1
|
Guessous G, Blake L, Bui A, Woo Y, Manzanarez G. Disentangling the Web: An Interdisciplinary Review on the Potential and Feasibility of Spider Silk Bioproduction. ACS Biomater Sci Eng 2024; 10:5412-5438. [PMID: 39136701 PMCID: PMC11388149 DOI: 10.1021/acsbiomaterials.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.
Collapse
Affiliation(s)
- Ghita Guessous
- Department of Physics, University of California at San Diego, La Jolla, California 92092, United States
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
| | - Lauren Blake
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Tufts University Center for Cellular Agriculture (TUCCA), Tufts University, Medford, Massachusetts 02155, United States
| | - Anthony Bui
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850, United States
| | - Yelim Woo
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Questrom School of Business, Boston University, Boston, Massachusetts 02215, United States
| | - Gabriel Manzanarez
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92092, United States
| |
Collapse
|
2
|
Kumar Parida V, Kavita, Arora R, Sharma T. Unleashing the power of silk-based proteins as biomaterials for cutting-edge drug delivery: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-25. [PMID: 39230985 DOI: 10.1080/09205063.2024.2397215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Silk proteins, viz., sericin, fibroin and their modified forms etc., have been thoroughly researched as natural biopolymers for the development of varied nanomaterials exhibiting diverse biomedical applications. The silk proteins are extracted from the cocoons by degumming and treatment with soaps, followed by dissolution and dialysis against water. These proteins exhibit distinct mechanical and physicochemical characteristics including biocompatibility, controlled biodegradability, self-assembling traits, chemical modifiability, and adaptability, thus making it an ideal drug delivery vehicle. In this regard, silk protein-derived drug delivery systems have been reported as efficient carrier to encapsulate and stabilize the wide variety of pharmacological molecules, enzymes, proteins, vaccines, and even DNA, allowing them to remain active for a longer period of time. Further, different delivery carriers researched employing these proteins for multitude of applications include hydrogels, sponges, fibres, scaffolds and particulate delivery systems. Additionally, the chemical modification of silk proteins has further opened avenues for development of other modified silk proteins with improved physicochemical traits and hence exhibiting enormous potential in development of varied bioenhanced carrier systems. The current article thus provides the holistic information of characteristics, types of silk protein-based delivery carriers, and their fabrication techniques, while emphasizing the applications of different silk proteins in biomedicine and drug delivery.
Collapse
Affiliation(s)
| | - Kavita
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Teenu Sharma
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| |
Collapse
|
3
|
Ball P. Evolving materials. NATURE MATERIALS 2024; 23:1152. [PMID: 39215159 DOI: 10.1038/s41563-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
4
|
Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R. Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications. Biomimetics (Basel) 2024; 9:373. [PMID: 38921253 PMCID: PMC11201842 DOI: 10.3390/biomimetics9060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges. Fortunately, protein-based biopolymers can compete with and potentially surpass the performance of petro-based polymers because they can be biologically produced and degraded in an environmentally friendly fashion. This paper reviews four groups of protein-based polymers, including fibrous proteins (collagen, silk fibroin, fibrillin, and keratin), elastomeric proteins (elastin, resilin, and wheat glutenin), adhesive/matrix proteins (spongin and conchiolin), and cyanophycin. We discuss the connection between protein sequence, structure, function, and biomimetic applications. Protein engineering techniques, such as directed evolution and rational design, can be used to improve the functionality of natural protein-based materials. For example, the inclusion of specific protein domains, particularly those observed in structural proteins, such as silk and collagen, enables the creation of novel biomimetic materials with exceptional mechanical properties and adaptability. This review also discusses recent advancements in the production and application of new protein-based materials through the approach of synthetic biology combined biomimetics, providing insight for future research and development of cutting-edge bio-inspired products. Protein-based polymers that utilize nature's designs as a base, then modified by advancements at the intersection of biology and engineering, may provide mankind with more sustainable products.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | - Liping Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | | | - Zhong Hu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA;
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
5
|
Wu D, Koscic A, Schneider S, Dubini RCA, Rodriguez Camargo DC, Schneider S, Rovó P. Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein. Biomacromolecules 2024; 25:1759-1774. [PMID: 38343096 PMCID: PMC10934265 DOI: 10.1021/acs.biomac.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, β-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.
Collapse
Affiliation(s)
- Dongqing Wu
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anamaria Koscic
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sonja Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Romeo C. A. Dubini
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Diana C. Rodriguez Camargo
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sabine Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Petra Rovó
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Institute
of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
6
|
Peng X, Liu Z, Gao J, Zhang Y, Wang H, Li C, Lv X, Gao Y, Deng H, Zhao B, Gao T, Li H. Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024; 29:1025. [PMID: 38474537 PMCID: PMC10934110 DOI: 10.3390/molecules29051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.
Collapse
Affiliation(s)
- Xinying Peng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hong Wang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Huan Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| |
Collapse
|
7
|
Connor A, Zha RH, Koffas M. Production and secretion of recombinant spider silk in Bacillus megaterium. Microb Cell Fact 2024; 23:35. [PMID: 38279170 PMCID: PMC10821235 DOI: 10.1186/s12934-024-02304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Silk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. RESULTS In this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in the Bacillus genus. Using an industrially relevant B. megaterium host, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. CONCLUSION It is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for an E. coli host producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in the Bacillus host system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
8
|
Chung H, Kim J, Lee YJ, Choi KR, Jeong KJ, Kim GJ, Lee SY. Enhanced production of difficult-to-express proteins through knocking down rnpA gene expression. Biotechnol J 2023; 18:e2200641. [PMID: 37285237 DOI: 10.1002/biot.202200641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Escherichia coli has been employed as a workhorse for the efficient production of recombinant proteins. However, some proteins were found to be difficult to produce in E. coli. The stability of mRNA has been considered as one of the important factors affecting recombinant protein production. Here we report a generally applicable and simple strategy for enhancing mRNA stability, and consequently improving recombinant protein production in E. coli. RNase P, a ribozyme comprising an RNA subunit (RnpB) and a protein subunit (RnpA), is involved in tRNA maturation. Based on the finding that purified RnpA can digest rRNA and mRNA in vitro, it was reasoned that knocking down the level of RnpA might enhance recombinant protein production. For this, the synthetic small regulatory RNA-based knockdown system was applied to reduce the expression level of RnpA. The developed RnpA knockdown system allowed successful overexpression of 23 different recombinant proteins of various origins and sizes, including Cas9 protein, antibody fragment, and spider silk protein. Notably, a 284.9-kDa ultra-high molecular weight, highly repetitive glycine-rich spider silk protein, which is one of the most difficult proteins to produce, could be produced to 1.38 g L-1 , about two-fold higher than the highest value previously achieved, by a fed-batch culture of recombinant E. coli strain employing the RnpA knockdown system. The RnpA-knockdown strategy reported here will be generally useful for the production of recombinant proteins including those that have been difficult to produce.
Collapse
Affiliation(s)
- Hannah Chung
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| | - Jiyong Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| | - Yong Jae Lee
- Protein Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ki Jun Jeong
- Protein Engineering Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- MedicosBiotech Inc, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Perera D, Li L, Walsh C, Silliman J, Xiong Y, Wang Q, Schniepp HC. Natural spider silk nanofibrils produced by assembling molecules or disassembling fibers. Acta Biomater 2023; 168:323-332. [PMID: 37414111 DOI: 10.1016/j.actbio.2023.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Spider silk is biocompatible, biodegradable, and rivals some of the best synthetic materials in terms of strength and toughness. Despite extensive research, comprehensive experimental evidence of the formation and morphology of its internal structure is still limited and controversially discussed. Here, we report the complete mechanical decomposition of natural silk fibers from the golden silk orb-weaver Trichonephila clavipes into ≈10 nm-diameter nanofibrils, the material's apparent fundamental building blocks. Furthermore, we produced nanofibrils of virtually identical morphology by triggering an intrinsic self-assembly mechanism of the silk proteins. Independent physico-chemical fibrillation triggers were revealed, enabling fiber assembly from stored precursors "at-will". This knowledge furthers the understanding of this exceptional material's fundamentals, and ultimately, leads toward the realization of silk-based high-performance materials. STATEMENT OF SIGNIFICANCE: Spider silk is one of the strongest and toughest biomaterials, rivaling the best man-made materials. The origins of these traits are still under debate but are mostly attributed to the material's intriguing hierarchical structure. Here we fully disassembled spider silk into 10 nm-diameter nanofibrils for the first time and showed that nanofibrils of the same appearance can be produced via molecular self-assembly of spider silk proteins under certain conditions. This shows that nanofibrils are the key structural elements in silk and leads toward the production of high-performance future materials inspired by spider silk.
Collapse
Affiliation(s)
- Dinidu Perera
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Linxuan Li
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Chloe Walsh
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Jacob Silliman
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Yawei Xiong
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Qijue Wang
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Hannes C Schniepp
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA.
| |
Collapse
|
10
|
Trossmann VT, Lentz S, Scheibel T. Factors Influencing Properties of Spider Silk Coatings and Their Interactions within a Biological Environment. J Funct Biomater 2023; 14:434. [PMID: 37623678 PMCID: PMC10455157 DOI: 10.3390/jfb14080434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Biomaterials are an indispensable part of biomedical research. However, although many materials display suitable application-specific properties, they provide only poor biocompatibility when implanted into a human/animal body leading to inflammation and rejection reactions. Coatings made of spider silk proteins are promising alternatives for various applications since they are biocompatible, non-toxic and anti-inflammatory. Nevertheless, the biological response toward a spider silk coating cannot be generalized. The properties of spider silk coatings are influenced by many factors, including silk source, solvent, the substrate to be coated, pre- and post-treatments and the processing technique. All these factors consequently affect the biological response of the environment and the putative application of the appropriate silk coating. Here, we summarize recently identified factors to be considered before spider silk processing as well as physicochemical characterization methods. Furthermore, we highlight important results of biological evaluations to emphasize the importance of adjustability and adaption to a specific application. Finally, we provide an experimental matrix of parameters to be considered for a specific application and a guided biological response as exemplarily tested with two different fibroblast cell lines.
Collapse
Affiliation(s)
- Vanessa T. Trossmann
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Sarah Lentz
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.T.T.); (S.L.)
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Faculty of Medicine, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
11
|
Li J, Jiang B, Chang X, Yu H, Han Y, Zhang F. Bi-terminal fusion of intrinsically-disordered mussel foot protein fragments boosts mechanical strength for protein fibers. Nat Commun 2023; 14:2127. [PMID: 37059716 PMCID: PMC10104820 DOI: 10.1038/s41467-023-37563-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Microbially-synthesized protein-based materials are attractive replacements for petroleum-derived synthetic polymers. However, the high molecular weight, high repetitiveness, and highly-biased amino acid composition of high-performance protein-based materials have restricted their production and widespread use. Here we present a general strategy for enhancing both strength and toughness of low-molecular-weight protein-based materials by fusing intrinsically-disordered mussel foot protein fragments to their termini, thereby promoting end-to-end protein-protein interactions. We demonstrate that fibers of a ~60 kDa bi-terminally fused amyloid-silk protein exhibit ultimate tensile strength up to 481 ± 31 MPa and toughness of 179 ± 39 MJ*m-3, while achieving a high titer of 8.0 ± 0.70 g/L by bioreactor production. We show that bi-terminal fusion of Mfp5 fragments significantly enhances the alignment of β-nanocrystals, and intermolecular interactions are promoted by cation-π and π-π interactions between terminal fragments. Our approach highlights the advantage of self-interacting intrinsically-disordered proteins in enhancing material mechanical properties and can be applied to a wide range of protein-based materials.
Collapse
Affiliation(s)
- Jingyao Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Bojing Jiang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Xinyuan Chang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Han Yu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Yichao Han
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
- Institute of Materials Science & Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
| |
Collapse
|
12
|
Wu SD, Chuang WT, Ho JC, Wu HC, Hsu SH. Self-Healing of Recombinant Spider Silk Gel and Coating. Polymers (Basel) 2023; 15:polym15081855. [PMID: 37112001 PMCID: PMC10141599 DOI: 10.3390/polym15081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2-4 nm) based on the slope variation (i.e., ~-0.4 at 100%/200% strains, and ~-0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Jo-Chen Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| |
Collapse
|
13
|
Blamires SJ, Rawal A, Edwards AD, Yarger JL, Oberst S, Allardyce BJ, Rajkhowa R. Methods for Silk Property Analyses across Structural Hierarchies and Scales. Molecules 2023; 28:2120. [PMID: 36903366 PMCID: PMC10003856 DOI: 10.3390/molecules28052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Silk from silkworms and spiders is an exceptionally important natural material, inspiring a range of new products and applications due to its high strength, elasticity, and toughness at low density, as well as its unique conductive and optical properties. Transgenic and recombinant technologies offer great promise for the scaled-up production of new silkworm- and spider-silk-inspired fibres. However, despite considerable effort, producing an artificial silk that recaptures the physico-chemical properties of naturally spun silk has thus far proven elusive. The mechanical, biochemical, and other properties of pre-and post-development fibres accordingly should be determined across scales and structural hierarchies whenever feasible. We have herein reviewed and made recommendations on some of those practices for measuring the bulk fibre properties; skin-core structures; and the primary, secondary, and tertiary structures of silk proteins and the properties of dopes and their proteins. We thereupon examine emerging methodologies and make assessments on how they might be utilized to realize the goal of developing high quality bio-inspired fibres.
Collapse
Affiliation(s)
- Sean J. Blamires
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Mechanical and Mechatronic Engineering, University of Technology, Sydney, NSW 2007, Australia
| | - Aditya Rawal
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Angela D. Edwards
- School of Molecular Science, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jeffrey L. Yarger
- School of Molecular Science, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sebastian Oberst
- School of Mechanical and Mechatronic Engineering, University of Technology, Sydney, NSW 2007, Australia
| | | | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
14
|
Connor A, Wigham C, Bai Y, Rai M, Nassif S, Koffas M, Zha RH. Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli. Metab Eng Commun 2023; 16:e00219. [PMID: 36825067 PMCID: PMC9941211 DOI: 10.1016/j.mec.2023.e00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple E. coli strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of E. coli was created that produces recombinant silk constructs at levels 4-33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the E. coli host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Caleb Wigham
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yang Bai
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Manish Rai
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sebastian Nassif
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
15
|
Liu Y, Wang Y, Tong C, Wei G, Ding F, Sun Y. Molecular Insights into the Self-Assembly of Block Copolymer Suckerin Polypeptides into Nanoconfined β-Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202642. [PMID: 35901284 PMCID: PMC9420834 DOI: 10.1002/smll.202202642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Suckerin in squid sucker ring teeth is a block-copolymer peptide comprised of two repeating modules-the alanine and histidine-rich M1 and the glycine-rich M2. Suckerin self-assemblies display excellent thermo-plasticity and pH-responsive properties, along with the high biocompatibility, biodegradability, and sustainability. However, the self-assembly mechanism and the detailed role of each module are still elusive, limiting the capability of applying and manipulating such biomaterials. Here, the self-assembly dynamics of the two modules and two minimalist suckerin-mimetic block-copolymers, M1-M2-M1 and M2-M1-M2, in silico is investigated. The simulation results demonstrate that M2 has a stronger self-association but weaker β-sheet propensities than M1. The high self-assembly propensity of M2 allows the minimalist block-copolymer peptides to coalesce with microphase separation, enabling the formation of nanoconfined β-sheets in the matrix formed by M1-M2 contacts. Since these glycine-rich fragments with scatted hydrophobic and aromatic residues are building blocks of many other block-copolymer peptides, the study suggests that these modules function as the "molecular glue" in addition to the flexible linker or spacer to drive the self-assembly and microphase separation. The uncovered molecular insights may help understand the structure and function of suckerin and also aid in the design of functional block-copolymer peptides for nanotechnology and biomedicine applications.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Chaohui Tong
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
16
|
Various Coated Barrier Membranes for Better Guided Bone Regeneration: A Review. COATINGS 2022. [DOI: 10.3390/coatings12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A good barrier membrane is one of the important factors for effective guided bone/tissue regeneration (GBR/GTR) in the case of periodontal bone defects. Several methods are being discussed to overcome and improve the shortcomings of commercially available membranes. One of the methods is to coat the membrane with bioactive materials. In this study, 41 studies related to coated membranes for GBR/GTR published in the last 5 years were reviewed. These studies reported coating the membrane with various bioactive materials through different techniques to improve osteogenesis, antimicrobial properties, and physical/mechanical properties. The reported studies have been classified and discussed based on the purpose of coating. The goal of the most actively studied research on coating or surface modification of membranes is to improve new bone formation. For this purpose, calcium phosphate, bioactive glass, polydopamine, osteoinduced drugs, chitosan, platelet-rich fibrin, enamel matrix derivatives, amelotin, hyaluronic acid, tantalum, and copper were used as membrane coating materials. The paradigm of barrier membranes is changing from only inert (or biocompatible) physical barriers to bioactive osteo-immunomodulatory for effective guided bone and tissue regeneration. However, there is a limitation that there exists only a few clinical studies on humans to date. Efforts are needed to implement the use of coated membranes from the laboratory bench to the dental chair unit. Further clinical studies are needed in the patients’ group for long-term follow-up to confirm the effect of various coating materials.
Collapse
|
17
|
Perera D, Wang Q, Schniepp HC. Multi-Point Nanoindentation Method to Determine Mechanical Anisotropy in Nanofibrillar Thin Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202065. [PMID: 35780468 DOI: 10.1002/smll.202202065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Biomaterials with outstanding mechanical properties, including spider silk, wood, and cartilage, often feature an oriented nanofibrillar structure. The orientation of nanofibrils gives rise to a significant mechanical anisotropy, which is extremely challenging to characterize, especially for microscopically small or inhomogeneous samples. Here, a technique utilizing atomic force microscope indentation at multiple points combined with finite element analysis to sample the mechanical anisotropy of a thin film in a microscopically small area is reported. The system studied here is the tape-like silk of the Chilean recluse spider, which entirely consists of strictly oriented nanofibrils giving rise to a large mechanical anisotropy. The most detailed directional nanoscale structure-property characterization of spider silk to date is presented, revealing the tensile and transverse elastic moduli as 9 and 1 GPa, respectively, and the binding strength between silk nanofibrils as 159 ± 13 MPa. Furthermore, based on this binding strength, the nanofibrils' surface energy is derived as 37 mJ m-2 , and concludes that van der Waals forces play a decisive role in interfibrillar binding. Due to its versatility, this technique has many potential applications, including early disease diagnostics, as underlying pathological conditions can alter the local mechanical properties of tissues.
Collapse
Affiliation(s)
- Dinidu Perera
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Qijue Wang
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Hannes C Schniepp
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| |
Collapse
|
18
|
Ramezaniaghdam M, Nahdi ND, Reski R. Recombinant Spider Silk: Promises and Bottlenecks. Front Bioeng Biotechnol 2022; 10:835637. [PMID: 35350182 PMCID: PMC8957953 DOI: 10.3389/fbioe.2022.835637] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 02/02/2023] Open
Abstract
Spider silk threads have exceptional mechanical properties such as toughness, elasticity and low density, which reach maximum values compared to other fibre materials. They are superior even compared to Kevlar and steel. These extraordinary properties stem from long length and specific protein structures. Spider silk proteins can consist of more than 20,000 amino acids. Polypeptide stretches account for more than 90% of the whole protein, and these domains can be repeated more than a hundred times. Each repeat unit has a specific function resulting in the final properties of the silk. These properties make them attractive for innovative material development for medical or technical products as well as cosmetics. However, with livestock breeding of spiders it is not possible to reach high volumes of silk due to the cannibalistic behaviour of these animals. In order to obtain spider silk proteins (spidroins) on a large scale, recombinant production is attempted in various expression systems such as plants, bacteria, yeasts, insects, silkworms, mammalian cells and animals. For viable large-scale production, cost-effective and efficient production systems are needed. This review describes the different types of spider silk, their proteins and structures and discusses the production of these difficult-to-express proteins in different host organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Maryam Ramezaniaghdam
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Nadia D. Nahdi
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Jin Q, Pan F, Hu CF, Lee SY, Xia XX, Qian ZG. Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers. Metab Eng 2022; 70:102-114. [DOI: 10.1016/j.ymben.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|
20
|
Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021; 136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.
Collapse
|
21
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
22
|
General Methods to Produce and Assemble Recombinant Spider Silk Proteins. Methods Mol Biol 2021. [PMID: 34472055 DOI: 10.1007/978-1-0716-1574-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Orb-weaving spiders are known to spin up to seven types of silks/glues from different silk glands. The inherent mechanical variety of these silks makes them attractive models for a variety of biomaterial design, from superglues to extremely strong and/or extendible fibers. Spider silk spinning is a process in which spinning dope stored in specific glands assembles into fibrils upon chemical and mechanical stimuli. The exploration of silk protein assembly into controllable filaments is vital for both uncovering biological functions and molecular structure relationship, as well as fabricating new biomaterials. This chapter describes the methods for biosynthesis and assembly of recombinant spider silk proteins, which will provide insights into the mechanism exploration of fiber formation and spider silk-based material manufacture.
Collapse
|
23
|
Mohammadi P, Zemke F, Wagermaier W, Linder MB. Interfacial Crystallization and Supramolecular Self-Assembly of Spider Silk Inspired Protein at the Water-Air Interface. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4239. [PMID: 34361434 PMCID: PMC8348448 DOI: 10.3390/ma14154239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process, we examined highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water-air interface into a relatively thick and highly elastic skin. Using time-resolved in situ synchrotron x-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount, but also on the ordering of these structures during the β-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid-liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.
Collapse
Affiliation(s)
- Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland
| | - Fabian Zemke
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.Z.); (W.W.)
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; (F.Z.); (W.W.)
| | - Markus B. Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-02150 Espoo, Finland;
| |
Collapse
|
24
|
Luo ZW, Ahn JH, Chae TU, Choi SY, Park SY, Choi Y, Kim J, Prabowo CPS, Lee JA, Yang D, Han T, Xu H, Lee SY. Metabolic Engineering of
Escherichia
coli. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Lin C, Ekblad-Nordberg Å, Michaëlsson J, Götherström C, Hsu CC, Ye H, Johansson J, Rising A, Sundström E, Åkesson E. In Vitro Study of Human Immune Responses to Hyaluronic Acid Hydrogels, Recombinant Spidroins and Human Neural Progenitor Cells of Relevance to Spinal Cord Injury Repair. Cells 2021; 10:1713. [PMID: 34359882 PMCID: PMC8303367 DOI: 10.3390/cells10071713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Scaffolds of recombinant spider silk protein (spidroin) and hyaluronic acid (HA) hydrogel hold promise in combination with cell therapy for spinal cord injury. However, little is known concerning the human immune response to these biomaterials and grafted human neural stem/progenitor cells (hNPCs). Here, we analyzed short- and long-term in vitro activation of immune cells in human peripheral blood mononuclear cells (hPBMCs) cultured with/without recombinant spidroins, HA hydrogels, and/or allogeneic hNPCs to assess potential host-donor interactions. Viability, proliferation and phenotype of hPBMCs were analyzed using NucleoCounter and flow cytometry. hPBMC viability was confirmed after exposure to the different biomaterials. Short-term (15 h) co-cultures of hPBMCs with spidroins, but not with HA hydrogel, resulted in a significant increase in the proportion of activated CD69+ CD4+ T cells, CD8+ T cells, B cells and NK cells, which likely was caused by residual endotoxins from the Escherichia coli expression system. The observed spidroin-induced hPBMC activation was not altered by hNPCs. It is resource-effective to evaluate human compatibility of novel biomaterials early in development of the production process to, when necessary, make alterations to minimize rejection risk. Here, we present a method to evaluate biomaterials and hPBMC compatibility in conjunction with allogeneic human cells.
Collapse
Affiliation(s)
- Chenhong Lin
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
| | - Åsa Ekblad-Nordberg
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 52 Stockholm, Sweden; (Å.E.-N.); (C.G.)
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden;
| | - Cecilia Götherström
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 52 Stockholm, Sweden; (Å.E.-N.); (C.G.)
| | - Chia-Chen Hsu
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK; (C.-C.H.); (H.Y.)
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK; (C.-C.H.); (H.Y.)
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden; (J.J.); (A.R.)
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden; (J.J.); (A.R.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
- The R&D Unit, Stockholms Sjukhem, SE-112 19 Stockholm, Sweden
| |
Collapse
|
26
|
Whittall DR, Baker KV, Breitling R, Takano E. Host Systems for the Production of Recombinant Spider Silk. Trends Biotechnol 2021; 39:560-573. [PMID: 33051051 DOI: 10.1016/j.tibtech.2020.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Spider silk is renowned for its impressive mechanical properties. It is one of the strongest known biomaterials, possessing mechanical properties that outmatch both steel and Kevlar. However, the farming of spiders for their silk is unfeasible. Consequently, production of recombinant spider silk proteins (spidroins) in more amenable hosts is an exciting field of research. For large-scale production to be viable, a heterologous silk production system that is both highly efficient and cost effective is essential. Genes encoding recombinant spidroin have been expressed in bacterial, yeast, insect, and mammalian cells, in addition to many other platforms. This review discusses the recent advances in exploiting an increasingly diverse range of host platforms in the heterologous production of recombinant spidroins.
Collapse
Affiliation(s)
- Dominic R Whittall
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Katherine V Baker
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Eriko Takano
- Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
27
|
Bhattacharyya G, Oliveira P, Krishnaji ST, Chen D, Hinman M, Bell B, Harris TI, Ghazitabatabaei A, Lewis RV, Jones JA. Large scale production of synthetic spider silk proteins in Escherichia coli. Protein Expr Purif 2021; 183:105839. [PMID: 33746079 DOI: 10.1016/j.pep.2021.105839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 10/21/2022]
Abstract
Spider silk, which has remarkable mechanical properties, is a natural protein fiber produced by spiders. Spiders cannot be farmed because of their cannibalistic and territorial nature. Hence, large amounts of spider silk cannot be produced from spiders. Genetic engineering is an alternative approach to produce large quantities of spider silk. Our group has produced synthetic spider silk proteins in E. coli to study structure/function and to produce biomaterials comparable to the silks produced by orb-weaving spiders. Here we give a detailed description of our cloning, expression, and purification methods of synthetic spider silk proteins ranging from ~30 to ~200 kDa. We have cloned the relevant genes of the spider Nephila clavipes and introduced them into bacteria to produce synthetic spider silk proteins using small and large-scale bioreactors. We have optimized the fermentation process, and we have developed protein purification methods as well. The purified proteins are spun into fibers and are used to make alternative materials like films and adhesives with various possible commercial applications.
Collapse
Affiliation(s)
- Gargi Bhattacharyya
- Department of Biology, Utah State University, Utah, USA; Department of Chemistry, Eberly College of Science, Pennsylvania State University, Pennsylvania, USA
| | | | - Sreevidhya T Krishnaji
- Department of Biology, Utah State University, Utah, USA; Indian Institute of Science Education and Research, Bhopal, India
| | - Dong Chen
- Department of Biology, Utah State University, Utah, USA
| | | | - Brianne Bell
- Department of Biology, Utah State University, Utah, USA
| | | | | | | | - Justin A Jones
- Department of Biology, Utah State University, Utah, USA.
| |
Collapse
|
28
|
Qing C, Li QY, Xue NN, Yuan SM, Liu CJ, Zhang CG, Li HW, Zhao Y. The Outlook of the Development of Innovative Products from Biocompatible Natural Spider Silk in the Beauty Thread-Lifting Industry. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:21-30. [PMID: 33398712 PMCID: PMC7933321 DOI: 10.1007/s13659-020-00291-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 05/05/2023]
Abstract
Embedding thread lift rhytidectomy, also known as "thread lifting" in China, with the natures of simple operation, less trauma and quick recovery, is progressively used in clinical practice as a new technology of face lifting. Herewith, a brief introduction of the previous advances of thread lifting techniques and materials in the facial beauty industry, combined with the discussion on various types of sutures, common complications, and the site of actions were provided. The main limitations of present thread lifting material include: (1) the use of non-absorbable sutures is liable to cause allergies and a series of complications; (2) the absorbable sutures are easily degradation, and people need to reshape in a relatively short period. Therefore, the high biocompatible spider silk was proposed as a novel material of thread lifting suture and related devices, the advantages and preliminary achievements on spider silk were also addressed.
Collapse
Affiliation(s)
- Chen Qing
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
| | - Qi-Yan Li
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
- Center of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| | - Nan-Nan Xue
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
| | - Shi-Meng Yuan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
| | - Chuan-Jun Liu
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
| | - He-Wei Li
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China
- Jiangsu Weibo Hi-Tech Biological Technology Co., Ltd., Changzhou, 213000, People's Republic of China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, 671000, People's Republic of China.
- Yunnan National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali, 671000, People's Republic of China.
| |
Collapse
|
29
|
Belbéoch C, Lejeune J, Vroman P, Salaün F. Silkworm and spider silk electrospinning: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1737-1763. [PMID: 33424525 PMCID: PMC7779161 DOI: 10.1007/s10311-020-01147-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 05/27/2023]
Abstract
Issues of fossil fuel and plastic pollution are shifting public demand toward biopolymer-based textiles. For instance, silk, which has been traditionally used during at least 5 milleniums in China, is re-emerging in research and industry with the development of high-tech spinning methods. Various arthropods, e.g. insects and arachnids, produce silky proteinic fiber of unique properties such as resistance, elasticity, stickiness and toughness, that show huge potential for biomaterial applications. Compared to synthetic analogs, silk presents advantages of low density, degradability and versatility. Electrospinning allows the creation of nonwoven mats whose pore size and structure show unprecedented characteristics at the nanometric scale, versus classical weaving methods or modern techniques such as melt blowing. Electrospinning has recently allowed to produce silk scaffolds, with applications in regenerative medicine, drug delivery, depollution and filtration. Here we review silk production by the spinning apparatus of the silkworm Bombyx mori and the spiders Aranea diadematus and Nephila Clavipes. We present the biotechnological procedures to get silk proteins, and the preparation of a spinning dope for electrospinning. We discuss silk's mechanical properties in mats obtained from pure polymer dope and multi-composites. This review highlights the similarity between two very different yarn spinning techniques: biological and electrospinning processes.
Collapse
Affiliation(s)
- Clémence Belbéoch
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Joseph Lejeune
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Philippe Vroman
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Fabien Salaün
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| |
Collapse
|
30
|
Wang Z, Serban BA, Serban MA. Recombinant Silk Fibroin Crystalline Regions as Biomaterial Alternatives to the Full-Length Protein. ACS Biomater Sci Eng 2020; 6:7004-7010. [PMID: 33320632 DOI: 10.1021/acsbiomaterials.0c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silk fibroin is a natural polymer with a unique repetitive structure that translates to extraordinary properties in terms of processability and mechanical properties. The Bombyx mori silk has a molecular weight of ∼415 kDa and consists of a light chain and a heavy chain. Its heavy chain is organized into 12 crystalline domains. Each of these crystalline domains contains subdomains of ∼70 amino acid containing blocks. It is well understood that the heavy chain of the protein is responsible for its processing versatility and excellent mechanical properties; however, the need for the high number of monomeric repeating units is unclear, and the individual properties of crystalline regions compared to those of the full-length protein are not understood. The work described herein assessed the possibility of using recombinant crystalline regions as alternative biomaterials for applications such as tissue adhesives. Our results indicate that while the two tested substructures do not fully recapitulate the native silk fibroin's properties, they appear to be a suitable alternative for the production of silk-based medical adhesives.
Collapse
Affiliation(s)
- Zifan Wang
- Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Bogdan A Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Monica A Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States.,Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
31
|
Mu X, Fitzpatrick V, Kaplan DL. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv Healthc Mater 2020; 9:e1901552. [PMID: 32109007 PMCID: PMC7415583 DOI: 10.1002/adhm.201901552] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Silk spinning offers an evolution-based manufacturing strategy for industrial polymer manufacturing, yet remains largely inaccessible as the manufacturing mechanisms in biological and synthetic systems, especially at the molecular level, are fundamentally different. The appealing characteristics of silk spinning include the sustainable sourcing of the protein material, the all-aqueous processing into fibers, and the unique material properties of silks in various formats. Substantial progress has been made to mimic silk spinning in artificial manufacturing processes, despite the gap between natural and artificial systems. This report emphasizes the universal spinning conditions utilized by both spiders and silkworms to generate silk fibers in nature, as a scientific and technical framework for directing molecular assembly into high-performance structures. The preparation of regenerated silk feedstocks and mimicking native spinning conditions in artificial manufacturing are discussed, as is progress and challenges in fiber spinning and 3D printing of silk-composites. Silk spinning is a biomimetic model for advanced and sustainable artificial polymer manufacturing, offering benefits in biomedical applications for tissue scaffolds and implantable devices.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
32
|
Abstract
Spider web proteins are unique materials created by nature that, considering the combination of their properties, do not have analogues among natural or human-created materials. Obtaining significant amounts of these proteins from natural sources is not feasible. Biotechnological manufacturing in heterological systems is complicated by the very high molecular weight of spidroins and their specific amino acid composition. Obtaining recombinant analogues of spidroins in heterological systems, mainly in bacteria and yeast, has become a compromise solution. Because they can self-assemble, these proteins can form various materials, such as fibers, films, 3D-foams, hydrogels, tubes, and microcapsules. The effectiveness of spidroin hydrogels in deep wound healing, as 3D scaffolds for bone tissue regeneration and as oriented fibers for axon growth and nerve tissue regeneration, was demonstrated in animal models. The possibility to use spidroin micro- and nanoparticles for drug delivery was demonstrated, including the use of modified spidroins for virus-free DNA delivery into animal cell nuclei. In the past few years, significant interest has arisen concerning the use of these materials as biocompatible and biodegradable soft optics to construct photonic crystal super lenses and fiber optics and as soft electronics to use in triboelectric nanogenerators. This review summarizes the latest achievements in the field of spidroin production, the creation of materials based on them, the study of these materials as a scaffold for the growth, proliferation, and differentiation of various types of cells, and the prospects for using these materials for medical applications (e.g., tissue engineering, drug delivery, coating medical devices), soft optics, and electronics. Accumulated data suggest the use of recombinant spidroins in medical practice in the near future.
Collapse
Affiliation(s)
- Vladimir G Debabov
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| | - Vladimir G Bogush
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| |
Collapse
|
33
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
34
|
Gonska N, López PA, Lozano-Picazo P, Thorpe M, Guinea GV, Johansson J, Barth A, Pérez-Rigueiro J, Rising A. Structure-Function Relationship of Artificial Spider Silk Fibers Produced by Straining Flow Spinning. Biomacromolecules 2020; 21:2116-2124. [PMID: 32223220 DOI: 10.1021/acs.biomac.0c00100] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The production of large quantities of artificial spider silk fibers that match the mechanical properties of the native material has turned out to be challenging. Recent advancements in the field make biomimetic spinning approaches an attractive way forward since they allow the spider silk proteins to assemble into the secondary, tertiary, and quaternary structures that are characteristic of the native silk fiber. Straining flow spinning (SFS) is a newly developed and versatile method that allows production under a wide range of processing conditions. Here, we use a recombinant spider silk protein that shows unprecedented water solubility and that is capable of native-like assembly, and we spin it into fibers by the SFS technique. We show that fibers may be spun using different hydrodynamical and chemical conditions and conclude that these spinning conditions affect fiber mechanics. In particular, it was found that the addition of acetonitrile and polyethylene glycol to the collection bath results in fibers with increased β-sheet content and improved mechanical properties.
Collapse
Affiliation(s)
- Nathalie Gonska
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Centre for Veterinary Medicine and Animal Science, Box 7045, 756 51 Uppsala, Sweden
| | - Patricia A López
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.,Centro de Tecnologı́a Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Paloma Lozano-Picazo
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.,Centro de Tecnologı́a Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Michael Thorpe
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Centre for Veterinary Medicine and Animal Science, Box 7045, 756 51 Uppsala, Sweden
| | - Gustavo V Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.,Centro de Tecnologı́a Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, NEO, 141 83 Huddinge, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - José Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.,Centro de Tecnologı́a Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Anna Rising
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Centre for Veterinary Medicine and Animal Science, Box 7045, 756 51 Uppsala, Sweden.,Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, NEO, 141 83 Huddinge, Sweden
| |
Collapse
|
35
|
Guo C, Li C, Mu X, Kaplan DL. Engineering Silk Materials: From Natural Spinning to Artificial Processing. APPLIED PHYSICS REVIEWS 2020; 7:011313. [PMID: 34367402 PMCID: PMC8340942 DOI: 10.1063/1.5091442] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/23/2020] [Indexed: 05/17/2023]
Abstract
Silks spun by the arthropods are "ancient' materials historically utilized for fabricating high-quality textiles. Silks are natural protein-based biomaterials with unique physical and biological properties, including particularly outstanding mechanical properties and biocompatibility. Current goals to produce artificially engineered silks to enable additional applications in biomedical engineering, consumer products, and device fields, have prompted considerable effort towards new silk processing methods using bio-inspired spinning and advanced biopolymer processing. These advances have redefined silk as a promising biomaterial past traditional textile applications and into tissue engineering, drug delivery, and biodegradable medical devices. In this review, we highlight recent progress in understanding natural silk spinning systems, as well as advanced technologies used for processing and engineering silk into a broad range of new functional materials.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
36
|
Poddar H, Breitling R, Takano E. Towards engineering and production of artificial spider silk using tools of synthetic biology. ENGINEERING BIOLOGY 2020; 4:1-6. [PMID: 36970229 PMCID: PMC9996717 DOI: 10.1049/enb.2019.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Spider silk is one of the strongest biomaterials available in nature. Its mechanical properties make it a good candidate for applications in various fields ranging from protective armour to bandages for wound dressing to coatings for medical implants. Spider silk is formed by an intricate arrangement of spidroins, which are extremely large proteins containing long stretches of repeating segments rich in alanine and glycine. A large amount of research has been directed towards harnessing the spectacular potential of spider silks and using them for different applications. The interdisciplinary approach of synthetic biology is an ideal tool to study these spider silk proteins and work towards the engineering and production of synthetic spider silk. This review aims to highlight the recent progress that has been made in the study of spider silk proteins using different branches of synthetic biology. Here, the authors discuss the different computational approaches, directed evolution techniques and various expression platforms that have been tested for the successful production of spider silk. Future challenges facing the field and possible solutions offered by synthetic biology are also discussed.
Collapse
Affiliation(s)
- Hashwardhan Poddar
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEMThe University of ManchesterManchesterM1 7DNUK
| | - Rainer Breitling
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEMThe University of ManchesterManchesterM1 7DNUK
| | - Eriko Takano
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEMThe University of ManchesterManchesterM1 7DNUK
| |
Collapse
|
37
|
Zhang J, Sun J, Li B, Yang C, Shen J, Wang N, Gu R, Wang D, Chen D, Hu H, Fan C, Zhang H, Liu K. Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907598. [PMID: 32003943 DOI: 10.1002/smll.201907598] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Lightweight and mechanically strong protein fibers are promising for many technical applications. Despite the widespread investigation of biological fibers based on spider silk and silkworm proteins, it remains a challenge to develop low-cost proteins and convenient spinning technology for the fabrication of robust biological fibers. Since there are plenty of widely available proteins in nature, it is meaningful to investigate the preparation of fibers by the proteins and explore their biomedical applications. Here, a facile microfluidic strategy is developed for the scalable construction of biological fibers via a series of easily accessible spherical and linear proteins including chicken egg, quail egg, goose egg, bovine serum albumin, milk, and collagen. It is found that the crosslinking effect in microfluidic chips and double-drawn treatment after spinning are crucial for the formation of fibers. Thus, high tensile strength and toughness are realized in the fibers, which are comparable or even higher than that of many recombinant spider silks or regenerated silkworm fibers. Moreover, the suturing applications in rat and minipig models are realized by employing the mechanically strong fibers. Therefore, this work opens a new direction for the production of biological fibers from natural sources.
Collapse
Affiliation(s)
- Jinrui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chenjing Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nan Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin Uuniversity, 130021, Changchun, China
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honggang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
38
|
Sarkar A, Connor AJ, Koffas M, Zha RH. Chemical Synthesis of Silk-Mimetic Polymers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4086. [PMID: 31817786 PMCID: PMC6947416 DOI: 10.3390/ma12244086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
Silk is a naturally occurring high-performance material that can surpass man-made polymers in toughness and strength. The remarkable mechanical properties of silk result from the primary sequence of silk fibroin, which bears semblance to a linear segmented copolymer with alternating rigid ("crystalline") and flexible ("amorphous") blocks. Silk-mimetic polymers are therefore of great emerging interest, as they can potentially exhibit the advantageous features of natural silk while possessing synthetic flexibility as well as non-natural compositions. This review describes the relationships between primary sequence and material properties in natural silk fibroin and furthermore discusses chemical approaches towards the synthesis of silk-mimetic polymers. In particular, step-growth polymerization, controlled radical polymerization, and copolymerization with naturally derived silk fibroin are presented as strategies for synthesizing silk-mimetic polymers with varying molecular weights and degrees of sequence control. Strategies for improving macromolecular solubility during polymerization are also highlighted. Lastly, the relationships between synthetic approach, supramolecular structure, and bulk material properties are explored in this review, with the aim of providing an informative perspective on the challenges facing chemical synthesis of silk-mimetic polymers with desirable properties.
Collapse
Affiliation(s)
| | | | | | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (A.S.); (A.J.C.); (M.K.)
| |
Collapse
|
39
|
Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110197. [PMID: 31761195 DOI: 10.1016/j.msec.2019.110197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022]
Abstract
Silks, in particular silkworm silks, have been studied for decades as possible candidate materials for biomedical applications. Recently, great attentions have been paid to spider silks, mainly due to their unique and remarkable mechanical properties. Both materials express singular interactions with cells through specific biorecognition moieties on the core proteins making up the two silks. In this work, the silk from a Colombian spider, Linothele megatheloides (LM), which produces a single type of silk in a relatively large amount, was studied in comparison with silk from Bombyx mori silkworm, before and after degumming, with the evaluation of their chemical, mechanical and biological properties. Unexpected biological features in cell culture tests were found for the LM silk already at very early stage, so suggesting further investigation to explore its use for tailored biomedical applications.
Collapse
|
40
|
Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00114-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Harris TI, Paterson CA, Farjood F, Wadsworth ID, Caldwell L, Lewis RV, Jones JA, Vargis E. Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruch's Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomater Sci Eng 2019; 5:4023-4036. [PMID: 33448804 DOI: 10.1021/acsbiomaterials.9b00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch's membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 μm) to that of native Bruch's membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC-dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like "cobblestone" morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch's membrane and develop more biomimetic retinal models.
Collapse
|
42
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:187-221. [PMID: 31713200 DOI: 10.1007/978-981-13-9791-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
Collapse
|
44
|
You Z, Ye X, Ye L, Qian Q, Wu M, Song J, Che J, Zhong B. Extraordinary Mechanical Properties of Composite Silk Through Hereditable Transgenic Silkworm Expressing Recombinant Major Ampullate Spidroin. Sci Rep 2018; 8:15956. [PMID: 30374029 PMCID: PMC6206087 DOI: 10.1038/s41598-018-34150-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/02/2018] [Indexed: 12/30/2022] Open
Abstract
Spider dragline silk is a remarkable material that shows excellent mechanical properties, diverse applications, biocompatibility and biodegradability. Transgenic silkworm technology was used to obtain four types of chimeric silkworm/spider (termed composite) silk fibres, including different lengths of recombinant Major ampullate Spidroin1 (re-MaSp1) or recombinant Major ampullate Spidroin2 (re-MaSp2) from the black widow spider, Latrodectus hesperus. The results showed that the overall mechanical properties of composite silk fibres improved as the re-MaSp1 chain length increased, and there were significant linear relationships between the mechanical properties and the re-MaSp1 chain length (p < 0.01). Additionally, a stronger tensile strength was observed for the composite silk fibres that included re-MaSp1, which only contained one type of repetitive motif, (GA)n/An, to provide tensile strength, compared with the silk fibres that includedre-MaSp2, which has the same protein chain length as re-MaSp1 but contains multiple types of repetitive motifs, GPGXX and (GA)n/An. Therefore, the results indicated that the nature of various repetitive motifs in the primary structure played an important role in imparting excellent mechanical properties to the protein-based silk fibres. A silk protein with a single type of repetitive motif and sufficiently long chains was determined to be an additional indispensable factor. Thus, this study forms a foundation for designing and optimizing the structure of re-silk protein using a heterologous expression system.
Collapse
Affiliation(s)
- Zhengying You
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaogang Ye
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lupeng Ye
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiujie Qian
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meiyu Wu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jia Song
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiaqian Che
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Boxiong Zhong
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
45
|
Bowen CH, Dai B, Sargent CJ, Bai W, Ladiwala P, Feng H, Huang W, Kaplan DL, Galazka JM, Zhang F. Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk. Biomacromolecules 2018; 19:3853-3860. [DOI: 10.1021/acs.biomac.8b00980] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Jonathan M. Galazka
- Space Biosciences Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, California 94035, United States
| | | |
Collapse
|
46
|
Zhou Y, Rising A, Johansson J, Meng Q. Production and Properties of Triple Chimeric Spidroins. Biomacromolecules 2018; 19:2825-2833. [DOI: 10.1021/acs.biomac.8b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yizhong Zhou
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Anna Rising
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| |
Collapse
|
47
|
Dionne J, Lefèvre T, Bilodeau P, Lamarre M, Auger M. A quantitative analysis of the supercontraction-induced molecular disorientation of major ampullate spider silk. Phys Chem Chem Phys 2018; 19:31487-31498. [PMID: 29159351 DOI: 10.1039/c7cp05739c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spider silks exhibit remarkable properties, among which the so-called supercontraction, a physical phenomenon by which fibers undergo a longitudinal shrinkage and a radial swelling when exposed to water. The process is marked by a significant decrease in chain orientation resulting from plasticisation of the amorphous phase. Despite several studies that determined the Hermans orientation function, more quantitative data are required to be able to describe theoretically the macroscopic water-induced shrinkage from molecular reorganization. Here, we have examined the supercontraction of the major ampullate silk single fibers of Nephila clavipes (Nc) and Araneus diadematus (Ad) using polarized Raman spectromicroscopy. We determined the order parameters, the orientation distribution and the secondary structure content. Our data suggest that supercontraction induces a slight increase in β-sheet content, consistently with previous works. The β-sheet orientation is slightly affected by supercontraction compared to that of the amorphous phase, which becomes almost isotropic with shrinkage. Despite an initially lower orientation level, the Ad fiber shows a larger orientation decrease than Nc, consistently with its higher shrinkage amplitude. Although they share similar trends, absolute values of the orientation parameters from this work differ from those found in the literature. We took advantage of having determined the distribution of orientation to estimate the amplitude of shrinkage from changes in macromolecular size resulting from molecular disorientation. Our calculations show that more realistic models are needed to correlate molecular reorientation/refolding to macroscopic shrinkage. This work also underlines that more accurate data relative to molecular orientation are necessary.
Collapse
Affiliation(s)
- J Dionne
- Département de chimie, Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Université Laval, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | | | | | | | | |
Collapse
|
48
|
Humenik M, Lang G, Scheibel T. Silk nanofibril self-assembly versus electrospinning. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1509. [PMID: 29393590 DOI: 10.1002/wnan.1509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Natural silk fibers represent one of the most advanced blueprints for (bio)polymer scientists, displaying highly optimized mechanical properties due to their hierarchical structures. Biotechnological production of silk proteins and implementation of advanced processing methods enabled harnessing the potential of these biopolymer not just based on the mechanical properties. In addition to fibers, diverse morphologies can be produced, such as nonwoven meshes, films, hydrogels, foams, capsules and particles. Among them, nanoscale fibrils and fibers are particularly interesting concerning medical and technical applications due to their biocompatibility, environmental and mechanical robustness as well as high surface-to-volume ratio. Therefore, we introduce here self-assembly of silk proteins into hierarchically organized structures such as supramolecular nanofibrils and fabricated materials based thereon. As an alternative to self-assembly, we also present electrospinning a technique to produce nanofibers and nanofibrous mats. Accordingly, we introduce a broad range of silk-based dopes, used in self-assembly and electrospinning: natural silk proteins originating from natural spinning glands, natural silk protein solutions reconstituted from fibers, engineered recombinant silk proteins designed from natural blueprints, genetic fusions of recombinant silk proteins with other structural or functional peptides and moieties, as well as hybrids of recombinant silk proteins chemically conjugated with nonproteinaceous biotic or abiotic molecules. We highlight the advantages but also point out drawbacks of each particular production route. The scope includes studies of the natural self-assembly mechanism during natural silk spinning, production of silk fibrils as new nanostructured non-native scaffolds allowing dynamic morphological switches, as well as studying potential applications. This article is categorized under: Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Martin Humenik
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Gregor Lang
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Research Center Bio-Macromolecules (BIOmac), Bayreuth Center for Molecular Biosciences (BZMB), Bayreuth Center for Material Science (BayMAT), Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
49
|
Blamires SJ, Nobbs M, Martens PJ, Tso IM, Chuang WT, Chang CK, Sheu HS. Multiscale mechanisms of nutritionally induced property variation in spider silks. PLoS One 2018; 13:e0192005. [PMID: 29390013 PMCID: PMC5794138 DOI: 10.1371/journal.pone.0192005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022] Open
Abstract
Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider's silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk's alanine and proline compositions influenced the alignment of the proteins within the silk's amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers.
Collapse
Affiliation(s)
- Sean J. Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney, Australia
| | - Madeleine Nobbs
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney, Australia
| | - Penny J. Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, The University of New South Wales, Sydney, Australia
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | - Chung-Kai Chang
- National Synchrotron Radiation Research Centre, Hsinchu, Taiwan
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Centre, Hsinchu, Taiwan
| |
Collapse
|
50
|
Gustafsson L, Jansson R, Hedhammar M, van der Wijngaart W. Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704325. [PMID: 29205540 DOI: 10.1002/adma.201704325] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self-assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds.
Collapse
Affiliation(s)
- Linnea Gustafsson
- Micro- and Nanosystems, KTH Royal Institute of Technology, Osquldas väg 10, SE-100 44, Stockholm, Sweden
| | - Ronnie Jansson
- Division of Protein Technology, KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden
| | - My Hedhammar
- Division of Protein Technology, KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden
| | - Wouter van der Wijngaart
- Micro- and Nanosystems, KTH Royal Institute of Technology, Osquldas väg 10, SE-100 44, Stockholm, Sweden
| |
Collapse
|