1
|
Malinowska M, Kristensen PS, Nielsen B, Fè D, Ruud AK, Lenk I, Greve M, Asp T. The value of early root development traits in breeding programs for biomass yield in perennial ryegrass (Lolium perenne L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:31. [PMID: 39836302 PMCID: PMC11750904 DOI: 10.1007/s00122-024-04797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
KEY MESSAGE Early root traits, particularly total root length, are heritable and show positive genetic correlations with biomass yield in perennial ryegrass; incorporating them into breeding programs can enhance genetic gain. Perennial ryegrass (Lolium perenne L.) is an important forage grass widely used in pastures and lawns, valued for its high nutritive value and environmental benefits. Despite its importance, genetic improvements in biomass yield have been slow, mainly due to its outbreeding nature and the challenges of improving multiple traits simultaneously. This study aims to assess the potential advantages of including early root traits in the perennial ryegrass breeding process. Root traits, including total root length (TRL) and root angle (RA) were phenotyped in a greenhouse using rhizoboxes, and genetic correlations with field yield were estimated across three European locations over two years. Bivariate models estimated significant genetic correlations of 0.40 (SE = 0.14) between TRL and field yield, and a weak but positive correlation to RA of 0.15 (SE = 0.14). Heritability estimates were 0.36 for TRL, 0.39 for RA, and 0.31 for field yield across locations. Incorporating root trait data into selection criteria can improve the efficiency of breeding programs, potentially increasing genetic gain by approximately 10%. This results highlight the potential of early root traits to refine selection criteria in perennial ryegrass breeding programs, contributing to higher yield and efficiency.
Collapse
Affiliation(s)
- M Malinowska
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark.
| | - P S Kristensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
| | - B Nielsen
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
| | - D Fè
- Research Division, DLF Seeds A/S, Store Heddinge, Denmark
| | - A K Ruud
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - I Lenk
- Research Division, DLF Seeds A/S, Store Heddinge, Denmark
| | - M Greve
- Research Division, DLF Seeds A/S, Store Heddinge, Denmark
| | - T Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
| |
Collapse
|
2
|
Paschoal D, Cazetta L, Mendes JVO, Dias NCF, Ometto V, Carrera E, Rossi ML, Aricetti JA, Mieczkowski P, Carvalho GG, Cesarino I, da Silva SF, Ribeiro RV, Teixeira PJPL, da Silva EM, Figueira A. Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39806925 DOI: 10.1111/pce.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition. Intense stem swelling coincided with a reduction in root biomass, predominantly affecting lateral roots. RNA-seq analyses of root samples identified only a few differentially expressed genes involved in hormone metabolism, and root hormone levels were not expressively altered. Inoculation of the auxin highly-sensitive entire mutant genotype maintained the impaired root phenotype; in contrast, the low-cytokinin MT transgenic line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2) with fewer symptoms did not exhibit root growth impairment. Genes involved in cell wall, carbohydrate, and amino acid metabolism were downregulated, accompanied by lower levels of carbohydrate and amino acid in roots, suggesting a reduction in metabolite availability. 13CO2 was supplied to MT plants, and less 13C was detected in the roots of infected MT but not in those of 35S::AtCKX2 line plants, suggesting that cytokinin-mediated sugar sink establishment at the infection site may contribute to impaired root growth. Exogenous sucrose application to roots of infected MT plants partially restored root growth. We propose that the impairment of lateral root development is likely attributed to disrupted sugar signalling and photoassimilate supply by establishing a strong sugar sink at the infected stem.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Laura Cazetta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - João V O Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Nathália C F Dias
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Campinas, São Paulo, Brazil
| | - Piotr Mieczkowski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Igor Cesarino
- Instituto de Biociências, USP, São Paulo, São Paulo, Brazil
- Synthetic and System Biology Center, Inova USP, São Paulo, São Paulo, Brazil
| | - Simone F da Silva
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Rafael V Ribeiro
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Li Y, Ren M, Wu Y, Wang L, Zhao K, Gao H, Li M, Liu Y, Zhu J, Xu J, Mo X, Wu Z, Lu C, Zheng S, Mao C. A root system architecture regulator modulates OsPIN2 polar localization in rice. Nat Commun 2025; 16:15. [PMID: 39747021 PMCID: PMC11697098 DOI: 10.1038/s41467-024-55324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.). The gls1 mutant displays an increased root growth angle, longer primary roots, more adventitious roots and greater nutrient uptake efficiency and grain yield in paddy fields. OsGLS1 is strongly expressed in the root tips of seedlings and in leaves at the flowering stage. OsGLS1 encodes a RING finger E3 ubiquitin ligase mainly localizing at the basal plasma membrane (PM) in several root cell types when phosphorylated on its Ser-30 residue. OsGLS1 interacts with, ubiquitinates and promotes the degradation of basally localized PIN-FORMED 2 (OsPIN2) via the 26S proteasome, thus establishing the typical apical PM localization of OsPIN2 and polar auxin transport, ultimately shaping RSA. This previously unidentified OsGLS1-OsPIN2 regulatory pathway will contribute to an optimal RSA for enhancing nutrient efficiency in rice and other crops.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meiyan Ren
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
| | - Lingling Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keju Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongsheng Gao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengzhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianshu Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, Nottinghamshire, NG25 0QF, UK
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China.
| |
Collapse
|
4
|
Wang T, Wang F, Deng S, Wang K, Feng D, Xu F, Guo W, Yu J, Wu Y, Wuriyanghan H, Li ST, Gu X, Le L, Pu L. Single-cell transcriptomes reveal spatiotemporal heat stress response in maize roots. Nat Commun 2025; 16:177. [PMID: 39747108 PMCID: PMC11697069 DOI: 10.1038/s41467-024-55485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Plant roots perceive heat stress (HS) and adapt their architecture accordingly, which in turn influence the yield in crops. Investigating their heterogeneity and cell type-specific response to HS is essential for improving crop resilience. Here, we generate single-cell transcriptional landscape of maize (Zea mays) roots in response to HS. We characterize 15 cell clusters corresponding to 9 major cell types and identify cortex as the main root cell type responsive to HS with the most differentially expressed genes and its trajectory being preferentially affected upon HS. We find that cortex size strongly correlated with heat tolerance that is experimentally validated by using inbred lines and genetic mutation analysis of one candidate gene in maize, providing potential HS tolerance indicator and targets for crop improvement. Moreover, interspecies comparison reveals conserved root cell types and core markers in response to HS in plants, which are experimentally validated. These results provide a universal atlas for unraveling the transcriptional programs that specify and maintain the cell identity of maize roots in response to HS at a cell type-specific level.
Collapse
Affiliation(s)
- Ting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Shangrao Normal University, Shangrao, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Shuhan Deng
- Glbizzia Biosciences Co., Ltd, Beijing, China
| | - Kailai Wang
- Glbizzia Biosciences Co., Ltd, Beijing, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hada Wuriyanghan
- School of Life Science, Inner Mongolia University, Hohhot, China
| | | | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Jiang X, Zeng X, Xu M, Li M, Zhang F, He F, Yang T, Wang C, Gao T, Long R, Yang Q, Kang J. The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa ( Medicago sativa L.). HORTICULTURE RESEARCH 2025; 12:uhae271. [PMID: 39807345 PMCID: PMC11725648 DOI: 10.1093/hr/uhae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/13/2024] [Indexed: 01/16/2025]
Abstract
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.50) between root dry weight (RDW) and alfalfa dry weight under normal conditions (N_DW). A genome-wide association study (GWAS) was performed using 1 303 374 single-nucleotide polymorphisms (SNPs) to explore the relationships between RSA traits. Sixty significant SNPs (-log 10 (P) ≥ 5) were identified, with genes within the 50 kb upstream and downstream ranges primarily enriched in GO terms related to root development, hormone synthesis, and signaling, as well as morphological development. Further analysis identified 19 high-confidence candidate genes, including AUXIN RESPONSE FACTORs (ARFs), LATERAL ORGAN BOUNDARIES-DOMAIN (LBD), and WUSCHEL-RELATED HOMEOBOX (WOX). We verified that the forage dry weight under both normal and drought conditions exhibited significant differences among materials with different numbers of favorable haplotypes. Alfalfa containing more favorable haplotypes exhibited higher forage yields, whereas favorable haplotypes were not subjected to human selection during alfalfa breeding. Genomic prediction (GP) utilized SNPs from GWAS and machine learning for each RSA trait, achieving prediction accuracies ranging from 0.70 for secondary root position (SRP) to 0.80 for root length (RL), indicating robust predictive capability across the assessed traits. These findings provide new insights into the genetic underpinnings of root development in alfalfa, potentially informing future breeding strategies aimed at improving yield.
Collapse
Affiliation(s)
- Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Xiangcui Zeng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Ming Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China, 266109
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Tianhui Yang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China, 010000
| | - Chuan Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
| | - Ting Gao
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China, 750000
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193
| |
Collapse
|
6
|
Irshad A, Ahmad H, Muhammad I, Khan SU, Raza S. Editorial: The role of water stress and soil texture on plant roots anatomy, architecture, and senescence. FRONTIERS IN PLANT SCIENCE 2024; 15:1490001. [PMID: 39574454 PMCID: PMC11578691 DOI: 10.3389/fpls.2024.1490001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Affiliation(s)
- Annie Irshad
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sana Ullah Khan
- The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Sajjad Raza
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Chen X, Favero BT, Liu F, Lütken H. Enhanced root system architecture in oilseed rape transformed with Rhizobium rhizogenes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112209. [PMID: 39098395 DOI: 10.1016/j.plantsci.2024.112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in e.g. European Union and Japan. In the current study, offspring lines (A11 and B3) of Rhizobium rhizogenes naturally transformed oilseed rape (Brassica napus) were randomly selected to characterize the morphological traits, and analyze the implications of such morphological changes on plant drought resilience. It was found that the introduction of Ri-genes altered the biomass partitioning to above- and under-ground parts of oilseed rape plants. Compared to the wild type (WT), the A11 and B3 lines exhibited 1.2-4.0 folds lower leaf and stem dry weight, leaf area and plant height, but had 1.3-5.8 folds greater root dry weight, root length and root surface area, resulting in a significantly enhanced root: shoot dry mass ratio and root surface area: leaf area ratio. In addition, the introduction of Ri-genes conferred reduced stomatal pore aperture and increased stomatal density in the B3 line, and increased leaf thickness in A11 line, which could benefit plant drought resilience. Finally, the modulations in morphological traits as a consequence of transformation with Ri-genes are discussed concerning resilience in water-limited conditions. These findings reveal the potential of natural transformation with R. rhizogenes for drought-targeted breeding in crops.
Collapse
Affiliation(s)
- Xuefei Chen
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| | - Bruno Trevenzoli Favero
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| | - Fulai Liu
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| | - Henrik Lütken
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| |
Collapse
|
8
|
Li L, Jia L, Duan X, Lv Y, Ye C, Ding C, Zhang Y, Qi W, Motte H, Beeckman T, Luo L, Xuan W. A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice. THE NEW PHYTOLOGIST 2024; 244:1391-1407. [PMID: 39297368 DOI: 10.1111/nph.20128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024]
Abstract
Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.
Collapse
Affiliation(s)
- Lun Li
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chengyu Ye
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, 210095, China
| | - Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
9
|
Khalid MA, Ali Z, Husnain LA, Fiaz S, Saddique MAB, Merrium S, Attia KA, Ercisli S, Iqbal R. GA-sensitive Rht13 gene improves root architecture and osmotic stress tolerance in bread wheat. BMC Genom Data 2024; 25:90. [PMID: 39449141 PMCID: PMC11515344 DOI: 10.1186/s12863-024-01272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The root architecture, more seminal roots, and Deeper roots help the plants to uptake the resources from the deeper soil layer to ensure better growth. The Gibberellic acid-sensitive (GA-sensitive) Rht genes are well known for increasing drought tolerance in wheat. Much work has been performed on the effect of these genes on the plant agronomic traits and little work has been done on the effect of Rht genes on seminal roots and root architecture. This study was designed to evaluate 200 wheat genotypes under normal and osmotic stress. The genotypes were sown in the solution culture and laid under CRD factorial arrangement with three replications and two factors i.e., genotypes and treatments viz. normal and osmotic stress (20% PEG-6000) applied one week after germination. The data was recorded for the root traits. Results demonstrated that out of 200 genotypes, the GA-sensitive Rht13 gene was amplified in 21 genotypes with a fragment length of 1089 bp. In comparison, the GA-insensitive Rht1 gene was amplified in 24 genotypes with a band size of 228 bp. From 200 wheat genotypes, 122 genotypes produced 5 seminal roots, 4 genotypes 4 seminal roots, and 74 genotypes 3 seminal roots. The genotypes G-3 (EBW11TALL#1/WESTONIA-Rht5//QUAIU#1), G-6 (EBW01TALL#1/SILVERSTAR-Rht13B//ROLF07) and G-8 (EBW01TALL#1/SILVERSTAR-Rht13B//NAVJ07) produced 5 seminal roots and have longer coleoptile (> 4.0 cm), root (> 11.0 cm) and shoot (> 17 cm) under normal and osmotic stress. Furthermore, Ujala 16, Galaxy-13, and Fareed-06 produced 3 seminal roots and have short coleoptile (< 3 cm), root (< 9.0 cm) and shoot (< 10.0 cm). These results showed that the genotypes showing the presence of GA-sensitive Rht genes produced a greater number of seminal roots, increased root/shoot growth, and osmotic stress tolerance compared to the genotypes having GA-insensitive Rht genes. Thus, the Rht13 gene improved the root architecture which will help to uptake the nutrients from deeper soil layers. Utilization of Rht13 in wheat breeding has the potential to improve osmotic stress tolerance in wheat.
Collapse
Affiliation(s)
- Muhammad Arslan Khalid
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Zulfiqar Ali
- Programs and Projects Department, Islamic Organization for Food Security, Astana, 019900, Kazakhstan.
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| | - Latifa Al Husnain
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | | | - Sabah Merrium
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Turkey
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
10
|
Zanetti ME, Blanco F, Ferrari M, Ariel F, Benoit M, Niebel A, Crespi M. Epigenetic control during root development and symbiosis. PLANT PHYSIOLOGY 2024; 196:697-710. [PMID: 38865442 DOI: 10.1093/plphys/kiae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
The roots of plants play multiple functions that are essential for growth and development, including anchoring to the soil as well as water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues, allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, for example, the root nodule symbiosis (RNS) established between a limited group of plants and nitrogen-fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule, and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of the RNS recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes-DNA methylation and histone post-translational modifications-that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlight how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long noncoding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Milagros Ferrari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Federico Ariel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Buenos Aires C1428EGA, Argentina
| | - Matthias Benoit
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes (LIPME), INRAE, CNRS, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| |
Collapse
|
11
|
Mikwa EO, Wittkop B, Windpassinger SM, Weber SE, Ehrhardt D, Snowdon RJ. Early exposure to phosphorus starvation induces genetically determined responses in Sorghum bicolor roots. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:220. [PMID: 39259361 PMCID: PMC11390786 DOI: 10.1007/s00122-024-04728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/27/2024] [Indexed: 09/13/2024]
Abstract
KEY MESSAGE We identified novel physiological and genetic responses to phosphorus starvation in sorghum diversity lines that augment current knowledge of breeding for climate-smart crops in Europe. Phosphorus (P) deficiency and finite P reserves for fertilizer production pose a threat to future global crop production. Understanding root system architecture (RSA) plasticity is central to breeding for P-efficient crops. Sorghum is regarded as a P-efficient and climate-smart crop with strong adaptability to different climatic regions of the world. Here we investigated early genetic responses of sorghum RSA to P deficiency in order to identified genotypes with interesting root phenotypes and responses under low P. A diverse set of sorghum lines (n = 285) was genotyped using DarTSeq generating 12,472 quality genome wide single-nucleotide polymorphisms. Root phenotyping was conducted in a paper-based hydroponic rhizotron system under controlled greenhouse conditions with low and optimal P nutrition, using 16 RSA traits to describe genetic and phenotypic variability at two time points. Genotypic and phenotypic P-response variations were observed for multiple root traits at 21 and 42 days after germination with high broad sense heritability (0.38-0.76). The classification of traits revealed four distinct sorghum RSA types, with genotypes clustering separately under both low and optimal P conditions, suggesting genetic control of root responses to P availability. Association studies identified quantitative trait loci in chromosomes Sb02, Sb03, Sb04, Sb06 and Sb09 linked with genes potentially involved in P transport and stress responses. The genetic dissection of key factors underlying RSA responses to P deficiency could enable early identification of P-efficient sorghum genotypes. Genotypes with interesting RSA traits for low P environments will be incorporated into current sorghum breeding programs for later growth stages and field-based evaluations.
Collapse
Affiliation(s)
- Erick O Mikwa
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany.
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | | | - Sven E Weber
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Dorit Ehrhardt
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| |
Collapse
|
12
|
Chen X, Lütken H, Liang K, Liu F, Favero BT. Superior osmotic stress tolerance in oilseed rape transformed with wild-type Rhizobium rhizogenes. PLANT CELL REPORTS 2024; 43:223. [PMID: 39196398 PMCID: PMC11358183 DOI: 10.1007/s00299-024-03306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
KEY MESSAGE Natural transformation with R. rhizogenes enhances osmotic stress tolerance in oilseed rape through increasing osmoregulation capacity, enhancing maintenance of hydraulic integrity and total antioxidant capacity. Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in, e.g., European Union and Japan. In this study, offspring lines of Rhizobium rhizogenes naturally transformed oilseed rape (Brassica napus), i.e., A11 and B3 (termed root-inducing (Ri) lines), were investigated for osmotic stress resilience. Under polyethylene glycol 6000 (PEG) 10% (w/v)-induced osmotic stress, the Ri lines, particularly A11, had less severe leaf wilting, higher stomatal conductance (8.2 times more than WT), and a stable leaf transpiration rate (about 2.9 mmol m-2 s-1). Although the leaf relative water content and leaf water potential responded similarly to PEG treatment between the Ri lines and WT, a significant reduction of the turgid weight to dry weight ratio in A11 and B3 indicated a greater capacity of osmoregulation in the Ri lines. Moreover, the upregulation of plasma membrane intrinsic proteins genes (PIPs) in roots and downregulation of these genes in leaves of the Ri lines implied a better maintenance of hydraulic integrity in relation to the WT. Furthermore, the Ri lines had greater total antioxidant capacity (TAC) than the WT under PEG stress. Collectively, the enhanced tolerance of the Ri lines to PEG-induced osmotic stress could be attributed to the greater osmoregulation capacity, better maintenance of hydraulic integrity, and greater TAC than the WT. In addition, Ri-genes (particularly rolA and rolD) play roles in response to osmotic stress in Ri oilseed rape. This study reveals the potential of R. rhizogenes transformation for application in plant drought resilience.
Collapse
Affiliation(s)
- Xuefei Chen
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| | - Henrik Lütken
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Kehao Liang
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Fulai Liu
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Bruno Trevenzoli Favero
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
13
|
Magar ND, Barbadikar KM, Reddy V, Revadi P, Guha P, Gangatire D, Balakrishnan D, Sharma S, Madhav MS, Sundaram RM. Genetic mapping of regions associated with root system architecture in rice using MutMap QTL-seq. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108836. [PMID: 38941724 DOI: 10.1016/j.plaphy.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
The root system architecture is an important complex trait in rice. With changing climatic conditions and soil nutrient deficiencies, there is an immediate need to breed nutrient-use-efficient rice varieties with robust root system architectural (RSA) traits. To map the genomic regions associated with crucial component traits of RSA viz. root length and root volume, a biparental F2 mapping population was developed using TI-128, an Ethyl Methane Sulphonate (EMS) mutant of a mega variety BPT-5204 having high root length (RL) and root volume (RV) with wild type BPT-5204. Extreme bulks having high RL and RV and low RL and RV were the whole genome re-sequenced along with parents. Genetic mapping using the MutMap QTL-Seq approach elucidated two genomic intervals on Chr.12 (3.14-3.74 Mb, 18.11-20.85 Mb), and on Chr.2 (23.18-23.68 Mb) as potential regions associated with both RL and RV. The Kompetitive Allele Specific PCR (KASP) assays for SNPs with delta SNP index near 1 were associated with higher RL and RV in the panel of sixty-two genotypes varying in root length and volume. The KASP_SNPs viz. Chr12_S4 (C→T; Chr12:3243938), located in the 3' UTR region of LOC_Os12g06670 encoding a protein kinase domain-containing protein and Chr2_S6 (C→T; Chr2:23181622) present upstream in the regulator of chromosomal condensation protein LOC_Os2g38350. Validation of these genes using qRT-PCR and in-silico studies using various online tools and databases revealed higher expression in TI-128 as compared to BPT- 5204 at the seedling and panicle initiation stages implying the functional role in enhancing RL and RV.
Collapse
Affiliation(s)
- Nakul D Magar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India; Chaudhary Charan Singh University, Meerut, 250005, India
| | | | - Vishal Reddy
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Pritam Guha
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Dhiraj Gangatire
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | | | - M Sheshu Madhav
- ICAR-Central Tobacco Research Institute, Rajahmundry, 533106, India
| | - Raman M Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| |
Collapse
|
14
|
Wang D, He X, Baer M, Lami K, Yu B, Tassinari A, Salvi S, Schaaf G, Hochholdinger F, Yu P. Lateral root enriched Massilia associated with plant flowering in maize. MICROBIOME 2024; 12:124. [PMID: 38982519 PMCID: PMC11234754 DOI: 10.1186/s40168-024-01839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/16/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Beneficial associations between plants and soil microorganisms are critical for crop fitness and resilience. However, it remains obscure how microorganisms are assembled across different root compartments and to what extent such recruited microbiomes determine crop performance. Here, we surveyed the root transcriptome and the root and rhizosphere microbiome via RNA sequencing and full-length (V1-V9) 16S rRNA gene sequencing from genetically distinct monogenic root mutants of maize (Zea mays L.) under different nutrient-limiting conditions. RESULTS Overall transcriptome and microbiome display a clear assembly pattern across the compartments, i.e., from the soil through the rhizosphere to the root tissues. Co-variation analysis identified that genotype dominated the effect on the microbial community and gene expression over the nutrient stress conditions. Integrated transcriptomic and microbial analyses demonstrated that mutations affecting lateral root development had the largest effect on host gene expression and microbiome assembly, as compared to mutations affecting other root types. Cooccurrence and trans-kingdom network association analysis demonstrated that the keystone bacterial taxon Massilia (Oxalobacteraceae) is associated with root functional genes involved in flowering time and overall plant biomass. We further observed that the developmental stage drives the differentiation of the rhizosphere microbial assembly, especially the associations of the keystone bacteria Massilia with functional genes in reproduction. Taking advantage of microbial inoculation experiments using a maize early flowering mutant, we confirmed that Massilia-driven maize growth promotion indeed depends on flowering time. CONCLUSION We conclude that specific microbiota supporting lateral root formation could enhance crop performance by mediating functional gene expression underlying plant flowering time in maize. Video Abstract.
Collapse
Affiliation(s)
- Danning Wang
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Xiaoming He
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Marcel Baer
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Klea Lami
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Baogang Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Alberto Tassinari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, 40127, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, 40127, Italy
| | - Gabriel Schaaf
- Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany.
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany.
| |
Collapse
|
15
|
Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai AB, Sharma MD. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 2024; 14:173. [PMID: 38846012 PMCID: PMC11150236 DOI: 10.1007/s13205-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248001 India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Preeti Thapliyal
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174 India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand 248001 India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
16
|
Kong X, Xiong Y, Song X, Wadey S, Yu S, Rao J, Lale A, Lombardi M, Fusi R, Bhosale R, Huang G. Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops. PLANT PHYSIOLOGY 2024; 195:1969-1980. [PMID: 38446735 DOI: 10.1093/plphys/kiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is known, its specific role in governing root gravitropism and angle remains uncertain, particularly when Arabidopsis (Arabidopsis thaliana) core ethylene signaling mutants show no gravitropic defects. Our research, focusing on rice (Oryza sativa L.) and maize (Zea mays), clearly reveals the involvement of ethylene in root angle regulation in cereal crops through the modulation of auxin biosynthesis and the root gravitropism machinery. We elucidated the molecular components by which ethylene exerts its regulatory effect on auxin biosynthesis to control root gravitropism machinery. The ethylene-insensitive mutants ethylene insensitive2 (osein2) and ethylene insensitive like1 (oseil1), exhibited substantially shallower crown root angle compared to the wild type. Gravitropism assays revealed reduced root gravitropic response in these mutants. Hormone profiling analysis confirmed decreased auxin levels in the root tips of the osein2 mutant, and exogenous auxin (NAA) application rescued root gravitropism in both ethylene-insensitive mutants. Additionally, the auxin biosynthetic mutant mao hu zi10 (mhz10)/tryptophan aminotransferase2 (ostar2) showed impaired gravitropic response and shallow crown root angle phenotypes. Similarly, maize ethylene-insensitive mutants (zmein2) exhibited defective gravitropism and root angle phenotypes. In conclusion, our study highlights that ethylene controls the auxin-dependent root gravitropism machinery to regulate root angle in rice and maize, revealing a functional divergence in ethylene signaling between Arabidopsis and cereal crops. These findings contribute to a better understanding of root angle regulation and have implications for improving resource acquisition in agricultural systems.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Xiong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Song
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel Wadey
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Suhang Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinliang Rao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aneesh Lale
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Marco Lombardi
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Riccardo Fusi
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Rahul Bhosale
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Hyderabad, India
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Chen Z, Li X, He F, Liu B, Xu W, Chai L, Cheng X, Song L, Guo W, Hu Z, Su Z, Liu J, Xin M, Peng H, Yao Y, Sun Q, Xing J, Ni Z. Positional cloning and characterization reveal the role of TaSRN-3D and TaBSR1 in the regulation of seminal root number in wheat. THE NEW PHYTOLOGIST 2024; 242:2510-2523. [PMID: 38629267 DOI: 10.1111/nph.19740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 05/24/2024]
Abstract
Seminal roots play a critical role in water and nutrient absorption, particularly in the early developmental stages of wheat. However, the genes responsible for controlling SRN in wheat remain largely unknown. Genetic mapping and functional analyses identified a candidate gene (TraesCS3D01G137200, TaSRN-3D) encoding a Ser/Thr kinase glycogen synthase kinase 3 (STKc_GSK3) that regulated SRN in wheat. Additionally, experiments involving hormone treatment, nitrate absorption and protein interaction were conducted to explore the regulatory mechanism of TaSRN-3D. Results showed that the TaSRN-3D4332 allele inhibited seminal roots initiation and development, while loss-of-function mutants showed significantly higher seminal root number (SRN). Exogenous application of epi-brassinolide could increase the SRN in a HS2-allelic background. Furthermore, chlorate sensitivity and 15N uptake assays revealed that a higher number of seminal roots promoted nitrate accumulation. TaBSR1 (BIN2-related SRN Regulator 1, orthologous to OsGRF4/GL2 in rice) acts as an interactor of TaSRN-3D and promotes TaBSR1 degradation to reduce SRN. This study provides valuable insights into understanding the genetic basis and regulatory network of SRN in wheat, highlighting their roles as potential targets for root-based improvement in wheat breeding.
Collapse
Affiliation(s)
- Zhaoyan Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Xuanshuang Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Fei He
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Bin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Weiya Xu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Xuejiao Cheng
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Long Song
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhenqi Su
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Yang G, Pan Y, Pan W, Song Q, Zhang R, Tong W, Cui L, Ji W, Song W, Song B, Deng P, Nie X. Combined GWAS and eGWAS reveals the genetic basis underlying drought tolerance in emmer wheat (Triticum turgidum L.). THE NEW PHYTOLOGIST 2024; 242:2115-2131. [PMID: 38358006 DOI: 10.1111/nph.19589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Drought is one of the major environmental constraints for wheat production world-wide. As the progenitor and genetic reservoir of common wheat, emmer wheat is considered as an invaluable gene pool for breeding drought-tolerant wheat. Combining GWAS and eGWAS analysis of 107 accessions, we identified 86 QTLs, 105 462 eQTLs as well as 68 eQTL hotspots associating with drought tolerance (DT) in emmer wheat. A complex regulatory network composed of 185 upstream regulator and 2432 downstream drought-responsive candidates was developed, of which TtOTS1 was found to play a negative effect in determining DT through affecting root development. This study sheds light on revealing the genetic basis underlying DT, which will provide the indispensable genes and germplasm resources for elite drought tolerance wheat improvement and breeding.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingting Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruoyu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Licao Cui
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoxing Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Pioneering Innovation Center for Wheat Stress Tolerance Improvement, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, Shaanxi, China
| |
Collapse
|
19
|
Siddiqui MN, Jahiu M, Kamruzzaman M, Sanchez-Garcia M, Mason AS, Léon J, Ballvora A. Genetic control of root architectural traits under drought stress in spring barley (Hordeum vulgare L.). THE PLANT GENOME 2024; 17:e20463. [PMID: 38764204 DOI: 10.1002/tpg2.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Root architectural traits play pivotal roles in plant adaptation to drought stress, and hence they are considered promising targets in breeding programs. Here, we phenotyped eight root architecture traits in response to well-watered and drought stress conditions in 200 spring barley (Hordeum vulgare L.) inbred lines over two consecutive field seasons. Root architecture traits were less developed under drought in both seasons when compared with control treatments. Genetic variation in root architectural traits was dissected employing a genome-wide association study (GWAS) coupled with linkage disequilibrium mapping. GWAS uncovered a total of 186 significant single nucleotide polymorphism-trait associations for eight root traits under control, drought, and drought-related indices. Of these, a few loci for root traits were detected on chromosomes 3 and 5, which co-located with QTL identified in previous studies. Interestingly, 13 loci showed simultaneou associations with multiple root traits under drought and drought-related indices. These loci harbored candidate genes, which included a wide range of drought-responsive components such as transcription factors, binding proteins, protein kinases, nutrient and ion transporters, and stress signaling factors. For instance, two candidate genes, HORVU7Hr3G0713160 and HORVU6H r3G0626550, are orthologous to AtACX3 and AtVAMPs, which have reported functions in root length-mediated drought tolerance and as a key protein in abiotic stress tolerance, respectively. Interestingly, one of these loci underlying a high-confidence candidate gene NEW ENHANCER OF ROOT DWARFISM1 (NERD1) showed involvement with root development. An allelic variation of this locus in non-coding region was significantly associated with increased root length under drought. Collectively, these results offer promising multi-trait affecting loci and candidate genes underlying root phenotypic responses to drought stress, which may provide valuable resources for genetic improvement of drought tolerance in barley.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Melisa Jahiu
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Mohammad Kamruzzaman
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Miguel Sanchez-Garcia
- Department of Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Annaliese S Mason
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Jens Léon
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Agim Ballvora
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Li Y, Wang J, Gao Y, Pandey BK, Peralta Ogorek LL, Zhao Y, Quan R, Zhao Z, Jiang L, Huang R, Qin H. The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction. THE PLANT CELL 2024; 36:2393-2409. [PMID: 38489602 PMCID: PMC11132869 DOI: 10.1093/plcell/koae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.
Collapse
Affiliation(s)
- Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Yadi Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Lucas León Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zihan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
21
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
22
|
Jhu MY, Kundu A. WOX11-LBD16 double partner dancing: a feedback circuitry for crown root development in rice. THE PLANT CELL 2024; 36:1580-1581. [PMID: 38243575 PMCID: PMC11062445 DOI: 10.1093/plcell/koae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Affiliation(s)
- Min-Yao Jhu
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB30LE, UK
| | | |
Collapse
|
23
|
Geng L, Tan M, Deng Q, Wang Y, Zhang T, Hu X, Ye M, Lian X, Zhou DX, Zhao Y. Transcription factors WOX11 and LBD16 function with histone demethylase JMJ706 to control crown root development in rice. THE PLANT CELL 2024; 36:1777-1790. [PMID: 38190205 PMCID: PMC11062443 DOI: 10.1093/plcell/koad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Crown roots are the main components of root systems in cereals. Elucidating the mechanisms of crown root formation is instrumental for improving nutrient absorption, stress tolerance, and yield in cereal crops. Several members of the WUSCHEL-related homeobox (WOX) and lateral organ boundaries domain (LBD) transcription factor families play essential roles in controlling crown root development in rice (Oryza sativa). However, the functional relationships among these transcription factors in regulating genes involved in crown root development remain unclear. Here, we identified LBD16 as an additional regulator of rice crown root development. We showed that LBD16 is a direct downstream target of WOX11, a key crown root development regulator in rice. Our results indicated that WOX11 enhances LBD16 transcription by binding to its promoter and recruiting its interaction partner JMJ706, a demethylase that removes histone H3 lysine 9 dimethylation (H3K9me2) from the LBD16 locus. In addition, we established that LBD16 interacts with WOX11, thereby impairing JMJ706-WOX11 complex formation and repressing its own transcriptional activity. Together, our results reveal a feedback system regulating genes that orchestrate crown root development in rice, in which LBD16 acts as a molecular rheostat.
Collapse
Affiliation(s)
- Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingfang Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiyu Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaosong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaomiao Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- CNRS, INRAE, Institute of Plant Science Paris-Saclay (IPS2), University Paris-Saclay, Orsay 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Li P, Zhang Z, Xiao G, Zhao Z, He K, Yang X, Pan Q, Mi G, Jia Z, Yan J, Chen F, Yuan L. Genomic basis determining root system architecture in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:102. [PMID: 38607439 DOI: 10.1007/s00122-024-04606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
KEY MESSAGE A total of 389 and 344 QTLs were identified by GWAS and QTL mapping explaining accumulatively 32.2-65.0% and 23.7-63.4% of phenotypic variation for 14 shoot-borne root traits using more than 1300 individuals across multiple field trails. Efficient nutrient and water acquisition from soils depends on the root system architecture (RSA). However, the genetic determinants underlying RSA in maize remain largely unexplored. In this study, we conducted a comprehensive genetic analysis for 14 shoot-borne root traits using 513 inbred lines and 800 individuals from four recombinant inbred line (RIL) populations at the mature stage across multiple field trails. Our analysis revealed substantial phenotypic variation for these 14 root traits, with a total of 389 and 344 QTLs identified through genome-wide association analysis (GWAS) and linkage analysis, respectively. These QTLs collectively explained 32.2-65.0% and 23.7-63.4% of the trait variation within each population. Several a priori candidate genes involved in auxin and cytokinin signaling pathways, such as IAA26, ARF2, LBD37 and CKX3, were found to co-localize with these loci. In addition, a total of 69 transcription factors (TFs) from 27 TF families (MYB, NAC, bZIP, bHLH and WRKY) were found for shoot-borne root traits. A total of 19 genes including PIN3, LBD15, IAA32, IAA38 and ARR12 and 19 GWAS signals were overlapped with selective sweeps. Further, significant additive effects were found for root traits, and pyramiding the favorable alleles could enhance maize root development. These findings could contribute to understand the genetic basis of root development and evolution, and provided an important genetic resource for the genetic improvement of root traits in maize.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Zhihai Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Gui Xiao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zheng Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Kunhui He
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
- Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Hansson M, Youssef HM, Zakhrabekova S, Stuart D, Svensson JT, Dockter C, Stein N, Waugh R, Lundqvist U, Franckowiak J. A guide to barley mutants. Hereditas 2024; 161:11. [PMID: 38454479 PMCID: PMC10921644 DOI: 10.1186/s41065-023-00304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.
Collapse
Affiliation(s)
- Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| | - Helmy M Youssef
- Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle, 06120, Germany
| | | | - David Stuart
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Jan T Svensson
- Nordic Genetic Resource Center (NordGen), Växthusvägen 12, 23456, Alnarp, Sweden
| | - Christoph Dockter
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Stadt Seeland, E06466, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Agriculture Food and Wine, Waite Campus, The University of Adelaide, Urrbrae, 5064, Australia
| | - Udda Lundqvist
- Nordic Genetic Resource Center (NordGen), Växthusvägen 12, 23456, Alnarp, Sweden
| | - Jerome Franckowiak
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, 411 Borlaug Hall, 1991 Upper Buford Circle, St Paul, MN, 55108, USA
| |
Collapse
|
26
|
Wu F, Yahaya BS, Gong Y, He B, Gou J, He Y, Li J, Kang Y, Xu J, Wang Q, Feng X, Tang Q, Liu Y, Lu Y. ZmARF1 positively regulates low phosphorus stress tolerance via modulating lateral root development in maize. PLoS Genet 2024; 20:e1011135. [PMID: 38315718 PMCID: PMC10868794 DOI: 10.1371/journal.pgen.1011135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/15/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.
Collapse
Affiliation(s)
- Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Baba Salifu Yahaya
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Ying Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Bing He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Junlin Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Yafeng He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Jing Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Yan Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Qi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, China
| |
Collapse
|
27
|
Du LD, Guan ZJ, Liu YH, Zhu HD, Sun Q, Hu DG, Sun CH. The BTB/TAZ domain-containing protein CmBT1-mediated CmANR1 ubiquitination negatively regulates root development in chrysanthemum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:285-299. [PMID: 38314502 DOI: 10.1111/jipb.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
Roots are fundamental for plants to adapt to variable environmental conditions. The development of a robust root system is orchestrated by numerous genetic determinants and, among them, the MADS-box gene ANR1 has garnered substantial attention. Prior research has demonstrated that, in chrysanthemum, CmANR1 positively regulates root system development. Nevertheless, the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified. In this study, we successfully identified bric-a-brac, tramtrack and broad (BTB) and transcription adapter putative zinc finger (TAZ) domain protein CmBT1 as the interacting partner of CmANR1 through a yeast-two-hybrid (Y2H) screening library. Furthermore, we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays. Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum. In both in vitro and in vivo assays, it was evident that CmBT1 mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway. This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2, which was crucial for root development in chrysanthemum. Genetic analysis suggested that CmBT1 modulated root development, at least in part, by regulating the level of CmANR1 protein. Collectively, these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination, thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.
Collapse
Affiliation(s)
- Lian-Da Du
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Zhang-Ji Guan
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yan-Hong Liu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hui-Dong Zhu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Quan Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Da-Gang Hu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Cui-Hui Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
28
|
Paridar Z, Ghasemi-Fasaei R, Yasrebi J, Ronaghi A, Moosavi AA. Applicability of the sigmoid model to estimate heavy metal uptake in maize and sorghum as affected by organic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3222-3238. [PMID: 38085482 DOI: 10.1007/s11356-023-31410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Although assisted phytoremediation using chemical treatments is a suitable technique for the removal of heavy metals (HMs), the estimation of this process using simple models is also crucial. For this purpose, a greenhouse trial was designed to evaluate the effectiveness of citric, oxalic, and tartaric acid on Cd, Pb, Ni, and Zn phytoremediation by maize and sorghum and to estimate this process using sigmoid HMs uptake model. Results showed that mean values of root and shoot dry weight and metals uptake, translocation factor (TF) of Pb and Zn, and uptake efficiency (UE) of Cd in maize were higher than sorghum but the TF of Cd and the phytoextraction efficiency (PEE) and UE of Pb in sorghum were higher than maize. Citric, oxalic, and tartaric acid significantly increased the UE of Pb by 17.7%, 22.5%, and 32.5%, respectively. Tartaric acid significantly increased the mean values of shoot dry weight, shoot Cd, Pb, and Ni uptake, and PEE of Pb and Ni, but decreased TF of Zn. The R2, NRMSE, and KM values indicated the ability of sigmoid HM uptake model in estimating HMs uptake in maize and sorghum treated with organic acids. Thus, tartaric acid was more effective than citric and oxalic acids to enhance phytoremediation potential. Sigmoid HM uptake model is suitable to estimate the HMs uptake in plants treated with organic acids at different growth stages.
Collapse
Affiliation(s)
- Zeynab Paridar
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Jafar Yasrebi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Akbar Moosavi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
29
|
Xu W, Chen Y, Liu B, Li Q, Zhou Y, Li X, Guo W, Hu Z, Liu Z, Xin M, Yao Y, You M, Peng H, Ni Z, Xing J. TaANR1-TaMADS25 module regulates lignin biosynthesis and root development in wheat (Triticum aestivum L.). J Genet Genomics 2023; 50:917-920. [PMID: 37666357 DOI: 10.1016/j.jgg.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Affiliation(s)
- Weiya Xu
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Bin Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qiuyuan Li
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yilan Zhou
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuanshuang Li
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Xin
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingshan You
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jiewen Xing
- Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Jin Y, Wang Y, Liu J, Wang F, Qiu X, Liu P. Genome-wide linkage mapping of root system architecture-related traits in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274392. [PMID: 37900737 PMCID: PMC10612324 DOI: 10.3389/fpls.2023.1274392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
Identifying loci for root system architecture (RSA) traits and developing available markers are crucial for wheat breeding. In this study, RSA-related traits, including total root length (TRL), total root area (TRA), and number of root tips (NRT), were evaluated in the Doumai/Shi4185 recombinant inbred line (RIL) population under hydroponics. In addition, both the RILs and parents were genotyped using the wheat 90K single-nucleotide polymorphism (SNP) array. In total, two quantitative trait loci (QTLs) each for TRL (QTRL.caas-4A.1 and QTRL.caas-4A.2), TRA (QTRA.caas-4A and QTRA.caas-4D), and NRT (QNRT.caas-5B and QNRT.caas-5D) were identified and each explaining 5.94%-9.47%, 6.85%-7.10%, and 5.91%-10.16% phenotypic variances, respectively. Among these, QTRL.caas-4A.1 and QTRA.caas-4A overlapped with previous reports, while QTRL.caas-4A.2, QTRA.caas-4D, QNRT.caas-5B, and QNRT.caas-5D were novel. The favorable alleles of QTRL.caas-4A.1, QTRA.caas-4A, and QTRA.caas-5B were contributed by Doumai, whereas the favorable alleles of QTRL.caas-4A.2, QTRA.caas-4D, and QTRA.caas-5D originated from Shi 4185. Additionally, two competitive allele-specific PCR (KASP) markers, Kasp_4A_RL (QTRA.caas-4A) and Kasp_5D_RT (QNRT.caas-5D), were developed and validated in 165 wheat accessions. This study provides new loci and available KASP markers, accelerating wheat breeding for higher yields.
Collapse
Affiliation(s)
- Yirong Jin
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Yamei Wang
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Jindong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuyan Wang
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Xiaodong Qiu
- Department of Science and Technology of Shandong Province, Jinan, China
| | - Peng Liu
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| |
Collapse
|
31
|
Ahmad N, Ibrahim S, Kuang L, Ze T, Wang X, Wang H, Dun X. Integrating genome-wide association study with transcriptomic data to predict candidate genes influencing Brassica napus root and biomass-related traits under low phosphorus conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:149. [PMID: 37789456 PMCID: PMC10548562 DOI: 10.1186/s13068-023-02403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an essential source of edible oil and livestock feed, as well as a promising source of biofuel. Breeding crops with an ideal root system architecture (RSA) for high phosphorus use efficiency (PUE) is an effective way to reduce the use of phosphate fertilizers. However, the genetic mechanisms that underpin PUE in rapeseed remain elusive. To address this, we conducted a genome-wide association study (GWAS) in 327 rapeseed accessions to elucidate the genetic variability of 13 root and biomass traits under low phosphorus (LP; 0.01 mM P +). Furthermore, RNA-sequencing was performed in root among high/low phosphorus efficient groups (HP1/LP1) and high/low phosphorus stress tolerance groups (HP2/LP2) at two-time points under control and P-stress conditions. RESULTS Significant variations were observed in all measured traits, with heritabilities ranging from 0.47 to 0.72, and significant correlations were found between most of the traits. There were 39 significant trait-SNP associations and 31 suggestive associations, which integrated into 11 valid quantitative trait loci (QTL) clusters, explaining 4.24-24.43% of the phenotypic variance observed. In total, RNA-seq identified 692, 1076, 648, and 934 differentially expressed genes (DEGs) specific to HP1/LP1 and HP2/LP2 under P-stress and control conditions, respectively, while 761 and 860 DEGs common for HP1/LP1 and HP2/LP2 under both conditions. An integrated approach of GWAS, weighted co-expression network, and differential expression analysis identified 12 genes associated with root growth and development under LP stress. In this study, six genes (BnaA04g23490D, BnaA09g08440D, BnaA09g04320D, BnaA09g04350D, BnaA09g04930D, BnaA09g09290D) that showed differential expression were identified as promising candidate genes for the target traits. CONCLUSION 11 QTL clusters and 12 candidate genes associated with root and development under LP stress were identified in this study. Our study's phenotypic and genetic information may be exploited for genetic improvement of root traits to increase PUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano, 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Tian Ze
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430062, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430062, China.
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
32
|
Peng S, Ma T, Ma T, Chen K, Dai Y, Ding J, He P, Yu S. Effects of Salt Tolerance Training on Multidimensional Root Distribution and Root-Shoot Characteristics of Summer Maize under Brackish Water Irrigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3329. [PMID: 37765493 PMCID: PMC10534383 DOI: 10.3390/plants12183329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
To investigate the impact of brackish water irrigation on the multidimensional root distribution and root-shoot characteristics of summer maize under different salt-tolerance-training modes, a micro-plot experiment was conducted from June to October in 2022 at the experimental station in Hohai University, China. Freshwater irrigation was used as the control (CK), and different concentrations of brackish water (S0: 0.08 g·L-1, S1: 2.0 g·L-1, S2: 4.0 g·L-1, S3: 6.0 g·L-1) were irrigated at six-leaf stage, ten-leaf stage, and tasseling stage, constituting different salt tolerance training modes, referred to as S0-2-3, S0-3-3, S1-2-3, S1-3-3, S2-2-3, and S2-3-3. The results showed that although their fine root length density (FRLD) increased, the S0-2-3 and S0-3-3 treatments reduced the limit of root extension in the horizontal direction, causing the roots to be mainly distributed near the plants. This resulted in decreased leaf area and biomass accumulation, ultimately leading to significant yield reduction. Additionally, the S2-2-3 and S2-3-3 treatments stimulated the adaptive mechanism of maize roots, resulting in boosted fine root growth to increase the FRLD and develop into deeper soil layers. However, due to the prolonged exposure to a high level of salinity, their roots below 30 cm depth senesced prematurely, leading to an inhibition in shoot growth and also resulting in yield reduction of 10.99% and 11.75%, compared to CK, respectively. Furthermore, the S1-2-3 and S1-3-3 treatments produced more reasonable distributions of FRLD, which did not boost fine root growth but established fewer weak areas (FLRD < 0.66 cm-3) in their root systems. Moreover, the S1-2-3 treatment contributed to increasing leaf development and biomass accumulation, compared to CK, whereas it allowed for minimizing yield reduction. Therefore, our study proposed the S1-2-3 treatment as the recommended training mode for summer maize while utilizing brackish water resources.
Collapse
Affiliation(s)
- Suhan Peng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Tao Ma
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Teng Ma
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Kaiwen Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Yan Dai
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Jihui Ding
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Pingru He
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| | - Shuang’en Yu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; (S.P.); (Y.D.); (J.D.); (S.Y.)
| |
Collapse
|
33
|
Guo WJ, Pommerrenig B, Neuhaus HE, Keller I. Interaction between sugar transport and plant development. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154073. [PMID: 37603910 DOI: 10.1016/j.jplph.2023.154073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Endogenous programs and constant interaction with the environment regulate the development of the plant organism and its individual organs. Sugars are necessary building blocks for plant and organ growth and at the same time act as critical integrators of the metabolic state into the developmental program. There is a growing recognition that the specific type of sugar and its subcellular or tissue distribution is sensed and translated to developmental responses. Therefore, the transport of sugars across membranes is a key process in adapting plant organ properties and overall development to the nutritional state of the plant. In this review, we discuss how plants exploit various sugar transporters to signal growth responses, for example, to control the development of sink organs such as roots or fruits. We highlight which sugar transporters are involved in root and shoot growth and branching, how intracellular sugar allocation can regulate senescence, and, for example, control fruit development. We link the important transport processes to downstream signaling cascades and elucidate the factors responsible for the integration of sugar signaling and plant hormone responses.
Collapse
Affiliation(s)
- Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Benjamin Pommerrenig
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany
| | - Isabel Keller
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Str., 67663, Kaiserslautern, Germany.
| |
Collapse
|
34
|
Saravanan K, Vidya N, Halka J, Priyanka Preethi R, Appunu C, Radhakrishnan R, Arun M. Exogenous application of stevioside enhances root growth promotion in soybean (Glycine max (L.) Merrill). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107881. [PMID: 37437344 DOI: 10.1016/j.plaphy.2023.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The present study aims to investigate the impact of externally applied stevioside (a sugar-based glycoside) on soybean root growth by examining morpho-physiological characteristics, biochemical parameters, and gene expression. Soybean seedlings (10-day-old) were treated with stevioside (0, 8.0 μM, 24.5 μM, and 40.5 μM) for four times at six days' intervals by soil drenching. Treatment with 24.5 μM stevioside significantly increased root length (29.18 cm plant-1), root numbers (38.5 plant-1), root biomass (0.95 g plant-1 FW; 0.18 g plant-1 DW), shoot length (30.96 cm plant-1), and shoot biomass (2.14 g plant-1 FW; 0.36 g plant-1 DW) compared to the control. Moreover, 24.5 μM of stevioside was effective in enhancing photosynthetic pigments, leaf relative water content, and antioxidant enzymes compared to control. Conversely, plants exposed to a higher concentration of stevioside (40.5 μM), elevated total polyphenolic content, total flavonoid content, DPPH activity, total soluble sugars, reducing sugars, and proline content. Furthermore, gene expression of root growth development-related genes such as GmYUC2a, GmAUX2, GmPIN1A, GmABI5, GmPIF, GmSLR1, and GmLBD14 in stevioside-treated soybean plants were evaluated. Stevioside (8.0 μM) showed significant expression of GmPIN1A, whereas, 40.5 μM of stevioside enhanced GmABI5 expression. In contrast, most of the root growth development genes such as GmYUC2a, GmAUX2, GmPIF, GmSLR1, and GmLBD14, were highly expressed at 24.5 μM of stevioside treatment. Taken together, our results demonstrate the potential of stevioside in improving morpho-physiological traits, biochemical status, and the expression of root development genes in soybean. Hence, stevioside could be used as a supplement to enhance plant performance.
Collapse
Affiliation(s)
- Krishnagowdu Saravanan
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nandakumar Vidya
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jayachandran Halka
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, Tamil Nadu, India
| | | | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
35
|
Baldauf JA, Hochholdinger F. Molecular dissection of heterosis in cereal roots and their rhizosphere. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:173. [PMID: 37474870 PMCID: PMC10359381 DOI: 10.1007/s00122-023-04419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Heterosis is already manifested early in root development. Consistent with the dominance model of heterosis, gene expression complementation is a general mechanism that contributes to phenotypic heterosis in maize hybrids. Highly heterozygous F1-hybrids outperform their parental inbred lines, a phenomenon known as heterosis. Utilization of heterosis is of paramount agricultural importance and has been widely applied to increase yield in many crop cultivars. Plant roots display heterosis for many traits and are an important target for further crop improvement. To explain the molecular basis of heterosis, several genetic hypotheses have been proposed. In recent years, high-throughput gene expression profiling techniques have been applied to investigate hybrid vigor. Consistent with the classical genetic dominance model, gene expression complementation has been demonstrated to be a general mechanism to contribute to phenotypic heterosis in diverse maize hybrids. Functional classification of these genes supported the notion that gene expression complementation can dynamically promote hybrid vigor under fluctuating environmental conditions. Hybrids tend to respond differently to available nutrients in the soil. It was hypothesized that hybrid vigor is promoted through a higher nutrient use efficiency which is linked to an improved root system performance of hybrids in comparison to their inbred parents. Recently, the interaction between soil microbes and their plant host was added as further dimension to disentangle heterosis in the belowground part of plants. Soil microbes influenced the performance of maize hybrids as illustrated in comparisons of sterile soil and soil inhabited by beneficial microorganisms.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany.
| |
Collapse
|
36
|
Serrano A, Wunsch A, Sabety J, van Zoeren J, Basedow M, Miranda Sazo M, Fuchs M, Khan A. The Comparative Root System Architecture of Declining and Non-Declining Trees in Two Apple Orchards in New York. PLANTS (BASEL, SWITZERLAND) 2023; 12:2644. [PMID: 37514258 PMCID: PMC10383163 DOI: 10.3390/plants12142644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Rapid apple decline is a phenomenon characterized by a weakening of young apple trees in high density orchards, often followed by their quick collapse. The nature of this phenomenon remains unclear. In this work, we investigated the root system architecture (RSA) of declining and non-declining apple trees in two orchards in New York State. High-density orchard A consisted of 4-year-old 'Honeycrisp' on 'Malling 9 Nic29', and conventional orchard B consisted of 8-year-old 'Fuji' on 'Budagovsky 9'. In both orchards, a negative correlation (-0.4--0.6) was observed between RSA traits and decline symptoms, suggesting that declining trees have weaker root systems. Scion trunk diameter at the graft union, total root length, and the length of fine and coarse roots were significantly (p < 0.05) reduced in declining trees in both orchards. Additionally, internal trunk necrosis at, above, and below the graft union was observed in declining trees in orchard A but not in orchard B. Finally, latent viruses were not associated with decline, as their occurrence was documented in declining and non-declining trees in orchard A, but not in orchard B. Together, these results showed weakened root systems of declining trees, suggesting that these trees may experience deficiencies in water and nutrient uptake, although distinct RSA and trunk health traits between the two orchards were noticeable.
Collapse
Affiliation(s)
- Alicia Serrano
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Anna Wunsch
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Jean Sabety
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Janet van Zoeren
- Cornell Cooperative Extension, Lake Ontario Fruit Program, Albion, NY 14411, USA
| | - Michael Basedow
- Cornell Cooperative Extension, Eastern New York Commercial Horticulture Program, Plattsburgh, NY 12901, USA
| | - Mario Miranda Sazo
- Cornell Cooperative Extension, Lake Ontario Fruit Program, Albion, NY 14411, USA
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
37
|
Chen X, Tang Y, Duan Q, Hu J. Phenotypic quantification of root spatial distribution along circumferential direction for field paddy-wheat. PLoS One 2023; 18:e0279353. [PMID: 37418496 PMCID: PMC10328375 DOI: 10.1371/journal.pone.0279353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/06/2022] [Indexed: 07/09/2023] Open
Abstract
Plant roots are essential for water and nutrient absorption, anchoring, mechanical support, metabolite storage and interaction with the surrounding soil environment. A comprehensive understanding of root traits provides an opportunity to build ideal roots architectural system that provides improved stability and yield advantage in adverse target environments caused by soil quality degradation, climate change, etc. However, we hypothesize that quantitative indicators characterizing root system are still need to be supplemented. Features describing root growth and distribution, until now, belong mostly to 2D indicators or reflect changes in the root system with a depth of soil layers but are rarely considered in a spatial region along the circumferential direction. We proposed five new indicators to quantify the dynamics of the root system architecture (RSA) along its eight-part circumferential orientations with visualization technology which consists of in-situ field root samplings, RSA digitization, and reconstruction according to previous research based on field experiments that conducted on paddy-wheat cultivation land with three fertilization rates. The experimental results showed that the growth space of paddy-wheat root is mainly restricted to a cylinder with a diameter of 180 mm and height of 200 mm at the seedlings stage. There were slow fluctuating trends in growth by the mean values of five new indicators within a single volume of soil. The fluctuation of five new indicators was indicated in each sampling time, which decreased gradually with time. Furthermore, treatment of N70 and N130 could similarly impact root spatial heterogeneity. Therefore, we concluded that the five new indicators could quantify the spatial dynamics of the root system of paddy-wheat at the seedling stage of cultivation. It is of great significance to the comprehensive quantification of crop roots in targeted breeding programs and the methods innovation of field crop root research.
Collapse
Affiliation(s)
- Xinxin Chen
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Tang
- Nanjing Agricultural Equipment Extension Center, Nanjing, China
| | - Qingfei Duan
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Jianping Hu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
38
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
39
|
Wang W, Liu H, Xie Y, King GJ, White PJ, Zou J, Xu F, Shi L. Rapid identification of a major locus qPRL-C06 affecting primary root length in Brassica napus by QTL-seq. ANNALS OF BOTANY 2023; 131:569-583. [PMID: 36181516 PMCID: PMC10147330 DOI: 10.1093/aob/mcac123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Brassica napus is one of the most important oilseed crops worldwide. Seed yield of B. napus significantly correlates with the primary root length (PRL). The aims of this study were to identify quantitative trait loci (QTLs) for PRL in B. napus. METHODS QTL-seq and conventional QTL mapping were jointly used to detect QTLs associated with PRL in a B. napus double haploid (DH) population derived from a cross between 'Tapidor' and 'Ningyou 7'. The identified major locus was confirmed and resolved by an association panel of B. napus and an advanced backcross population. RNA-seq analysis of two long-PRL lines (Tapidor and TN20) and two short-PRL lines (Ningyou 7 and TN77) was performed to identify differentially expressed genes in the primary root underlying the target QTLs. KEY RESULTS A total of 20 QTLs impacting PRL in B. napus grown at a low phosphorus (P) supply were found by QTL-seq. Eight out of ten QTLs affecting PRL at a low P supply discovered by conventional QTL mapping could be detected by QTL-seq. The locus qPRL-C06 identified by QTL-seq was repeatedly detected at both an optimal P supply and a low P supply by conventional QTL mapping. This major constitutive QTL was further confirmed by regional association mapping. qPRL-C06 was delimited to a 0.77 Mb genomic region on chromosome C06 using an advanced backcross population. A total of 36 candidate genes within qPRL-C06 were identified that showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in primary root between the long-PRL and short-PRL lines, including five genes involved in phytohormone biosynthesis and signaling. CONCLUSIONS These results both demonstrate the power of the QTL-seq in rapid QTL detection for root traits and will contribute to marker-assisted selective breeding of B. napus cultivars with increased PRL.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Graham John King
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Philip John White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
40
|
Altaf MA, Hao Y, Shu H, Mumtaz MA, Cheng S, Alyemeni MN, Ahmad P, Wang Z. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131468. [PMID: 37146338 DOI: 10.1016/j.jhazmat.2023.131468] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | | | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
41
|
Wang J, Li C, Mao X, Wang J, Li L, Li J, Fan Z, Zhu Z, He L, Jing R. The wheat basic helix-loop-helix gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2542-2555. [PMID: 36749713 DOI: 10.1093/jxb/erad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
Crown roots are the main components of the fibrous root system in cereal crops and play critical roles in plant adaptation; however, the molecular mechanisms underlying their formation in wheat (Triticum aestivum) have not been fully elucidated. In this study, we identified a wheat basic helix-loop-helix (bHLH) protein, TabHLH123, that interacts with the essential regulator of crown root initiation, MORE ROOT in wheat (TaMOR). TabHLH123 is expressed highly in shoot bases and roots. Ectopic expression of TabHLH123 in rice resulted in more roots compared with the wild type. TabHLH123 regulates the expression of genes controlling crown-root development and auxin metabolism, responses, and transport. In addition, we analysed the nucleotide sequence polymorphisms of TabHLH123s in the wheat genome and identified a superior haplotype, TabHLH123-6B, that is associated with high root dry weight and 1000-grain weight, and short plant height. Our study reveals the role of TabHLH123 in controlling the formation of crown roots and provides beneficial insights for molecular marker-assisted breeding in wheat.
Collapse
Affiliation(s)
- Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zipei Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liheng He
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
42
|
Zheng Z, Wang B, Zhuo C, Xie Y, Zhang X, Liu Y, Zhang G, Ding H, Zhao B, Tian M, Xu M, Kong D, Shen R, Liu Q, Wu G, Huang J, Wang H. Local auxin biosynthesis regulates brace root angle and lodging resistance in maize. THE NEW PHYTOLOGIST 2023; 238:142-154. [PMID: 36636793 DOI: 10.1111/nph.18733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/18/2022] [Indexed: 05/12/2023]
Abstract
Root lodging poses a major threat to maize production, resulting in reduced grain yield and quality, and increased harvest costs. Here, we combined expressional, genetic, and cytological studies to demonstrate a role of ZmYUC2 and ZmYUC4 in regulating gravitropic response of the brace root and lodging resistance in maize. We show that both ZmYUC2 and ZmYUC4 are preferentially expressed in root tips with partially overlapping expression patterns, and the protein products of ZmYUC2 and ZmYUC4 are localized in the cytoplasm and endoplasmic reticulum, respectively. The Zmyuc4 single mutant and Zmyuc2/4 double mutant exhibit enlarged brace root angle compared with the wild-type plants, with larger brace root angle being observed in the Zmyuc2/4 double mutant. Consistently, the brace root tips of the Zmyuc4 single mutant and Zmyuc2/4 double mutant accumulate less auxin and are defective in proper reallocation of auxin in response to gravi-stimuli. Furthermore, we show that the Zmyuc4 single mutant and the Zmyuc2/4 double mutant display obviously enhanced root lodging resistance. Our combined results demonstrate that ZmYUC2- and ZmYUC4-mediated local auxin biosynthesis is required for normal gravity response of the brace roots and provide effective targets for breeding root lodging resistant maize cultivars.
Collapse
Affiliation(s)
- Zhigang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Chuyun Zhuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanjun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Manqing Tian
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, 00790, Finland
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guangxia Wu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Junfei Huang
- Shimadzu (China) Co. Ltd Shenzhen Branch, 518042, Shenzhen, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
43
|
Karnatam KS, Chhabra G, Saini DK, Singh R, Kaur G, Praba UP, Kumar P, Goyal S, Sharma P, Ranjan R, Sandhu SK, Kumar R, Vikal Y. Genome-Wide Meta-Analysis of QTLs Associated with Root Traits and Implications for Maize Breeding. Int J Mol Sci 2023; 24:6135. [PMID: 37047112 PMCID: PMC10093813 DOI: 10.3390/ijms24076135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Root system architecture (RSA), also known as root morphology, is critical in plant acquisition of soil resources, plant growth, and yield formation. Many QTLs associated with RSA or root traits in maize have been identified using several bi-parental populations, particularly in response to various environmental factors. In the present study, a meta-analysis of QTLs associated with root traits was performed in maize using 917 QTLs retrieved from 43 mapping studies published from 1998 to 2020. A total of 631 QTLs were projected onto a consensus map involving 19,714 markers, which led to the prediction of 68 meta-QTLs (MQTLs). Among these 68 MQTLs, 36 MQTLs were validated with the marker-trait associations available from previous genome-wide association studies for root traits. The use of comparative genomics approaches revealed several gene models conserved among the maize, sorghum, and rice genomes. Among the conserved genomic regions, the ortho-MQTL analysis uncovered 20 maize MQTLs syntenic to 27 rice MQTLs for root traits. Functional analysis of some high-confidence MQTL regions revealed 442 gene models, which were then subjected to in silico expression analysis, yielding 235 gene models with significant expression in various tissues. Furthermore, 16 known genes viz., DXS2, PHT, RTP1, TUA4, YUC3, YUC6, RTCS1, NSA1, EIN2, NHX1, CPPS4, BIGE1, RCP1, SKUS13, YUC5, and AW330564 associated with various root traits were present within or near the MQTL regions. These results could aid in QTL cloning and pyramiding in developing new maize varieties with specific root architecture for proper plant growth and development under optimum and abiotic stress conditions.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gautam Chhabra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Simran Goyal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Priti Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Rumesh Ranjan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Surinder K. Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Ramesh Kumar
- Indian Institute of Maize Research, Ludhiana 141001, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| |
Collapse
|
44
|
Halder T, Liu H, Chen Y, Yan G, Siddique KHM. Chromosome groups 5, 6 and 7 harbor major quantitative trait loci controlling root traits in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1092992. [PMID: 37021301 PMCID: PMC10067626 DOI: 10.3389/fpls.2023.1092992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Identifying genomic regions for root traits in bread wheat can help breeders develop climate-resilient and high-yielding wheat varieties with desirable root traits. This study used the recombinant inbred line (RIL) population of Synthetic W7984 × Opata M85 to identify quantitative trait loci (QTL) for different root traits such as rooting depth (RD), root dry mass (RM), total root length (RL), root diameter (Rdia) and root surface areas (RSA1 for coarse roots and RSA2 for fine roots) under controlled conditions in a semi-hydroponic system. We detected 14 QTL for eight root traits on nine wheat chromosomes; we discovered three QTL each for RD and RSA1, two QTL each for RM and RSA2, and one QTL each for RL, Rdia, specific root length and nodal root number per plant. The detected QTL were concentrated on chromosome groups 5, 6 and 7. The QTL for shallow RD (Q.rd.uwa.7BL: Xbarc50) and high RM (Q.rm.uwa.6AS: Xgwm334) were validated in two independent F2 populations of Synthetic W7984 × Chara and Opata M85 × Cascade, respectively. Genotypes containing negative alleles for Q.rd.uwa.7BL had 52% shallower RD than other Synthetic W7984 × Chara population lines. Genotypes with the positive alleles for Q.rm.uwa.6AS had 31.58% higher RM than other Opata M85 × Cascade population lines. Further, we identified 21 putative candidate genes for RD (Q.rd.uwa.7BL) and 13 for RM (Q.rm.uwa.6AS); TraesCS6A01G020400, TraesCS6A01G024400 and TraesCS6A01G021000 identified from Q.rm.uwa.6AS, and TraesCS7B01G404000, TraesCS7B01G254900 and TraesCS7B01G446200 identified from Q.rd.uwa.7BL encoded important proteins for root traits. We found germin-like protein encoding genes in both Q.rd.uwa.7BL and Q.rm.uwa.6AS regions. These genes may play an important role in RM and RD improvement. The identified QTL, especially the validated QTL and putative candidate genes are valuable genetic resources for future root trait improvement in wheat.
Collapse
Affiliation(s)
- Tanushree Halder
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Yinglong Chen
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Kadambot H. M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
45
|
Fichtl L, Hofmann M, Kahlen K, Voss-Fels KP, Cast CS, Ollat N, Vivin P, Loose S, Nsibi M, Schmid J, Strack T, Schultz HR, Smith J, Friedel M. Towards grapevine root architectural models to adapt viticulture to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1162506. [PMID: 36998680 PMCID: PMC10043487 DOI: 10.3389/fpls.2023.1162506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 05/31/2023]
Abstract
To sustainably adapt viticultural production to drought, the planting of rootstock genotypes adapted to a changing climate is a promising means. Rootstocks contribute to the regulation of scion vigor and water consumption, modulate scion phenological development and determine resource availability by root system architecture development. There is, however, a lack of knowledge on spatio-temporal root system development of rootstock genotypes and its interactions with environment and management that prevents efficient knowledge transfer into practice. Hence, winegrowers take only limited advantage of the large variability of existing rootstock genotypes. Models of vineyard water balance combined with root architectural models, using both static and dynamic representations of the root system, seem promising tools to match rootstock genotypes to frequently occurring future drought stress scenarios and address scientific knowledge gaps. In this perspective, we discuss how current developments in vineyard water balance modeling may provide the background for a better understanding of the interplay of rootstock genotypes, environment and management. We argue that root architecture traits are key drivers of this interplay, but our knowledge on rootstock architectures in the field remains limited both qualitatively and quantitatively. We propose phenotyping methods to help close current knowledge gaps and discuss approaches to integrate phenotyping data into different models to advance our understanding of rootstock x environment x management interactions and predict rootstock genotype performance in a changing climate. This could also provide a valuable basis for optimizing breeding efforts to develop new grapevine rootstock cultivars with optimal trait configurations for future growing conditions.
Collapse
Affiliation(s)
- Lukas Fichtl
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Marco Hofmann
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Katrin Kahlen
- Department of Modeling and Systems Analysis, Hochschule Geisenheim University, Geisenheim, Germany
| | - Kai P. Voss-Fels
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Clément Saint Cast
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Philippe Vivin
- EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Simone Loose
- Department of Wine and Beverage Business, Hochschule Geisenheim University, Geisenheim, Germany
| | - Mariem Nsibi
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Timo Strack
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Hans Reiner Schultz
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| | - Jason Smith
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Orange, NSW, Australia
| | - Matthias Friedel
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
46
|
Zhang M, Chen Y, Xing H, Ke W, Shi Y, Sui Z, Xu R, Gao L, Guo G, Li J, Xing J, Zhang Y. Positional cloning and characterization reveal the role of a miRNA precursor gene ZmLRT in the regulation of lateral root number and drought tolerance in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:772-790. [PMID: 36354146 DOI: 10.1111/jipb.13408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Lateral roots play essential roles in drought tolerance in maize (Zea mays L.). However, the genetic basis for the variation in the number of lateral roots in maize remains elusive. Here, we identified a major quantitative trait locus (QTL), qLRT5-1, controlling lateral root number using a recombinant inbred population from a cross between the maize lines Zong3 (with many lateral roots) and 87-1 (with few lateral roots). Fine-mapping and functional analysis determined that the candidate gene for qLRT5-1, ZmLRT, expresses the primary transcript for the microRNA miR166a. ZmLRT was highly expressed in root tips and lateral root primordia, and knockout and overexpression of ZmLRT increased and decreased lateral root number, respectively. Compared with 87-1, the ZmLRT gene model of Zong3 lacked the second and third exons and contained a 14 bp deletion at the junction between the first exon and intron, which altered the splicing site. In addition, ZmLRT expression was significantly lower in Zong3 than in 87-1, which might be attributed to the insertions of a transposon and over large DNA fragments in the Zong3 ZmLRT promoter region. These mutations decreased the abundance of mature miR166a in Zong3, resulting in increased lateral roots at the seedling stage. Furthermore, miR166a post-transcriptionally repressed five development-related class-III homeodomain-leucine zipper genes. Moreover, knockout of ZmLRT enhanced drought tolerance of maize seedlings. Our study furthers our understanding of the genetic basis of lateral root number variation in maize and highlights ZmLRT as a target for improving drought tolerance in maize.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanhong Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Agronomy College of Shandong Agricultural University, Taian, 271018, China
| | - Hongyan Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Ke
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhipeng Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Yantai Science and Technology Innovation Promotion Center, Yantai, 264003, China
| | - Ruibin Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lulu Gao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ganggang Guo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Germplasm Resources and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yirong Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
47
|
Wang Y, Xing J, Wan J, Yao Q, Zhang Y, Mi G, Chen L, Li Z, Zhang M. Auxin efflux carrier ZmPIN1a modulates auxin reallocation involved in nitrate-mediated root formation. BMC PLANT BIOLOGY 2023; 23:74. [PMID: 36737696 PMCID: PMC9896688 DOI: 10.1186/s12870-023-04087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Auxin plays a crucial role in nitrate (NO3-)-mediated root architecture, and it is still unclear that if NO3- supply modulates auxin reallocation for regulating root formation in maize (Zea mays L.). This study was conducted to investigate the role of auxin efflux carrier ZmPIN1a in the root formation in response to NO3- supply. RESULTS Low NO3- (LN) promoted primary root (PR) elongation, while repressed the development of lateral root primordia (LRP) and total root length. LN modulated auxin levels and polar transport and regulated the expression of auxin-responsive and -signaling genes in roots. Moreover, LN up-regulated the expression level of ZmPIN1a, and overexpression of ZmPIN1a enhanced IAA efflux and accumulation in PR tip, while repressed IAA accumulation in LRP initiation zone, which consequently induced LN-mediated PR elongation and LR inhibition. The inhibition rate of PR length, LRP density and number of ZmPIN1a-OE plants was higher than that of wild-type plants after auxin transport inhibitor NPA treatment under NN and LN conditions, and the degree of inhibition of root growth in ZmPIN1a-OE plants was more obvious under LN condition. CONCLUSION These findings suggest that ZmPIN1a was involved in modulating auxin levels and transport to alter NO3--mediated root formation in maize.
Collapse
Affiliation(s)
- Yubin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jiapeng Xing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiachi Wan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingqing Yao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
48
|
Giovannetti M, Salvioli di Fossalunga A, Stringlis IA, Proietti S, Fiorilli V. Unearthing soil-plant-microbiota crosstalk: Looking back to move forward. FRONTIERS IN PLANT SCIENCE 2023; 13:1082752. [PMID: 36762185 PMCID: PMC9902496 DOI: 10.3389/fpls.2022.1082752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The soil is vital for life on Earth and its biodiversity. However, being a non-renewable and threatened resource, preserving soil quality is crucial to maintain a range of ecosystem services critical to ecological balances, food production and human health. In an agricultural context, soil quality is often perceived as the ability to support field production, and thus soil quality and fertility are strictly interconnected. The concept of, as well as the ways to assess, soil fertility has undergone big changes over the years. Crop performance has been historically used as an indicator for soil quality and fertility. Then, analysis of a range of physico-chemical parameters has been used to routinely assess soil quality. Today it is becoming evident that soil quality must be evaluated by combining parameters that refer both to the physico-chemical and the biological levels. However, it can be challenging to find adequate indexes for evaluating soil quality that are both predictive and easy to measure in situ. An ideal soil quality assessment method should be flexible, sensitive enough to detect changes in soil functions, management and climate, and should allow comparability among sites. In this review, we discuss the current status of soil quality indicators and existing databases of harmonized, open-access topsoil data. We also explore the connections between soil biotic and abiotic features and crop performance in an agricultural context. Finally, based on current knowledge and technical advancements, we argue that the use of plant health traits represents a powerful way to assess soil physico-chemical and biological properties. These plant health parameters can serve as proxies for different soil features that characterize soil quality both at the physico-chemical and at the microbiological level, including soil quality, fertility and composition of soil microbial communities.
Collapse
Affiliation(s)
- Marco Giovannetti
- Department of Biology, University of Padova, Padova, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Ioannis A. Stringlis
- Plant - Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
49
|
Morales-Herrera S, Rubilar-Hernández C, Pérez-Henríquez P, Norambuena L. Endocytic trafficking induces lateral root founder cell specification in Arabidopsis thaliana in a process distinct from the auxin-induced pathway. FRONTIERS IN PLANT SCIENCE 2023; 13:1060021. [PMID: 36726665 PMCID: PMC9885164 DOI: 10.3389/fpls.2022.1060021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Plants can modify their body structure, such as their root architecture, post-embryonically. For example, Arabidopsis thaliana can develop lateral roots as part of an endogenous program or in response to biotic and abiotic stimuli. Root pericycle cells are specified to become lateral root founder cells, initiating lateral root organogenesis. We used the endocytic trafficking inducer Sortin2 to examine the role of endomembrane trafficking in lateral root founder cell specification. Our results indicate that Sortin2 stimulation turns on a de novo program of lateral root primordium formation that is distinct from the endogenous program driven by auxin. In this distinctive mechanism, extracellular calcium uptake and endocytic trafficking toward the vacuole are required for lateral root founder cell specification upstream of the auxin module led by AUX/IAA28. The auxin-dependent TIR1/AFB F-boxes and auxin polar transport are dispensable for the endocytic trafficking-dependent lateral root founder cell specification; however, a different set of F-box proteins and a functional SCF complex are required. The endocytic trafficking could constitute a convenient strategy for organogenesis in response to environmental conditions.
Collapse
|
50
|
Mandal D, Datta S, Raveendar G, Mondal PK, Nag Chaudhuri R. RAV1 mediates cytokinin signaling for regulating primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:106-126. [PMID: 36423224 DOI: 10.1111/tpj.16039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size. The rav1 mutants have prominently longer primary roots, with a meristem that is significantly enlarged and contains higher cell numbers, compared with wild-type. The mutant phenotype could be restored on exogenous cytokinin application or by inhibiting auxin transport. At the transcript level, primary cytokinin-responsive genes like ARR1, ARR12 were significantly downregulated in the mutant root, indicating impaired cytokinin signaling. In concurrence, cytokinin induced regulation of SHY2, an Aux/IAA gene, and auxin efflux carrier PIN1 was hindered in rav1, leading to altered auxin transport and distribution. This effectively altered root meristem size in the mutant. Notably, CRF1, another member of the AP2/ERF family implicated in cytokinin signaling, is transcriptionally repressed by RAV1 to promote cytokinin response in roots. Further associating RAV1 with cytokinin signaling, our results demonstrate that cytokinin upregulates RAV1 expression through ARR1, during post-embryonic root development. Regulation of RAV1 expression is a part of secondary cytokinin response that eventually represses CRF1 to augment cytokinin signaling. To conclude, RAV1 functions in a branch pathway downstream to ARR1 that regulates CRF1 expression to enhance cytokinin action during primary root development in Arabidopsis.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Giridhar Raveendar
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Pranab Kumar Mondal
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|