1
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2024. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Liang Y, Luo H, Lin Y, Gao F. Recent advances in the characterization of essential genes and development of a database of essential genes. IMETA 2024; 3:e157. [PMID: 38868518 PMCID: PMC10989110 DOI: 10.1002/imt2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 06/14/2024]
Abstract
Over the past few decades, there has been a significant interest in the study of essential genes, which are crucial for the survival of an organism under specific environmental conditions and thus have practical applications in the fields of synthetic biology and medicine. An increasing amount of experimental data on essential genes has been obtained with the continuous development of technological methods. Meanwhile, various computational prediction methods, related databases and web servers have emerged accordingly. To facilitate the study of essential genes, we have established a database of essential genes (DEG), which has become popular with continuous updates to facilitate essential gene feature analysis and prediction, drug and vaccine development, as well as artificial genome design and construction. In this article, we summarized the studies of essential genes, overviewed the relevant databases, and discussed their practical applications. Furthermore, we provided an overview of the main applications of DEG and conducted comprehensive analyses based on its latest version. However, it should be noted that the essential gene is a dynamic concept instead of a binary one, which presents both opportunities and challenges for their future development.
Collapse
Affiliation(s)
| | - Hao Luo
- Department of PhysicsTianjin UniversityTianjinChina
| | - Yan Lin
- Department of PhysicsTianjin UniversityTianjinChina
| | - Feng Gao
- Department of PhysicsTianjin UniversityTianjinChina
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinChina
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
| |
Collapse
|
3
|
Ueda K, Mizuuchi R, Ichihashi N. Emergence of linkage between cooperative RNA replicators encoding replication and metabolic enzymes through experimental evolution. PLoS Genet 2023; 19:e1010471. [PMID: 37540715 PMCID: PMC10431678 DOI: 10.1371/journal.pgen.1010471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/16/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
The integration of individually replicating genes into a primitive chromosome is a key evolutionary transition in the development of life, allowing the simultaneous inheritance of genes. However, how this transition occurred is unclear because the extended size of primitive chromosomes replicate slower than unlinked genes. Theoretical studies have suggested that a primitive chromosome can evolve in the presence of cell-like compartments, as the physical linkage prevents the stochastic loss of essential genes upon division, but experimental support for this is lacking. Here, we demonstrate the evolution of a chromosome-like RNA from two cooperative RNA replicators encoding replication and metabolic enzymes. Through their long-term replication in cell-like compartments, linked RNAs emerged with the two cooperative RNAs connected end-to-end. The linked RNAs had different mutation patterns than the two unlinked RNAs, suggesting that they were maintained as partially distinct lineages in the population. Our results provide experimental evidence supporting the plausibility of the evolution of a primitive chromosome from unlinked gene fragments, an important step in the emergence of complex biological systems.
Collapse
Affiliation(s)
- Kensuke Ueda
- Department of Life Science, Graduate School of Arts and Science, the University of Tokyo, Meguro, Tokyo, Japan
| | - Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- JST, FOREST, Kawaguchi, Saitama, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, the University of Tokyo, Meguro, Tokyo, Japan
- Komaba Institute for Science, the University of Tokyo, Meguro, Tokyo, Japan
- Universal Biology Institute, the University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
4
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
5
|
De Capitani J, Mutschler H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023; 62:1221-1232. [PMID: 36944355 PMCID: PMC10077596 DOI: 10.1021/acs.biochem.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The construction of a biochemical system capable of self-replication is a key objective in bottom-up synthetic biology. Throughout the past two decades, a rapid progression in the design of in vitro cell-free systems has provided valuable insight into the requirements for the development of a minimal system capable of self-replication. The main limitations of current systems can be attributed to their macromolecular composition and how the individual macromolecules use the small molecules necessary to drive RNA and protein synthesis. In this Perspective, we discuss the recent steps that have been taken to generate a minimal cell-free system capable of regenerating its own macromolecular components and maintaining the homeostatic balance between macromolecular biogenesis and consumption of primary building blocks. By following the flow of biological information through the central dogma, we compare the current versions of these systems to date and propose potential alterations aimed at designing a model system for self-replicative synthetic cells.
Collapse
Affiliation(s)
- Jacopo De Capitani
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
8
|
Amikura K, Hibi K, Shimizu Y. Efficient and Precise Protein Synthesis in a Cell-Free System Using a Set of In Vitro Transcribed tRNAs with Nucleotide Modifications. Methods Mol Biol 2022; 2433:151-168. [PMID: 34985743 DOI: 10.1007/978-1-0716-1998-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reconstitution of a complicated system with a minimal set of components is essential for understanding the mechanisms of how the input is reflected in the output, which is fundamental for further engineering of the corresponding system. We have recently developed a reconstituted cell-free protein synthesis system equipped only with 21 in vitro transcribed tRNAs, one of the minimal systems for understanding the genetic code decoding mechanisms. Introduction of several nucleotide modifications to the transcribed tRNAs showed improvement of both protein synthesis efficiency and its fidelity, suggesting various combinations of tRNAs and their modifications can be evaluated in the developed system. In this chapter, we describe how to prepare this minimal system. Methods for preparing the transcribed tRNAs, their modifications, and the protein production using the set of prepared tRNAs are shown.
Collapse
Affiliation(s)
- Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Keita Hibi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics research (BDR), Osaka, Japan.
| |
Collapse
|
9
|
Aoyama R, Masuda K, Shimojo M, Kanamori T, Ueda T, Shimizu Y. In vitro reconstitution of the Escherichia coli 70S ribosome with a full set of recombinant ribosomal proteins. J Biochem 2021; 171:227-237. [PMID: 34750629 PMCID: PMC8863084 DOI: 10.1093/jb/mvab121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
Many studies of the reconstitution of the Escherichia coli small ribosomal subunit from its individual molecular parts have been reported, but contrastingly, similar studies of the large ribosomal subunit have not been well performed to date. Here, we describe protocols for preparing the 33 ribosomal proteins of the E. coli 50S subunit and demonstrate successful reconstitution of a functionally active 50S particle that can perform protein synthesis in vitro. We also successfully reconstituted both ribosomal subunits (30S and 50S) and 70S ribosomes using a full set of recombinant ribosomal proteins by integrating our developed method with the previously developed fully recombinant-based integrated synthesis, assembly and translation. The approach described here makes a major contribution to the field of ribosome engineering and could be fundamental to the future studies of ribosome assembly processes.
Collapse
Affiliation(s)
- Ryo Aoyama
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Keiko Masuda
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan
| | - Masaru Shimojo
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan
| |
Collapse
|
10
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
Westensee IN, Brodszkij E, Qian X, Marcelino TF, Lefkimmiatis K, Städler B. Mitochondria Encapsulation in Hydrogel-Based Artificial Cells as ATP Producing Subunits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007959. [PMID: 33969618 DOI: 10.1002/smll.202007959] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Artificial cells (ACs) aim to mimic selected structural and functional features of mammalian cells. In this context, energy generation is an important challenge to be addressed when self-sustained systems are desired. Here, mitochondria isolated from HepG2 cells are employed as natural subunits that facilitate chemically driven adenosine triphosphate (ATP) synthesis. The successful mitochondria isolation is confirmed by monitoring the preserved inner membrane potential, the respiration, and the ATP production ability. The encapsulation of the isolated mitochondria in gelatin-based hydrogels results in similar initial ATP production compared to mitochondria in solution with a sustained ATP production over 24 h. Furthermore, luciferase is coencapsulated with the mitochondria in gelatin-based particles to create ACs and employ the in situ produced ATP to drive the catalytic conversion of d-luciferin. The coencapsulation of luciferase-loaded liposomes with mitochondria in gelatin-based hydrogels is additionally explored where the encapsulation of mitochondria and liposomes resulted in clustering effects that are likely contributing to the functional performance of the active entities. Taken together, mitochondria show potential in cell mimicry to facilitate energy-dependent processes.
Collapse
Affiliation(s)
- Isabella Nymann Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Thaís Floriano Marcelino
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, Padova, 35100, Italy
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
13
|
In vitro synthesis of 32 translation-factor proteins from a single template reveals impaired ribosomal processivity. Sci Rep 2021; 11:1898. [PMID: 33479285 PMCID: PMC7820420 DOI: 10.1038/s41598-020-80827-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
The Protein synthesis Using Recombinant Elements (PURE) system enables transcription and translation of a DNA template from purified components. Therefore, the PURE system-catalyzed generation of RNAs and proteins constituting the PURE system itself represents a major challenge toward a self-replicating minimal cell. In this work, we show that all translation factors (except elongation factor Tu) and 20 aminoacyl-tRNA synthetases can be expressed in the PURE system from a single plasmid encoding 32 proteins in 30 cistrons. Cell-free synthesis of all 32 proteins is confirmed by quantitative mass spectrometry-based proteomic analysis using isotopically labeled amino acids. We find that a significant fraction of the gene products consists of proteins missing their C-terminal ends. The per-codon processivity loss that we measure lies between 1.3 × 10-3 and 13.2 × 10-3, depending on the expression conditions, the version of the PURE system, and the coding sequence. These values are 5 to 50 times higher than those measured in vivo in E. coli. With such an impaired processivity, a considerable fraction of the biosynthesis capacity of the PURE system is wasted, posing an unforeseen challenge toward the development of a self-regenerating PURE system.
Collapse
|
14
|
Setting Up an Automated Biomanufacturing Laboratory. Methods Mol Biol 2021; 2229:137-155. [PMID: 33405219 DOI: 10.1007/978-1-0716-1032-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Laboratory automation is a key enabling technology for genetic engineering that can lead to higher throughput, more efficient and accurate experiments, better data management and analysis, decrease in the DBT (Design, Build, and Test) cycle turnaround, increase of reproducibility, and savings in lab resources. Choosing the correct framework among so many options available in terms of software, hardware, and skills needed to operate them is crucial for the success of any automation project. This chapter explores the multiple aspects to be considered for the solid development of a biofoundry project including available software and hardware tools, resources, strategies, partnerships, and collaborations in the field needed to speed up the translation of research results to solve important society problems.
Collapse
|
15
|
Reyes-Prieto M, Gil R, Llabrés M, Palmer-Rodríguez P, Moya A. The Metabolic Building Blocks of a Minimal Cell. BIOLOGY 2020; 10:biology10010005. [PMID: 33374107 PMCID: PMC7824019 DOI: 10.3390/biology10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Defining the essential gene components for a system to be considered alive is a crucial step toward the synthesis of artificial life. Fifteen years ago, Gil and coworkers proposed the core of a putative minimal bacterial genome, which would provide the capability to achieve metabolic homeostasis, reproduce, and evolve to a bacterium in an ideally controlled environment. They also proposed a simplified metabolic chart capable of providing energy and basic components for a minimal living cell. For this work, we have identified the components of the minimal metabolic network based on the aforementioned studies, associated them to the KEGG database and, by applying the MetaDAG methodology, determined its Metabolic Building Blocks (MBB) and reconstructed its metabolic Directed Acyclic Graph (m-DAG). The reaction graph of this metabolic network consists of 80 compounds and 98 reactions, while its m-DAG has 36 MBBs. Additionally, we identified 12 essential reactions in the m-DAG that are critical for maintaining the connectivity of this network. In a similar manner, we reconstructed the m-DAG of JCVI-syn3.0, which is an artificially designed and manufactured viable cell whose genome arose by minimizing the one from Mycoplasma mycoides JCVI-syn1.0, and of "Candidatus Nasuia deltocephalinicola", the bacteria with the smallest natural genome known to date. The comparison of the m-DAGs derived from a theoretical, an artificial, and a natural genome denote slightly different lifestyles, with a consistent core metabolism. The MetaDAG methodology we employ uses homogeneous descriptors and identifiers from the KEGG database, so that comparisons between bacterial strains are not only easy but also suitable for many research fields. The modeling of m-DAGs based on minimal metabolisms can be the first step for the synthesis and manipulation of minimal cells.
Collapse
Affiliation(s)
- Mariana Reyes-Prieto
- Evolutionary Systems Biology of Symbionts, Institute for Integrative Systems Biology, University of Valencia and Spanish Research Council, Paterna, 46980 Valencia, Spain; (M.R.-P.); (R.G.)
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
| | - Rosario Gil
- Evolutionary Systems Biology of Symbionts, Institute for Integrative Systems Biology, University of Valencia and Spanish Research Council, Paterna, 46980 Valencia, Spain; (M.R.-P.); (R.G.)
| | - Mercè Llabrés
- Department of Mathematics and Computer Science, University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.L.); (P.P.-R.)
| | - Pere Palmer-Rodríguez
- Department of Mathematics and Computer Science, University of Balearic Islands, 07122 Palma de Mallorca, Spain; (M.L.); (P.P.-R.)
| | - Andrés Moya
- Evolutionary Systems Biology of Symbionts, Institute for Integrative Systems Biology, University of Valencia and Spanish Research Council, Paterna, 46980 Valencia, Spain; (M.R.-P.); (R.G.)
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, 46020 Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-963-543-480
| |
Collapse
|
16
|
Libicher K, Mutschler H. Probing self-regeneration of essential protein factors required for in vitro translation activity by serial transfer. Chem Commun (Camb) 2020; 56:15426-15429. [PMID: 33241808 DOI: 10.1039/d0cc06515c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bottom-up construction of bio-inspired systems capable of self-maintenance and reproduction is a central goal in systems chemistry and synthetic biology. A particular challenge in such systems is the continuous regeneration of key proteins required for macromolecular synthesis. Here, we probe self-maintenance of a reconstituted in vitro translation system challenged by serial transfer of selected key proteins. We find that the system can simultaneously regenerate multiple essential polypeptides, which then contribute to the maintenance of protein expression after serial transfer. The presented strategy offers a robust methodology for probing and optimizing continuous self-regeneration of proteins in cell-free environments.
Collapse
Affiliation(s)
- Kai Libicher
- Biomimetic Systems, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
17
|
Correlated chromosomal periodicities according to the growth rate and gene expression. Sci Rep 2020; 10:15531. [PMID: 32968121 PMCID: PMC7511328 DOI: 10.1038/s41598-020-72389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Linking genetic information to population fitness is crucial to understanding living organisms. Despite the abundant knowledge of the genetic contribution to growth, the overall patterns/features connecting genes, their expression, and growth remain unclear. To reveal the quantitative and direct connections, systematic growth assays of single-gene knockout Escherichia coli strains under both rich and poor nutritional conditions were performed; subsequently, the resultant growth rates were associated with the original expression levels of the knockout genes in the parental genome. Comparative analysis of growth and the transcriptome identified not only the nutritionally differentiated fitness cost genes but also a significant correlation between the growth rates of the single-gene knockout strains and the original expression levels of these knockout genes in the parental strain, regardless of the nutritional variation. In addition, the coordinated chromosomal periodicities of the wild-type transcriptome and the growth rates of the strains lacking the corresponding genes were observed. The common six-period periodicity was somehow attributed to the essential genes, although the underlying mechanism remains to be addressed. The correlated chromosomal periodicities associated with the gene expression-growth dataset were highly valuable for bacterial growth prediction and discovering the working principles governing minimal genetic information.
Collapse
|
18
|
Shimojo M, Amikura K, Masuda K, Kanamori T, Ueda T, Shimizu Y. In vitro reconstitution of functional small ribosomal subunit assembly for comprehensive analysis of ribosomal elements in E. coli. Commun Biol 2020; 3:142. [PMID: 32214223 PMCID: PMC7096426 DOI: 10.1038/s42003-020-0874-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
In vitro reconstitution is a powerful tool for investigating ribosome functions and biogenesis, as well as discovering new ribosomal features. In this study, we integrated all of the processes required for Escherichia coli small ribosomal subunit assembly. In our method, termed fully Recombinant-based integrated Synthesis, Assembly, and Translation (R-iSAT), assembly and evaluation of the small ribosomal subunits are coupled with ribosomal RNA (rRNA) synthesis in a reconstituted cell-free protein synthesis system. By changing the components of R-iSAT, including recombinant ribosomal protein composition, we coupled ribosomal assembly with ribosomal protein synthesis, enabling functional synthesis of ribosomal proteins and subsequent subunit assembly. In addition, we assembled and evaluated subunits with mutations in both rRNA and ribosomal proteins. The study demonstrated that our scheme provides new ways to comprehensively analyze any elements of the small ribosomal subunit, with the goal of improving our understanding of ribosomal biogenesis, function, and engineering. Shimojo et al. demonstrate the use of individually purified ribosomal proteins added into iSAT (integrated ribosomal synthesis, assembly, and translation) system to enable assembly of functional 30S subunits. They further show that while some 30S r-proteins must be full synthesized before transcription, others may be co-transcriptionally produced, to enable the assembly of 30S particles.
Collapse
Affiliation(s)
- Masaru Shimojo
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Kazuaki Amikura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Keiko Masuda
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
| | | | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku, Tokyo, 162-8480, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan.
| |
Collapse
|
19
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
20
|
Watson JF, García-Nafría J. In vivo DNA assembly using common laboratory bacteria: A re-emerging tool to simplify molecular cloning. J Biol Chem 2019; 294:15271-15281. [PMID: 31522138 DOI: 10.1074/jbc.rev119.009109] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular cloning is a cornerstone of biomedical, biotechnological, and synthetic biology research. As such, improved cloning methodologies can significantly advance the speed and cost of research projects. Whereas current popular cloning approaches use in vitro assembly of DNA fragments, in vivo cloning offers potential for greater simplification. It is generally assumed that bacterial in vivo cloning requires Escherichia coli strains with enhanced recombination ability; however, this is incorrect. A widely present, bacterial RecA-independent recombination pathway is re-emerging as a powerful tool for molecular cloning and DNA assembly. This poorly understood pathway offers optimal cloning properties (i.e. seamless, directional, and sequence-independent) without requiring in vitro DNA assembly or specialized bacteria, therefore vastly simplifying cloning procedures. Although the use of this pathway to perform DNA assembly was first reported over 25 years ago, it failed to gain popularity, possibly due to both technical and circumstantial reasons. Technical limitations have now been overcome, and recent reports have demonstrated its versatility for DNA manipulation. Here, we summarize the historical trajectory of this approach and collate recent reports to provide a roadmap for its optimal use. Given the simplified protocols and minimal requirements, cloning using in vivo DNA assembly in E. coli has the potential to become widely employed across the molecular biology community.
Collapse
Affiliation(s)
- Jake F Watson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| |
Collapse
|
21
|
Abstract
Cells are the basic units of life, and can be mimicked to create artificial analogs enabling the investigation of cellular mechanisms under controlled conditions. Building biomimetic systems ranging from proto-cells to cell-like objects such as compartment membranes can be achieved by collecting biobricks that self-assemble to build simplified models performing specific functions. Hence, scientists can develop and optimize new synthetic cells with biological functions by taking inspiration from nature and exploiting the advantages of synthetic biology. However, the bottom-down approach is not restricted to the basic principles of biological cells, and new mimicry systems can be designed starting with a combination of living and non-living simple molecules to focus on a cellular machinery function. In recent years, microfluidic devices have been well established to engineer bioarchitecture models resembling cell-like structures involving vesicles, compartmentalization, synthetic membranes, and the chip itself as a synthetic cell. This review aims to highlight the role of biological cells and their impact on inspiring the development of biomimetic models. The combination of the principles of synthetic biology with microfluidic technology represents the newly-introduced field of synthetic cells and synthetic membranes that can be further exploited in diagnostic and therapeutic applications.
Collapse
|
22
|
Yue K, Zhu Y, Kai L. Cell-Free Protein Synthesis: Chassis toward the Minimal Cell. Cells 2019; 8:cells8040315. [PMID: 30959805 PMCID: PMC6523147 DOI: 10.3390/cells8040315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The quest for a minimal cell not only sheds light on the fundamental principles of life but also brings great advances in related applied fields such as general biotechnology. Minimal cell projects came from the study of a plausible route to the origin of life. Later on, research extended and also referred to the construction of artificial cells, or even more broadly, as in vitro synthetic biology. The cell-free protein synthesis (CFPS) techniques harness the central cellular activity of transcription/translation in an open environment, providing the framework for multiple cellular processes assembling. Therefore, CFPS systems have become the first choice in the construction of the minimal cell. In this review, we focus on the recent advances in the quantitative analysis of CFPS and on its advantage for addressing the bottom-up assembly of a minimal cell and illustrate the importance of systemic chassis behavior, such as stochasticity under a compartmentalized micro-environment.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, Xuzhou 221116, China.
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| |
Collapse
|
23
|
Le Vay K, Weise LI, Libicher K, Mascarenhas J, Mutschler H. Templated Self‐Replication in Biomimetic Systems. ACTA ACUST UNITED AC 2019; 3:e1800313. [DOI: 10.1002/adbi.201800313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Laura Isabel Weise
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Kai Libicher
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Judita Mascarenhas
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
24
|
Caschera F, Karim AS, Gazzola G, d’Aquino AE, Packard NH, Jewett MC. High-Throughput Optimization Cycle of a Cell-Free Ribosome Assembly and Protein Synthesis System. ACS Synth Biol 2018; 7:2841-2853. [PMID: 30354075 DOI: 10.1021/acssynbio.8b00276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Building variant ribosomes offers opportunities to reveal fundamental principles underlying ribosome biogenesis and to make ribosomes with altered properties. However, cell viability limits mutations that can be made to the ribosome. To address this limitation, the in vitro integrated synthesis, assembly and translation (iSAT) method for ribosome construction from the bottom up was recently developed. Unfortunately, iSAT is complex, costly, and laborious to researchers, partially due to the high cost of reaction buffer containing over 20 components. In this study, we develop iSAT in Escherichia coli BL21Rosetta2 cell lysates, a commonly used bacterial strain, with a cost-effective poly sugar and nucleotide monophosphate-based metabolic scheme. We achieved a 10-fold increase in protein yield over our base case with an evolutionary design of experiments approach, screening 490 reaction conditions to optimize the reaction buffer. The computationally guided, cell-free, high-throughput technology presented here augments the way we approach multicomponent synthetic biology projects and efforts to repurpose ribosomes.
Collapse
Affiliation(s)
| | | | - Gianluca Gazzola
- Rutgers Center for Operations Research, Rutgers Business School, 100 Rockafeller Road, Piscataway, New Jersey 08854, United States
| | | | - Norman H. Packard
- ProtoLife, Inc., 57 Post Street Suite 908, San Francisco, California 94104, United States
| | - Michael C. Jewett
- Rutgers Center for Operations Research, Rutgers Business School, 100 Rockafeller Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
25
|
Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S, Sourjik V, Erb TJ, Bastiaens P, Lipowsky R, Hyman A, Dabrock P, Baret JC, Vidakovic-Koch T, Bieling P, Dimova R, Mutschler H, Robinson T, Tang TYD, Wegner S, Sundmacher K. MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802288] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Petra Schwille
- Zelluläre und molekulare Biophysik; MPI für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Joachim Spatz
- MPI für medizinische Forschung; Jahnstraße 29 69120 Heidelberg Deutschland
| | | | - Eberhard Bodenschatz
- MPI für Dynamik und Selbstorganisation; Am Fassberg 17 37077 Göttingen Deutschland
| | - Stephan Herminghaus
- MPI für Dynamik und Selbstorganisation; Am Fassberg 17 37077 Göttingen Deutschland
| | - Victor Sourjik
- MPI für terrestrische Mikrobiologie; Karl-von-Frisch-Str. 16 35043 Marburg Deutschland
| | - Tobias J. Erb
- MPI für terrestrische Mikrobiologie; Karl-von-Frisch-Str. 16 35043 Marburg Deutschland
| | - Philippe Bastiaens
- MPI für molekulare Physiologie; Otto-Hahn-Str. 11 44227 Dortmund Deutschland
| | - Reinhard Lipowsky
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - Anthony Hyman
- MPI für molekulare Zellbiologie und Genetik; Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Peter Dabrock
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Fachbereich Theologie; Kochstraße 6 91054 Erlangen Deutschland
| | - Jean-Christophe Baret
- University of Bordeaux - Centre de Recherches Paul Pascal; 115 Avenue Schweitze 33600 Pessac Frankreich
| | - Tanja Vidakovic-Koch
- MPI für Dynamik komplexer technischer Systeme; Sandtorstraße 1 39106 Magdeburg Deutschland
| | - Peter Bieling
- MPI für molekulare Physiologie; Otto-Hahn-Str. 11 44227 Dortmund Deutschland
| | - Rumiana Dimova
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - Hannes Mutschler
- Zelluläre und molekulare Biophysik; MPI für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Tom Robinson
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - T.-Y. Dora Tang
- MPI für molekulare Zellbiologie und Genetik; Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Seraphine Wegner
- MPI für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Kai Sundmacher
- MPI für Dynamik komplexer technischer Systeme; Sandtorstraße 1 39106 Magdeburg Deutschland
| |
Collapse
|
26
|
Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S, Sourjik V, Erb TJ, Bastiaens P, Lipowsky R, Hyman A, Dabrock P, Baret JC, Vidakovic-Koch T, Bieling P, Dimova R, Mutschler H, Robinson T, Tang TYD, Wegner S, Sundmacher K. MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angew Chem Int Ed Engl 2018; 57:13382-13392. [PMID: 29749673 DOI: 10.1002/anie.201802288] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/03/2018] [Indexed: 12/18/2022]
Abstract
A large German research consortium mainly within the Max Planck Society ("MaxSynBio") was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom-up approach to synthetic biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life through modular reconstitution in minimal synthetic systems. The ultimate goal is to construct a basic living unit entirely from non-living components. The fundamental insights gained from the activities in MaxSynBio could eventually be utilized for establishing a new generation of biotechnological processes, which would be based on synthetic cell constructs that replace the natural cells currently used in conventional biotechnology.
Collapse
Affiliation(s)
- Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Joachim Spatz
- MPI for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - Eberhard Bodenschatz
- MPI for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Stephan Herminghaus
- MPI for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Victor Sourjik
- MPI for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Tobias J Erb
- MPI for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Philippe Bastiaens
- MPI for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Reinhard Lipowsky
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - Anthony Hyman
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Peter Dabrock
- Friedrich-Alexander University Erlangen-Nuremberg, Department of Theology, Kochstraße 6, 91054, Erlangen, Germany
| | - Jean-Christophe Baret
- University of Bordeaux -Centre de Recherches Paul Pascal, 115 Avenue Schweitze, 33600, Pessac, France
| | - Tanja Vidakovic-Koch
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Peter Bieling
- MPI for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Rumiana Dimova
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - Hannes Mutschler
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tom Robinson
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - T-Y Dora Tang
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Seraphine Wegner
- MPI for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
27
|
Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Sci Rep 2018; 8:13089. [PMID: 30166584 PMCID: PMC6117322 DOI: 10.1038/s41598-018-31585-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
A major challenge in constructing artificial cells is the establishment of a recursive genome replication system coupled with gene expression from the genome itself. One of the simplest schemes of recursive DNA replication is the rolling-circle replication of a circular DNA coupled with recombination. In this study, we attempted to develop a replication system based on this scheme using self-encoded phi29 DNA polymerase and externally supplied Cre recombinase. We first identified that DNA polymerization is significantly inhibited by Cre recombinase. To overcome this problem, we performed in vitro evolution and obtained an evolved circular DNA that can replicate efficiently in the presence of the recombinase. We also showed evidence that during replication of the evolved DNA, the circular DNA was reproduced through recombination by Cre recombinase. These results demonstrate that the evolved circular DNA can reproduce itself through gene expression of a self-encoded polymerase. This study provides a step forward in developing a simple recursive DNA replication system for use in an artificial cell.
Collapse
|
28
|
Matsuura T, Hosoda K, Shimizu Y. Robustness of a Reconstituted Escherichia coli Protein Translation System Analyzed by Computational Modeling. ACS Synth Biol 2018; 7:1964-1972. [PMID: 30004679 DOI: 10.1021/acssynbio.8b00228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Robustness against environmental changes is one of the major features of biological systems, but its origin is not well understood. We recently constructed a large-scale computational model of an Escherichia coli-based reconstituted in vitro translation system that enumerates all protein synthesis processes in detail. Our model synthesizes a formyl-Met-Gly-Gly tripeptide (MGG peptide) from 27 initial molecular components through 968 biochemical reactions. Among the 968 kinetic parameters, 483 are nonzero parameters, and the simulator was used to determine how perturbations of 483 individual reactions affect the complex reaction network. We found that even when the kinetic parameter was changed from 100- to 0.01-fold, 94% of the changes hardly affected the two indicators of reaction dynamics in MGG peptide synthesis, which represent the yield of the MGG peptide and the initial lag-time of the peptide synthesis. Moreover, none of the indicators increased proportionally to these changes: e.g., a 100-fold increase in the kinetic parameter increased the yield by only 2.2-fold at most, indicating the insensitivity of the reaction network to perturbation. Robustness and insensitivity are likely to be a common feature of large-scale biological reaction networks.
Collapse
Affiliation(s)
- Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Hosoda
- Institute for Academic Initiatives, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
29
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
30
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
31
|
Shepherd TR, Du L, Liljeruhm J, Samudyata, Wang J, Sjödin MOD, Wetterhall M, Yomo T, Forster AC. De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res 2017; 45:10895-10905. [PMID: 28977654 PMCID: PMC5737471 DOI: 10.1093/nar/gkx753] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 08/17/2017] [Indexed: 11/17/2022] Open
Abstract
Two of the many goals of synthetic biology are synthesizing large biochemical systems and simplifying their assembly. While several genes have been assembled together by modular idempotent cloning, it is unclear if such simplified strategies scale to very large constructs for expression and purification of whole pathways. Here we synthesize from oligodeoxyribonucleotides a completely de-novo-designed, 58-kb multigene DNA. This BioBrick plasmid insert encodes 30 of the 31 translation factors of the PURE translation system, each His-tagged and in separate transcription cistrons. Dividing the insert between three high-copy expression plasmids enables the bulk purification of the aminoacyl-tRNA synthetases and translation factors necessary for affordable, scalable reconstitution of an in vitro transcription and translation system, PURE 3.0.
Collapse
Affiliation(s)
- Tyson R Shepherd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Liping Du
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Josefine Liljeruhm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Samudyata
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Jinfan Wang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden
| | - Marcus O D Sjödin
- Department of Physical and Analytical Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Magnus Wetterhall
- Department of Physical and Analytical Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Tetsuya Yomo
- Institute of Biology and Information Science, School of Computer Science and Software Engineering, School of Life Sciences, East China Normal University, Shanghai 200062, PR China
| | - Anthony C Forster
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 36, Sweden.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. N Biotechnol 2017; 39:199-205. [DOI: 10.1016/j.nbt.2017.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/10/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
|
33
|
Repurposing ribosomes for synthetic biology. Curr Opin Chem Biol 2017; 40:87-94. [PMID: 28869851 DOI: 10.1016/j.cbpa.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/21/2022]
Abstract
The translation system is the cell's factory for protein biosynthesis, stitching together hundreds to thousands of amino acids into proteins, which are required for the structure, function, and regulation of living systems. The extraordinary synthetic capability of this system, which includes the ribosome and its associated factors required for polymerization, has driven extensive efforts to harness it for societal use in areas as diverse as energy, materials, and medicine. A powerful example is recombinant protein production, which has impacted the lives of patients through the synthesis of biopharmaceuticals such as insulin. In nature, however, only limited sets of monomers are utilized, thereby resulting in limited sets of biopolymers (i.e., proteins). Expanding nature's repertoire of ribosomal monomers could yield new classes of enzymes, therapeutics, materials, and chemicals with diverse, genetically encoded chemistry. Here, we discuss recent progress towards engineering ribosomes both in vivo and in vitro. These fundamental and technical breakthroughs open doors for advanced applications in biotechnology and synthetic biology.
Collapse
|
34
|
Li J, Haas W, Jackson K, Kuru E, Jewett MC, Fan ZH, Gygi S, Church GM. Cogenerating Synthetic Parts toward a Self-Replicating System. ACS Synth Biol 2017; 6:1327-1336. [PMID: 28330337 DOI: 10.1021/acssynbio.6b00342] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE might be the basis for a radically alterable, lifelike system after optimization. Here, we regenerated 54 E. coli ribosomal (r-) proteins individually from DNA templates in the PURE system. We show that using stable isotope labeling with amino acids, mass spectrometry based quantitative proteomics could detect 26 of the 33 50S and 20 of the 21 30S subunit r-proteins when coexpressed in batch format PURE system. By optimizing DNA template concentrations and adapting a miniaturized Fluid Array Device with optimized feeding solution, we were able to cogenerate and detect at least 29 of the 33 50S and all of the 21 30S subunit r-proteins in one pot. The boost on yield of a single r-protein in coexpression pool varied from ∼1.5 to 5-fold compared to the batch mode, with up to ∼2.4 μM yield for a single r-protein. Reconstituted ribosomes under physiological condition from PURE system synthesized 30S r-proteins and native 16S rRNA showed ∼13% activity of native 70S ribosomes, which increased to 21% when supplemented with GroEL/ES. This work also points to what is still needed to obtain self-replicating synthetic ribosomes in situ in the PURE system.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Wyss Harvard Institute of Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center;
Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kirsten Jackson
- J. Crayton
Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, Florida 32611, United States
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Wyss Harvard Institute of Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Z. Hugh Fan
- J. Crayton
Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, Florida 32611, United States
- Department of Mechanical and Aerospace
Engineering, University of Florida, P.O. Box 116250, Gainesville, Florida 32611, United States
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - George M. Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Wyss Harvard Institute of Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Caschera F. Bacterial cell-free expression technology to in vitro systems engineering and optimization. Synth Syst Biotechnol 2017; 2:97-104. [PMID: 29062966 PMCID: PMC5637228 DOI: 10.1016/j.synbio.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cell-free expression system is a technology for the synthesis of proteins in vitro. The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
Collapse
|
36
|
Tsuji S, Ichihashi N. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits. Biochem Biophys Rep 2017; 10:325-328. [PMID: 28955760 PMCID: PMC5614676 DOI: 10.1016/j.bbrep.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 11/24/2022] Open
Abstract
Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species. A highly sensitive translation assay was established. B. subtilis 50S subunit is active for translation in an E. coli system. G. stearothermophilus 50S subunit is active for translation in an E. coli system.
Collapse
Affiliation(s)
- Sayaka Tsuji
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norikazu Ichihashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author at: Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
37
|
Li J, Zhang C, Huang P, Kuru E, Forster-Benson ETC, Li T, Church GM. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system. TRANSLATION (AUSTIN, TEX.) 2017; 5:e1327006. [PMID: 28702280 PMCID: PMC5501384 DOI: 10.1080/21690731.2017.1327006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023]
Abstract
Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Harvard Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Chi Zhang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Poyi Huang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Taibo Li
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Harvard Institute of Biologically Inspired Engineering, Boston, MA, USA
| |
Collapse
|
38
|
Chizzolini F, Forlin M, Yeh Martín N, Berloffa G, Cecchi D, Mansy SS. Cell-Free Translation Is More Variable than Transcription. ACS Synth Biol 2017; 6:638-647. [PMID: 28100049 DOI: 10.1021/acssynbio.6b00250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although RNA synthesis can be reliably controlled with different T7 transcriptional promoters during cell-free gene expression with the PURE system, protein synthesis remains largely unaffected. To better control protein levels, we investigated a series of ribosome binding sites (RBSs). Although RBS strength did strongly affect protein synthesis, the RBS sequence could explain less than half of the variability of the data. Protein expression was found to depend on other factors besides the strength of the RBS, including the GC content of the coding sequence. The complexity of protein synthesis in comparison to RNA synthesis was observed by the higher degree of variability associated with protein expression. This variability was also observed in an E. coli cell extract-based system. However, the coefficient of variation was larger with E. coli RNA polymerase than with T7 RNA polymerase, consistent with the increased complexity of E. coli RNA polymerase.
Collapse
Affiliation(s)
- Fabio Chizzolini
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Michele Forlin
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Noël Yeh Martín
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Giuliano Berloffa
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Dario Cecchi
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| | - Sheref S Mansy
- Center for Integrative Biology (CIBIO), University of Trento , via Sommarive 9, 38123 Povo TN, Italy
| |
Collapse
|
39
|
Caschera F, Lee JW, Ho KKY, Liu AP, Jewett MC. Cell-free compartmentalized protein synthesis inside double emulsion templated liposomes with in vitro synthesized and assembled ribosomes. Chem Commun (Camb) 2016; 52:5467-9. [PMID: 27019994 DOI: 10.1039/c6cc00223d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cell-free expression platform for making bacterial ribosomes encapsulated within giant liposomes was capable of synthesizing sfGFP. The liposomes were prepared using a double emulsion template, and compartmentalized in vitro protein synthesis was analysed using spinning disk confocal microscopy. Two different liposome phospholipid formulations were investigated to characterize their effects on the compartmentalized reaction kinetics. This study was performed as a necessary step towards the synthesis of minimal cells.
Collapse
Affiliation(s)
- Filippo Caschera
- Department of Chemical and Biochemical Engineering, Chemistry of Life Processes Institute, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, 60208, Illinois, USA.
| | - Jin Woo Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109, Michigan, USA.
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109, Michigan, USA.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109, Michigan, USA.
| | - Michael C Jewett
- Department of Chemical and Biochemical Engineering, Chemistry of Life Processes Institute, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, 60208, Illinois, USA.
| |
Collapse
|
40
|
Martino C, deMello AJ. Droplet-based microfluidics for artificial cell generation: a brief review. Interface Focus 2016; 6:20160011. [PMID: 27499841 PMCID: PMC4918832 DOI: 10.1098/rsfs.2016.0011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Artificial cells are best defined as micrometre-sized structures able to mimic many of the morphological and functional characteristics of a living cell. In this mini-review, we describe progress in the application of droplet-based microfluidics for the generation of artificial cells and protocells.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, Zürich 8093, Switzerland
| | | |
Collapse
|
41
|
Wu SG, Shimizu K, Tang JKH, Tang YJ. Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Lajoie MJ, Söll D, Church GM. Overcoming Challenges in Engineering the Genetic Code. J Mol Biol 2016; 428:1004-21. [PMID: 26348789 PMCID: PMC4779434 DOI: 10.1016/j.jmb.2015.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code.
Collapse
Affiliation(s)
- M J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - D Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - G M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
43
|
|
44
|
Affiliation(s)
- Kristin Hagen
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Margret Engelhard
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Georg Toepfer
- Center for Literary and Cultural Research Berlin, Berlin, Germany
| |
Collapse
|
45
|
Awai T, Ichihashi N, Yomo T. Activities of 20 aminoacyl-tRNA synthetases expressed in a reconstituted translation system in Escherichia coli. Biochem Biophys Rep 2015; 3:140-143. [PMID: 29124177 PMCID: PMC5668874 DOI: 10.1016/j.bbrep.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 01/18/2023] Open
Abstract
A significant challenge in the field of in vitro synthetic biology is the construction of a self-reproducing cell-free translation system, which reproduces its components, such as translation proteins, through translation and transcription by itself. As a first step for such construction, in this study we expressed and evaluated the activity of 20 aminoacyl-tRNA synthetases (aaRSs), a major component of a translation system, in a reconstituted translation system (PURE system). We found that 19 aaRS with the exception of phenylalanyl-tRNA synthetase (PheRS) are expressed as soluble proteins and their activities are comparable to those expressed in Escherichia coli . This study provides basic information on the properties of aaRSs expressed in the PURE system, which will be helpful for the future reconstitution of a self-reproducing translation system. We expressed 20 aminoacyl-tRNA synthetases in a reconstituted translation system. All aminoacyl-tRNA synthetases (aaRSs) are expressed as soluble proteins. All aaRSs with the exception of phenylalanyl-tRNA synthetase are active. Their activities are comparable to those expressed in E. coli.
Collapse
Affiliation(s)
- Takako Awai
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Japan
| | - Norikazu Ichihashi
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
46
|
Xue X, Wang T, Jiang P, Shao Y, Zhou M, Zhong L, Wu R, Zhou J, Xia H, Zhao G, Qin Z. MEGA (Multiple Essential Genes Assembling) deletion and replacement method for genome reduction in Escherichia coli. ACS Synth Biol 2015; 4:700-6. [PMID: 25494410 DOI: 10.1021/sb500324p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Top-down reduction of the bacterial genome to construct desired chassis cells is important for synthetic biology. However, the current progress in the field of genome reduction is greatly hindered by indispensable life-essential genes that are interspersed throughout the chromosomal loci. Here, we described a new method designated as "MEGA (Multiple Essential Genes Assembling) deletion and replacement" that functions by assembling multiple essential genes in an E. coli-S. cerevisiae shuttle vector, removing targeted chromosomal regions containing essential and nonessential genes using a one-round deletion, and then integrating the cloned essential genes into the in situ chromosomal loci via I-SceI endonuclease cleavage. As a proof of concept, we separately generated three large deletions (80-205 kbp) in the E. coli MDS42 chromosome. We believe that the MEGA deletion and replacement method has potential to become widely used in large-scale genome reductions in other sequenced organisms in addition to E. coli.
Collapse
Affiliation(s)
- Xiaoli Xue
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Wang
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Jiang
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yangyang Shao
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Zhou
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Zhong
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ronghai Wu
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianting Zhou
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haiyang Xia
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guoping Zhao
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic
Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
A transcription and translation-coupled DNA replication system using rolling-circle replication. Sci Rep 2015; 5:10404. [PMID: 26013404 PMCID: PMC4445062 DOI: 10.1038/srep10404] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/13/2015] [Indexed: 01/30/2023] Open
Abstract
All living organisms have a genome replication system in which genomic DNA is replicated by a DNA polymerase translated from mRNA transcribed from the genome. The artificial reconstitution of this genome replication system is a great challenge in in vitro synthetic biology. In this study, we attempted to construct a transcription- and translation-coupled DNA replication (TTcDR) system using circular genomic DNA encoding phi29 DNA polymerase and a reconstituted transcription and translation system. In this system, phi29 DNA polymerase was translated from the genome and replicated the genome in a rolling-circle manner. When using a traditional translation system composition, almost no DNA replication was observed, because the tRNA and nucleoside triphosphates included in the translation system significantly inhibited DNA replication. To minimize these inhibitory effects, we optimized the composition of the TTcDR system and improved replication by approximately 100-fold. Using our system, genomic DNA was replicated up to 10 times in 12 hours at 30 °C. This system provides a step toward the in vitro construction of an artificial genome replication system, which is a prerequisite for the construction of an artificial cell.
Collapse
|
48
|
Nishimura K, Tsuru S, Suzuki H, Yomo T. Stochasticity in gene expression in a cell-sized compartment. ACS Synth Biol 2015; 4:566-76. [PMID: 25280237 DOI: 10.1021/sb500249g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gene expression in a clonal cell population fluctuates significantly, and its relevance to various cellular functions is under intensive debate. A fundamental question is whether the fluctuation is a consequence of the complexity and redundancy in living cells or an inevitable attribute of the minute microreactor nature of cells. To answer this question, we constructed an artificial cell, which consists of only necessary components for the gene expression (in vitro transcription and translation system) and its boundary as a microreactor (cell-sized lipid vesicle), and investigated the gene expression noise. The variation in the expression of two fluorescent proteins was decomposed into the components that were correlated and uncorrelated between the two proteins using a method similar to the one used by Elowitz and co-workers to analyze the expression noise in E. coli. The observed fluctuation was compared with a theoretical model that expresses the amplitude of noise as a function of the average number of intermediate molecules and products. With the assumption that the transcripts are partly active, the theoretical model was able to well describe the noise in the artificial system. Furthermore, the same measurement for E. coli cells harboring an identical plasmid revealed that the E. coli exhibited a similar level of expression noise. Our results demonstrated that the level of fluctuation found in bacterial cells is mostly an intrinsic property that arises even in a primitive form of the cell.
Collapse
Affiliation(s)
- Kazuya Nishimura
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
- Quantitative Biology
Center (QBiC), Riken, Fuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | - Saburo Tsuru
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
| | - Hiroaki Suzuki
- Faculty
of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
- Exploratory
Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
- Exploratory
Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
- Department
of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Fritz BR, Jamil OK, Jewett MC. Implications of macromolecular crowding and reducing conditions for in vitro ribosome construction. Nucleic Acids Res 2015; 43:4774-84. [PMID: 25897121 PMCID: PMC4482083 DOI: 10.1093/nar/gkv329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
In vitro construction of Escherichia coli ribosomes could elucidate a deeper understanding of these complex molecular machines and make possible the production of synthetic variants with new functions. Toward this goal, we recently developed an integrated synthesis, assembly and translation (iSAT) system that allows for co-activation of ribosomal RNA (rRNA) transcription and ribosome assembly, mRNA transcription and protein translation without intact cells. Here, we discovered that macromolecular crowding and reducing agents increase overall iSAT protein synthesis; the combination of 6% w/v Ficoll 400 and 2 mM DTBA yielded approximately a five-fold increase in overall iSAT protein synthesis activity. By utilizing a fluorescent RNA aptamer, fluorescent reporter proteins and ribosome sedimentation analysis, we showed that crowding agents increase iSAT yields by enhancing translation while reducing agents increase rRNA transcription and ribosome assembly. Finally, we showed that iSAT ribosomes possess ∼70% of the protein synthesis activity of in vivo-assembled E. coli ribosomes. This work improves iSAT protein synthesis through the addition of crowding and reducing agents, provides a thorough understanding of the effect of these additives within the iSAT system and demonstrates how iSAT allows for manipulation and analysis of ribosome biogenesis in the context of an in vitro transcription-translation system.
Collapse
Affiliation(s)
- Brian R Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Osman K Jamil
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Northwestern Institute on Complex Systems, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
50
|
Liu Y, Fritz BR, Anderson MJ, Schoborg JA, Jewett MC. Characterizing and alleviating substrate limitations for improved in vitro ribosome construction. ACS Synth Biol 2015; 4:454-62. [PMID: 25079899 DOI: 10.1021/sb5002467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complete cell-free synthesis of ribosomes could make possible minimal cell projects and the construction of variant ribosomes with new functions. Recently, we reported the development of an integrated synthesis, assembly, and translation (iSAT) method for in vitro construction of Escherichia coli ribosomes. iSAT allows simultaneous rRNA synthesis, ribosome assembly, and reporter protein expression as a measure of ribosome activity. Here, we explore causes of iSAT reaction termination to improve efficiency and yields. We discovered that phosphoenolpyruvate (PEP), the secondary energy substrate, and nucleoside triphosphates (NTPs) were rapidly degraded during iSAT reactions. In turn, we observed a significant drop in the adenylate energy charge and termination of protein synthesis. Furthermore, we identified that the accumulation of inorganic phosphate is inhibitory to iSAT. Fed-batch replenishment of PEP and magnesium glutamate (to offset the inhibitory effects of accumulating phosphate by repeated additions of PEP) prior to energy depletion prolonged the reaction duration 2-fold and increased superfolder green fluorescent protein (sfGFP) yield by ~75%. By adopting a semi-continuous method, where passive diffusion enables substrate replenishment and byproduct removal, we prolonged iSAT reaction duration 5-fold and increased sfGFP yield 7-fold to 7.5 ± 0.7 μmol L(-1). This protein yield is the highest ever reported for iSAT reactions. Our results underscore the critical role energy substrates play in iSAT and highlight the importance of understanding metabolic processes that influence substrate depletion for cell-free synthetic biology.
Collapse
Affiliation(s)
- Yi Liu
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian R. Fritz
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mark J. Anderson
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer A. Schoborg
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Interdepartmental Biological Sciences Graduate
Program, ‡Chemistry of Life
Processes Institute, §Department of Chemical and Biological Engineering, ∥Member, Robert H. Lurie Comprehensive
Cancer Center, ⊥Affiliate Member, Institute for Bionanotechnology in Medicine, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|