1
|
Viebrock K, Wilhelm J, Rölke B, Pastwa L, Schrader SM, Meinen S, Dietzel A, Dohnt K, Ziehr H, Korf IHE, Bohle K, Krull R. PhagoScreener: A novel phagogram platform based on a capillary-wave microbioreactor. N Biotechnol 2024; 83:188-196. [PMID: 39181197 DOI: 10.1016/j.nbt.2024.08.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Due to the overuse of antibiotics, the number of multidrug-resistant pathogen bacteria is rising in recent years posing a serious threat to human health. One promising alternative for treatment is the application of phage therapy using highly selective bacteriophages. Because of their selectivity, individual screens called phagograms for each patient are required to select phages from a phage library. Phagograms are mostly performed via bacterial cultivation on double layer agar plates and phage addition causing bacterial lysis. However, these assays are work-intensive and have a low ability for parallelization and automation. Hence, highly parallelizable and automatable microbioreactors in the lowest microliter scale could offer an economic solution increasing the throughput of phagograms. This paper demonstrates the applicability of a novel capillary-wave microbioreactor (cwMBR) to perform phagograms. Due to its small volume of only 7 µL and the open-droplet design, it can be easily automated and parallelized in future. Furthermore, the ability of online biomass measurement makes the cwMBR a perfect phagogram platform in the future. Herein, phagograms with E. coli and different concentrations of the phages MM02 and EASG3 were performed as proof of concept for phagograms in the cwMBR. Thereby, the cwMBR was able to measure differences in lysis kinetics of different phages. Furthermore, the phagograms were compared to those in conventional microtiter plate readers revealing the cwMBR as ideal alternative for phagograms as it combines favorable mixing conditions and a phage repellent hydrophilic glass surface with online biomass measurement in an open-droplet design for future parallelization and automation.
Collapse
Affiliation(s)
- Kevin Viebrock
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Jana Wilhelm
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Bea Rölke
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Leon Pastwa
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Selina M Schrader
- Fraunhofer Institute for Toxicology and Experimental Medicine, Inhoffenstr. 7, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Sven Meinen
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Holger Ziehr
- Fraunhofer Institute for Toxicology and Experimental Medicine, Inhoffenstr. 7, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Imke H E Korf
- Fraunhofer Institute for Toxicology and Experimental Medicine, Inhoffenstr. 7, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Kathrin Bohle
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
2
|
Korth N, Yang Q, Van Haute MJ, Tross MC, Peng B, Shrestha N, Zwiener-Malcom M, Mural RV, Schnable JC, Benson AK. Genomic co-localization of variation affecting agronomic and human gut microbiome traits in a meta-analysis of diverse sorghum. G3 (BETHESDA, MD.) 2024; 14:jkae145. [PMID: 38979923 PMCID: PMC11373648 DOI: 10.1093/g3journal/jkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
Substantial functional metabolic diversity exists within species of cultivated grain crops that directly or indirectly provide more than half of all calories consumed by humans around the globe. While such diversity is the molecular currency used for improving agronomic traits, diversity is poorly characterized for its effects on human nutrition and utilization by gut microbes. Moreover, we know little about agronomic traits' potential tradeoffs and pleiotropic effects on human nutritional traits. Here, we applied a quantitative genetics approach using a meta-analysis and parallel genome-wide association studies of Sorghum bicolor traits describing changes in the composition and function of human gut microbe communities, and any of 200 sorghum seed and agronomic traits across a diverse sorghum population to identify associated genetic variants. A total of 15 multiple-effect loci (MEL) were initially found where different alleles in the sorghum genome produced changes in seed that affected the abundance of multiple bacterial taxa across 2 human microbiomes in automated in vitro fermentations. Next, parallel genome-wide studies conducted for seed, biochemical, and agronomic traits in the same population identified significant associations within the boundaries of 13/15 MEL for microbiome traits. In several instances, the colocalization of variation affecting gut microbiome and agronomic traits provided hypotheses for causal mechanisms through which variation could affect both agronomic traits and human gut microbes. This work demonstrates that genetic factors affecting agronomic traits in sorghum seed can also drive significant effects on human gut microbes, particularly bacterial taxa considered beneficial. Understanding these pleiotropic relationships will inform future strategies for crop improvement toward yield, sustainability, and human health.
Collapse
Affiliation(s)
- Nate Korth
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Complex Biosystems Graduate Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Qinnan Yang
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mallory J Van Haute
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael C Tross
- Complex Biosystems Graduate Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bo Peng
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nikee Shrestha
- Complex Biosystems Graduate Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mackenzie Zwiener-Malcom
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ravi V Mural
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - James C Schnable
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrew K Benson
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
3
|
Vong WC, Cerny C, Bodnar I, Azario MLO, de Boer P, Julsing M, Hugenholtz J, Xiang WJ, Ding YC, Roland WSU. High-throughput screening for aroma production in food fermentations. Food Res Int 2024; 177:113902. [PMID: 38225144 DOI: 10.1016/j.foodres.2023.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
A microtiter plate (MTP) method was developed to screen 1064 unique microorganisms-substrate fermentations for production of 68 target aroma compounds. Based on the number of hits identified by GC-MS, 50 fermentations were repeated at 50-mL scale in flasks. Comparison of GC-MS data showed that scaling up from MTP to flask did not generally result in large differences between the volatile profiles, even with a wide variety of substrates (juice, food slurry and food side-streams) and microorganisms (yeast, bacteria and fungi) used. From the screening results, Lactobacillus plantarum fermentation of chilli pepper was further studied as a high amount of phenols, especially guaiacol and 4-ethylphenol, was produced after fermentation. From HPLC-MS and sensory analysis, capsaicin was shown to be a probable precursor for these phenols and a potential mechanism was proposed. The protocol described herein to screen aroma compounds from fermentation of agri-food products and side streams can support development of clean label flavourful food ingredients.
Collapse
Affiliation(s)
- Weng Chan Vong
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China.
| | - Christoph Cerny
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China
| | - Igor Bodnar
- Firmenich S.A., Rue De La Bergere 7, Meyrin, Geneva CH-1217, Switzerland
| | - Mauro Lorenzo Ondino Azario
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Paulo de Boer
- TNO Microbiology & Systems Biology, Utrechtseweg 48, 3704 HE Zeist, the Netherlands
| | - Mattijs Julsing
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Jeroen Hugenholtz
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| | - Wen-Juan Xiang
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China
| | - Yi-Chun Ding
- Firmenich Aromatics (China) Co. Ltd., 3901 Jindu Road, Minhang District, 201108 Shanghai, China
| | - Wibke Silke Ute Roland
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
4
|
Riedel SL, Donicz EN, Ferré-Aparicio P, Santolin L, Marbà-Ardébol AM, Neubauer P, Junne S. Workflow for shake flask and plate cultivations with fats for polyhydroxyalkanoate bioproduction. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12599-w. [PMID: 37266584 DOI: 10.1007/s00253-023-12599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
Since natural resources for the bioproduction of commodity chemicals are scarce, waste animal fats (WAF) are an interesting alternative biogenic residual feedstock. They appear as by-product from meat production, but several challenges are related to their application: first, the high melting points (up to 60 °C); and second, the insolubility in the polar water phase of cultivations. This leads to film and clump formation in shake flasks and microwell plates, which inhibits microbial consumption. In this study, different flask and well designs were investigated to identify the most suitable experimental set-up and further to create an appropriate workflow to achieve the required reproducibility of growth and product synthesis. The dissolved oxygen concentration was measured in-line throughout experiments. It became obvious that the gas mass transfer differed strongly among the shake flask design variants in cultivations with the polyhydroxyalkanoate (PHA) accumulating organism Ralstonia eutropha. A high reproducibility was achieved for certain flask or well plate design variants together with tailored cultivation conditions. Best results were achieved with bottom baffled glass and bottom baffled single-use shake flasks with flat membranes, namely, >6 g L-1 of cell dry weight (CDW) with >80 wt% polyhydroxybutyrate (PHB) from 1 wt% WAF. Improved pre-emulsification conditions for round microwell plates resulted in a production of 14 g L-1 CDW with a PHA content of 70 wt% PHB from 3 wt% WAF. The proposed workflow allows the rapid examination of fat material as feedstock, in the microwell plate and shake flask scale, also beyond PHA production. KEY POINTS: • Evaluation of shake flask designs for cultivating with hydrophobic raw materials • Development of a workflow for microwell plate cultivations with hydrophobic raw materials • Production of polyhydroxyalkanoate in small scale experiments from waste animal fat.
Collapse
Affiliation(s)
- Sebastian L Riedel
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
- Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Laboratory of Environmental and Bioprocess Engineering, Berliner Hochschule für Technik, Seestr. 64, Berlin, D-13347, Germany
| | - Ewelina N Donicz
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Paula Ferré-Aparicio
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Lara Santolin
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Anna-Maria Marbà-Ardébol
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany
| | - Stefan Junne
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76 ACK 24, D-13355, Berlin, Germany.
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, DK-6700, Esbjerg, Denmark.
| |
Collapse
|
5
|
Bromig L, von den Eichen N, Weuster-Botz D. Control of parallelized bioreactors I: dynamic scheduling software for efficient bioprocess management in high-throughput systems. Bioprocess Biosyst Eng 2022; 45:1927-1937. [PMID: 36255464 DOI: 10.1007/s00449-022-02798-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 12/28/2022]
Abstract
The shift towards high-throughput technologies and automation in research and development in industrial biotechnology is highlighting the need for increased automation competence and specialized software solutions. Within bioprocess development, the trends towards miniaturization and parallelization of bioreactor systems rely on full automation and digital process control. Thus, mL-scale, parallel bioreactor systems require integration into liquid handling stations to perform a range of tasks stretching from substrate addition to automated sampling and sample analysis. To orchestrate these tasks, the authors propose a scheduling software to fully leverage the advantages of a state-of-the-art liquid handling station (LHS) and to enable improved process control and resource allocation. Fixed sequential order execution, the norm in LHS software, results in imperfect timing of essential operations like feeding or Ph control and execution intervals thereof, that are unknown a priori. However, the duration and control of, e.g., the feeding task and their frequency are of great importance for bioprocess control and the design of experiments. Hence, a software solution is presented that allows the orchestration of the respective operations through dynamic scheduling by external LHS control. With the proposed scheduling software, it is possible to define a dynamic process control strategy based on data-driven real-time prioritization and transparent, user-defined constraints. Drivers for a commercial 48 parallel bioreactor system and the related sensor equipment were developed using the SiLA 2 standard greatly simplifying the integration effort. Furthermore, this paper describes the experimental hardware and software setup required for the application use case presented in the second part.
Collapse
Affiliation(s)
- Lukas Bromig
- Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Nikolas von den Eichen
- Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
6
|
Rodrigues CJC, de Carvalho CCCR. Marine Bioprospecting, Biocatalysis and Process Development. Microorganisms 2022; 10:1965. [PMID: 36296241 PMCID: PMC9610463 DOI: 10.3390/microorganisms10101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Oceans possess tremendous diversity in microbial life. The enzymatic machinery that marine bacteria present is the result of extensive evolution to assist cell survival under the harsh and continuously changing conditions found in the marine environment. Several bacterial cells and enzymes are already used at an industrial scale, but novel biocatalysts are still needed for sustainable industrial applications, with benefits for both public health and the environment. Metagenomic techniques have enabled the discovery of novel biocatalysts, biosynthetic pathways, and microbial identification without their cultivation. However, a key stage for application of novel biocatalysts is the need for rapid evaluation of the feasibility of the bioprocess. Cultivation of not-yet-cultured bacteria is challenging and requires new methodologies to enable growth of the bacteria present in collected environmental samples, but, once a bacterium is isolated, its enzyme activities are easily measured. High-throughput screening techniques have also been used successfully, and innovative in vitro screening platforms to rapidly identify relevant enzymatic activities continue to improve. Small-scale approaches and process integration could improve the study and development of new bioprocesses to produce commercially interesting products. In this work, the latest studies related to (i) the growth of marine bacteria under laboratorial conditions, (ii) screening techniques for bioprospecting, and (iii) bioprocess development using microreactors and miniaturized systems are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
7
|
Auto-induction Screening Protocol for Ranking Clonal Libraries of Pichia pastoris MutS Strains. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Viebrock K, Rabl D, Meinen S, Wunder P, Meyer JA, Frey LJ, Rasch D, Dietzel A, Mayr T, Krull R. Microsensor in Microbioreactors: Full Bioprocess Characterization in a Novel Capillary-Wave Microbioreactor. BIOSENSORS 2022; 12:bios12070512. [PMID: 35884315 PMCID: PMC9312480 DOI: 10.3390/bios12070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Microbioreactors (MBRs) with a volume below 1 mL are promising alternatives to established cultivation platforms such as shake flasks, lab-scale bioreactors and microtiter plates. Their main advantages are simple automatization and parallelization and the saving of expensive media components and test substances. These advantages are particularly pronounced in small-scale MBRs with a volume below 10 µL. However, most described small-scale MBRs are lacking in process information from integrated sensors due to limited space and sensor technology. Therefore, a novel capillary-wave microbioreactor (cwMBR) with a volume of only 7 µL has the potential to close this gap, as it combines a small volume with integrated sensors for biomass, pH, dissolved oxygen (DO) and glucose concentration. In the cwMBR, pH and DO are measured by established luminescent optical sensors on the bottom of the cwMBR. The novel glucose sensor is based on a modified oxygen sensor, which measures the oxygen uptake of glucose oxidase (GOx) in the presence of glucose up to a concentration of 15 mM. Furthermore, absorbance measurement allows biomass determination. The optical sensors enabled the characterization of an Escherichia coli batch cultivation over 8 h in the cwMBR as proof of concept for further bioprocesses. Hence, the cwMBR with integrated optical sensors has the potential for a wide range of microscale bioprocesses, including cell-based assays, screening applications and process development.
Collapse
Affiliation(s)
- Kevin Viebrock
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Dominik Rabl
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Sven Meinen
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Paul Wunder
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Jan-Angelus Meyer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Lasse Jannis Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Correspondence:
| |
Collapse
|
9
|
Wollborn D, Munkler LP, Horstmann R, Germer A, Blank LM, Büchs J. Predicting high recombinant protein producer strains of Pichia pastoris Mut S using the oxygen transfer rate as an indicator of metabolic burden. Sci Rep 2022; 12:11225. [PMID: 35780248 PMCID: PMC9250517 DOI: 10.1038/s41598-022-15086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a widely used host for recombinant protein production. In this study, a clonal library of P. pastoris MutS strains (S indicates slow methanol utilization) was screened for high green fluorescent protein (GFP) production. The expression cassette was under the control of the methanol inducible AOX promoter. The growth behavior was online-monitored in 48-well and 96-well microtiter plates by measuring the oxygen transfer rate (OTR). By comparing the different GFP producing strains, a correlation was established between the slope of the cumulative oxygen transfer during the methanol metabolization phase and the strain’s production performance. The correlation corresponds to metabolic burden during methanol induction. The findings were validated using a pre-selected strain library (7 strains) of high, medium, and low GFP producers. For those strains, the gene copy number was determined via Whole Genome Sequencing. The results were consistent with the described OTR correlation. Additionally, a larger clone library (45 strains) was tested to validate the applicability of the proposed method. The results from this study suggest that the cumulative oxygen transfer can be used as a screening criterion for protein production performance that allows for a simple primary screening process, facilitating the pre-selection of high producing strains.
Collapse
Affiliation(s)
- David Wollborn
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Lara Pauline Munkler
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Rebekka Horstmann
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Binda L, Bolado M, D'Onofrio A, Freytes VM. Analysis of a microfluidic device for diffusion coefficient determination of high molecular weight solutes detectable in the visible spectrum. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:56. [PMID: 35751705 DOI: 10.1140/epje/s10189-022-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
We developed a procedure to measure diffusion coefficients using microfluidic devices that contributes to the transport analysis of high molecular weight solutes with low diffusion coefficient. This procedure allows a quick determination of diffusion coefficients and a precise evaluation of measurement errors. Making use of color variation of a pH indicator, we determined its diffusion coefficient in its own solvent (water). The value obtained was compared with previously published ones and was found to be similar to those cited. The microfluidic device has a serpentine-shaped channel that allows monitoring the solution evolution in different regions of the path in a single visual field without the need to move the camera or the microchip. This kind of device also allows the spatial and temporal tracking of the diffusion process. The solution color intensity is used to determine solute concentration; therefore, this method presents an advantage compared to those based on fluorescence detection. A complete analysis of the diffusive behavior along the channel path was performed in order to test the accuracy of these kinds of methodologies. This analysis can be used with similar devices, and the techniques employed for diffusion analysis can be applied to a µTAS-type microfluidic platform, allowing obtain variations of the diffusion coefficient as a function of time due to variations in external factors, e.g., temperature, etc.
Collapse
Affiliation(s)
- L Binda
- Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, 1063, Buenos Aires, Argentina
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, B1613GSX, Los Polvorines, Provincia de Buenos Aires, Argentina
| | - M Bolado
- Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, 1063, Buenos Aires, Argentina
| | - A D'Onofrio
- Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, 1063, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina.
| | - V M Freytes
- Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, 1063, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
11
|
Teworte S, Malcı K, Walls LE, Halim M, Rios-Solis L. Recent advances in fed-batch microscale bioreactor design. Biotechnol Adv 2021; 55:107888. [PMID: 34923075 DOI: 10.1016/j.biotechadv.2021.107888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
Abstract
Advanced fed-batch microbioreactors mitigate scale up risks and more closely mimic industrial cultivation practices. Recently, high throughput microscale feeding strategies have been developed which improve the accessibility of microscale fed-batch cultivation irrespective of experimental budget. This review explores such technologies and their role in accelerating bioprocess development. Diffusion- and enzyme-controlled feeding achieve a continuous supply of substrate while being simple and affordable. More complex feed profiles and greater process control require additional hardware. Automated liquid handling robots may be programmed to predefined feed profiles and have the sensitivity to respond to deviations in process parameters. Microfluidic technologies have been shown to facilitate both continuous and precise feeding. Holistic approaches, which integrate automated high-throughput fed-batch cultivation with strategic design of experiments and model-based optimisation, dramatically enhance process understanding whilst minimising experimental burden. The incorporation of real-time data for online optimisation of feed conditions can further refine screening. Although the technologies discussed in this review hold promise for efficient, low-risk bioprocess development, the expense and complexity of automated cultivation platforms limit their widespread application. Future attention should be directed towards the development of open-source software and reducing the exclusivity of hardware.
Collapse
Affiliation(s)
- Sarah Teworte
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom.
| |
Collapse
|
12
|
Raj K, Venayak N, Diep P, Golla SA, Yakunin AF, Mahadevan R. Automation assisted anaerobic phenotyping for metabolic engineering. Microb Cell Fact 2021; 20:184. [PMID: 34556155 PMCID: PMC8461876 DOI: 10.1186/s12934-021-01675-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microorganisms can be metabolically engineered to produce a wide range of commercially important chemicals. Advancements in computational strategies for strain design and synthetic biological techniques to construct the designed strains have facilitated the generation of large libraries of potential candidates for chemical production. Consequently, there is a need for high-throughput laboratory scale techniques to characterize and screen these candidates to select strains for further investigation in large scale fermentation processes. Several small-scale fermentation techniques, in conjunction with laboratory automation have enhanced the throughput of enzyme and strain phenotyping experiments. However, such high throughput experimentation typically entails large operational costs and generate massive amounts of laboratory plastic waste. RESULTS In this work, we develop an eco-friendly automation workflow that effectively calibrates and decontaminates fixed-tip liquid handling systems to reduce tip waste. We also investigate inexpensive methods to establish anaerobic conditions in microplates for high-throughput anaerobic phenotyping. To validate our phenotyping platform, we perform two case studies-an anaerobic enzyme screen, and a microbial phenotypic screen. We used our automation platform to investigate conditions under which several strains of E. coli exhibit the same phenotypes in 0.5 L bioreactors and in our scaled-down fermentation platform. We also propose the use of dimensionality reduction through t-distributed stochastic neighbours embedding (t-SNE) in conjunction with our phenotyping platform to effectively cluster similarly performing strains at the bioreactor scale. CONCLUSIONS Fixed-tip liquid handling systems can significantly reduce the amount of plastic waste generated in biological laboratories and our decontamination and calibration protocols could facilitate the widespread adoption of such systems. Further, the use of t-SNE in conjunction with our automation platform could serve as an effective scale-down model for bioreactor fermentations. Finally, by integrating an in-house data-analysis pipeline, we were able to accelerate the 'test' phase of the design-build-test-learn cycle of metabolic engineering.
Collapse
Affiliation(s)
- Kaushik Raj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5 Canada
| | - Naveen Venayak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5 Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5 Canada
| | - Sai Akhil Golla
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5 Canada
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5 Canada
- School of Natural Sciences, Bangor University, Bangor, LL57 2DG UK
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, M5S 3E5 Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, M5S 3G9 Canada
| |
Collapse
|
13
|
Wiegmann V, Gardner RA, Spencer DIR, Baganz F. Equal mixing time enables scale-down and optimization of a CHO cell culture process using a shaken microbioreactor system. Biotechnol J 2021; 16:e2100360. [PMID: 34494367 DOI: 10.1002/biot.202100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/07/2022]
Abstract
The advancement of microbioreactor technology in recent years has transformed early- and mid-stage process development. The monitoring and control capabilities of microbioreactors not only promote the quick accumulation of process knowledge but has also led to an increased scalability when compared to traditionally used systems such as shake flasks and microtitre plates. This study seeks to establish a framework for the micro-Matrix microbioreactor (Applikon-Biotechnology BV) as process development tool. Using the Dual Indicator System for Mixing Time, the system was initially characterized for mixing properties at varying operating conditions, which was found to yield mixing times between 0.9 and 41.8 s. A matched mixing time was proposed as scale-down criterion for an IgG4 producing GS-CHO fed-batch process between a 5 L stirred tank reactor (STR) and the micro-Matrix microbioreactor. Growth trends, maximum viable cell concentrations, final titre, and glycoprofiles were nearly identical at both scales. The scale-down model was then employed to optimize a bolus feeding regime using response surface methodology, which led to a 25.4% increase of the space-time yield and a 25% increase of the final titre. The optimized feeding strategy was validated at the small-scale and successfully scaled up to the 5 L STR. This work for the first time provides a framework of how the micro-Matrix microbioreactor can be implemented in a bioprocess development workflow and demonstrates scalability of growth and production kinetics as well as IgG4 glycosylation between the micro-Matrix and a benchtop-scale STR system.
Collapse
Affiliation(s)
- Vincent Wiegmann
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
| | | | | | - Frank Baganz
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gordon Street, London, WC1E 6BT, UK
| |
Collapse
|
14
|
Nissen L, Casciano F, Gianotti A. Intestinal fermentation in vitro models to study food-induced gut microbiota shift: an updated review. FEMS Microbiol Lett 2021; 367:5854534. [PMID: 32510557 DOI: 10.1093/femsle/fnaa097] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
In vitro gut fermentation models were firstly introduced in nutrition and applied microbiology research back in the 1990s. These models have improved greatly during time, mainly over the resemblance to the complexity of digestion stages, the replication of experimental conditions, the multitude of ecological parameters to assay. The state of the science is that the most competitive models shall include a complex gut microbiota, small working volumes, distinct interconnected compartments and rigorous bio-chemical and ecological settings, controlled by a computer, as well as a free-hands accessibility, not to contaminate the mock microbiota. These models are a useful tool to study the impact of a given diet compound, e.g. prebiotics, on the human gut microbiota. The principal application is to focus on the shift of the core microbial groups and selected species together with their metabolites, assaying their diversity, richness and abundance in the community over time. Besides, it is possible to study how a compound is digested, which metabolic pathways are triggered, and the type and quantity of microbial metabolites produced. Further prospective should focus on challenges with pathogens as well as on ecology of gut syndromes. In this minireview an updated presentation of the most used intestinal models is presented, basing on their concept, technical features, as well as on research applications.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy
| | - Flavia Casciano
- DiSTAL-Department of Agricultural and Food Sciences, University of Bologna, V.le Fanin 50, 40127 Bologna, Italy
| | - Andrea Gianotti
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy.,DiSTAL-Department of Agricultural and Food Sciences, University of Bologna, V.le Fanin 50, 40127 Bologna, Italy
| |
Collapse
|
15
|
Ma R, Fang H, Liu H, Pan L, Wang H, Zhang H. Overexpression of uracil permease and nucleoside transporter from Bacillus amyloliquefaciens improves cytidine production in Escherichia coli. Biotechnol Lett 2021; 43:1211-1219. [PMID: 33646457 DOI: 10.1007/s10529-021-03103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
Cytidine is an important raw material for nucleic acid health food and genetic engineering research. In recent years, it has shown irreplaceable effects in anti-virus, anti-tumor, and AIDS drugs. Its biosynthetic pathway is complex and highly regulated. In this study, overexpression of uracil permease and a nucleoside transporter from Bacillus amyloliquefaciens related to cell membrane transport in Escherichia coli strain BG-08 was found to increase cytidine production in shake flask cultivation by 1.3-fold (0.91 ± 0.03 g/L) and 1.8-fold (1.26 ± 0.03 g/L) relative to that of the original strain (0.70 ± 0.03 g/L), respectively. Co-overexpression of uracil permease and a nucleoside transporter further increased cytidine yield by 2.7-fold (1.59 ± 0.05 g/L) compared with that of the original strain. These results indicate that the overexpressed uracil permease and nucleoside transporter can promote the accumulation of cytidine, and the two proteins play a synergistic role in the secretion of cytidine in Escherichia coli.
Collapse
Affiliation(s)
- Ruoshuang Ma
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Huiyan Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Lin Pan
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Hongyan Wang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Heng Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Agriculture, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
16
|
Habicher T, Klein T, Becker J, Daub A, Büchs J. Screening for optimal protease producing Bacillus licheniformis strains with polymer-based controlled-release fed-batch microtiter plates. Microb Cell Fact 2021; 20:51. [PMID: 33622330 PMCID: PMC7903736 DOI: 10.1186/s12934-021-01541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background Substrate-limited fed-batch conditions have the favorable effect of preventing overflow metabolism, catabolite repression, oxygen limitation or inhibition caused by elevated substrate or osmotic concentrations. Due to these favorable effects, fed-batch mode is predominantly used in industrial production processes. In contrast, screening processes are usually performed in microtiter plates operated in batch mode. This leads to a different physiological state of the production organism in early screening and can misguide the selection of potential production strains. To close the gap between screening and production conditions, new techniques to enable fed-batch mode in microtiter plates have been described. One of these systems is the ready-to-use and disposable polymer-based controlled-release fed-batch microtiter plate (fed-batch MTP). In this work, the fed-batch MTP was applied to establish a glucose-limited fed-batch screening procedure for industrially relevant protease producing Bacillus licheniformis strains. Results To achieve equal initial growth conditions for different clones with the fed-batch MTP, a two-step batch preculture procedure was developed. Based on this preculture procedure, the standard deviation of the protease activity of glucose-limited fed-batch main culture cultivations in the fed-batch MTP was ± 10%. The determination of the number of replicates revealed that a minimum of 6 parallel cultivations were necessary to identify clones with a statistically significant increased or decreased protease activity. The developed glucose-limited fed-batch screening procedure was applied to 13 industrially-relevant clones from two B. licheniformis strain lineages. It was found that 12 out of 13 clones (92%) were classified similarly as in a lab-scale fed-batch fermenter process operated under glucose-limited conditions. When the microtiter plate screening process was performed in batch mode, only 5 out of 13 clones (38%) were classified similarly as in the lab-scale fed-batch fermenter process. Conclusion The glucose-limited fed-batch screening process outperformed the usual batch screening process in terms of the predictability of the clone performance under glucose-limited fed-batch fermenter conditions. These results highlight that the implementation of glucose-limited fed-batch conditions already in microtiter plate scale is crucial to increase the precision of identifying improved protease producing B. licheniformis strains. Hence, the fed-batch MTP represents an efficient high-throughput screening tool that aims at closing the gap between screening and production conditions.
Collapse
Affiliation(s)
- Tobias Habicher
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Tobias Klein
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jacqueline Becker
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein, Germany
| | - Andreas Daub
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT - Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
17
|
Potential of Integrating Model-Based Design of Experiments Approaches and Process Analytical Technologies for Bioprocess Scale-Down. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 33381857 DOI: 10.1007/10_2020_154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Typically, bioprocesses on an industrial scale are dynamic systems with a certain degree of variability, system inhomogeneities, and even population heterogeneities. Therefore, the scaling of such processes from laboratory to industrial scale and vice versa is not a trivial task. Traditional scale-down methodologies consider several technical parameters, so that systems on the laboratory scale tend to qualitatively reflect large-scale effects, but not the dynamic situation in an industrial bioreactor over the entire process, from the perspective of a cell. Supported by the enormous increase in computing power, the latest scientific focus is on the application of dynamic models, in combination with computational fluid dynamics to quantitatively describe cell behavior. These models allow the description of possible cellular lifelines which in turn can be used to derive a regime analysis for scale-down experiments. However, the approaches described so far, which were for a very few process examples, are very labor- and time-intensive and cannot be validated easily. In parallel, alternatives have been developed based on the description of the industrial process with hybrid process models, which describe a process mechanistically as far as possible in order to determine the essential process parameters with their respective variances. On-line analytical methods allow the characterization of population heterogeneity directly in the process. This detailed information from the industrial process can be used in laboratory screening systems to select relevant conditions in which the cell and process related parameters reflect the situation in the industrial scale. In our opinion, these technologies, which are available in research for modeling biological systems, in combination with process analytical techniques are so far developed that they can be implemented in industrial routines for faster development of new processes and optimization of existing ones.
Collapse
|
18
|
Hemmerich J, Labib M, Steffens C, Reich SJ, Weiske M, Baumgart M, Rückert C, Ruwe M, Siebert D, Wendisch VF, Kalinowski J, Wiechert W, Oldiges M. Screening of a genome-reduced Corynebacterium glutamicum strain library for improved heterologous cutinase secretion. Microb Biotechnol 2020; 13:2020-2031. [PMID: 32893457 PMCID: PMC7533341 DOI: 10.1111/1751-7915.13660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from Fusarium solani pisi in the industrial workhorse Corynebacterium glutamicum. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from Bacillus subtilis. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and rrnC-cg3298 could not have been inferred a priori. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a 'high-performance' strain from batch screening into a 'low-performance' strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of C. glutamicum to both genomic deletions and different bioprocess conditions.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
| | - Mohamed Labib
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Carmen Steffens
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Sebastian J. Reich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Present address:
Institute of Microbiology and BiotechnologyUlm UniversityUlm89081Germany
| | - Marc Weiske
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Meike Baumgart
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Christian Rückert
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Matthias Ruwe
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Daniel Siebert
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
- Present address:
Microbial BiotechnologyCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubing94315Germany
| | - Volker F. Wendisch
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
| | - Jörn Kalinowski
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Wolfgang Wiechert
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen52074Germany
| | - Marco Oldiges
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52074Germany
| |
Collapse
|
19
|
Detailed small-scale characterization and scale-up of active YFP inclusion body production with Escherichia coli induced by a tetrameric coiled coil domain. J Biosci Bioeng 2020; 129:730-740. [PMID: 32143998 DOI: 10.1016/j.jbiosc.2020.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
During heterologous protein production with Escherichia coli, the formation of inclusion bodies (IBs) is often a major drawback as these aggregated proteins are usually inactive. However, different strategies for the generation of IBs consisting of catalytically active proteins have recently been described. In this study, the archaeal tetrameric coiled-coil domain of the cell-surface protein tetrabrachion was fused to a target reporter protein to produce fluorescent IBs (FIBs). As the cultivation conditions severely influence IB formation, the entire cultivation process resulting in the production of FIBs were thoroughly studied. First, the cultivation process was scaled down based on the maximum oxygen transfer capacity, combining online monitoring technologies for shake flasks and microtiter plates with offline sampling. The evaluation of culture conditions in complex terrific broth autoinduction medium showed strong oxygen limitation and leaky expression. Furthermore, strong acetate formation and pH changes from 6.5 to 8.8 led to sub-optimal cultivation conditions. However, in minimal Wilms-MOPS autoinduction medium, defined culture conditions and a tightly controlled expression were achieved. The production of FIBs is strongly influenced by the induction strength. Increasing induction strengths result in lower total amounts of functional protein. However, the amount of functional FIBs increases. Furthermore, to prevent the formation of conventional inactive IBs, a temperature shift from 37 °C to 15 °C is crucial to generate FIBs. Finally, the gained insights were transferred to a stirred tank reactor batch fermentation. Hereby, 12 g/L FIBs were produced, making up 43 % (w/w) of the total generated biomass.
Collapse
|
20
|
Wiegmann V, Martinez CB, Baganz F. Using a Parallel Micro-Cultivation System (Micro-Matrix) as a Process Development Tool for Cell Culture Applications. Methods Mol Biol 2020; 2095:69-81. [PMID: 31858463 DOI: 10.1007/978-1-0716-0191-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micro-bioreactors appear frequently in today's biotechnology industry as screening and process development tools for cell culture applications. The micro-bioreactor's small volume allows for a high throughput, and when compared to other small-scale systems, such as microtiter plates, its measurement and control capabilities offer a much better insight into the bioprocess. Applikon's micro-Matrix is one of the micro-bioreactors that are commercially available today. The micro-Matrix system consists of shaken disposable 24 deep square well plates in which each well is controlled individually for pH, dissolved oxygen (DO), and temperature. Additionally, a feeding module supports automated additions of liquid to each well. This chapter describes how the micro-Matrix can be used for fed-batch cultivations of Chinese Hamster Ovary (CHO) cells.
Collapse
Affiliation(s)
- Vincent Wiegmann
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, UK
| | | | - Frank Baganz
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
21
|
Morschett H, Jansen R, Neuendorf C, Moch M, Wiechert W, Oldiges M. Parallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance. J Ind Microbiol Biotechnol 2020; 47:35-47. [PMID: 31673873 PMCID: PMC6971147 DOI: 10.1007/s10295-019-02243-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Limited throughput represents a substantial drawback during bioprocess development. In recent years, several commercial microbioreactor systems have emerged featuring parallelized experimentation with optical monitoring. However, many devices remain limited to batch mode and do not represent the fed-batch strategy typically applied on an industrial scale. A workflow for 32-fold parallelized microscale cultivation of protein secreting Corynebacterium glutamicum in microtiter plates incorporating online monitoring, pH control and feeding was developed and validated. Critical interference of the essential media component protocatechuic acid with pH measurement was revealed, but was effectively resolved by 80% concentration reduction without affecting biological performance. Microfluidic pH control and feeding (pulsed, constant and exponential) were successfully implemented: Whereas pH control improved performance only slightly, feeding revealed a much higher optimization potential. Exponential feeding with µ = 0.1 h-1 resulted in the highest product titers. In contrast, other performance indicators such as biomass-specific or volumetric productivity resulted in different optimal feeding regimes.
Collapse
Affiliation(s)
- Holger Morschett
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roman Jansen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Christian Neuendorf
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
22
|
Microbioreactors for Process Development and Cell-Based Screening Studies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:67-100. [PMID: 32712680 DOI: 10.1007/10_2020_130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microbioreactors (MBRs) have emerged as potent cultivation devices enabling automated small-scale experiments in parallel while enhancing their cost efficiency. The widespread use of MBRs has contributed to recent advances in industrial and pharmaceutical biotechnology, and they have proved to be indispensable tools in the development of many modern bioprocesses. Being predominantly applied in early stage process development, they open up new fields of research and enhance the efficacy of biotechnological product development. Their reduced reaction volume is associated with numerous inherent advantages - particularly the possibility for enabling parallel screening operations that facilitate high-throughput cultivations with reduced sample consumption (or the use of rare and expensive educts). As a result, multiple variables can be examined in a shorter time and with a lower expense. This leads to a simultaneous acceleration of research and process development along with decreased costs.MBRs range from simple miniaturized cultivations vessels (i.e., in the milliliter scale with limited possibilities for process control) to highly complex and automated small-scale microreactors with integrated sensors that allow for comprehensive screenings in very short time or a precise reflection of large-scale cultivation conditions. Progressive developments and improvements in manufacturing and automation techniques are already helping researchers to make use of the advantages that MBRs offer. This overview of current MBR systems surveys the diverse application for microbial and mammalian cell cultivations that have been developed in recent years.
Collapse
|
23
|
García-Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos-Seguí JL, Valero F. Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? N Biotechnol 2019; 53:24-34. [DOI: 10.1016/j.nbt.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
|
24
|
Habicher T, Rauls EKA, Egidi F, Keil T, Klein T, Daub A, Büchs J. Establishing a Fed-Batch Process for Protease Expression with Bacillus licheniformis in Polymer-Based Controlled-Release Microtiter Plates. Biotechnol J 2019; 15:e1900088. [PMID: 31471944 DOI: 10.1002/biot.201900088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Introducing fed-batch mode in early stages of development projects is crucial for establishing comparable conditions to industrial fed-batch fermentation processes. Therefore, cost efficient and easy to use small-scale fed-batch systems that can be integrated into existing laboratory equipment and workflows are required. Recently, a novel polymer-based controlled-release fed-batch microtiter plate is described. In this work, the polymer-based controlled-release fed-batch microtiter plate is used to investigate fed-batch cultivations of a protease producing Bacillus licheniformis culture. Therefore, the oxygen transfer rate (OTR) is online-monitored within each well of the polymer-based controlled-release fed-batch microtiter plate using a µRAMOS device. Cultivations in five individual polymer-based controlled-release fed-batch microtiter plates of two production lots show good reproducibility with a mean coefficient of variation of 9.2%. Decreasing initial biomass concentrations prolongs batch phase while simultaneously postponing the fed-batch phase. The initial liquid filling volume affects the volumetric release rate, which is directly translated in different OTR levels of the fed-batch phase. An increasing initial osmotic pressure within the mineral medium decreases both glucose release and protease yield. With the volumetric glucose release rate as scale-up criterion, microtiter plate- and shake flask-based fed-batch cultivations are highly comparable. On basis of the small-scale fed-batch cultivations, a mechanistic model is established and validated. Model-based simulations coincide well with the experimentally acquired data.
Collapse
Affiliation(s)
- Tobias Habicher
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Edward K A Rauls
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Franziska Egidi
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Timm Keil
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Tobias Klein
- White Biotechnology Research Unit, BASF SE, Ludwigshafen am Rhein, 67063, Germany
| | - Andreas Daub
- Chemical Engineering Industrial Biotechnology, BASF SE, Ludwigshafen am Rhein, 67063, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
25
|
Ladner T, Flitsch D, Lukacs M, Sieben M, Büchs J. Combined dissolved oxygen tension and online viscosity measurements in shake flask cultivations via infrared fluorescent oxygen-sensitive nanoparticles. Biotechnol Bioeng 2019; 116:3215-3227. [PMID: 31429921 DOI: 10.1002/bit.27145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/05/2022]
Abstract
Oxygen supply is one of the most critical process parameters in aerobic cultivations. To assure sufficient oxygen supply, shake flasks are usually used in combination with orbital shaking machines. In this study, a measurement technique for the dissolved oxygen tension (DOT) in shake flask cultures with viscosity changes is presented. The movement of the shaker table is monitored by means of a Hall effect sensor. For DOT measurements, infrared fluorescent oxygen-sensitive nanoparticles are added to the culture broth. The position of the rotating bulk liquid needs to be determined to assure measurements inside the liquid. The leading edge of the bulk liquid is detected based on the fluorescence signal intensity of the oxygen-sensitive nanoparticles. Furthermore, online information about the viscosity of the culture broth is acquired due to the detection of the position of the leading edge of the bulk liquid relative to the direction of the centrifugal force, as described by Sieben et al. (2019. Sci. Rep., 9, 8335). The DOT measurement is combined with a respiration activity monitoring system which allows for the determination of the oxygen transfer rate (OTR) in eight parallel shake flasks. Based on DOT and OTR, the volumetric oxygen transfer coefficient (kL a) is calculated during cultivation. The new system was successfully applied in cultivations of Escherichia coli, Bacillus licheniformis, and Xanthomonas campestris.
Collapse
Affiliation(s)
- Tobias Ladner
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - David Flitsch
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Mihaly Lukacs
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Michaela Sieben
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Jansen R, Tenhaef N, Moch M, Wiechert W, Noack S, Oldiges M. FeedER: a feedback-regulated enzyme-based slow-release system for fed-batch cultivation in microtiter plates. Bioprocess Biosyst Eng 2019; 42:1843-1852. [PMID: 31399865 PMCID: PMC6800402 DOI: 10.1007/s00449-019-02180-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Abstract
With the advent of modern genetic engineering methods, microcultivation systems have become increasingly important tools for accelerated strain phenotyping and bioprocess engineering. While these systems offer sophisticated capabilities to screen batch processes, they lack the ability to realize fed-batch processes, which are used more frequently in industrial bioprocessing. In this study, a novel approach to realize a feedback-regulated enzyme-based slow-release system (FeedER), allowing exponential fed-batch for microscale cultivations, was realized by extending our existing Mini Pilot Plant technology with a customized process control system. By continuously comparing the experimental growth rates with predefined set points, the automated dosage of Amyloglucosidase enzyme for the cleavage of dextrin polymers into d-glucose monomers is triggered. As a prerequisite for stable fed-batch operation, a constant pH is maintained by automated addition of ammonium hydroxide. We show the successful application of FeedER to study fed-batch growth of different industrial model organisms including Corynebacterium glutamicum, Pichia pastoris, and Escherichia coli. Moreover, the comparative analysis of a C. glutamicum GFP producer strain, cultivated under microscale batch and fed-batch conditions, revealed two times higher product yields under slow growing fed-batch operation. In summary, FeedER enables to run 48 parallel fed-batch experiments in an automated and miniaturized manner, and thereby accelerates industrial bioprocess development at the screening stage.
Collapse
Affiliation(s)
- Roman Jansen
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Niklas Tenhaef
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,RWTH Aachen University, Computational Systems Biotechnology (AVT.CSB), Aachen, Germany
| | - Stephan Noack
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco Oldiges
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Biotechnology (IBG-1), Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
27
|
Frey LJ, Vorländer D, Rasch D, Ostsieker H, Müller B, Schulze M, Schenkendorf R, Mayr T, Grosch JH, Krull R. Novel electrodynamic oscillation technique enables enhanced mass transfer and mixing for cultivation in micro-bioreactor. Biotechnol Prog 2019; 35:e2827. [PMID: 31021498 DOI: 10.1002/btpr.2827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Micro-bioreactors (MBRs) have become an indispensable part for modern bioprocess development enabling automated experiments in parallel while reducing material cost. Novel developments aim to further intensify the advantages as dimensions are being reduced. However, one factor hindering the scale-down of cultivation systems is to provide adequate mixing and mass transfer. Here, vertical oscillation is demonstrated as an effective method for mixing of MBRs with a reaction volume of 20 μL providing adequate mass transfer. Electrodynamic exciters are used to transduce kinetic energy onto the cultivation broth avoiding additional moving parts inside the applied model MBR. The induced vertical vibration leads to oscillation of the liquid surface corresponding to the frequency and displacement. On this basis, the resonance frequency of the fluid was identified as the most decisive factor for mixing performance. Applying this vertical oscillation method outstanding mixing times below 1 s and exceptionally high oxygen transport with volumetric mass transfer coefficients (kL a) above 1,000/hr can be successfully achieved and controlled. To evaluate the applicability of this vertical oscillation mixing for low volume MBR systems, cultivations of Escherichia coli BL21 as proof-of-concept were performed. The dissolved oxygen was successfully online monitored to assure any avoidance of oxygen limitations during the cultivation. The here presented data illustrate the high potential of the vertical oscillation technique as a flexible measure to adapt mixing times and oxygen transfer according to experimental demands. Thus, the mixing technique is a promising tool for various biological and chemical micro-scale applications still enabling adequate mass transfer.
Collapse
Affiliation(s)
- Lasse J Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - David Vorländer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Hendrik Ostsieker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technologies, Graz, Austria
| | - Moritz Schulze
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - René Schenkendorf
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technologies, Graz, Austria
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
28
|
Demling P, Westerwalbesloh C, Noack S, Wiechert W, Kohlheyer D. Quantitative measurements in single-cell analysis: towards scalability in microbial bioprocess development. Curr Opin Biotechnol 2018; 54:121-127. [DOI: 10.1016/j.copbio.2018.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/17/2022]
|
29
|
Hemmerich J, Tenhaef N, Steffens C, Kappelmann J, Weiske M, Reich SJ, Wiechert W, Oldiges M, Noack S. Less Sacrifice, More Insight: Repeated Low-Volume Sampling of Microbioreactor Cultivations Enables Accelerated Deep Phenotyping of Microbial Strain Libraries. Biotechnol J 2018; 14:e1800428. [PMID: 30318833 DOI: 10.1002/biot.201800428] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Indexed: 12/18/2022]
Abstract
With modern genetic engineering tools, high number of potentially improved production strains can be created in a short time. This results in a bottleneck in the succeeding step of bioprocess development, which can be handled by accelerating quantitative microbial phenotyping. Miniaturization and automation are key technologies to achieve this goal. In this study, a novel workflow for repeated low-volume sampling of BioLector-based cultivation setups is presented. Six samples of 20 μL each can be taken automatically from shaken 48-well microtiter plates without disturbing cell population growth. The volume is sufficient for quantification of substrate and product concentrations by spectrophotometric-based enzyme assays. From transient concentration data and replicate cultures, valid performance indicators (titers, rates, yields) are determined through process modeling and random error propagation analysis. Practical relevance of the workflow is demonstrated with a set of five genome-reduced Corynebacterium glutamicum strains that are engineered for Sec-mediated heterologous cutinase secretion. Quantitative phenotyping of this strain library led to the identification of a strain with a 1.6-fold increase in cutinase yield. The prophage-free strain carries combinatorial deletions of three gene clusters (Δ3102-3111, Δ3263-3301, and Δ3324-3345) of which the last two likely contain novel target genes to foster rational engineering of heterologous cutinase secretion in C. glutamicum.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carmen Steffens
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jannick Kappelmann
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marc Weiske
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sebastian J Reich
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen, 52062 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marco Oldiges
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Biotechnology, RWTH Aachen, 52062 Aachen, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Noack
- Institute of Bio-und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
30
|
Lladó Maldonado S, Panjan P, Sun S, Rasch D, Sesay AM, Mayr T, Krull R. A fully online sensor-equipped, disposable multiphase microbioreactor as a screening platform for biotechnological applications. Biotechnol Bioeng 2018; 116:65-75. [DOI: 10.1002/bit.26831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Susanna Lladó Maldonado
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| | - Peter Panjan
- Unit of Measurement Technologies, University of Oulu; Kajaani Finland
| | - Shiwen Sun
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology; Graz Austria
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| | - Adama M. Sesay
- Unit of Measurement Technologies, University of Oulu; Kajaani Finland
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology; Graz Austria
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| |
Collapse
|
31
|
Lladó Maldonado S, Rasch D, Kasjanow A, Bouwes D, Krühne U, Krull R. Multiphase microreactors with intensification of oxygen mass transfer rate and mixing performance for bioprocess development. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Wutz J, Steiner R, Assfalg K, Wucherpfennig T. Establishment of a CFD‐based
k
L
a
model in microtiter plates to support CHO cell culture scale‐up during clone selection. Biotechnol Prog 2018; 34:1120-1128. [DOI: 10.1002/btpr.2707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
33
|
O'Donnell MM, Rea MC, Shanahan F, Ross RP. The Use of a Mini-Bioreactor Fermentation System as a Reproducible, High-Throughput ex vivo Batch Model of the Distal Colon. Front Microbiol 2018; 9:1844. [PMID: 30147684 PMCID: PMC6096000 DOI: 10.3389/fmicb.2018.01844] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Ex vivo colon fermentation systems are highly versatile as models for analyzing gastrointestinal tract microbiota composition and functionality. Ex vivo colon models range in size and functionality from bench-top micro fermenters to large units housed in individualized cabinets. The length of set-up time (including stabilization periods) for each fermentation system can range from hours to weeks to months. The aim of this study was to investigate a single-use cassette mini-fermentation system as a reproducible batch model of the colon. The online data log from the cassettes (triplicate wells across four different cassettes, n = 12) was sensitive enough to identify real-time changes in pH, temperature, dissolved oxygen or liquid addition (sodium hydroxide) during the runs which could be addressed if an alarm set-point was triggered. The alpha diversity indices also showed little variation between cassettes with the samples clustering around the mean. The weighted beta diversity PCoA analysis illustrated that 95% of the variance between the samples was accounted for by the time-point and not the fermentation run/cassette used. The variation in taxonomic diversity between cassettes was limited to less than 20 out of 115 genera. This study provides evidence that micro-bioreactors provide some very attractive advantages as batch models for the human colon. We show for the first time the use of the micro-Matrix a 24-well sophisticated parallel controlled cassette-based bioreactors as a batch colon model. We demonstrated a high level of reproducibility across fermentation cassettes when used in conjunction with a standardized fecal microbiota. The machine can operate 24 individual fermentations simultaneously and are relatively cost effective. Based on next generation sequencing analysis, the micro-bioreactors offer a high degree of reproducibility together with high-throughput capacity. This makes it a potential system for large screening projects that can then be scaled up to large fermenters or human/animal in vivo experiments.
Collapse
Affiliation(s)
- Michelle M O'Donnell
- APC Microbiome Institute, University College Cork, National University of Ireland, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, National University of Ireland, Cork, Ireland.,Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - R P Ross
- APC Microbiome Institute, University College Cork, National University of Ireland, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.,School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
34
|
Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biol Biotechnol 2018; 5:8. [PMID: 29750118 PMCID: PMC5932850 DOI: 10.1186/s40694-018-0053-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Expanding the application of technical enzymes, e.g., in industry and agriculture, commands the acceleration and cost-reduction of bioprocess development. Microplates and shake flasks are massively employed during screenings and early phases of bioprocess development, although major drawbacks such as low oxygen transfer rates are well documented. In recent years, miniaturization and parallelization of stirred and shaken bioreactor concepts have led to the development of novel microbioreactor concepts. They combine high cultivation throughput with reproducibility and scalability, and represent promising tools for bioprocess development. Results Parallelized microplate cultivation of the eukaryotic protein production host Pichia pastoris was applied effectively to support miniaturized phenotyping of clonal libraries in batch as well as fed-batch mode. By tailoring a chemically defined growth medium, we show that growth conditions are scalable from microliter to 0.8 L lab-scale bioreactor batch cultivation with different carbon sources. Thus, the set-up allows for a rapid physiological comparison and preselection of promising clones based on online data and simple offline analytics. This is exemplified by screening a clonal library of P. pastoris constitutively expressing AppA phytase from Escherichia coli. The protocol was further modified to establish carbon-limited conditions by employing enzymatic substrate-release to achieve screening conditions relevant for later protein production processes in fed-batch mode. Conclusion The comparison of clonal rankings under batch and fed-batch-like conditions emphasizes the necessity to perform screenings under process-relevant conditions. Increased biomass and product concentrations achieved after fed-batch microscale cultivation facilitates the selection of top producers. By reducing the demand to conduct laborious and cost-intensive lab-scale bioreactor cultivations during process development, this study will contribute to an accelerated development of protein production processes. Electronic supplementary material The online version of this article (10.1186/s40694-018-0053-6) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Takahashi M, Aoyagi H. Practices of shake-flask culture and advances in monitoring CO 2 and O 2. Appl Microbiol Biotechnol 2018; 102:4279-4289. [PMID: 29582104 DOI: 10.1007/s00253-018-8922-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/13/2018] [Indexed: 11/28/2022]
Abstract
About 85 years have passed since the shaking culture was devised. Since then, various monitoring devices have been developed to measure culture parameters. O2 consumed and CO2 produced by the respiration of cells in shaking cultures are of paramount importance due to their presence in both the culture broth and headspace of shake flask. Monitoring in situ conditions during shake-flask culture is useful for analysing the behaviour of O2 and CO2, which interact according to Henry's law, and is more convenient than conventional sampling that requires interruption of shaking. In situ monitoring devices for shake-flask cultures are classified as direct or the recently developed bypass type. It is important to understand the characteristics of each type along with their unintended effect on shake-flask cultures, in order to improve the existing devices and culture conditions. Technical developments in the bypass monitoring devices are strongly desired in the future. It is also necessary to understand the mechanism underlying conventional shake-flask culture. The existing shaking culture methodology can be expanded into next-generation shake-flask cultures constituting a novel culture environment through a judicious selection of monitoring devices depending on the intended purpose of shake-flask culture. Construction and sharing the databases compatible with the various types of the monitoring devices and measurement instruments adapted for shaking culture can provide a valuable resource for broadening the application of cells with shake-flask culture.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
36
|
Tan JS, Abbasiliasi S, Kadkhodaei S, Tam YJ, Tang TK, Lee YY, Ariff AB. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli. BMC Microbiol 2018; 18:3. [PMID: 29439680 PMCID: PMC5810150 DOI: 10.1186/s12866-017-1145-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Background Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared. Results The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation. Conclusion Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.
Collapse
Affiliation(s)
- Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Sahar Abbasiliasi
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Saeid Kadkhodaei
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yew Joon Tam
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Teck-Kim Tang
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yee-Ying Lee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
37
|
Kolmar JF, Thum O, Baganz F. Customized microscale approach for optimizing two-phase bio-oxidations of alkanes with high reproducibility. Microb Cell Fact 2017; 16:174. [PMID: 29017530 PMCID: PMC5634833 DOI: 10.1186/s12934-017-0788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/03/2017] [Indexed: 11/10/2022] Open
Abstract
Background Numerous challenges remain to achieve industrially competitive space–time yields for bio-oxidations. The ability to rapidly screen bioconversion reactions for characterization and optimization is of major importance in bioprocess development and biocatalyst selection; studies at conventional lab scale are time consuming and labor intensive with low experimental throughput. The direct ω-oxyfunctionalization of aliphatic alkanes in a regio- and chemoselective manner is efficiently catalyzed by monooxygenases such as the AlkBGT enzyme complex from Pseudomonas putida under mild conditions. However, the adoption of microscale tools for these highly volatile substrates has been hindered by excessive evaporation and material incompatibility. Results This study developed and validated a robust high-throughput microwell platform for whole-cell two-liquid phase bio-oxidations of highly volatile n-alkanes. Using microwell plates machined from polytetrafluoroethylene and a sealing clamp, highly reproducible results were achieved with no significant variability such as edge effects determined. A design of experiment approach using a response surface methodology was adopted to systematically characterize the system and identify non-limiting conditions for a whole cell bioconversion of dodecane. Using resting E. coli cells to control cell concentration and reducing the fill volume it is possible to operate in non-limiting conditions with respect to oxygen and glucose whilst achieving relevant total product yields (combining 1-dodecanol, dodecanal and dodecanoic acid) of up to 1.5 mmol gDCW−1. Conclusions Overall, the developed microwell plate greatly improves experimental throughput, accelerating the screening procedures specifically for biocatalytic processes in non-conventional media. Its simplicity, robustness and standardization ensure high reliability of results. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0788-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes F Kolmar
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London, WC1H 0AH, UK
| | - Oliver Thum
- Evonik Creavis GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany
| | - Frank Baganz
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London, WC1H 0AH, UK.
| |
Collapse
|
38
|
Koepff J, Keller M, Tsolis KC, Busche T, Rückert C, Hamed MB, Anné J, Kalinowski J, Wiechert W, Economou A, Oldiges M. Fast and reliable strain characterization of Streptomyces lividans
through micro-scale cultivation. Biotechnol Bioeng 2017; 114:2011-2022. [DOI: 10.1002/bit.26321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Joachim Koepff
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Matthias Keller
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Konstantinos C. Tsolis
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Mohamed B. Hamed
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
- Department of Molecular Biology Department; The National Research Centre, Dokki; Giza Egypt
| | - Jozef Anné
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Joern Kalinowski
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology; Bielefeld University; Bielefeld Germany
| | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology; Department of Microbiology and Immunology; Rega Institute for Medical Research; KU Leuven-University of Leuven; Leuven Belgium
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology; Leo-Brandt-Straße 52428 Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Worringer Weg 3 52074 Aachen Germany
| |
Collapse
|
39
|
Tahirbegi IB, Ehgartner J, Sulzer P, Zieger S, Kasjanow A, Paradiso M, Strobl M, Bouwes D, Mayr T. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Biosens Bioelectron 2017; 88:188-195. [DOI: 10.1016/j.bios.2016.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022]
|
40
|
Ladner T, Beckers M, Hitzmann B, Büchs J. Parallel online multi-wavelength (2D) fluorescence spectroscopy in each well of a continuously shaken microtiter plate. Biotechnol J 2016; 11:1605-1616. [DOI: 10.1002/biot.201600515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Tobias Ladner
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering; RWTH Aachen University; Aachen Germany
| | - Mario Beckers
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering; RWTH Aachen University; Aachen Germany
| | - Bernd Hitzmann
- Universität Hohenheim; Fachgebiet Prozessanalytik & Getreidetechnologie; Stuttgart Germany
| | - Jochen Büchs
- AVT - Aachener Verfahrenstechnik, Biochemical Engineering; RWTH Aachen University; Aachen Germany
| |
Collapse
|
41
|
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis. Bioprocess Biosyst Eng 2016; 40:161-180. [DOI: 10.1007/s00449-016-1690-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022]
|
42
|
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 2016; 9:699-717. [PMID: 27629544 PMCID: PMC5072187 DOI: 10.1111/1751-7915.12408] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/04/2022] Open
Abstract
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.
Collapse
Affiliation(s)
- Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Qiang Fei
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, 78712, USA
| | - Sagar M Utturkar
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37919, USA
| | - Steven D Brown
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37919, USA.,BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
43
|
Krujatz F, Fehse K, Jahnel M, Gommel C, Schurig C, Lindner F, Bley T, Weber J, Steingroewer J. MicrOLED-photobioreactor: Design and characterization of a milliliter-scale Flat-Panel-Airlift-photobioreactor with optical process monitoring. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Rathore AS, Chopda VR, Gomes J. Knowledge management in a waste based biorefinery in the QbD paradigm. BIORESOURCE TECHNOLOGY 2016; 215:63-75. [PMID: 27090404 DOI: 10.1016/j.biortech.2016.03.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
Shifting resource base from fossil feedstock to renewable raw materials for production of chemical products has opened up an area of novel applications of industrial biotechnology-based process tools. This review aims to provide a concise and focused discussion on recent advances in knowledge management to facilitate efficient and optimal operation of a biorefinery. Application of quality by design (QbD) and process analytical technology (PAT) as tools for knowledge creation and management at different levels has been highlighted. Role of process integration, government policies, knowledge exchange through collaboration, and use of databases and computational tools have also been touched upon.
Collapse
Affiliation(s)
- Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| | - Viki R Chopda
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
45
|
Back A, Rossignol T, Krier F, Nicaud JM, Dhulster P. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Microb Cell Fact 2016; 15:147. [PMID: 27553851 PMCID: PMC4995649 DOI: 10.1186/s12934-016-0546-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
Background Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. Results The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L−1. In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L−1. Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. Conclusion To our knowledge, this is the first time that the BioLector has been used to track lipid production in real time and to monitor the growth of Y. lipolytica. The present study also showed the efficacy of the BioLector in screening growing conditions and engineered strains prior to scale-up. The method described here could be applied to other oleaginous microorganisms.
Collapse
Affiliation(s)
- Alexandre Back
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV- Institut Charles Viollette, F-59000, Lille, France.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Tristan Rossignol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - François Krier
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV- Institut Charles Viollette, F-59000, Lille, France.
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Pascal Dhulster
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV- Institut Charles Viollette, F-59000, Lille, France
| |
Collapse
|
46
|
Morschett H, Schiprowski D, Müller C, Mertens K, Felden P, Meyer J, Wiechert W, Oldiges M. Design and validation of a parallelized micro-photobioreactor enabling phototrophic bioprocess development at elevated throughput. Biotechnol Bioeng 2016; 114:122-131. [DOI: 10.1002/bit.26051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Holger Morschett
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology Jülich Germany
| | - Danny Schiprowski
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology Jülich Germany
| | | | | | | | | | - Wolfgang Wiechert
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology Jülich Germany
| | - Marco Oldiges
- Forschungszentrum Jülich GmbH; Institute of Bio- and Geosciences; IBG-1: Biotechnology Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
47
|
Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Fact 2016; 15:97. [PMID: 27267232 PMCID: PMC4897893 DOI: 10.1186/s12934-016-0502-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described. In this review we provide a synoptic comparison of research efforts on total synthesis and in vivo biosynthesis aimed at fostering lanthipeptides production. We further examine current applications and propose measures to enhance product yields. Owing to their elaborate chemical structures, chemical synthesis of these biomolecules is economically less feasible for large-scale applications, and hence biological production seems to be the only realistic alternative.
Collapse
Affiliation(s)
- Elvis Legala Ongey
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| |
Collapse
|
48
|
Baumann P, Hubbuch J. Downstream process development strategies for effective bioprocesses: Trends, progress, and combinatorial approaches. Eng Life Sci 2016; 17:1142-1158. [PMID: 32624742 DOI: 10.1002/elsc.201600033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022] Open
Abstract
The biopharmaceutical industry is at a turning point moving toward a more customized and patient-oriented medicine (precision medicine). Straightforward routines such as the antibody platform process are extended to production processes for a new portfolio of molecules. As a consequence, individual and tailored productions require generic approaches for a fast and dedicated purification process development. In this article, different effective strategies in biopharmaceutical purification process development are reviewed that can analogously be used for the new generation of antibodies. Conventional approaches based on heuristics and high-throughput process development are discussed and compared to modern technologies such as multivariate calibration and mechanistic modeling tools. Such approaches constitute a good foundation for fast and effective process development for new products and processes, but their full potential becomes obvious in a correlated combination. Thus, different combinatorial approaches are presented, which might become future directions in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Pascal Baumann
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jürgen Hubbuch
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
49
|
Freier L, Hemmerich J, Schöler K, Wiechert W, Oldiges M, von Lieres E. Framework for Kriging-based iterative experimental analysis and design: Optimization of secretory protein production inCorynebacterium glutamicum. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lars Freier
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
| | - Johannes Hemmerich
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
| | - Katja Schöler
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
| | - Wolfgang Wiechert
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
| | - Marco Oldiges
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- BioEconomy Science Center; (BioSC)
- Institute of Biotechnology; RWTH Aachen University; Aachen Germany
| | - Eric von Lieres
- Institute for Bio- and Geosciences, Biotechnology (IBG-1); Forschungszentrum Jülich; Jülich Germany
- Institute of Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
50
|
Pleil JD. Cellular respiration: replicating in vivo systems biology for in vitro exploration of human exposome, microbiome, and disease pathogenesis biomarkers. J Breath Res 2016; 10:010201. [PMID: 26954510 DOI: 10.1088/1752-7155/10/1/010201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joachim D Pleil
- Exposure Methods and Measurements Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|