1
|
Qu G, Song Y, Xu X, Liu Y, Li J, Du G, Liu L, Li Y, Lv X. De novo biosynthesis of mogroside V by multiplexed engineered yeasts. Metab Eng 2025; 88:160-171. [PMID: 39788182 DOI: 10.1016/j.ymben.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
High sugar intake has become a global health concern due to its association with various diseases. Mogroside V (MG-V), a zero-calorie sweetener with multiple medical properties, is emerging as a promising sugar substitute. However, its application is hindered by low natural abundance and the inefficiency of conventional plant extraction methods. In this study, two glycosyltransferases were introduced into an engineered mogrol-producing Saccharomyces cerevisiae strain to enable the first de novo MG-V biosynthesis. Then, MG-V titer increased by 2.3 × 104-fold through a series of efficient metabolic engineering strategies, including the enhancement of precursors, inhibition of the competitive pathway, and prevention of MG-V degradation. The challenges of enzyme spatial separation and high protein folding stress were addressed through lipid droplet (LD) compartmentalization and endoplasmic reticulum expansion, respectively. The ty1 transposon was employed to increase the copies of LD-targeted fusion protein AtCPR2-CYP87D18, which possessed higher CYP450 catalytic efficiency, resulting in an MG-V titer of 10.25 mg/L in shake flasks and 28.62 mg/L in a 5-L bioreactor. Overall, this study realized de novo MG-V synthesis in S. cerevisiae for the first time and provided a valuable reference for constructing microbial factories for triterpenoid saponin synthesis.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, 214122, China
| | - Yunfei Song
- Guilin Layn Natural Ingredients Corp, Guilin, 541000, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Chen J, Pan H, Xie J, Tang K, Li Y, Jia H, Zhu L, Yan M, Wei P. Semirational Design of a UDP-Glycosyltransferase from Nicotiana tomentosiformis for Efficient Biosynthesis of Rebaudioside M2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27334-27345. [PMID: 39625115 DOI: 10.1021/acs.jafc.4c09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Rebaudioside M2 (RebM2) is characterized as 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-β-d-glucopyranosyl-6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester], an isomer of rebaudioside M with a 1 → 6 sugar linkage. The product was found in the biotransformation of rebaudioside D (RebD) catalyzed by a glycosyltransferase from Nicotiana tomentosiformis (NtUGT). Herein, guided by consensus engineering and molecular dynamics simulations, a variant NtUGTF72L/L123P/L157P with enhanced activity and thermostability was obtained. It exhibits a strikingly reduced Km (22.47 mM to 0.15 mM) toward RebD, and the catalytic efficiency was over 5000-fold higher than that of the wildtype. When an Arabidopsis sucrose synthase AtSuSy was used for UDP-glucose recycling, NtUGTF72L/L123P/L157P effectively converted 80 g/L RebD to 90.14 g/L RebM2. In a one-pot three-enzyme reaction involving an engineered glycosyltransferase UGTSL2N358F, which catalyzed the conversion of RebA into RebD, 78.8 g/L of RebM2 (with a yield of 84.56%) was produced from 70 g/L of RebA, avoiding the use of the naturally rare and poorly soluble RebD as the starting material. This work will provide a promising biocatalyst for RebM2 biosynthesis on a large scale and create an opportunity to accelerate the exploration of the biological activity of RebM2 and its potential as a candidate for superior SG sweeteners.
Collapse
Affiliation(s)
- Jiajie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiangtao Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liping Zhu
- Shandong Engineering Research Center for Natural Product Metabolic Engineering and Synthetic Biology, Weifang 255178, China
- Dongtai Hirye Biotechnology Co., Ltd, Jiangsu 224200, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Subramani G, Manian R. Optimizing bio-vanillin synthesis from ferulic acid via Pediococcus acidilactici: A systematic approach to process enhancement and yield maximization. J Biotechnol 2024; 393:49-60. [PMID: 39025369 DOI: 10.1016/j.jbiotec.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, Pediococcus acidilactici PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by Pediococcus acidilactici PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca2+, k+, and Mg2+ and the metal ions that affects the yield of bio-vanillin are Pb+ and Cr+ were identified from the effect of metal ions in the bio-vanillin production.
Collapse
Affiliation(s)
- Gomathi Subramani
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Rameshpathy Manian
- Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
4
|
Crown E, Rovai D, Racette CM, Barbano DM, Drake MA. Consumer Perception of Sweeteners in Yogurt. J Dairy Sci 2024:S0022-0302(24)01112-3. [PMID: 39245170 DOI: 10.3168/jds.2024-24862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Consumers are interested in products with reduced sugar, a trend which has been attributed to consumers associating high-sugar foods with obesity, diabetes, heart disease and high blood pressure. The objective of this study was to evaluate consumer perception of sugar reduction in yogurt - both conceptually and for liking of actual products. An online survey (n = 1290) was conducted to evaluate consumer perception of sweeteners available in commercial yogurts. Participants who purchased yogurt at least once in the past 3 mo completed a series of exercises that involved demographics, agreement, Kano, and Maximum Difference (MaxDiff) scaling questions. Subsequently, vanilla 1% milkfat yogurts sweetened with sucrose were formulated to iso-sweet taste intensity with either stevia, allulose, a blend of sucrose and honey or a blend of sucrose, stevia and allulose using magnitude estimate scaling followed by paired comparison tests with consumers (n = 40). A consumer acceptance test (n = 229) was then conducted using the 5 vanilla yogurts. Half of the consumers (n = 115) were primed with the specific yogurt sweetener and the other half were not. Survey and acceptance test data were evaluated by univariate and multivariate analyses. Conceptually, consumers preferred the claim "naturally sweetened" over a reduced sugar claim in yogurt (P < 0.05). Honey was preferred over other sweeteners, followed by agave nectar and cane sugar (P < 0.05). Allulose was the least preferred sweetener option conceptually (P < 0.05). Priming with sweetener type positively impacted consumer acceptance, regardless of sweetener (P < 0.05). When yogurts were tasted, yogurts sweetened with sucrose were the most preferred regardless of priming (P < 0.05). Yogurts sweetened with allulose or a blend of allulose, stevia, and sucrose received higher liking scores than yogurts with stevia (P < 0.05), suggesting that allulose can assist with sugar reduction in yogurt. Consumers are interested in healthy yogurts that are naturally sweetened, but flavor/taste remains the driving force for liking and purchase. The use of a natural non-nutritive sweetener that delivers the sensory experience of sucrose is ultimately more important than familiarity with the actual sweetener.
Collapse
Affiliation(s)
- E Crown
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - D Rovai
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606
| | - C M Racette
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606
| | - D M Barbano
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M A Drake
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606.
| |
Collapse
|
5
|
Lu X, Li J, Huang C, Wang Z, Chen Y, Jiang S, Li J, Xie N. Development of New Multi-Glycosylation Routes to Facilitate the Biosynthesis of Sweetener Mogrosides from Bitter Immature Siraitia Grosvenorii Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18078-18088. [PMID: 39078882 DOI: 10.1021/acs.jafc.4c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Mogrosides, which have various pharmacological activities, are mainly extracted from Siraitia grosvenorii (Luo Han Guo) and are widely used as natural zero-calorie sweeteners. Unfortunately, the difficult cultivation and long maturation time of Luo Han Guo have contributed to a shortage of mogrosides. To overcome this obstacle, we developed a highly efficient biosynthetic method using engineered Escherichia coli to synthesize sweet mogrosides from bitter mogrosides. Three UDP-glycosyltransferase (UGT) genes with primary/branched glycosylation catalytic activity at the C3/C24 sites of mogrosides were screened and tested. Mutant M3, which could catalyze the glycosylation of nine types of mogrosides, was obtained through enhanced catalytic activity. This improvement in β-(1,6)-glycosidic bond formation was achieved through single nucleotide polymorphisms and direct evolution, guided by 3D structural analysis. A new multienzyme system combining three UGTs and UDP-glucose (UDPG) regeneration was developed to avoid the use of expensive UDPG. Finally, the content of sweet mogrosides in the immature Luo Han Guo extract increased significantly from 57% to 95%. This study not only established a new multienzyme system for the highly efficient production of sweet mogrosides from immature Luo Han Guo but also provided a guideline for the high-value utilization of rich bitter mogrosides from agricultural waste and residues.
Collapse
Affiliation(s)
- Xinyi Lu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jianxiu Li
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Chuanqing Huang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Zhefei Wang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Yanchi Chen
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Shuiyuan Jiang
- Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin 541006, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Nengzhong Xie
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| |
Collapse
|
6
|
Khan S, Ahmad N, Fazal H, Saleh IA, Abdel-Maksoud MA, Malik A, AbdElgayed G, Jalal A, Rauf K, Ali L, Ullah S, Niqabullah, Ahmad S. Exploring stevioside binding affinity with various proteins and receptors actively involved in the signaling pathway and a future candidate for diabetic patients. Front Pharmacol 2024; 15:1377916. [PMID: 39170696 PMCID: PMC11335537 DOI: 10.3389/fphar.2024.1377916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction and Background: Diabetes is a chronic metabolic disease characterized by elevated blood glucose levels and is one of the main global health concerns. Synthetic sugar substrate has many side effects such as leukemia, bladder cancer, hepatotoxicity, breast cancer, headache, and brain toxicity. The WHO and FDA has recently banned some of the synthetic sugar alternatives due to their carcinogenic effects. Objective and Methodology: Therefore, the main objective of the current study was to investigate the safety and binding affinity of Stevioside with Glucose Transpoter-4 (GLUT-4), Akt, Insulin Receptor (IR) and Insulin Receptor Substrate-1 (IRS-1) to confirmed that Stevioside is one the potent natural sweetener/drug for diabetes. This study delves into the molecular interaction between Stevioside and key diabetic proteins: GLUT-4, Akt, IR and IRS-1. A precise molecular docking approach was used to simulate the binding affinity of Stevioside to these proteins. The pharmacokinetic properties of the molecule should be taken into consideration as important variables throughout the virtual screening process. Results: The result of active site analysis of GLUT-4, Akt, IR and IRS-1 showed a zone of 2158.359 Ǻ2, 579.259 Ǻ2, 762.651 Ǻ2, and 152.167 Ǻ2 and a volume of 2765.094 Ǻ³, 355.567 Ǻ³, 686.806 Ǻ³, and 116.874 Ǻ³, respectively. Docking analysis of the Stevioside compound showed the highest docking energy with scores of -9.9 with GLUT-4, -6.7 with Akt, -8.0 with IR and -8.8 with IRS-1. Studies indicated that it remains undigested by stomach acids and enzymes and is not absorbed in the upper small intestine. Further, tests revealed no hepatotoxicity, AMES toxicity, or skin sensitivity, making it a promising candidate for safe consumption as drug metabolism. Conclusion and Recommendations: Instead of other sugar alternatives, Stevioside will help diabetic patients with a lower chance of infections, lowered blood pressure/blood sugar, and increased glucose uptake in diabetic muscles. Stevioside is a natural sweetener, and the current study recommends its usage in various dietary products for diabetic patients.
Collapse
Affiliation(s)
- Salman Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Nisar Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Hina Fazal
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Peshawar, Pakistan
| | | | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Arshad Jalal
- São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Kamran Rauf
- Department of Horticulture the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Liaqat Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Sami Ullah
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Niqabullah
- Department of General Medicine, Semey Medical University Kazakhstan, Semey, Kazakhstan
| | - Sajjad Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| |
Collapse
|
7
|
Cui S, Zhang S, Wang N, Su X, Luo Z, Ma X, Li M. Structural insights into the catalytic selectivity of glycosyltransferase SgUGT94-289-3 towards mogrosides. Nat Commun 2024; 15:6423. [PMID: 39080270 PMCID: PMC11289153 DOI: 10.1038/s41467-024-50662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Mogrosides constitute a series of natural sweeteners extracted from Siraitia grosvenorii fruits. These mogrosides are glucosylated to different degrees, with mogroside V (M5) and siamenoside I (SIA) being two mogrosides with high intensities of sweetness. SgUGT94-289-3 constitutes a uridine diphosphate (UDP)-dependent glycosyltransferase (UGT) responsible for the biosynthesis of M5 and SIA, by continuously catalyzing glucosylation on mogroside IIe (M2E) and on the subsequent intermediate mogroside products. However, the mechanism of its promiscuous substrate recognition and multiple catalytic modes remains unclear. Here, we report multiple complex structures and the enzymatic characterization of the glycosyltransferase SgUGT94-289-3. We show that SgUGT94-289-3 adopts a dual-pocket organization in its active site, which allows the two structurally distinct reactive ends of mogrosides to be presented from different pockets to the active site for glucosylation reaction, thus enabling both substrate promiscuity and catalytic regioselectivity. We further identified a structural motif that is essential to catalytic activity and regioselectivity, and generated SgUGT94-289-3 mutants with greatly improved M5/SIA production from M2E in an in vitro one-pot setup.
Collapse
Affiliation(s)
- Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China.
| |
Collapse
|
8
|
Yang L, Yang M, Deng Z, Luo Z, Yuan Z, Rao Y, Zhang Y. Highly Efficient Biosynthesis of Rebaudioside M8 through Structure-Guided Engineering of Glycosyltransferase UGT94E13. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15823-15831. [PMID: 38959519 DOI: 10.1021/acs.jafc.4c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Given the low-calorie, high-sweetness characteristics of steviol glycosides (SGs), developing SGs with improved taste profiles is a key focus. Rebaudioside M8 (Reb M8), a novel non-natural SG derivative obtained through glycosylation at the C-13 position of rebaudioside D (Reb D) using glycosyltransferase UGT94E13, holds promise for further development due to its enhanced sweetness. However, the low catalytic activity of UGT94E13 hampers further research and commercialization. This study aimed to improve the enzymatic activity of UGT94E13 through semirational design, and a variant UGT94E13-F169G/I185G was obtained with the catalytic activity improved by 13.90 times. A cascade reaction involving UGT94E13-F169G/I185G and sucrose synthase AtSuSy was established to recycle uridine diphosphate glucose, resulting in an efficient preparation of Reb M8 with a yield of 98%. Moreover, according to the analysis of the distances between the substrate Reb D and enzymes as well as between Reb D and the glucose donor through molecular dynamics simulations, it is found that the positive effect of shortening the distance on glycosylation reaction activity accounts for the improved catalytic activity of UGT94E13-F169G/I185G. Therefore, this study addresses the bottleneck in the efficient production of Reb M8 and provides a foundation for its widespread application in the food industry.
Collapse
Affiliation(s)
- Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengliang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
9
|
Li S, Luo S, Zhao X, Gao S, Shan X, Lu J, Zhou J. Efficient Conversion of Stevioside to Rebaudioside M in Saccharomyces cerevisiae by a Engineering Hydrolase System and Prolonging the Growth Cycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8140-8148. [PMID: 38563232 DOI: 10.1021/acs.jafc.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.
Collapse
Affiliation(s)
- Shan Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Shuangshuang Luo
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xingying Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Jian Lu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Guo Y, Chen X, Gong P, Long H, Wang J, Yang W, Yao W. Siraitia grosvenorii As a Homologue of Food and Medicine: A Review of Biological Activity, Mechanisms of Action, Synthetic Biology, and Applications in Future Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6850-6870. [PMID: 38513114 DOI: 10.1021/acs.jafc.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Siraitia grosvenorii (SG), also known as Luo Han Guo or Monk fruit, boasts a significant history in food and medicine. This review delves into SG's historical role and varied applications in traditional Chinese culture, examining its phytochemical composition and the health benefits of its bioactive compounds. It further explores SG's biological activities, including antioxidant, anti-inflammatory, and antidiabetic properties and elucidates the mechanisms behind these effects. The review also highlights recent synthetic biology advances in enhancing the production of SG's bioactive compounds, presenting new opportunities for broadening their availability. Ultimately, this review emphasizes SG's value in food and medicine, showcasing its historical and cultural importance, phytochemistry, biological functions, action mechanisms, and the role of synthetic biology in its sustainable use.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
11
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
12
|
Yuan Y, Yiasmin MN, Tristanto NA, Chen Y, Liu Y, Guan S, Wang Z, Hua X. Computational simulations on the taste mechanism of steviol glycosides based on their interactions with receptor proteins. Int J Biol Macromol 2024; 255:128110. [PMID: 37981277 DOI: 10.1016/j.ijbiomac.2023.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Steviol glycoside (SG) is a potential natural sugar substitute. The taste of various SG structures differ significantly, while their mechanism has not been thoroughly investigated. To investigate the taste mechanism, molecular docking simulations of SGs with sweet taste receptor TAS1R2 and bitter taste receptor TAS2R4 were conducted. The result suggested that four flexible coils (regions) in TAS1R2 constructed a geometry open pocket in space responsible for the binding of sweeteners. Amino acids that form hydrogen bonds with sweeteners are located in different receptor regions. In bitterness simulation, fewer hydrogen bonds were formed with the increased size of SG molecules. Particularly, there was no interaction between RM and TAS2R4 due to its size, which explains the non-bitterness of RM. Molecular dynamics simulations further indicated that the number of hydrogen bonds between SGs and TAS1R2 was maintained during a simulation time of 50 ns, while sucrose was gradually released from the binding site, leading to the break of interaction. Conclusively, the high sweetness intensity of SG can be attributed to its durative concurrent interaction with the receptor's binding site, and such behavior was determined by the structure feature of SG.
Collapse
Affiliation(s)
- Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mst Nushrat Yiasmin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Yujie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Sevtia Biotechnology Co., Ltd., Wuxi 214181, China
| | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijie Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Qu G, Liu Y, Ma Q, Li J, Du G, Liu L, Lv X. Progress and Prospects of Natural Glycoside Sweetener Biosynthesis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15926-15941. [PMID: 37856872 DOI: 10.1021/acs.jafc.3c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinyuan Ma
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, P. R. China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
| |
Collapse
|
14
|
Kurek JM, Mikołajczyk-Stecyna J, Krejpcio Z. Steviol glycosides from Stevia rebaudiana Bertoni mitigate lipid metabolism abnormalities in diabetes by modulating selected gene expression - An in vivo study. Biomed Pharmacother 2023; 166:115424. [PMID: 37677968 DOI: 10.1016/j.biopha.2023.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
In diabetes, in parallel to hyperglycaemia, elevated serum lipids are also diagnosed, representing a high-risk factor for coronary heart disease and cardiovascular complications. The objective of this study was to unravel the mechanisms that underlie the potential of steviol glycosides (stevioside or rebaudioside A) administered at two doses (500 or 2500 mg/kg body weight for 5 weeks) to regulate lipid metabolism. In this paper, the expression of selected genes responsible for glucose and lipid metabolism (Glut4, Pparγ, Cebpa, Fasn, Lpl and Egr1) in the peripheral tissues (adipose, liver and muscle tissue) was determined using quantitative real-time PCR method. It was found that the supplementation of steviol glycosides affected the expression of Glut4, Cebpa and Fasn genes, depending on the type of the glycoside and its dose, as well as the type of tissue, whish in part may explain the lipid-regulatory potential of steviol glycosides in hyperglycaemic conditions. Nevertheless, more in-depth studies, including human trials, are needed to confirm these effects, before steviol glycosides can be used in the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Jakub Michał Kurek
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Joanna Mikołajczyk-Stecyna
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Zbigniew Krejpcio
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
15
|
Saraiva A, Carrascosa C, Ramos F, Raheem D, Lopes M, Raposo A. Coconut Sugar: Chemical Analysis and Nutritional Profile; Health Impacts; Safety and Quality Control; Food Industry Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3671. [PMID: 36834366 PMCID: PMC9964017 DOI: 10.3390/ijerph20043671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Consumers often wish to substitute refined sugar with alternative sweeteners, such as coconut sugar, given growing interest in healthy eating and the public's negative perception of excess sugar intake. Coconut sugar is a healthier, sweetener option than the majority of other sugars that are commercially available. Sap is collected from trees to be transported, stored, and evaporated during processing, which are labor- and resource-intensive operations. Consequently, the cost of production is higher than it is for cane sugar. Given its high nutritional value and low glycemic index, people are willing to pay higher prices for it. However, one barrier is ignorance of its health benefits. This review examines and deals in-depth with the most significant features of coconut sugar chemical analyses to focus on several analytical methodologies given the increasing demand for naturally derived sweeteners in the last 10 years. A deeper understanding of the quality control, safety, health effects, nutritional profile, and sustainability issues corresponding to coconut sugar is necessary to effectively implement them in the food industry.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Maria Lopes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
16
|
Heterologous mogrosides biosynthesis in cucumber and tomato by genetic manipulation. Commun Biol 2023; 6:191. [PMID: 36805532 PMCID: PMC9938114 DOI: 10.1038/s42003-023-04553-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Mogrosides are widely used as high-value natural zero-calorie sweeteners that exhibit an array of biological activities and allow for vegetable flavour breeding by modern molecular biotechnology. In this study, we developed an In-fusion based gene stacking strategy for transgene stacking and a multi-gene vector harbouring 6 mogrosides biosynthesis genes and transformed it into Cucumis sativus and Lycopersicon esculentum. Here we show that transgenic cucumber can produce mogroside V and siamenoside I at 587 ng/g FW and 113 ng/g FW, respectively, and cultivated transgenic tomato with mogroside III. This study provides a strategy for vegetable flavour improvement, paving the way for heterologous biosynthesis of mogrosides.
Collapse
|
17
|
Mu D, Chen W, Shao Y, Wilson IW, Zhao H, Luo Z, Lin X, He J, Zhang Y, Mo C, Qiu D, Tang Q. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Siraitia siamensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:288. [PMID: 36679001 PMCID: PMC9861706 DOI: 10.3390/plants12020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
WRKY transcription factors, as the largest gene family in higher plants, play an important role in various biological processes including growth and development, regulation of secondary metabolites, and stress response. In this study, we performed genome-wide identification and analysis of WRKY transcription factors in S. siamensis. A total of 59 SsWRKY genes were identified that were distributed on all 14 chromosomes, and these were classified into three major groups based on phylogenetic relationships. Each of these groups had similar conserved motifs and gene structures. We compared all the S. siamensis SsWRKY genes with WRKY genes identified from three diverse plant species, and the results implied that segmental duplication and tandem duplication play an important roles in the evolution processes of the WRKY gene family. Promoter region analysis revealed that SsWRKY genes included many cis-acting elements related to plant growth and development, phytohormone response, and both abiotic and biotic stress. Expression profiles originating from the transcriptome database showed expression patterns of these SsWRKY genes in four different tissues and revealed that most genes are expressed in plant roots. Fifteen SsWRKY genes with low-temperature response motifs were surveyed for their gene expression under cold stress, showing that most genes displayed continuous up-regulation during cold treatment. Our study provides a foundation for further study on the function and regulatory mechanism of the SsWRKY gene family.
Collapse
Affiliation(s)
- Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wenqiang Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Iain W. Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaodong Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jialong He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboaratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Agave Syrup: Chemical Analysis and Nutritional Profile, Applications in the Food Industry and Health Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127022. [PMID: 35742286 PMCID: PMC9222424 DOI: 10.3390/ijerph19127022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023]
Abstract
Agave syrup (AS), a food product made from agave plant sap, is a vegan sweetener that has become popular for replacing conventional sweeteners such as sucrose. As the demand for naturally derived sweeteners has grown in the last decade, this review paper addresses and discusses, in detail, the most relevant aspects of the chemical AS analysis, applications in the food industry, sustainability issues, safety and quality control and, finally, nutritional profile and health impacts. According to our main research outcome, we can assume that the mid-infrared-principal components analysis, high-performance anion exchange chromatography equipped with a pulsed amperometric detector, and thin-layer chromatography can be used to identify and distinguish syrups from natural sources. The main agave–derived products are juice, leaves, bagasse, and fiber. In sustainability terms, it can be stated that certified organic and free trade agave products are the most sustainable options available on the market because they guarantee products being created without pesticides and according to specific labor standards. The Mexican government and AS producers have also established Mexican guidelines which prohibit using any ingredient, sugar or food additive that derives from sources, apart from agave plants, to produce any commercial AS. Due to its nutritional value, AS is a good source of minerals, vitamins and polyphenols compared to other traditional sweeteners. However, further research into the effects of AS on human metabolism is necessary to back its health claims as a natural sugar substitute.
Collapse
|
19
|
Kumar V, Bansal V, Madhavan A, Kumar M, Sindhu R, Awasthi MK, Binod P, Saran S. Active pharmaceutical ingredient (API) chemicals: a critical review of current biotechnological approaches. Bioengineered 2022; 13:4309-4327. [PMID: 35135435 PMCID: PMC8973766 DOI: 10.1080/21655979.2022.2031412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this article was to generate a framework of bio-based economy by an effective utilization of biomass from the perspectives of agriculture for developing potential end bio-based products (e.g. pharmaceuticals, active pharmaceutical ingredients). Our discussion is also extended to the conservatory ways of bioenergy along with development of bio-based products and biofuels. This review article further showcased the fundamental principles for producing these by-products. Thereby, the necessity of creating these products is to be efficaciously utilization by small-scale farmers that can aid the local needs for bio-based materials and energy. Concurrently, the building up of small markets will open up the avenues and linkages for bigger markets. In nutshell, the aim of the review is to explore the pathway of the biotechnological approaches so that less chosen producers and underdeveloped areas can be allied so that pressure on the systems of biomass production can be relaxed.
Collapse
Affiliation(s)
- Vinod Kumar
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad-India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government Home Science College, Affiliated to Panjab University, Chandigarh, India
| | - Aravind Madhavan
- Division of Infectious Disease Biology, Rajiv Gandhi Centre for Biotechnology, - Trivandrum- India
| | - Manoj Kumar
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad-India
| | - Raveendran Sindhu
- Deapartment of Food Technology, Tkm Institute of Technology, Kollam-India
| | - Mukesh Kumar Awasthi
- Department of Resource and Environmental Science, College of Natural Resources and Environment, Northwest A&f University, Shaanxi Province, Yangling, PR China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary, Science and Technology (Csir-niist), Trivandrum- India
| | - Saurabh Saran
- Fermentation Technology and Microbial Biotechnology Division, Csir- Indian Institute of Integrative Medicine (Csir-iiim), J & K, India
| |
Collapse
|
20
|
Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides. Nat Commun 2021; 12:7030. [PMID: 34857750 PMCID: PMC8639739 DOI: 10.1038/s41467-021-27144-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Steviol glycosides are the intensely sweet components of extracts from Stevia rebaudiana. These molecules comprise an invariant steviol aglycone decorated with variable glycans and could widely serve as a low-calorie sweetener. However, the most desirable steviol glycosides Reb D and Reb M, devoid of unpleasant aftertaste, are naturally produced only in trace amounts due to low levels of specific β (1-2) glucosylation in Stevia. Here, we report the biochemical and structural characterization of OsUGT91C1, a glycosyltransferase from Oryza sativa, which is efficient at catalyzing β (1-2) glucosylation. The enzyme's ability to bind steviol glycoside substrate in three modes underlies its flexibility to catalyze β (1-2) glucosylation in two distinct orientations as well as β (1-6) glucosylation. Guided by the structural insights, we engineer this enzyme to enhance the desirable β (1-2) glucosylation, eliminate β (1-6) glucosylation, and obtain a promising catalyst for the industrial production of naturally rare but palatable steviol glycosides.
Collapse
|
21
|
Chen M, Zeng X, Zhu Q, Wang D, Han S, Liang S, Lin Y. Effective synthesis of Rebaudioside A by whole-cell biocatalyst Pichia pastoris. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Li Y, Zhu W, Cai J, Liu W, Akihisa T, Li W, Kikuchi T, Xu J, Feng F, Zhang J. The role of metabolites of steviol glycosides and their glucosylated derivatives against diabetes-related metabolic disorders. Food Funct 2021; 12:8248-8259. [PMID: 34319319 DOI: 10.1039/d1fo01370j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM), characterized by abnormal carbohydrate, lipid, and protein metabolism, is a metabolic disorder caused by a shortage of insulin secretion or decreased sensitivity of target cells to insulin. In addition to changes in lifestyle, a low-calorie diet is recommended to reduce the development of DM. Steviol glycosides (SGs), as natural sweeteners, have gained attention as sucrose alternatives because of their advantages of high sweetness and being low calorie. Most SGs with multiple bioactivities are beneficial to regulate physiological functions. Though SGs have been widely applied in food industry, there is little data on their glucosylated derivatives that are glucosylated steviol glycosides (GSGs). In this review, we have discussed the metabolic fate of GSGs in contrast to SGs, and the molecular mechanisms of glycoside metabolites against diabetes-related metabolic disorders are also summarized. SGs are generally extracted from the Stevia leaf, while GSGs are mainly manufactured using enzymes that transfer glucose units from a starch source to SGs. Results from this study suggest that SGs and GSGs share same bioactive metabolites, steviol and steviol glucuronide (SVG), which exhibit anti-hyperglycemic effects by activating glucose-induced insulin secretion to enhance pancreatic β-cell function. In addition, steviol and SVG have been found to ameliorate the inflammatory response, lipid imbalance, myocardial fibrosis and renal functions to modulate diabetes-related metabolic disorders. Therefore, both SGs and GSGs may be used as potential sucrose alternatives and/or pharmacological alternatives for preventing and treating metabolic disorders.
Collapse
Affiliation(s)
- Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wanfang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China and Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, China
| |
Collapse
|
23
|
Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects. Appl Microbiol Biotechnol 2021; 105:5367-5381. [PMID: 34196745 DOI: 10.1007/s00253-021-11419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
With the pursuit of natural non-calorie sweeteners, steviol glycosides (SGs) have become one of the most popular natural sweeteners in the market. The SGs in Stevia are a mixture of SGs synthesized from steviol (a terpenoid). SGs are diterpenoids. Different SGs depend on the number and position of sugar groups on the core steviol backbone. This diversity comes from the processing of glycoside steviol by various glycosyltransferases. Due to the differences in glycosylation, each SG has unique sensory properties. At present, it is more complicated to extract high-quality SGs from plants, so the excavation of the metabolic pathways of engineered microorganisms to synthesize SGs has been extensively studied. Specifically, the expression of different glycosyltransferases in microbes is key to the synthesis of various SGs by engineered microorganisms. To trigger more researches on the functional characterization of the enzymes encoded by these genes, this review describes the latest research progresses of the related enzymes involved in SG biosynthesis and metabolic engineering.Key points• Outlines the research progress of key enzymes in the biosynthetic pathway of SGs• Factors affecting the catalytic capacity of stevia glucosyltransferase• Provide guidance for the efficient synthesis of SGs in microbial cell factories.
Collapse
|
24
|
Lv X, Wu Y, Gong M, Deng J, Gu Y, Liu Y, Li J, Du G, Ledesma-Amaro R, Liu L, Chen J. Synthetic biology for future food: Research progress and future directions. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Sakr EA, Massoud MI. Impact of prebiotic potential of stevia sweeteners-sugar used as synbiotic preparation on antimicrobial, antibiofilm, and antioxidant activities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Hui Y, Zhan Y, Hou W, Gao L, Zhang Y, Tang Y. Product Control and Insight into Conversion of C6 Aldose Toward C2, C4 and C6 Alditols in One-Pot Retro-Aldol Condensation and Hydrogenation Processes. ChemistryOpen 2021; 10:560-566. [PMID: 33945238 PMCID: PMC8095293 DOI: 10.1002/open.202100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
Alcohols have a wide range of applicability, and their functions vary with the carbon numbers. C6 and C4 alditols are alternative of sweetener, as well as significant pharmaceutical and chemical intermediates, which are mainly obtained through the fermentation of microorganism currently. Similarly, as a bulk chemical, C2 alditol plays a decisive role in chemical synthesis. However, among them, few works have been focused on the chemical production of C4 alditol yet due to its difficult accumulation. In this paper, under a static and semi-flowing procedure, we have achieved the product control during the conversion of C6 aldose toward C6 alditol, C4 alditol and C2 alditol, respectively. About C4 alditol yield of 20 % and C4 plus C6 alditols yield of 60 % are acquired in the one-pot conversion via a cascade retro-aldol condensation and hydrogenation process. Furthermore, in the semi-flowing condition, the yield of ethylene glycol is up to 73 % thanks to its low instantaneous concentration.
Collapse
Affiliation(s)
- Yingshuang Hui
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Yulu Zhan
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Wenrong Hou
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Lou Gao
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Yahong Zhang
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| | - Yi Tang
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy MaterialsFudan University200433 postcode is missingShanghai city is missingP. R. China
| |
Collapse
|
27
|
Xu Y, Zhao L, Chen L, Du Y, Lu Y, Luo C, Chen Y, Wu X. Selective enzymatic α-1,6- monoglucosylation of mogroside IIIE for the bio-creation of α-siamenoside I, a potential high-intensity sweetener. Food Chem 2021; 359:129938. [PMID: 33984594 DOI: 10.1016/j.foodchem.2021.129938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
A new compound, α-siamenoside I (α-SI), with a glucose unit selectively bound to the 6-hydroxyl group of the 24-O-β-glucosyl moiety of mogroside IIIE by α-1,6-glucosidic bond, was bio-created by two screened cyclodextrin glycosyltransferases with a maximum yield of 59.3%. Compared to mogroside IIIE, α-SI showed a significantly increased sweetness intensity (508 times sweeter than 5% sucrose), which is superior to siamenoside I (SI), the sweetest triterpenoid saponin isolated from Siraitia grosvenorii to date. Sensory evaluation showed that the taste quality of α-SI also was obviously better than mogroside IIIE. In addition to α-SI possessing a good stability similar to that of SI, it also did not cause a significant decrease in cell viability at a concentration of 200 μg/mL and had a negative influence on islets function at 1 μM. All of these preliminarily results pave the way for promoting α-SI as a potential low-calorie sweetener.
Collapse
Affiliation(s)
- Yuncong Xu
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Ling Zhao
- Laboratory of Chemical Biology, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Ling Chen
- Laboratory of Chemical Biology, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Yali Du
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Yuanyuan Lu
- Department of Marine Pharmacy, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Chen Luo
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Yijun Chen
- Laboratory of Chemical Biology, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China.
| | - Xuri Wu
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China.
| |
Collapse
|
28
|
Shivani, Thakur BK, Mallikarjun CP, Mahajan M, Kapoor P, Malhotra J, Dhiman R, Kumar D, Pal PK, Kumar S. Introduction, adaptation and characterization of monk fruit (Siraitia grosvenorii): a non-caloric new natural sweetener. Sci Rep 2021; 11:6205. [PMID: 33737610 PMCID: PMC7973523 DOI: 10.1038/s41598-021-85689-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
Siraitia grosvenorii, an herbaceous perennial plant, native to the southern parts of China, is commonly used as a low-calorie natural sweetener. It contains cucurbitane-type triterpene glycosides known as mogrosides. The extract from monk fruit is about 300 times sweeter than sucrose. In spite of its immense importance and International demand, Siraitia grosvenorii (Swingle) is not commercially cultivated outside China since scientific information for cultivation of this species is lacking. Planting material of monk fruit plant was not available in India. Thus, the seeds of monk fruit were introduced in India from China after following International norms. Then the experiments were conducted on different aspects such as seed germination, morphological and anatomical characterization, phenology, flowering and pollination behaviors, and dynamic of mogroside-V accumulation in fruit. The hydropriming at 40 °C for 24 h was found effective to reduce the germination time and to increase the germination rate (77.33%). The multicellular uniseriate trichomes were observed in both the leaf surfaces, however, higher trichomes density was observed in the ventral surface of males compared to females. The microscopic view revealed that the ovary was trilocular (ovary consists three chambers) having two ovules in each chamber or locule. Most of the fruits were globose or oblong type with 5–7 cm in length and 4–7 cm diameter. Mogroside-V content in fruit at 80 days after pollination was 0.69% on dry weight basis. The rate of increase of mogroside-V accumulation from 50 to 70 days was very slow, whereas a sharp increase was observed from 70 to 80 days. The higher receptivity of stigma was observed with fully open flowers. The floral diagram and formula have also been developed for both male and female flowers. Our results highlighted that monk fruit can be grown in Indian conditions.
Collapse
Affiliation(s)
- Shivani
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babit Kumar Thakur
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C P Mallikarjun
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India
| | - Mitali Mahajan
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Kapoor
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India
| | - Jigyasa Malhotra
- Division of Chemical Technology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India
| | - Rimpy Dhiman
- Division of Biotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India
| | - Dinesh Kumar
- Division of Chemical Technology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Probir Kumar Pal
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sanjay Kumar
- Division of Biotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
29
|
Basharat S, Huang Z, Gong M, Lv X, Ahmed A, Hussain I, Li J, Du G, Liu L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
de Jesús-Pires C, Ferreira-Neto JRC, Pacifico Bezerra-Neto J, Kido EA, de Oliveira Silva RL, Pandolfi V, Wanderley-Nogueira AC, Binneck E, da Costa AF, Pio-Ribeiro G, Pereira-Andrade G, Sittolin IM, Freire-Filho F, Benko-Iseppon AM. Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2021; 21:36-51. [PMID: 30887921 DOI: 10.2174/1389203720666190318164905] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity. They are mostly associated with responses to biotic stresses, in addition to some predicted activities under drought and osmotic stresses. The present review covers aspects related to the structure, evolution, gene expression, and biotechnological potential of TLPs. The efficiency of the discovery of new TLPs is below its potential, considering the availability of omics data. Furthermore, we present an exemplary bioinformatics annotation procedure that was applied to cowpea (Vigna unguiculata) transcriptome, including libraries of two tissues (root and leaf), and two stress types (biotic/abiotic) generated using different sequencing approaches. Even without using genomic sequences, the pipeline uncovered 56 TLP candidates in both tissues and stresses. Interestingly, abiotic stress (root dehydration) was associated with a high number of modulated TLP isoforms. The nomenclature used so far for TLPs was also evaluated, considering TLP structure and possible functions identified to date. It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming a better performance under biotic and abiotic stresses. The development of new therapeutic drugs against human fungal pathogens also deserves attention. Despite that, applications derived from TLP molecules are still below their potential, as it is evident in our review.
Collapse
Affiliation(s)
- Carolline de Jesús-Pires
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - João Pacifico Bezerra-Neto
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Ederson Akio Kido
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Valesca Pandolfi
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Soja, Londrina, Parana, Brazil
| | | | - Gilvan Pio-Ribeiro
- Departamento de Agronomia/Fitossanidade, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Genira Pereira-Andrade
- Departamento de Agronomia/Fitossanidade, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Ilza Maria Sittolin
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Meio-Norte, Teresina, Piaui, Brazil
| | - Francisco Freire-Filho
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Amazonia Oriental, Belem, Para, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
31
|
Ribeiro MN, Rodrigues DM, Rocha RAR, Silveira LR, Condino JPF, Júnior AC, de Souza VR, Nunes CA, Pinheiro ACM. Optimising a stevia mix by mixture design and napping: A case study with high protein plain yoghurt. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6285. [PMID: 32872325 PMCID: PMC7504156 DOI: 10.3390/ijerph17176285] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/16/2023]
Abstract
At a moment when the population is increasingly aware and involved in what it eats, both consumers and the food sector are showing more interest in natural foods. This review work discusses, addresses and provides details of the most important aspects of consumer's perceptions of and attitudes to natural foods and in-depth research into natural sweeteners. It also includes issues about their use and development as regards health impacts, food security and sustainability. In line with our main research outcome, we can assume that consumers are very keen on choosing foods with clean labelling, natural ingredients, preferably with other functional properties, without the loss of taste. In response to such a phenomenon, the food industry offers consumers alternative natural sweeteners with the advantage of added health benefits. It is noteworthy that Nature is a superb source of desirable substances, and many have a sweet taste, and many still need to be studied. Finally, we must stress that being natural does not necessarily guarantee market success.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Lapland, Finland;
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142 Oporto, Portugal
| | - António Raposo
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
33
|
Tiedge K, Muchlinski A, Zerbe P. Genomics-enabled analysis of specialized metabolism in bioenergy crops: current progress and challenges. Synth Biol (Oxf) 2020; 5:ysaa005. [PMID: 32995549 PMCID: PMC7445794 DOI: 10.1093/synbio/ysaa005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 11/25/2022] Open
Abstract
Plants produce a staggering diversity of specialized small molecule metabolites that play vital roles in mediating environmental interactions and stress adaptation. This chemical diversity derives from dynamic biosynthetic pathway networks that are often species-specific and operate under tight spatiotemporal and environmental control. A growing divide between demand and environmental challenges in food and bioenergy crop production has intensified research on these complex metabolite networks and their contribution to crop fitness. High-throughput omics technologies provide access to ever-increasing data resources for investigating plant metabolism. However, the efficiency of using such system-wide data to decode the gene and enzyme functions controlling specialized metabolism has remained limited; due largely to the recalcitrance of many plants to genetic approaches and the lack of 'user-friendly' biochemical tools for studying the diverse enzyme classes involved in specialized metabolism. With emphasis on terpenoid metabolism in the bioenergy crop switchgrass as an example, this review aims to illustrate current advances and challenges in the application of DNA synthesis and synthetic biology tools for accelerating the functional discovery of genes, enzymes and pathways in plant specialized metabolism. These technologies have accelerated knowledge development on the biosynthesis and physiological roles of diverse metabolite networks across many ecologically and economically important plant species and can provide resources for application to precision breeding and natural product metabolic engineering.
Collapse
Affiliation(s)
- Kira Tiedge
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Andrew Muchlinski
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
34
|
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110457. [PMID: 32234216 DOI: 10.1016/j.plantsci.2020.110457] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/28/2023]
Abstract
Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
35
|
Hanlon P, Sewalt V. GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit Rev Food Sci Nutr 2020; 61:959-970. [PMID: 32274948 DOI: 10.1080/10408398.2020.1749026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past several decades, the use of genetically engineered microorganisms (GEMs, often referred to as Genetically Modified Microorganisms or GMMs) has become widespread in the production of food processing aids and other food ingredients. GEMs are advancing food production by increasing efficiency, reducing waste and resource requirements, and ultimately enabling beneficial innovations such as the cost-effective fortification of food with essential nutrients, vitamins, and amino acids, and delivery of tailored enzymes to achieve unique food processing capabilities. Regulatory agencies, including those in the European Union, United States, and Canada review the safety of GEMs when evaluating food substances produced using GEMs to ensure that both the microorganism and the resulting food substance are safe. This paper provides a summary of historical and current use of GEMs in food manufacture, an overview of frameworks that regulate their use, and a description of the safety assessment of both GEMs and food substances produced with GEMs. The paper encourages regulatory agencies around the globe to take a more aligned approach to the safety evaluation and regulatory oversight of GEM-produced food ingredients and enzymes, a category of food substances that enables more sustainable consumer food choices.
Collapse
Affiliation(s)
| | - Vincent Sewalt
- DuPont Nutrition & Biosciences, Palo Alto, California, USA
| |
Collapse
|
36
|
Pielak M, Czarniecka-Skubina E, Głuchowski A. Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves. Foods 2020; 9:foods9030293. [PMID: 32150889 PMCID: PMC7142574 DOI: 10.3390/foods9030293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to determine the sensory profile and consumer response, as well as physicochemical properties of low-sugar apple preserves (with or without gelling agent or acidity regulator), in which sugar was replaced with varying amounts of steviol glycosides (SGs). According to the analytical assessment and consumer tests’ results, the reduction of sugar by SGs use in the apple preserves without food additives was possible at a substitution level of 10% (0–0.05 g/100 g). Consumers’ degree of liking for sugar substitution with SGs was high, up to 40% (0.20 g/100 g) in the preserves, with the use of pectin and citric acid. Higher levels of sugar substitution with the SGs resulted in flavor and odor deterioration, such as a metallic flavor and odor, a bitter taste, an astringent oral sensation, and a sharp odor. The use of food additives (pectin, citric acid) in apple preserves, allowed the SGs substitution level to be increased. The preserves (Experiment I, II, III) with higher sensory ratings were subjected to physicochemical tests. Physical and chemical analysis of low-sugar products with sucrose substitution by SGs at the level of 10%, 30%, 40% showed their good technological quality. The results demonstrated the possibility of substituting sugar with steviol glycosides to produce energy-reduced apple preserves, with acceptable sensory quality and good physicochemical properties.
Collapse
|
37
|
Shi H, Yang M, Mo C, Xie W, Liu C, Wu B, Ma X. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS One 2019; 14:e0226865. [PMID: 31860647 PMCID: PMC6924677 DOI: 10.1371/journal.pone.0226865] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Siraitia grosvenorii fruit, known as Luo-Han-Guo, has been used as a traditional Chinese medicine for many years, and mogrosides are its primary active ingredients. Unfortunately, Siraitia siamensis, its wild relative, might be misused due to its indistinguishable appearance, not only threatening the reliability of the medication but also partly exacerbating wild resource scarcity. Therefore, high-resolution genetic markers must be developed to discriminate between these species. Here, the complete chloroplast genomes of S. grosvenorii and S. siamensis were assembled and analyzed for the first time; they were 158,757 and 159,190 bp in length, respectively, and possessed conserved quadripartite circular structures. Both contained 134 annotated genes, including 8 rRNA, 37 tRNA and 89 protein-coding genes. Twenty divergences (Pi > 0.03) were found in the intergenic regions. Nine protein-coding genes, accD, atpA, atpE, atpF, clpP, ndhF, psbH, rbcL, and rpoC2, underwent selection within Cucurbitaceae. Phylogenetic relationship analysis indicated that these two species originated from the same ancestor. Finally, four pairs of molecular markers were developed to distinguish the two species. The results of this study will be beneficial for taxonomic research, identification and conservation of Siraitia Merrill wild resources in the future.
Collapse
Affiliation(s)
- Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | | | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| |
Collapse
|
38
|
Effects of Forchlorfenuron on the Morphology, Metabolite Accumulation, and Transcriptional Responses of Siraitia grosvenorii Fruit. Molecules 2019; 24:molecules24224076. [PMID: 31718007 PMCID: PMC6891407 DOI: 10.3390/molecules24224076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 11/17/2022] Open
Abstract
Siraitia grosvenorii fruit, called luo-han-guo (LHG), have been used as a traditional Chinese medicine (TCM) and dietary supplements for many years. Mogrosides, the main bioactive ingredients in LHG, are commercially available worldwide as a non-sugar-based and noncaloric sweetener. However, the production cannot meet the increasing market demand because of the low content of mogrosides and the small size of LHG. Therefore, some advanced technologies have been applied for improving the quality of LHG. Forchlorfenuron (CPPU), a plant growth regulator, is widely applied to promote plant yield and the secondary metabolite synthesis. Here, the content of nine mogrosides and three intermediates in LHG that were treated with three different concentrations of CPPU were determined by LC-MS/MS and GC-MS, respectively. The total content of mogrosides in LHG treated with CPPU was not enhanced, and the proportion of some main bioactive ingredients, including mogroside V (MV), were decreased relative to that of the control treatment. Morphological and cytological observations showed CPPU could make an early lignification in fruit epidermal cells, and 5 or 25 mg L-1 CPPU could inhibit LHG growth. The expression levels of 24 key genes in the mogroside biosynthesis pathway were measured and revealed that genes downregulated in upstream, and different expressions of SgUGTs would affect the accumulations and proportions of mogrosides in LHG induced by CPPU. This was the first study that applied CPPU individually on LHG, and assessed effects of CPPU on the morphology, the accumulation of metabolites, and expression profiles of 24 structural genes. The CPPU effects on LHG were undesirable, including development inhibition and the decrease of main mogroside content. These will provide guidance for the rational application of CPPU.
Collapse
|
39
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
40
|
Lee SH, Ko JA, Kim HS, Jo MH, Kim JS, Kim D, Cho JY, Wee YJ, Kim YM. Enzymatic Synthesis of Glucosyl Rebaudioside A and its Characterization as a Sweetener. J Food Sci 2019; 84:3186-3193. [PMID: 31589348 DOI: 10.1111/1750-3841.14821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Rebaudioside A was modified via glucosylation by recombinant dextransucrase of Leuconostoc lactis EG001 in Escherichia coli BL21 (DE3), forming single O-α-D-glucosyl-(1″→6') rebaudioside A with yield of 86%. O-α-D-glucosyl-(1″→6') rebaudioside A was purified using HPLC and Diaion HP-20 and its properties were characterized for possible use as a food ingredient. Almost 98% of O-α-D-glucosyl-(1″→6') rebaudioside A was dissolved after 15 days of storage at room temperature, compared to only 11% for rebaudioside A. Compared to rebaudioside A, O-α-D-glucosyl-(1″→6') rebaudioside A showed similar or improved acidic or thermal stability in commercial drinks. Thus, O-α-D-glucosyl-(1″→6') rebaudioside A could be used as a highly pure and improved sweetener with high stability in commercial drinks. PRACTICAL APPLICATION: The proposed method can be used to generate glucosyl rebaudioside A by enzymatic glucosylation. Simple glucosyl rebaudioside A exhibited high acid/thermal stability and improved sweetener in commercialized drinks. This method can be applied to obtain high value-added bioactive compounds by enzymatic modification.
Collapse
Affiliation(s)
- So-Hyeon Lee
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Jin-A Ko
- Radiation Breeding Research Center, Advanced Radiation Technology Inst., Korea Atomic Energy Research Inst., Jeongeup, Republic of Korea
| | - Hae-Soo Kim
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Min-Ho Jo
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Joong-Su Kim
- Bio-industrial Process Research Center, Korea Research Inst. of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Doman Kim
- Research Inst. of Food Industrialization, Inst. of Green Bio Science & Technology, Seoul National Univ., Pyeongchang, 25354, Korea
| | - Jeong-Yong Cho
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| | - Young-Jung Wee
- Dept. of Food Science and Technology, Yeungnam Univ., Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young-Min Kim
- Dept. of Food Science & Technology, Chonnam National Univ., Gwangju, 61186, Republic of Korea
| |
Collapse
|
41
|
Molecular basis for branched steviol glucoside biosynthesis. Proc Natl Acad Sci U S A 2019; 116:13131-13136. [PMID: 31182573 DOI: 10.1073/pnas.1902104116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Steviol glucosides, such as stevioside and rebaudioside A, are natural products roughly 200-fold sweeter than sugar and are used as natural, noncaloric sweeteners. Biosynthesis of rebaudioside A, and other related stevia glucosides, involves formation of the steviol diterpenoid followed by a series of glycosylations catalyzed by uridine diphosphate (UDP)-dependent glucosyltransferases. UGT76G1 from Stevia rebaudiana catalyzes the formation of the branched-chain glucoside that defines the stevia molecule and is critical for its high-intensity sweetness. Here, we report the 3D structure of the UDP-glucosyltransferase UGT76G1, including a complex of the protein with UDP and rebaudioside A bound in the active site. The X-ray crystal structure and biochemical analysis of site-directed mutants identifies a catalytic histidine and how the acceptor site of UGT76G1 achieves regioselectivity for branched-glucoside synthesis. The active site accommodates a two-glucosyl side chain and provides a site for addition of a third sugar molecule to the C3' position of the first C13 sugar group of stevioside. This structure provides insight on the glycosylation of other naturally occurring sweeteners, such as the mogrosides from monk fruit, and a possible template for engineering of steviol biosynthesis.
Collapse
|
42
|
Kallscheuer N, Classen T, Drepper T, Marienhagen J. Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr Opin Biotechnol 2019; 56:7-17. [DOI: 10.1016/j.copbio.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
43
|
|
44
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
45
|
Parker M, Lopetcharat K, Drake M. Consumer acceptance of natural sweeteners in protein beverages. J Dairy Sci 2018; 101:8875-8889. [DOI: 10.3168/jds.2018-14707] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/26/2018] [Indexed: 11/19/2022]
|
46
|
Perrier JD, Mihalov JJ, Carlson SJ. FDA regulatory approach to steviol glycosides. Food Chem Toxicol 2018; 122:132-142. [PMID: 30268795 DOI: 10.1016/j.fct.2018.09.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
Stevia rebaudiana (Bertoni) Bertoni, commonly known as stevia, is a plant native to South America that has been cultivated for hundreds of years. In 1995, FDA revised its import alert on stevia leaves and extracts to allow for their use as dietary ingredients in dietary supplements. In 2007, the Joint FAO/WHO Expert Committee on Food Additives established a safe level of intake and specifications for steviol glycosides that included a minimum purity of 95% of seven named steviol glycosides. In 2008, FDA responded without questions to a Generally Recognized as Safe (GRAS) notice for the use of highly purified steviol glycosides obtained from stevia leaves as a general purpose sweetener in food. Due to the existing import alert, FDA filed, evaluated, and has not objected to more than 50 GRAS notices for the use of various high-purity steviol glycosides as sweeteners in food. In this paper, we highlight FDA's practices for filing and evaluating GRAS notices for steviol glycosides. We also provide a summary of the data and information presented in GRAS notices for steviol glycosides in the GRAS Notification program. FDA has received a new wave of GRAS notices that include alternative biotechnological methods for production of steviol glycosides.
Collapse
Affiliation(s)
- Judith D Perrier
- U.S. Food and Drug Administration, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review, 5001 Campus Drive, College Park, MD, 20740, USA.
| | - Jeremy J Mihalov
- U.S. Food and Drug Administration, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review, 5001 Campus Drive, College Park, MD, 20740, USA.
| | - Susan J Carlson
- U.S. Food and Drug Administration, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review, 5001 Campus Drive, College Park, MD, 20740, USA.
| |
Collapse
|
47
|
Barcelos MCS, Lupki FB, Campolina GA, Nelson DL, Molina G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol Lett 2018; 365:5106815. [DOI: 10.1093/femsle/fny239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/22/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mayara C S Barcelos
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Fernanda B Lupki
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gabriela A Campolina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - David Lee Nelson
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
48
|
Synthesis of rebaudioside D, using glycosyltransferase UGTSL2 and in situ UDP-glucose regeneration. Food Chem 2018; 259:286-291. [PMID: 29680056 DOI: 10.1016/j.foodchem.2018.03.126] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 11/21/2022]
Abstract
Steviol glycosides from Stevia rebaudiana leaves are used in stevia-based sweeteners for their intense sweetness and low calories. Rebaudioside D is present in leaves in minute quantities (∼0.4-0.5% w/w total dry weight), but it is ∼350 times sweeter than sucrose, and sweeter than the more abundant rebaudioside A and stevioside. In the present study, pathways for rebaudioside D synthesis and UDP-glucose recycling were developed by coupling recombinant UDP-glucosyltransferase UGTSL2 from Solanum lycopersicum and sucrose synthase StSUS1 from Solanum tuberosum. Reaction parameters, including substrate ratio, sucrose concentration, temperature, crude extract concentration, and reaction time, were evaluated, and 17.4 g/l of rebaudioside D (yield = 74.6%) was obtained from 20 g/l of rebaudioside A after 20 h, using UDP or UDP-glucose in recombinant cell crude extracts. Extending the reaction time generated rebaudioside M2 from further glycosylation of rebaudioside D. Km values for UGTSL2 indicated a higher affinity for rebaudioside D than for rebaudioside A.
Collapse
|
49
|
Zhou Y, Li W, You W, Di Z, Wang M, Zhou H, Yuan S, Wong NK, Xiao Y. Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chem Commun (Camb) 2018; 54:7179-7182. [DOI: 10.1039/c7cc09951g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for rapidly mining biological parts from plants for synthetic biology utilizing natural product-derived chemical probes has been reported.
Collapse
Affiliation(s)
- Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Wenjing You
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Zhengao Di
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Mingli Wang
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Haiyan Zhou
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| | - Shuguang Yuan
- Laboratory of Physical Chemistry of Polymers and Membranes
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Switzerland
| | - Nai-Kei Wong
- State Key Discipline of Infection Diseases
- Shenzhen Third People's Hospital
- The Second Affiliated Hospital
- Shenzhen University
- Shenzhen 518112
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology
- CAS Center for Excellence in Molecular Plant Sciences
- Institute of Plant Physiology and Ecology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
| |
Collapse
|
50
|
Rzechonek DA, Dobrowolski A, Rymowicz W, Mirończuk AM. Recent advances in biological production of erythritol. Crit Rev Biotechnol 2017; 38:620-633. [DOI: 10.1080/07388551.2017.1380598] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dorota A. Rzechonek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra M. Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|