Hassane AMA. Resveratrol biosynthesis, optimization, induction, bio-transformation and bio-degradation in mycoendophytes. Front Microbiol 2022; 13:1010332. [PMID: 36304949 PMCID: PMC9593044 DOI: 10.3389/fmicb.2022.1010332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (3,4,5-trihydroxystilbene) is a naturally occurring polyphenolic stilbene compound produced by certain plant species in response to biotic and abiotic factors. Resveratrol has sparked a lot of interest due to its unique structure and approved therapeutic properties for the prevention and treatment of many diseases such as neurological disease, cardiovascular disease, diabetes, inflammation, cancer, and Alzheimer's disease. Over the last few decades, many studies have focused on the production of resveratrol from various natural sources and the optimization of large-scale production. Endophytic fungi isolated from various types of grapevines and Polygonum cuspidatum, the primary plant sources of resveratrol, demonstrated intriguing resveratrol-producing ability. Due to the increasing demand for resveratrol, one active area of research is the use of endophytic fungi and metabolic engineering techniques for resveratrol's large-scale production. The current review addresses an overview of endophytic fungi as a source for production, as well as biosynthesis pathways and relevant genes incorporated in resveratrol biosynthesis. Various approaches for optimizing resveratrol production from endophytic fungi, as well as their bio-transformation and bio-degradation, are explained in detail.
Collapse
Affiliation(s)
- M. A. Abo-Kadoum
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nageh F. Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed A. Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdallah M. A. Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
18
|
Bai B, Liu C, Zhang C, He X, Wang H, Peng W, Zheng C. Trichoderma species from plant and soil: An excellent resource for biosynthesis of terpenoids with versatile bioactivities. J Adv Res 2022:S2090-1232(22)00212-0. [PMID: 36195283 DOI: 10.1016/j.jare.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 10/06/2022] Open
Abstract
BACKGROUND Trichoderma species are rich source of bioactive secondary metabolites. In the past decades, a series of secondary metabolites were reported from different Trichoderma fungi, among which terpenoids possessing versatile structural diversities and extensive pharmacological activities are one of the particularly important categories. AIM OF REVIEW The review aims to summarize the terpenoids isolated from Trichoderma species regarding their structural diversities, biological activities, and promising biosynthetic potentials. KEY SCIENTIFIC CONCEPTS OF REVIEW So far, a total of 253 terpenoids, including 202 sesquiterpenes, 48 diterpenes, 2 monoterpenes and 1 meroterpenoid, were isolated and identified from Trichoderma species between 1948 and 2022. Pharmacological investigations of Trichoderma terpenoids mainly focused on their antibacterial activities, antifungal activities, inhibitory activities on marine plankton species and cytotoxic activities, indicating that Trichoderma species are important microbial agents for drug discovery and environmentally friendly agrochemicals development. Intriguing chemistry and enzymology involved in the biosynthesis of Trichoderma terpenoids were also presented to facilitate further precise genome mining-guided novel structure discovery. Taken together, the abundance of novel skeletons, bioactivities and biosynthetic potentials presents new opportunities for drug and agrochemicals discovery, genome mining and enzymology exploration from Trichoderma species. The work will provide references for the profound study of terpenoids derived from Trichoderma, and facilitate further studies on Trichoderma species in the areas of chemistry, medicine, agriculture and microbiology.
Collapse
Affiliation(s)
- Bingke Bai
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chang Liu
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chengzhong Zhang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xuhui He
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Hongrui Wang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
19
|
Skaliter O, Livneh Y, Agron S, Shafir S, Vainstein A. A whiff of the future: functions of phenylalanine-derived aroma compounds and advances in their industrial production. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1651-1669. [PMID: 35638340 PMCID: PMC9398379 DOI: 10.1111/pbi.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Plants produce myriad aroma compounds-odorous molecules that are key factors in countless aspects of the plant's life cycle, including pollinator attraction and communication within and between plants. For humans, aroma compounds convey accurate information on food type, and are vital for assessing the environment. The phenylpropanoid pathway is the origin of notable aroma compounds, such as raspberry ketone and vanillin. In the last decade, great strides have been made in elucidating this pathway with the identification of numerous aroma-related biosynthetic enzymes and factors regulating metabolic shunts. These scientific achievements, together with public acknowledgment of aroma compounds' medicinal benefits and growing consumer demand for natural products, are driving the development of novel biological sources for wide-scale, eco-friendly, and inexpensive production. Microbes and plants that are readily amenable to metabolic engineering are garnering attention as suitable platforms for achieving this goal. In this review, we discuss the importance of aroma compounds from the perspectives of humans, pollinators and plant-plant interactions. Focusing on vanillin and raspberry ketone, which are of high interest to the industry, we present key knowledge on the biosynthesis and regulation of phenylalanine-derived aroma compounds, describe advances in the adoption of microbes and plants as platforms for their production, and propose routes for improvement.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Yarin Livneh
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Shani Agron
- Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
20
|
Rodríguez-Ochoa JI, Fragoso-Jiménez JC, Flores N, Martínez LM, Bolivar F, Martinez A, Gosset G. Global transcriptomic response of Escherichia coli to p-coumaric acid. Microb Cell Fact 2022; 21:148. [PMID: 35858942 PMCID: PMC9301823 DOI: 10.1186/s12934-022-01874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
The aromatic compound p-coumaric acid (p-CA) is a secondary metabolite produced by plants. This aromatic acid and derived compounds have positive effects on human health, so there is interest in producing them in biotechnological processes with recombinant Escherichia coli strains. To determine the physiologic response of E. coli W3110 to p-CA, dynamic expression analysis of selected genes fused to a fluorescent protein reporter as well as RNA-seq and RT-qPCR were performed. The observed transcriptional profile revealed the induction of genes involved in functions related to p-CA active export, synthesis of cell wall and membrane components, synthesis of amino acids, detoxification of formaldehyde, phosphate limitation, acid stress, protein folding and degradation. Downregulation of genes encoding proteins involved in energy production, carbohydrate import and metabolism, as well as several outer and plasma membrane proteins was detected. This response is indicative of cell envelope damage causing the leakage of intracellular components including amino acids and phosphate-containing compounds. The cellular functions responding to p-CA that were identified in this study will help in defining targets for production strains improvement.
Collapse
Affiliation(s)
- José Ignacio Rodríguez-Ochoa
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Juan Carlos Fragoso-Jiménez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luz María Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Francisco Bolivar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
21
|
Du MM, Zhu ZT, Zhang GG, Zhao YQ, Gao B, Tao XY, Liu M, Ren YH, Wang FQ, Wei DZ. Engineering Saccharomyces cerevisiae for Hyperproduction of β-Amyrin by Mitigating the Inhibition Effect of Squalene on β-Amyrin Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:229-237. [PMID: 34955018 DOI: 10.1021/acs.jafc.1c06712] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The study aims to enhance β-amyrin production in Saccharomyces cerevisiae by peroxisome compartmentalization. First, overaccumulated squalene was determined as a key limiting factor for the production of β-amyrin since it could inhibit the activity of β-amyrin synthase GgbAs1. Second, to mitigate the inhibition effect, the enhanced squalene synthesis pathway was compartmentalized into peroxisomes to insulate overaccumulated squalene from GgbAs1, and thus the specific titer of β-amyrin reached 57.8 mg/g dry cell weight (DCW), which was 2.6-fold higher than that of the cytosol engineering strain. Third, by combining peroxisome compartmentalization with the "push-pull-restrain" strategy (ERG1 and GgbAs1 overexpression and ERG7 weakening), the production of β-amyrin was further increased to 81.0 mg/g DCW (347.0 mg/L). Finally, through fed-batch fermentation in a 5 L fermenter, the titer of β-amyrin reached 2.6 g/L, which is the highest reported to date. The study provides a new perspective to engineering yeasts as a platform for triterpene production.
Collapse
Affiliation(s)
- Meng-Meng Du
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Zhan-Tao Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Ge-Ge Zhang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Yun-Qiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Yu-Hong Ren
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
22
|
Kukil K, Lindberg P. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids. Microb Cell Fact 2022; 21:8. [PMID: 35012528 PMCID: PMC8750797 DOI: 10.1186/s12934-021-01735-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background Phenylpropanoids represent a diverse class of industrially important secondary metabolites, synthesized in plants from phenylalanine and tyrosine. Cyanobacteria have a great potential for sustainable production of phenylpropanoids directly from CO2, due to their photosynthetic lifestyle with a fast growth compared to plants and the ease of generating genetically engineered strains. This study focuses on photosynthetic production of the starting compounds of the phenylpropanoid pathway, trans-cinnamic acid and p-coumaric acid, in the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). Results A selected set of phenylalanine ammonia lyase (PAL) enzymes from different organisms was overexpressed in Synechocystis, and the productivities of the resulting strains compared. To further improve the titer of target compounds, we evaluated the use of stronger expression cassettes for increasing PAL protein levels, as well as knock-out of the laccase gene slr1573, as this was previously reported to prevent degradation of the target compounds in the cell. Finally, to investigate the effect of growth conditions on the production of trans-cinnamic and p-coumaric acids from Synechocystis, cultivation conditions promoting rapid, high density growth were tested. Comparing the different PALs, the highest specific titer was achieved for the strain AtC, expressing PAL from Arabidopsis thaliana. A subsequent increase of protein level did not improve the productivity. Production of target compounds in strains where the slr1573 laccase had been knocked out was found to be lower compared to strains with wild type background, and the Δslr1573 strains exhibited a strong phenotype of slower growth rate and lower pigment content. Application of a high-density cultivation system for the growth of production strains allowed reaching the highest total titers of trans-cinnamic and p-coumaric acids reported so far, at around 0.8 and 0.4 g L−1, respectively, after 4 days. Conclusions Production of trans-cinnamic acid, unlike that of p-coumaric acid, is not limited by the protein level of heterologously expressed PAL in Synechocystis. High density cultivation led to higher titres of both products, while knocking out slr1573 did not have a positive effect on production. This work contributes to capability of exploiting the primary metabolism of cyanobacteria for sustainable production of plant phenylpropanoids. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01735-8.
Collapse
Affiliation(s)
- Kateryna Kukil
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden.
| |
Collapse
|
23
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_66_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Fidan O, Zhan J, Ren J. Engineered production of bioactive natural products from medicinal plants. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Sousa JPM, Ramos MJ, Fernandes PA. Modern strategies for the diversification of the supply of natural compounds - the case of alkaloid painkillers. Chembiochem 2021; 23:e202100623. [PMID: 34971022 DOI: 10.1002/cbic.202100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Indexed: 11/07/2022]
Abstract
Plant-derived natural compounds are used for treating diseases since the beginning of humankind. The supply of many plant-derived natural compounds for medicinal purposes, such as thebaine, morphine, and codeine, is, nowadays, majorly dependent on opium poppy crop harvesting. This dependency puts an extra risk factor in ensuring the supply chain because crops are highly susceptible to environmental factors. Emerging technologies, such as biocatalysis, might help to solve this problem, by diversifying the sources of supply of these compounds. Here we review the first committed step in the production of alkaloid painkillers, the production of S-norcoclaurine, and the enzymes involved. The improvement of these enzymes can be carried out by experimental directed evolution and rational design strategies, supported by computational methods, to create variants that produce the S-norcoclaurine precursor for alkaloid painkillers in heterologous organisms, meeting the pharmaceutical industry standards and needs without depending on opium poppy crops.
Collapse
Affiliation(s)
- João Pedro Marques Sousa
- REQUIMTE LAQV Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, PORTUGAL
| | - Maria J Ramos
- FCUP: Universidade do Porto Faculdade de Ciencias, Chemistry and Biochemistry, PORTUGAL
| | - Pedro A Fernandes
- Universidade do Porto, Department of Chemistry Theoretical and Computational Chemistry Group, Rua do Campo Alegre, 687, 4169-007, Porto, PORTUGAL
| |
Collapse
|
26
|
Ma Y, Li J, Huang S, Stephanopoulos G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metab Eng 2021; 68:152-161. [PMID: 34634493 DOI: 10.1016/j.ymben.2021.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Metabolic engineering approaches for the production of high-value chemicals in microorganisms mostly use the cytosol as general reaction vessel. However, sequestration of enzymes and substrates, and metabolic cross-talk frequently prevent efficient synthesis of target compounds in the cytosol. Organelle compartmentalization in eukaryotic cells suggests ways for overcoming these challenges. Here we have explored this strategy by expressing the astaxanthin biosynthesis pathway in sub-organelles of the oleaginous yeast Yarrowia lipolytica. We first showed that fusion of the two enzymes converting β-carotene to astaxanthin, β-carotene ketolase and hydroxylase, performs better than the expression of individual enzymes. We next evaluated the pathway when expressed in compartments of lipid body, endoplasmic reticulum or peroxisome, individually and in combination. Targeting the astaxanthin pathway to subcellular organelles not only accelerated the conversion of β-carotene to astaxanthin, but also significantly decreased accumulation of the ketocarotenoid intermediates. Anchoring enzymes simultaneously to all three organelles yielded the largest increase of astaxanthin synthesis, and ultimately produced 858 mg/L of astaxanthin in fed-batch fermentation (a 141-fold improvement over the initial strain). Our study is expected to help unlock the full potential of subcellular compartments and advance LB-based compartmentalized isoprenoid biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Yongshuo Ma
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, United States; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jingbo Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, United States
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, United States.
| |
Collapse
|
27
|
Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metab Eng Commun 2021; 13:e00183. [PMID: 34584841 PMCID: PMC8450241 DOI: 10.1016/j.mec.2021.e00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Engineered strains of the yeast Saccharomyces cerevisiae are intensively studied as production platforms for aromatic compounds such as hydroxycinnamic acids, stilbenoids and flavonoids. Heterologous pathways for production of these compounds use l-phenylalanine and/or l-tyrosine, generated by the yeast shikimate pathway, as aromatic precursors. The Ehrlich pathway converts these precursors to aromatic fusel alcohols and acids, which are undesirable by-products of yeast strains engineered for production of high-value aromatic compounds. Activity of the Ehrlich pathway requires any of four S. cerevisiae 2-oxo-acid decarboxylases (2-OADCs): Aro10 or the pyruvate-decarboxylase isoenzymes Pdc1, Pdc5, and Pdc6. Elimination of pyruvate-decarboxylase activity from S. cerevisiae is not straightforward as it plays a key role in cytosolic acetyl-CoA biosynthesis during growth on glucose. In a search for pyruvate decarboxylases that do not decarboxylate aromatic 2-oxo acids, eleven yeast and bacterial 2-OADC-encoding genes were investigated. Homologs from Kluyveromyces lactis (KlPDC1), Kluyveromyces marxianus (KmPDC1), Yarrowia lipolytica (YlPDC1), Zymomonas mobilis (Zmpdc1) and Gluconacetobacter diazotrophicus (Gdpdc1.2 and Gdpdc1.3) complemented a Pdc− strain of S. cerevisiae for growth on glucose. Enzyme-activity assays in cell extracts showed that these genes encoded active pyruvate decarboxylases with different substrate specificities. In these in vitro assays, ZmPdc1, GdPdc1.2 or GdPdc1.3 had no substrate specificity towards phenylpyruvate. Replacing Aro10 and Pdc1,5,6 by these bacterial decarboxylases completely eliminated aromatic fusel-alcohol production in glucose-grown batch cultures of an engineered coumaric acid-producing S. cerevisiae strain. These results outline a strategy to prevent formation of an important class of by-products in ‘chassis’ yeast strains for production of non-native aromatic compounds. Identification of pyruvate decarboxylases active with pyruvate but not with aromatic 2-oxo acids. Zymomonas mobilis pyruvate decarboxylase can replace the native yeast enzymes. Expression of Z. mobilis pyruvate decarboxylase removes formation of fusel alcohols. Elimination of fusel alcohol by products improves formation of coumaric acid. Decarboxylase swapping is a beneficial strategy for production of non-native aromatics.
Collapse
|
28
|
Decembrino D, Raffaele A, Knöfel R, Girhard M, Urlacher VB. Synthesis of (-)-deoxypodophyllotoxin and (-)-epipodophyllotoxin via a multi-enzyme cascade in E. coli. Microb Cell Fact 2021; 20:183. [PMID: 34544406 PMCID: PMC8454061 DOI: 10.1186/s12934-021-01673-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/07/2021] [Indexed: 01/30/2023] Open
Abstract
Background The aryltetralin lignan (−)−podophyllotoxin is a potent antiviral and anti-neoplastic compound that is mainly found in Podophyllum plant species. Over the years, the commercial demand for this compound rose notably because of the high clinical importance of its semi-synthetic chemotherapeutic derivatives etoposide and teniposide. To satisfy this demand, (−)−podophyllotoxin is conventionally isolated from the roots and rhizomes of Sinopodophyllum hexandrum, which can only grow in few regions and is now endangered by overexploitation and environmental damage. For these reasons, targeting the biosynthesis of (−)−podophyllotoxin precursors or analogues is fundamental for the development of novel, more sustainable supply routes. Results We recently established a four-step multi-enzyme cascade to convert (+)−pinoresinol into (−)−matairesinol in E. coli. Herein, a five-step multi-enzyme biotransformation of (−)−matairesinol to (−)−deoxypodophyllotoxin was proven effective with 98 % yield at a concentration of 78 mg/L. Furthermore, the extension of this cascade to a sixth step leading to (−)−epipodophyllotoxin was evaluated. To this end, seven enzymes were combined in the reconstituted pathway involving inter alia three plant cytochrome P450 monooxygenases, with two of them being functionally expressed in E. coli for the first time. Conclusions Both, (−)−deoxypodophyllotoxin and (−)−epipodophyllotoxin, are direct precursors to etoposide and teniposide. Thus, the reconstitution of biosynthetic reactions of Sinopodophyllum hexandrum as an effective multi-enzyme cascade in E. coli represents a solid step forward towards a more sustainable production of these essential pharmaceuticals. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01673-5.
Collapse
Affiliation(s)
- Davide Decembrino
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alessandra Raffaele
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ronja Knöfel
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
29
|
Mai J, Li W, Ledesma-Amaro R, Ji XJ. Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9498-9510. [PMID: 34376044 DOI: 10.1021/acs.jafc.1c03864] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sesquiterpenes are natural compounds composed of three isoprene units. They represent the largest class of terpene compounds found in plants, and many have remarkable biological activities. Furthermore, sesquiterpenes have broad applications in the flavor, pharmaceutical and biofuel industries due to their complex structures. With the development of metabolic engineering and synthetic biology, the production of different sesquiterpenes has been realized in various chassis microbes. The microbial production of sesquiterpenes provides a promising alternative to plant extraction and chemical synthesis, enabling us to meet the increasing market demand. In this review, we summarized the heterologous production of different plant sesquiterpenes using the eukaryotic yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, followed by a discussion of common metabolic engineering strategies used in this field.
Collapse
Affiliation(s)
- Jie Mai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wenjuan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
30
|
Multi-level rebalancing of the naringenin pathway using riboswitch-guided high-throughput screening. Metab Eng 2021; 67:417-427. [PMID: 34416365 DOI: 10.1016/j.ymben.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022]
Abstract
Recombinant microbes have emerged as promising alternatives to natural sources of naringenin-a key molecular scaffold for flavonoids. In recombinant strains, expression levels of the pathway genes should be optimized at both transcription and the translation stages to precisely allocate cellular resources and maximize metabolite production. However, the optimization of the expression levels of naringenin generally relies on evaluating a small number of variants from libraries constructed by varying transcription efficiency only. In this study, we introduce a systematic strategy for the multi-level optimization of biosynthetic pathways. We constructed a multi-level combinatorial library covering both transcription and translation stages using synthetic T7 promoter variants and computationally designed 5'-untranslated regions. Furthermore, we identified improved strains through high-throughput screening based on a synthetic naringenin riboswitch. The most-optimized strain obtained using this approach exhibited a 3-fold increase in naringenin production, compared with the parental strain in which only the transcription efficiency was modulated. Furthermore, in a fed-batch bioreactor, the optimized strain produced 260.2 mg/L naringenin, which is the highest concentration reported to date using glycerol and p-coumaric acid as substrates. Collectively, this work provides an efficient strategy for the expression optimization of the biosynthetic pathways.
Collapse
|
31
|
Son J, Jang JH, Choi IH, Lim CG, Jeon EJ, Bae Bang H, Jeong KJ. Production of trans-cinnamic acid by whole-cell bioconversion from L-phenylalanine in engineered Corynebacterium glutamicum. Microb Cell Fact 2021; 20:145. [PMID: 34303376 PMCID: PMC8310591 DOI: 10.1186/s12934-021-01631-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Background trans-cinnamic acid (t-CA) is a phenylpropanoid with a broad spectrum of biological activities including antioxidant and antibacterial activities, and it also has high potential in food and cosmetic applications. Although significant progress has been made in the production of t-CA using microorganisms, its relatively low product titers still need to be improved. In this study, we engineered Corynebacterium glutamicum as a whole-cell catalyst for the bioconversion of l-phenylalanine (l-Phe) into t-CA and developed a repeated bioconversion process. Results An expression module based on a phenylalanine ammonia lyase-encoding gene from Streptomyces maritimus (SmPAL), which mediates the conversion of l-Phe into t-CA, was constructed in C. glutamicum. Using the strong promoter PH36 and ribosome binding site (RBS) (in front of gene 10 of the T7 phage), and a high-copy number plasmid, SmPAL could be expressed to levels as high as 39.1% of the total proteins in C. glutamicum. Next, to improve t-CA production at an industrial scale, reaction conditions including temperature and pH were optimized; t-CA production reached up to 6.7 mM/h in a bioreactor under optimal conditions (50 °C and pH 8.5, using NaOH as base solution). Finally, a recycling system was developed by coupling membrane filtration with the bioreactor, and the engineered C. glutamicum successfully produced 13.7 mM of t-CA (24.3 g) from 18.2 mM of l-Phe (36 g) and thus with a yield of 75% (0.75 mol/mol) through repetitive supplementation. Conclusions We developed a highly efficient bioconversion process using C. glutamicum as a biocatalyst and a micromembrane-based cell recycling system. To the best of our knowledge, this is the first report on t-CA production in C. glutamicum, and this robust platform will contribute to the development of an industrially relevant platform for the production of t-CA using microorganisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01631-1.
Collapse
Affiliation(s)
- Jaewoo Son
- Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun Hong Jang
- Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Hyeok Choi
- Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chang Gyu Lim
- Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Jung Jeon
- Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Bae Bang
- Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Institute for The BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
32
|
Yu P, Ma J, Zhu P, Chen Q, Zhang Q. Enhancing the production of γ-aminobutyric acid in Escherichia coli BL21 by engineering the enzymes of the regeneration pathway of the coenzyme factor pyridoxal 5'-phosphate. World J Microbiol Biotechnol 2021; 37:130. [PMID: 34236514 DOI: 10.1007/s11274-021-03103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
The compound γ-aminobutyric acid (GABA) was widely used in various fields. To enhance the production of GABA in Escherichia coli BL21(DE3), the enzymes of the regeneration pathway of the coenzyme factor pyridoxal 5'-phosphate (PLP) were engineered. The recombinant E. coli strain was screened and identified. The initial concentrations of L-monosodium glutamate (L-MSG) had an obvious influence on the production of GABA. The highest concentration of GABA in recombinant E. coli BL21/pET28a-gadA was 5.54 g/L when the initial L-MSG concentration was 10 g/L, whereas it was 8.45 g/L in recombinant E. coli BL21/pET28a-gadA-SNO1-SNZ1 at an initial L-MSG concentration of 15 g/L. The corresponding conversion yields of GABA in these two strains were 91.0% and 92.7%, respectively. When the initial concentrations of L-MSG were more than 15 g/L, the concentrations of GABA in E. coli BL21/pET28a-gadA-SNO1-SNZ1 were significantly higher as compared to those in recombinant E. coli BL21/pET28a-gadA, and it reached a maximum of 13.20 g/L at an initial L-MSG concentration of 25 g/L, demonstrating that the introduction of the enzymes of the regeneration pathway of PLP favored to enhance the production of GABA. This study provides new insight into producing GABA effectively in E. coli BL21(DE3).
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China.
| | - Jian Ma
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Pengzhi Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| |
Collapse
|
33
|
Li ZJ, Wang YZ, Wang LR, Shi TQ, Sun XM, Huang H. Advanced Strategies for the Synthesis of Terpenoids in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2367-2381. [PMID: 33595318 DOI: 10.1021/acs.jafc.1c00350] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoids are an important class of secondary metabolites that play an important role in food, agriculture, and other fields. Microorganisms are rapidly emerging as a promising source for the production of terpenoids. As an oleaginous yeast, Yarrowia lipolytica contains a high lipid content which indicates that it must produce high amounts of acetyl-CoA, a necessary precursor for the biosynthesis of terpenoids. Y. lipolytica has a complete eukaryotic mevalonic acid (MVA) pathway but it has not yet seen commercial use due to its low productivity. Several metabolic engineering strategies have been developed to improve the terpenoids production of Y. lipolytica, including developing the orthogonal pathway for terpenoid synthesis, increasing the catalytic efficiency of terpenoids synthases, enhancing the supply of acetyl-CoA and NADPH, expressing rate-limiting genes, and modifying the branched pathway. Moreover, most of the acetyl-CoA is used to produce lipid, so it is an effective strategy to strike a balance of precursor distribution by rewiring the lipid biosynthesis pathway. Lastly, the latest developed non-homologous end-joining strategy for improving terpenoid production is introduced. This review summarizes the status and metabolic engineering strategies of terpenoids biosynthesis in Y. lipolytica and proposes new insights to move the field forward.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
34
|
Jareonsin S, Pumas C. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Front Bioeng Biotechnol 2021; 9:628597. [PMID: 33644020 PMCID: PMC7907617 DOI: 10.3389/fbioe.2021.628597] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, most commercial recombinant technologies rely on host systems. However, each host has their own benefits and drawbacks, depending on the target products. Prokaryote host is lack of post-transcriptional and post-translational mechanisms, making them unsuitable for eukaryotic productions like phytochemicals. Even there are other eukaryote hosts (e.g., transgenic animals, mammalian cell, and transgenic plants), but those hosts have some limitations, such as low yield, high cost, time consuming, virus contamination, and so on. Thus, flexible platforms and efficient methods that can produced phytochemicals are required. The use of heterotrophic microalgae as a host system is interesting because it possibly overcome those obstacles. This paper presents a comprehensive review of heterotrophic microalgal expression host including advantages of heterotrophic microalgae as a host, genetic engineering of microalgae, genetic transformation of microalgae, microalgal engineering for phytochemicals production, challenges of microalgal hosts, key market trends, and future view. Finally, this review might be a directions of the alternative microalgae host for high-value phytochemicals production in the next few years.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
35
|
Cai M, Wu Y, Qi H, He J, Wu Z, Xu H, Qiao M. Improving the Level of the Tyrosine Biosynthesis Pathway in Saccharomyces cerevisiae through HTZ1 Knockout and Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis. ACS Synth Biol 2021; 10:49-62. [PMID: 33395268 DOI: 10.1021/acssynbio.0c00448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, many studies have been conducted on the expression of multiple aromatic compounds by Saccharomyces cerevisiae. The concentration of l-tyrosine, as a precursor of such valuable compounds, is crucial for the biosynthesis of aromatic metabolites. In this study, a novel function of HTZ1 was found to be related to tyrosine biosynthesis, which has not yet been reported. Knockout of this gene could significantly improve the ability of yeast cells to synthesize tyrosine, and its p-coumaric acid (p-CA) titer was approximately 3.9-fold higher than that of the wild-type strain BY4742. Subsequently, this strain was selected for random mutagenesis through an emerging mutagenesis technique, namely, atmospheric and room temperature plasma (ARTP). After two rounds of mutagenesis, five tyrosine high-producing mutants were obtained. The highest production of p-CA was 7.6-fold higher than that of the wild-type strain. Finally, transcriptome data of the htz1Δ strain and the five mutants were analyzed. The genome of mutagenic strains was also resequenced to reveal the mechanism underlying the high titer of tyrosine. This system of target engineering combined with random mutagenesis to screen excellent mutants provides a new basis for synthetic biology.
Collapse
Affiliation(s)
- Miao Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Yuzhen Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Hang Qi
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Jiaze He
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| |
Collapse
|
36
|
Hilgers F, Habash SS, Loeschcke A, Ackermann YS, Neumann S, Heck A, Klaus O, Hage-Hülsmann J, Grundler FMW, Jaeger KE, Schleker ASS, Drepper T. Heterologous Production of β-Caryophyllene and Evaluation of Its Activity against Plant Pathogenic Fungi. Microorganisms 2021; 9:microorganisms9010168. [PMID: 33466643 PMCID: PMC7828715 DOI: 10.3390/microorganisms9010168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Terpenoids constitute one of the largest and most diverse groups within the class of secondary metabolites, comprising over 80,000 compounds. They not only exhibit important functions in plant physiology but also have commercial potential in the biotechnological, pharmaceutical, and agricultural sectors due to their promising properties, including various bioactivities against pathogens, inflammations, and cancer. In this work, we therefore aimed to implement the plant sesquiterpenoid pathway leading to β-caryophyllene in the heterologous host Rhodobacter capsulatus and achieved a maximum production of 139 ± 31 mg L-1 culture. As this sesquiterpene offers various beneficial anti-phytopathogenic activities, we evaluated the bioactivity of β-caryophyllene and its oxygenated derivative β-caryophyllene oxide against different phytopathogenic fungi. Here, both compounds significantly inhibited the growth of Sclerotinia sclerotiorum and Fusarium oxysporum by up to 40%, while growth of Alternaria brassicicola was only slightly affected, and Phoma lingam and Rhizoctonia solani were unaffected. At the same time, the compounds showed a promising low inhibitory profile for a variety of plant growth-promoting bacteria at suitable compound concentrations. Our observations thus give a first indication that β-caryophyllene and β-caryophyllene oxide are promising natural agents, which might be applicable for the management of certain plant pathogenic fungi in agricultural crop production.
Collapse
Affiliation(s)
- Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Samer S. Habash
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Yannic Sebastian Ackermann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Stefan Neumann
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Achim Heck
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Florian M. W. Grundler
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - A. Sylvia S. Schleker
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
- Correspondence: (A.S.S.S.); (T.D.)
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
- Correspondence: (A.S.S.S.); (T.D.)
| |
Collapse
|
37
|
Delli-Ponti R, Shivhare D, Mutwil M. Using Gene Expression to Study Specialized Metabolism-A Practical Guide. FRONTIERS IN PLANT SCIENCE 2021; 11:625035. [PMID: 33510763 PMCID: PMC7835209 DOI: 10.3389/fpls.2020.625035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 05/25/2023]
Abstract
Plants produce a vast array of chemical compounds that we use as medicines and flavors, but these compounds' biosynthetic pathways are still poorly understood. This paucity precludes us from modifying, improving, and mass-producing these specialized metabolites in suitable bioreactors. Many of the specialized metabolites are expressed in a narrow range of organs, tissues, and cell types, suggesting a tight regulation of the responsible biosynthetic pathways. Fortunately, with unprecedented ease of generating gene expression data and with >200,000 publicly available RNA sequencing samples, we are now able to study the expression of genes from hundreds of plant species. This review demonstrates how gene expression can elucidate the biosynthetic pathways by mining organ-specific genes, gene expression clusters, and applying various types of co-expression analyses. To empower biologists to perform these analyses, we showcase these analyses using recently published, user-friendly tools. Finally, we analyze the performance of co-expression networks and show that they are a valuable addition to elucidating multiple the biosynthetic pathways of specialized metabolism.
Collapse
Affiliation(s)
| | | | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
38
|
Decembrino D, Ricklefs E, Wohlgemuth S, Girhard M, Schullehner K, Jach G, Urlacher VB. Assembly of Plant Enzymes in E. coli for the Production of the Valuable (-)-Podophyllotoxin Precursor (-)-Pluviatolide. ACS Synth Biol 2020; 9:3091-3103. [PMID: 33095000 DOI: 10.1021/acssynbio.0c00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lignans are plant secondary metabolites with a wide range of reported health-promoting bioactivities. Traditional routes toward these natural products involve, among others, the extraction from plant sources and chemical synthesis. However, the availability of the sources and the complex chemical structures of lignans often limit the feasibility of these approaches. In this work, we introduce a newly assembled biosynthetic route in E. coli for the efficient conversion of the common higher-lignan precursor (+)-pinoresinol to the noncommercially available (-)-pluviatolide via three intermediates. (-)-Pluviatolide is considered a crossroad compound in lignan biosynthesis, because the methylenedioxy bridge in its structure, resulting from the oxidation of (-)-matairesinol, channels the biosynthetic pathway toward the microtubule depolymerizer (-)-podophyllotoxin. This oxidation reaction is catalyzed with high regio- and enantioselectivity by a cytochrome P450 monooxygenase from Sinopodophyllum hexandrum (CYP719A23), which was expressed and optimized regarding redox partners in E. coli. Pinoresinol-lariciresinol reductase from Forsythia intermedia (FiPLR), secoisolariciresinol dehydrogenase from Podophyllum pleianthum (PpSDH), and CYP719A23 were coexpressed together with a suitable NADPH-dependent reductase to ensure P450 activity, allowing for four sequential biotransformations without intermediate isolation. By using an E. coli strain coexpressing the enzymes originating from four plants, (+)-pinoresinol was efficiently converted, allowing the isolation of enantiopure (-)-pluviatolide at a concentration of 137 mg/L (ee ≥99% with 76% isolated yield).
Collapse
Affiliation(s)
- Davide Decembrino
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Esther Ricklefs
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefan Wohlgemuth
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katrin Schullehner
- Phytowelt Green Technologies GmbH, Kölsumer Weg 33, 41334 Nettetal, Germany
| | - Guido Jach
- Phytowelt Green Technologies GmbH, Kölsumer Weg 33, 41334 Nettetal, Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Hassan JU, Kaleem I, Rasool A, Xu K, Adnan Tahir R, Lv B, Li C. Engineered Saccharomyces cerevisiae for the de novo synthesis of the aroma compound longifolene. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Zeng B, Lai Y, Liu L, Cheng J, Zhang Y, Yuan J. Engineering Escherichia coli for High-Yielding Hydroxytyrosol Synthesis from Biobased l-Tyrosine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7691-7696. [PMID: 32578426 DOI: 10.1021/acs.jafc.0c03065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxytyrosol (HT) is a natural antioxidant with many associated health benefits. In this study, we established efficient enzymatic cascades for the synthesis of HT from biobased l-tyrosine. First, a dopamine-mediated route for HT production was investigated. The combination of native hydroxylase (HpaBC) from Escherichia coli and l-DOPA decarboxylase (DODC) from Pseudomonas putida could efficiently convert 5 mM l-tyrosine into dopamine with conversion above 90%. However, further incorporation of monoamine oxidase (MAO) from Micrococcus luteus and phenylacetaldehyde reductase (PAR) from Solanum lycopersicum only resulted in 3.47 mM HT with 69.4% conversion. Therefore, a second enzyme cascade that comprises HpaBC from E. coli, l-amino acid deaminase (LAAD) from Proteus mirabilis, α-keto acid decarboxylase (ARO10) from Saccharomyces cerevisiae, and PAR from S. lycopersicum was designed. This enzymatic route showed higher catalytic activity and efficiently synthesized HT. The 24.27 mM HT was obtained from 25 mM l-tyrosine with a high conversion of 97.1%, and 32.35 mM HT was produced using 50 mM l-tyrosine, which represents the highest HT titer using l-tyrosine as a substrate reported to date. In summary, we have developed a green and sustainable platform for efficient HT enzymatic synthesis.
Collapse
Affiliation(s)
- Baiyun Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yumeng Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jie Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
41
|
Belwal T, Singh G, Jeandet P, Pandey A, Giri L, Ramola S, Bhatt ID, Venskutonis PR, Georgiev MI, Clément C, Luo Z. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnol Adv 2020; 43:107600. [PMID: 32693016 DOI: 10.1016/j.biotechadv.2020.107600] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023]
Abstract
Anthocyanins, the color compounds of plants, are known for their wide applications in food, nutraceuticals and cosmetic industry. The biosynthetic pathway of anthocyanins is well established with the identification of potential key regulatory genes, which makes it possible to modulate its production by biotechnological means. Various biotechnological systems, including use of in vitro plant cell or tissue cultures as well as microorganisms have been used for the production of anthocyanins under controlled conditions, however, a wide range of factors affects their production. In addition, metabolic engineering technologies have also used the heterologous production of anthocyanins in recombinant plants and microorganisms. However, these approaches have mostly been tested at the lab- and pilot-scales, while very few up-scaling studies have been undertaken. Various challenges and ways of investigation are proposed here to improve anthocyanin production by using the in vitro plant cell or tissue culture and metabolic engineering of plants and microbial culture systems. All these methods are capable of modulating the production of anthocyanins , which can be further utilized for pharmaceutical, cosmetics and food applications.
Collapse
Affiliation(s)
- Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, People's Republic of China.
| | - Gopal Singh
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India; Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Aseesh Pandey
- G.B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Lalit Giri
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India
| | - Sudipta Ramola
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Milen I Georgiev
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, People's Republic of China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China.
| |
Collapse
|
42
|
Marsafari M, Samizadeh H, Rabiei B, Mehrabi A, Koffas M, Xu P. Biotechnological Production of Flavonoids: An Update on Plant Metabolic Engineering, Microbial Host Selection, and Genetically Encoded Biosensors. Biotechnol J 2020; 15:e1900432. [DOI: 10.1002/biot.201900432] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/19/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Monireh Marsafari
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Habibollah Samizadeh
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | - Babak Rabiei
- Department of Agronomy and Plant BiotechnologyUniversity of Guilan Rasht 44052 Iran
| | | | - Mattheos Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy NY 12180 USA
| | - Peng Xu
- Department of ChemicalBiochemical, and Environmental EngineeringUniversity of Maryland Baltimore MD 21250 USA
| |
Collapse
|
43
|
Making brilliant colors by microorganisms. Curr Opin Biotechnol 2020; 61:135-141. [DOI: 10.1016/j.copbio.2019.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022]
|
44
|
Metabolic engineering of Synechocystis sp. PCC 6803 for the production of aromatic amino acids and derived phenylpropanoids. Metab Eng 2020; 57:129-139. [DOI: 10.1016/j.ymben.2019.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
|
45
|
Vilela A, Bacelar E, Pinto T, Anjos R, Correia E, Gonçalves B, Cosme F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019; 8:E643. [PMID: 31817355 PMCID: PMC6963671 DOI: 10.3390/foods8120643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Flavours and fragrances are especially important for the beverage and food industries. Biosynthesis or extraction are the two main ways to obtain these important compounds that have many different chemical structures. Consequently, the search for new compounds is challenging for academic and industrial investigation. This overview aims to present the current state of art of beverage fragrance biotechnology, including recent advances in sensory and sensor methodologies and statistical techniques for data analysis. An overview of all the recent findings in beverage and food fragrance biotechnology, including those obtained from natural sources by extraction processes (natural plants as an important source of flavours) or using enzymatic precursor (hydrolytic enzymes), and those obtained by de novo synthesis (microorganisms' respiration/fermentation of simple substrates such as glucose and sucrose), are reviewed. Recent advances have been made in what concerns "beverage fragrances construction" as also in their application products. Moreover, novel sensory and sensor methodologies, primarily used for fragrances quality evaluation, have been developed, as have statistical techniques for sensory and sensors data treatments, allowing a rapid and objective analysis.
Collapse
Affiliation(s)
- Alice Vilela
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Elisete Correia
- CQ-VR, Chemistry Research Centre, Department of Mathematics, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
46
|
Otto M, Wynands B, Lenzen C, Filbig M, Blank LM, Wierckx N. Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate. Front Bioeng Biotechnol 2019; 7:312. [PMID: 31824929 PMCID: PMC6882275 DOI: 10.3389/fbioe.2019.00312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineering of the solvent-tolerant bacterium Pseudomonas taiwanensis VLB120 toward accumulation of L-phenylalanine and its conversion into the chemical building block t-cinnamate. We recently reported rational engineering of Pseudomonas toward L-tyrosine accumulation by the insertion of genetic modifications that allow both enhanced flux and prevent aromatics degradation. Building on this knowledge, three genes encoding for enzymes involved in the degradation of L-phenylalanine were deleted to allow accumulation of 2.6 mM of L-phenylalanine from 20 mM glucose. The amino acid was subsequently converted into the aromatic model compound t-cinnamate by the expression of a phenylalanine ammonia-lyase (PAL) from Arabidopsis thaliana. The engineered strains produced t-cinnamate with yields of 23 and 39% Cmol Cmol−1 from glucose and glycerol, respectively. Yields were improved up to 48% Cmol Cmol−1 from glycerol when two enzymes involved in the shikimate pathway were additionally overexpressed, however with negative impact on strain performance and reproducibility. Production titers were increased in fed-batch fermentations, in which 33.5 mM t-cinnamate were produced solely from glycerol, in a mineral medium without additional complex supplements. The aspect of product toxicity was targeted by the utilization of a streamlined, genome-reduced strain, which improves upon the already high tolerance of P. taiwanensis VLB120 toward t-cinnamate.
Collapse
Affiliation(s)
- Maike Otto
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christoph Lenzen
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Melanie Filbig
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
47
|
Liu Q, Yu T, Li X, Chen Y, Campbell K, Nielsen J, Chen Y. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat Commun 2019; 10:4976. [PMID: 31672987 PMCID: PMC6823513 DOI: 10.1038/s41467-019-12961-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
The production of bioactive plant compounds using microbial hosts is considered a safe, cost-competitive and scalable approach to their production. However, microbial production of some compounds like aromatic amino acid (AAA)-derived chemicals, remains an outstanding metabolic engineering challenge. Here we present the construction of a Saccharomyces cerevisiae platform strain able to produce high levels of p-coumaric acid, an AAA-derived precursor for many commercially valuable chemicals. This is achieved through engineering the AAA biosynthesis pathway, introducing a phosphoketalose-based pathway to divert glycolytic flux towards erythrose 4-phosphate formation, and optimizing carbon distribution between glycolysis and the AAA biosynthesis pathway by replacing the promoters of several important genes at key nodes between these two pathways. This results in a maximum p-coumaric acid titer of 12.5 g L−1 and a maximum yield on glucose of 154.9 mg g−1. Microbial production of aromatic amino acid (AAA)-derived chemicals remains an outstanding metabolic engineering challenge. Here, the authors engineer baker’s yeast for high levels p-coumaric acid production by rewiring the central carbon metabolism and channeling more flux to the AAA biosynthetic pathway.
Collapse
Affiliation(s)
- Quanli Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Tao Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Yu Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Kate Campbell
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Kongens Lyngby, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| |
Collapse
|
48
|
Asante B, Sirviö JA, Li P, Lavola A, Julkunen‐Tiitto R, Haapala A, Liimatainen H. Adsorption of bark derived polyphenols onto functionalized nanocellulose: Equilibrium modeling and kinetics. AIChE J 2019. [DOI: 10.1002/aic.16823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Bright Asante
- University of Eastern Finland, School of Forest Sciences Joensuu Finland
| | - Juho A. Sirviö
- University of Oulu, Fibre and Particle Engineering Oulu Finland
| | - Panpan Li
- University of Oulu, Fibre and Particle Engineering Oulu Finland
| | - Anu Lavola
- Department of Environmental and Biological Sciences University of Eastern Finland Joensuu Finland
| | - Riitta Julkunen‐Tiitto
- Department of Environmental and Biological Sciences University of Eastern Finland Joensuu Finland
| | - Antti Haapala
- University of Eastern Finland, School of Forest Sciences Joensuu Finland
| | | |
Collapse
|
49
|
Zha J, Wu X, Gong G, Koffas MAG. Pathway enzyme engineering for flavonoid production in recombinant microbes. Metab Eng Commun 2019; 9:e00104. [PMID: 31720219 PMCID: PMC6838514 DOI: 10.1016/j.mec.2019.e00104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolic engineering of microbial strains for the production of flavonoids of industrial interest has attracted great attention due to its promising advantages over traditional extraction approaches, such as independence of plantation, facile downstream separation, and ease of process and quality control. However, most of the constructed microbial production systems suffer from low production titers, low yields and low productivities, restricting their commercial applications. One important reason of the inefficient production is that the expression conditions and the detailed functions of the flavonoid pathway enzymes are not well understood. In this review, we have collected the biochemical properties, structural details, and genetic information of the enzymes in the flavonoid biosynthetic pathway as a guide for the expression and analysis of these enzymes in microbial systems. Additionally, we have summarized the engineering approaches used in improving the performances of these enzymes in recombinant microorganisms. Major challenges and future directions on the flavonoid pathway are also discussed.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA.,Department of Chemical and Biological Engineering, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, 12180, NY, USA
| |
Collapse
|
50
|
Lubbers RJM, Dilokpimol A, Navarro J, Peng M, Wang M, Lipzen A, Ng V, Grigoriev IV, Visser J, Hildén KS, de Vries RP. Cinnamic Acid and Sorbic acid Conversion Are Mediated by the Same Transcriptional Regulator in Aspergillus niger. Front Bioeng Biotechnol 2019; 7:249. [PMID: 31612133 PMCID: PMC6776626 DOI: 10.3389/fbioe.2019.00249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Cinnamic acid is an aromatic compound commonly found in plants and functions as a central intermediate in lignin synthesis. Filamentous fungi are able to degrade cinnamic acid through multiple metabolic pathways. One of the best studied pathways is the non-oxidative decarboxylation of cinnamic acid to styrene. In Aspergillus niger, the enzymes cinnamic acid decarboxylase (CdcA, formally ferulic acid decarboxylase) and the flavin prenyltransferase (PadA) catalyze together the non-oxidative decarboxylation of cinnamic acid and sorbic acid. The corresponding genes, cdcA and padA, are clustered in the genome together with a putative transcription factor previously named sorbic acid decarboxylase regulator (SdrA). While SdrA was predicted to be involved in the regulation of the non-oxidative decarboxylation of cinnamic acid and sorbic acid, this was never functionally analyzed. In this study, A. niger deletion mutants of sdrA, cdcA, and padA were made to further investigate the role of SdrA in cinnamic acid metabolism. Phenotypic analysis revealed that cdcA, sdrA and padA are exclusively involved in the degradation of cinnamic acid and sorbic acid and not required for other related aromatic compounds. Whole genome transcriptome analysis of ΔsdrA grown on different cinnamic acid related compounds, revealed additional target genes, which were also clustered with cdcA, sdrA, and padA in the A. niger genome. Synteny analysis using 30 Aspergillus genomes demonstrated a conserved cinnamic acid decarboxylation gene cluster in most Aspergilli of the Nigri clade. Aspergilli lacking certain genes in the cluster were unable to grow on cinnamic acid, but could still grow on related aromatic compounds, confirming the specific role of these three genes for cinnamic acid metabolism of A. niger.
Collapse
Affiliation(s)
- Ronnie J. M. Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Jorge Navarro
- Fungal Natural Products, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | | | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|