1
|
Caro TA, Kashyap S, Brown G, Chen C, Kopf SH, Templeton AS. Single-cell measurement of microbial growth rate with Raman microspectroscopy. FEMS Microbiol Ecol 2024; 100:fiae110. [PMID: 39113275 PMCID: PMC11347945 DOI: 10.1093/femsec/fiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
Rates of microbial growth are fundamental to understanding environmental geochemistry and ecology. However, measuring the heterogeneity of microbial activity at the single-cell level, especially within complex populations and environmental matrices, remains a forefront challenge. Stable isotope probing (SIP) is a method for assessing microbial growth and involves measuring the incorporation of an isotopic label into microbial biomass. Here, we assess Raman microspectroscopy as a SIP technique, specifically focusing on the measurement of deuterium (2H), a tracer of microbial biomass production. We correlatively measured cells grown in varying concentrations of deuterated water with both Raman spectroscopy and nanoscale secondary ion mass spectrometry (nanoSIMS), generating isotopic calibrations of microbial 2H. Relative to Raman, we find that nanoSIMS measurements of 2H are subject to substantial dilution due to rapid exchange of H during sample washing. We apply our Raman-derived calibration to a numerical model of microbial growth, explicitly parameterizing the factors controlling growth rate quantification and demonstrating that Raman-SIP can sensitively measure the growth of microorganisms with doubling times ranging from hours to years. The measurement of single-cell growth with Raman spectroscopy, a rapid, nondestructive technique, represents an important step toward application of single-cell analysis into complex sample matrices or cellular assemblages.
Collapse
Affiliation(s)
- Tristan A Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Srishti Kashyap
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
| | - George Brown
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Claudia Chen
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Alexis S Templeton
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
2
|
Carreira C, Lønborg C, Acharya B, Aryal L, Buivydaite Z, Borim Corrêa F, Chen T, Lorenzen Elberg C, Emerson JB, Hillary L, Khadka RB, Langlois V, Mason-Jones K, Netherway T, Sutela S, Trubl G, Wa Kang'eri A, Wang R, White RA, Winding A, Zhao T, Sapkota R. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024:10.1038/s41564-024-01767-x. [PMID: 39095499 DOI: 10.1038/s41564-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.
Collapse
Affiliation(s)
- Cátia Carreira
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | | | - Basistha Acharya
- Directorate of Agricultural Research, Nepal Agricultural Research Council, Khajura, Nepal
| | - Laxman Aryal
- Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa, Nepal
| | - Zivile Buivydaite
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Felipe Borim Corrêa
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tingting Chen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Luke Hillary
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Ram B Khadka
- National Plant Pathology Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Valérie Langlois
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec City, Québec, Canada
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Suvi Sutela
- Natural Resources Institute Finland, Helsinki, Finland
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Ruiqi Wang
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Richard Allen White
- Computational Intelligence to Predict Health and Environmental Risks, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- North Carolina Research Campus, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tianci Zhao
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
3
|
Lou J, Ancajas CF, Zhou Y, Lane NS, Reynolds TB, Best MD. Probing Glycerolipid Metabolism using a Caged Clickable Glycerol-3-Phosphate Probe. Chembiochem 2024:e202300853. [PMID: 38705850 DOI: 10.1002/cbic.202300853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
In this study, we present the probe SATE-G3P-N3 as a novel tool for metabolic labeling of glycerolipids (GLs) to investigate lipid metabolism in yeast cells. By introducing a clickable azide handle onto the glycerol backbone, this probe enables general labeling of glycerolipids. Additionally, this probe contains a caged phosphate moiety at the glycerol sn-3 position to not only facilitate probe uptake by masking negative charge but also to bypass the phosphorylation step crucial for initiating phospholipid synthesis, thereby enhancing phospholipid labeling. The metabolic labeling activity of the probe was thoroughly assessed through cellular fluorescence microscopy, mass spectrometry (MS), and thin-layer chromatography (TLC) experiments. Fluorescence microscopy analysis demonstrated successful incorporation of the probe into yeast cells, with labeling predominantly localized at the plasma membrane. LCMS analysis confirmed metabolic labeling of various phospholipid species (PC, PS, PA, PI, and PG) and neutral lipids (MAG, DAG, and TAG), and GL labeling was corroborated by TLC. These results showcased the potential of the SATE-G3P-N3 probe in studying GL metabolism, offering a versatile and valuable approach to explore the intricate dynamics of lipids in yeast cells.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Christelle F Ancajas
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, 1311 Cumberland Avenue, Knoxville, TN, 337996, USA
| | - Nicolas S Lane
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, 1311 Cumberland Avenue, Knoxville, TN, 337996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
4
|
Jabinski S, d. M. Rangel W, Kopáček M, Jílková V, Jansa J, Meador TB. Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers. Appl Environ Microbiol 2024; 90:e0206523. [PMID: 38527003 PMCID: PMC11022577 DOI: 10.1128/aem.02065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.
Collapse
Affiliation(s)
- Stanislav Jabinski
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Wesley d. M. Rangel
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Marek Kopáček
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Veronika Jílková
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Jan Jansa
- Institute of Microbiology CAS, Praha, Czechia
| | - Travis B. Meador
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Soil Biology and Biochemistry, Biology Centre CAS, České Budějovice, Czechia
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
5
|
Pereira FC, Ge X, Kristensen JM, Kirkegaard RH, Maritsch K, Zhu Y, Decorte M, Hausmann B, Berry D, Wasmund K, Schintlmeister A, Boettcher T, Cheng JX, Wagner M. The Parkinson's drug entacapone disrupts gut microbiome homeostasis via iron sequestration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566429. [PMID: 38014294 PMCID: PMC10680583 DOI: 10.1101/2023.11.12.566429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Increasing evidence shows that many human-targeted drugs alter the gut microbiome, leading to implications for host health. However, much less is known about the mechanisms by which drugs target the microbiome and how drugs affect microbial function. Here we combined quantitative microbiome profiling, long-read metagenomics, stable isotope probing and single cell chemical imaging to investigate the impact of two widely prescribed nervous system targeted drugs on the gut microbiome. Ex vivo supplementation of physiologically relevant concentrations of entacapone or loxapine succinate to faecal samples significantly impacted the abundance of up to one third of the microbial species present. Importantly, we demonstrate that the impact of these drugs on microbial metabolism is much more pronounced than their impact on abundances, with low concentrations of drugs reducing the activity, but not the abundance of key microbiome members like Bacteroides, Ruminococcus or Clostridium species. We further demonstrate that entacapone impacts the microbiome due to its ability to complex and deplete available iron, and that microbial growth can be rescued by replenishing levels of microbiota-accessible iron. Remarkably, entacapone-induced iron starvation selected for iron-scavenging organisms carrying antimicrobial resistance and virulence genes. Collectively, our study unveils the impact of two under-investigated drugs on whole microbiomes and identifies metal sequestration as a mechanism of drug-induced microbiome disturbance.
Collapse
|
6
|
Millette NC, Gast RJ, Luo JY, Moeller HV, Stamieszkin K, Andersen KH, Brownlee EF, Cohen NR, Duhamel S, Dutkiewicz S, Glibert PM, Johnson MD, Leles SG, Maloney AE, Mcmanus GB, Poulton N, Princiotta SD, Sanders RW, Wilken S. Mixoplankton and mixotrophy: future research priorities. JOURNAL OF PLANKTON RESEARCH 2023; 45:576-596. [PMID: 37483910 PMCID: PMC10361813 DOI: 10.1093/plankt/fbad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/14/2023] [Indexed: 07/25/2023]
Abstract
Phago-mixotrophy, the combination of photoautotrophy and phagotrophy in mixoplankton, organisms that can combine both trophic strategies, have gained increasing attention over the past decade. It is now recognized that a substantial number of protistan plankton species engage in phago-mixotrophy to obtain nutrients for growth and reproduction under a range of environmental conditions. Unfortunately, our current understanding of mixoplankton in aquatic systems significantly lags behind our understanding of zooplankton and phytoplankton, limiting our ability to fully comprehend the role of mixoplankton (and phago-mixotrophy) in the plankton food web and biogeochemical cycling. Here, we put forward five research directions that we believe will lead to major advancement in the field: (i) evolution: understanding mixotrophy in the context of the evolutionary transition from phagotrophy to photoautotrophy; (ii) traits and trade-offs: identifying the key traits and trade-offs constraining mixotrophic metabolisms; (iii) biogeography: large-scale patterns of mixoplankton distribution; (iv) biogeochemistry and trophic transfer: understanding mixoplankton as conduits of nutrients and energy; and (v) in situ methods: improving the identification of in situ mixoplankton and their phago-mixotrophic activity.
Collapse
Affiliation(s)
| | - Rebecca J Gast
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Jessica Y Luo
- NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540, USA
| | - Holly V Moeller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, 1120 Noble Hall, Santa Barbara, CA 93106, USA
| | - Karen Stamieszkin
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr., East Boothbay, ME 04544, USA
| | - Ken H Andersen
- Center for Ocean Life, Natl. Inst. of Aquatic Resources, Technical University of Denmark, Kemitorvet, Bygning 202, Kongens Lyngby 2840, Denmark
| | - Emily F Brownlee
- Department of Biology, St. Mary’s College of Maryland, 18952 E. Fisher Road, St. Mary’s City, MD 20686, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, 10 Ocean Science Circle, Savannah, GA 31411, USA
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, The University of Arizona, 1007 E Lowell Street, Tucson, AZ 85721, USA
| | - Stephanie Dutkiewicz
- Center for Global Change Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02874, USA
| | - Patricia M Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Rd, Cambridge, MD 21613, USA
| | - Matthew D Johnson
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Suzana G Leles
- Department of Marine and Environmental Biology, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Ashley E Maloney
- Geosciences Department, Princeton University, Guyot Hall, Princeton, NJ 08544, USA
| | - George B Mcmanus
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd., Groton, CT 06340, USA
| | - Nicole Poulton
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr., East Boothbay, ME 04544, USA
| | - Sarah D Princiotta
- Biology Department, Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| | - Robert W Sanders
- Department of Biology, Temple University, 1900 N. 12th St., Philadelphia, PA 19122, USA
| | - Susanne Wilken
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
7
|
Woodall B, Fozo EM, Campagna SR. Dual stable isotopes enhance lipidomic studies in bacterial model organism Enterococcus faecalis. Anal Bioanal Chem 2023; 415:3593-3605. [PMID: 37204445 DOI: 10.1007/s00216-023-04750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Dual stable isotope probes of deuterium oxide and 13C fatty acid were demonstrated to probe the lipid biosynthesis cycle of a Gram-positive bacterium Enterococcus faecalis. As external nutrients and carbon sources often interact with metabolic processes, the use of dual-labeled isotope pools allowed for the simultaneous investigation of both exogenous nutrient incorporation or modification and de novo biosynthesis. Deuterium was utilized to trace de novo fatty acid biosynthesis through solvent-mediated proton transfer during elongation of the carbon chain while 13C-fatty acids were utilized to trace exogenous nutrient metabolism and modification through lipid synthesis. Ultra-high-performance liquid chromatography high-resolution mass spectrometry identified 30 lipid species which incorporated deuterium and/or 13C fatty acid into the membrane. Additionally, MS2 fragments of isolated lipids identified acyl tail position confirming enzymatic activity of PlsY in the incorporation of the 13C fatty acid into membrane lipids.
Collapse
Affiliation(s)
- Brittni Woodall
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
8
|
Caro TA, McFarlin J, Jech S, Fierer N, Kopf S. Hydrogen stable isotope probing of lipids demonstrates slow rates of microbial growth in soil. Proc Natl Acad Sci U S A 2023; 120:e2211625120. [PMID: 37036980 PMCID: PMC10120080 DOI: 10.1073/pnas.2211625120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
The rate at which microorganisms grow and reproduce is fundamental to our understanding of microbial physiology and ecology. While soil microbiologists routinely quantify soil microbial biomass levels and the growth rates of individual taxa in culture, there is a limited understanding of how quickly microbes actually grow in soil. For this work, we posed the simple question: what are the growth rates of soil microorganisms? In this study, we measure these rates in three distinct soil environments using hydrogen-stable isotope probing of lipids with 2H-enriched water. This technique provides a taxa-agnostic quantification of in situ microbial growth from the degree of 2H enrichment of intact polar lipid compounds ascribed to bacteria and fungi. We find that growth rates in soil are quite slow and correspond to average generation times of 14 to 45 d but are also highly variable at the compound-specific level (4 to 402 d), suggesting differential growth rates among community subsets. We observe that low-biomass microbial communities exhibit more rapid growth rates than high-biomass communities, highlighting that biomass quantity alone does not predict microbial productivity in soil. Furthermore, within a given soil, the rates at which specific lipids are being synthesized do not relate to their quantity, suggesting a general decoupling of microbial abundance and growth in soil microbiomes. More generally, we demonstrate the utility of lipid-stable isotope probing for measuring microbial growth rates in soil and highlight the importance of measuring growth rates to complement more standard analyses of soil microbial communities.
Collapse
Affiliation(s)
- Tristan A. Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Jamie McFarlin
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY82071
| | - Sierra Jech
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO80309
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO80309
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Sebastian Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
9
|
Neubauer C, Kantnerová K, Lamothe A, Savarino J, Hilkert A, Juchelka D, Hinrichs KU, Elvert M, Heuer V, Elsner M, Bakkour R, Julien M, Öztoprak M, Schouten S, Hattori S, Dittmar T. Discovering Nature's Fingerprints: Isotope Ratio Analysis on Bioanalytical Mass Spectrometers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:525-537. [PMID: 36971362 DOI: 10.1021/jasms.2c00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.
Collapse
Affiliation(s)
- Cajetan Neubauer
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Kristýna Kantnerová
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Alexis Lamothe
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | - Joel Savarino
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | | | | | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Verena Heuer
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Martin Elsner
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Rani Bakkour
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Maxime Julien
- GFZ German Research Center for Geosciences, 14473 Potsdam, Germany
| | - Merve Öztoprak
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Shohei Hattori
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
10
|
Goudriaan M, Morales VH, van der Meer MTJ, Mets A, Ndhlovu RT, van Heerwaarden J, Simon S, Heuer VB, Hinrichs KU, Niemann H. A stable isotope assay with 13C-labeled polyethylene to investigate plastic mineralization mediated by Rhodococcus ruber. MARINE POLLUTION BULLETIN 2023; 186:114369. [PMID: 36462423 DOI: 10.1016/j.marpolbul.2022.114369] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Methods that unambiguously prove microbial plastic degradation and allow for quantification of degradation rates are necessary to constrain the influence of microbial degradation on the marine plastic budget. We developed an assay based on stable isotope tracer techniques to determine microbial plastic mineralization rates in liquid medium on a lab scale. For the experiments, 13C-labeled polyethylene (13C-PE) particles (irradiated with UV-light to mimic exposure of floating plastic to sunlight) were incubated in liquid medium with Rhodococcus ruber as a model organism for proof of principle. The transfer of 13C from 13C-PE into the gaseous and dissolved CO2 pools translated to microbially mediated mineralization rates of up to 1.2 % yr-1 of the added PE. After incubation, we also found highly 13C-enriched membrane fatty acids of R. ruber including compounds involved in cellular stress responses. We demonstrated that isotope tracer techniques are a valuable tool to detect and quantify microbial plastic degradation.
Collapse
Affiliation(s)
- Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands.
| | - Victor Hernando Morales
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands; Centro de Investigación Mariña, University of Vigo, Department of Ecology and Animal Biology, Biological Oceanography Group, 36319 Vigo, Spain
| | - Marcel T J van der Meer
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Anchelique Mets
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Rachel T Ndhlovu
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Johan van Heerwaarden
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Sina Simon
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Verena B Heuer
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, the Netherlands; CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
11
|
Yin X, Zhou G, Cai M, Zhu QZ, Richter-Heitmann T, Aromokeye DA, Liu Y, Nimzyk R, Zheng Q, Tang X, Elvert M, Li M, Friedrich MW. Catabolic protein degradation in marine sediments confined to distinct archaea. THE ISME JOURNAL 2022; 16:1617-1626. [PMID: 35220398 PMCID: PMC9123169 DOI: 10.1038/s41396-022-01210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Metagenomic analysis has facilitated prediction of a variety of carbon utilization potentials by uncultivated archaea including degradation of protein, which is a wide-spread carbon polymer in marine sediments. However, the activity of detrital catabolic protein degradation is mostly unknown for the vast majority of archaea. Here, we show actively executed protein catabolism in three archaeal phyla (uncultivated Thermoplasmata, SG8-5; Bathyarchaeota subgroup 15; Lokiarchaeota subgroup 2c) by RNA- and lipid-stable isotope probing in incubations with different marine sediments. However, highly abundant potential protein degraders Thermoprofundales (MBG-D) and Lokiarchaeota subgroup 3 were not incorporating 13C-label from protein during incubations. Nonetheless, we found that the pathway for protein utilization was present in metagenome associated genomes (MAGs) of active and inactive archaea. This finding was supported by screening extracellular peptidases in 180 archaeal MAGs, which appeared to be widespread but not correlated to organisms actively executing this process in our incubations. Thus, our results have important implications: (i) multiple low-abundant archaeal groups are actually catabolic protein degraders; (ii) the functional role of widespread extracellular peptidases is not an optimal tool to identify protein catabolism, and (iii) catabolic degradation of sedimentary protein is not a common feature of the abundant archaeal community in temperate and permanently cold marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany. .,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany. .,Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Guowei Zhou
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany. .,School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China.
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Qing-Zeng Zhu
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - David A Aromokeye
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rolf Nimzyk
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Qingfei Zheng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
12
|
Lima C, Muhamadali H, Goodacre R. The Role of Raman Spectroscopy Within Quantitative Metabolomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:323-345. [PMID: 33826853 DOI: 10.1146/annurev-anchem-091420-092323] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ninety-four years have passed since the discovery of the Raman effect, and there are currently more than 25 different types of Raman-based techniques. The past two decades have witnessed the blossoming of Raman spectroscopy as a powerful physicochemical technique with broad applications within the life sciences. In this review, we critique the use of Raman spectroscopy as a tool for quantitative metabolomics. We overview recent developments of Raman spectroscopy for identification and quantification of disease biomarkers in liquid biopsies, with a focus on the recent advances within surface-enhanced Raman scattering-based methods. Ultimately, we discuss the applications of imaging modalities based on Raman scattering as label-free methods to study the abundance and distribution of biomolecules in cells and tissues, including mammalian, algal, and bacterial cells.
Collapse
Affiliation(s)
- Cassio Lima
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Howbeer Muhamadali
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| |
Collapse
|
13
|
Saraiva JP, Worrich A, Karakoç C, Kallies R, Chatzinotas A, Centler F, Nunes da Rocha U. Mining Synergistic Microbial Interactions: A Roadmap on How to Integrate Multi-Omics Data. Microorganisms 2021; 9:microorganisms9040840. [PMID: 33920040 PMCID: PMC8070991 DOI: 10.3390/microorganisms9040840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Mining interspecies interactions remain a challenge due to the complex nature of microbial communities and the need for computational power to handle big data. Our meta-analysis indicates that genetic potential alone does not resolve all issues involving mining of microbial interactions. Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and to limit the search space (i.e., number of species and metabolic reactions) to a manageable size. A reduced search space decreases the number of additional experiments necessary to validate the inferred putative interactions. As validation experiments, we examine how multi-omics and state of the art imaging techniques may further improve our understanding of species interactions’ role in ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial interactions from genetic potential and propose a new theoretical framework based on: (i) genomic information of key members of a community; (ii) information of ecosystem processes involved with a specific hypothesis or research question; (iii) the ability to identify putative species’ contributions to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through integration of other data sources.
Collapse
Affiliation(s)
- Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Rene Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- Correspondence:
| |
Collapse
|
14
|
Wu W, Meador TB, Könneke M, Elvert M, Wegener G, Hinrichs KU. Substrate-dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:555-567. [PMID: 32783290 DOI: 10.1111/1758-2229.12876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Dual stable isotope probing has been used to infer rates of microbial biomass production and modes of carbon fixation. In order to validate this approach for assessing archaeal production, the methanogenic archaeon Methanosarcina barkeri was grown either with H2 , acetate or methanol with D2 O and 13 C-dissolved inorganic carbon (DIC). Our results revealed unexpectedly low D incorporation into lipids, with the net fraction of water-derived hydrogen amounting to 0.357 ± 0.042, 0.226 ± 0.003 and 0.393 ± 0.029 for growth on H2 /CO2 , acetate and methanol respectively. The variability in net water H assimilation into lipids during the growth of M. barkeri on different substrates is possibly attributed to different Gibbs free energy yields, such that higher energy yield promoted the exchange of hydrogen between medium water and lipids. Because NADPH likely serves as the portal for H transfer, increased NADPH production and/or turnover associated with high energy yield may explain the apparent differences in net water H assimilation into lipids. The variable DIC and water H incorporation into M. barkeri lipids imply systematic, metabolic patterns of isotope incorporation and suggest that the ratio of 13 C-DIC versus D2 O assimilation in environmental samples may serve as a proxy for microbial energetics in addition to microbial production and carbon assimilation pathways.
Collapse
Affiliation(s)
- Weichao Wu
- Organic Geochemistry Group, MARUM-Centre for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Travis B Meador
- Organic Geochemistry Group, MARUM-Centre for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, 28359, Germany
- Biology Centre Czech Academy of Sciences, Soil and Water Research Infrastructure, Ceske Budejovice, CZ-37005, Czechia
- Faculty of Science, Department Ecosystem Biology, University of South Bohemia, Ceske Budejovice, CZ-37005, Czechia
| | - Martin Könneke
- Organic Geochemistry Group, MARUM-Centre for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM-Centre for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| | - Gunter Wegener
- Organic Geochemistry Group, MARUM-Centre for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, 28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, 28359, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM-Centre for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
15
|
Ancajas CF, Ricks TJ, Best MD. Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chem Phys Lipids 2020; 232:104971. [PMID: 32898510 PMCID: PMC7606648 DOI: 10.1016/j.chemphyslip.2020.104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023]
Abstract
Metabolic labeling, in which substrate analogs containing diminutive tags can infiltrate biosynthetic pathways and generate labeled products in cells, has led to dramatic advancements in the means by which complex biomolecules can be detected and biological processes can be elucidated. Within this realm, metabolic labeling of lipid products, particularly in a manner that is headgroup-specific, brings about a number of technical challenges including the complexity of lipid metabolic pathways as well as the simplicity of biosynthetic precursors to headgroup functionality. As such, only a handful of strategies for metabolic labeling of lipids have thus far been reported. However, these approaches provide enticing examples of how strategic modifications to substrate structures, particularly by introducing clickable moieties, can enable the hijacking of lipid biosynthesis. Furthermore, early work in this field has led to an explosion in diverse applications by which these techniques have been exploited to answer key biological questions or detect and track various lipid-containing biological entities. In this article, we review these efforts and emphasize recent advancements in the development and application of lipid metabolic labeling strategies.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
16
|
Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, Pett-Ridge J. Characterizing Chemoautotrophy and Heterotrophy in Marine Archaea and Bacteria With Single-Cell Multi-isotope NanoSIP. Front Microbiol 2019; 10:2682. [PMID: 31920997 PMCID: PMC6927911 DOI: 10.3389/fmicb.2019.02682] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022] Open
Abstract
Characterizing and quantifying in situ metabolisms remains both a central goal and challenge for environmental microbiology. Here, we used a single-cell, multi-isotope approach to investigate the anabolic activity of marine microorganisms, with an emphasis on natural populations of Thaumarchaeota. After incubating coastal Pacific Ocean water with 13C-bicarbonate and 15N-amino acids, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to isotopically screen 1,501 individual cells, and 16S rRNA amplicon sequencing to assess community composition. We established isotopic enrichment thresholds for activity and metabolic classification, and with these determined the percentage of anabolically active cells, the distribution of activity across the whole community, and the metabolic lifestyle—chemoautotrophic or heterotrophic—of each cell. Most cells (>90%) were anabolically active during the incubation, and 4–17% were chemoautotrophic. When we inhibited bacteria with antibiotics, the fraction of chemoautotrophic cells detected via nanoSIMS increased, suggesting archaea dominated chemoautotrophy. With fluorescence in situ hybridization coupled to nanoSIMS (FISH-nanoSIMS), we confirmed that most Thaumarchaeota were living chemoautotrophically, while bacteria were not. FISH-nanoSIMS analysis of cells incubated with dual-labeled (13C,15N-) amino acids revealed that most Thaumarchaeota cells assimilated amino-acid-derived nitrogen but not carbon, while bacteria assimilated both. This indicates that some Thaumarchaeota do not assimilate intact amino acids, suggesting intra-phylum heterogeneity in organic carbon utilization, and potentially their use of amino acids for nitrification. Together, our results demonstrate the utility of multi-isotope nanoSIMS analysis for high-throughput metabolic screening, and shed light on the activity and metabolism of uncultured marine archaea and bacteria.
Collapse
Affiliation(s)
- Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
17
|
Bird LR, Dawson KS, Chadwick GL, Fulton JM, Orphan VJ, Freeman KH. Carbon isotopic heterogeneity of coenzyme F430 and membrane lipids in methane-oxidizing archaea. GEOBIOLOGY 2019; 17:611-627. [PMID: 31364272 DOI: 10.1111/gbi.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Archaeal ANaerobic MEthanotrophs (ANME) facilitate the anaerobic oxidation of methane (AOM), a process that is believed to proceed via the reversal of the methanogenesis pathway. Carbon isotopic composition studies indicate that ANME are metabolically diverse and able to assimilate metabolites including methane, methanol, acetate, and dissolved inorganic carbon (DIC). Our data support the interpretation that ANME in marine sediments at methane seeps assimilate both methane and DIC, and the carbon isotopic compositions of the tetrapyrrole coenzyme F430 and the membrane lipids archaeol and hydroxy-archaeol reflect their relative proportions of carbon from these substrates. Methane is assimilated via the methyl group of CH3 -tetrahydromethanopterin (H4 MPT) and DIC from carboxylation reactions that incorporate free intracellular DIC. F430 was enriched in 13 C (mean δ13 C = -27‰ for Hydrate Ridge and -80‰ for the Santa Monica Basin) compared to the archaeal lipids (mean δ13 C = -97‰ for Hydrate Ridge and -122‰ for the Santa Monica Basin). We propose that depending on the side of the tricarboxylic acid (TCA) cycle used to synthesize F430, its carbon was derived from 76% DIC and 24% methane via the reductive side or 57% DIC and 43% methane via the oxidative side. ANME lipids are predicted to contain 42% DIC and 58% methane, reflecting the amount of each assimilated into acetyl-CoA. With isotope models that include variable fractionation during biosynthesis for different carbon substrates, we show the estimated amounts of DIC and methane can result in carbon isotopic compositions of - 73‰ to - 77‰ for F430 and - 105‰ for archaeal lipids, values close to those for Santa Monica Basin. The F430 δ13 C value for Hydrate Ridge was 13 C-enriched compared with the modeled value, suggesting there is divergence from the predicted two carbon source models.
Collapse
Affiliation(s)
- Laurence R Bird
- Department of Geosciences, the Pennsylvania State University, University Park, PA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - James M Fulton
- Department of Geosciences, the Pennsylvania State University, University Park, PA, USA
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Katherine H Freeman
- Department of Geosciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Aepfler RF, Bühring SI, Elvert M. Substrate characteristic bacterial fatty acid production based on amino acid assimilation and transformation in marine sediments. FEMS Microbiol Ecol 2019; 95:5555570. [PMID: 31504469 DOI: 10.1093/femsec/fiz131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 01/25/2023] Open
Abstract
Polar lipid-derived fatty acids (PLFAs) and their stable carbon isotopes are frequently combined to characterize microbial populations involved in the degradation of organic matter, offering a link to biogeochemical processes and carbon sources used. However, PLFA patterns derive from multiple species and may be influenced by substrate types. Here, we investigated such dependencies by monitoring the transformation of position-specifically 13C-labeled amino acids (AAs) in coastal marine sediments dominated by heterotrophic bacteria. Alanine was assimilated into straight-chain FAs, while valine and leucine incorporation led to the characteristic production of even- and odd-numbered iso-series FAs. This suggests that identical microbial communities adjust lipid biosynthesis according to substrate availability. Transformation into precursor molecules for FA biosynthesis was manifested in increased 13C recoveries of the corresponding volatiles acetate, isobutyrate and isovalerate of up to 39.1%, much higher than for PLFAs (<0.9%). A significant fraction of 13C was found in dissolved inorganic carbon (up to 37.9%), while less was recovered in total organic carbon (up to 17.3%). We observed a clear discrimination against the carboxyl C, whereby C2 and C3 positions were preferentially incorporated into PLFAs. Therefore, position-specific labeling is an appropriate tool for reconstructing the metabolic fate of protein-derived AAs in marine environments.
Collapse
Affiliation(s)
- Rebecca F Aepfler
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany.,Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 13, 28359 Bremen, Germany
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| |
Collapse
|
19
|
Liu YF, Qi ZZ, Shou LB, Liu JF, Yang SZ, Gu JD, Mu BZ. Anaerobic hydrocarbon degradation in candidate phylum 'Atribacteria' (JS1) inferred from genomics. ISME JOURNAL 2019; 13:2377-2390. [PMID: 31171858 PMCID: PMC6776118 DOI: 10.1038/s41396-019-0448-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
The hydrocarbon-enriched environments, such as oil reservoirs and oil sands tailings ponds, contain a broad diversity of uncultured microorganisms. Despite being one of the few prokaryotic lineages that is consistently detected in both production water from oil reservoirs and stable hydrocarbon-degrading enrichment cultures originated from oil reservoirs, the physiological and ecological roles of candidate phylum “Atribacteria” (OP9/JS1) are not known in deep subsurface environments. Here, we report the expanded metabolic capabilities of Atribacteria as inferred from genomic reconstructions. Seventeen newly assembled medium-to-high-quality metagenomic assembly genomes (MAGs) were obtained either from co-assembly of two metagenomes from an Alaska North Slope oil reservoir or from previous studies of metagenomes coming from different environments. These MAGs comprise three currently known genus-level lineages and four novel genus-level groups of OP9 and JS1, which expands the genomic coverage of the major lineages within the candidate phylum Atribacteria. Genes involved in anaerobic hydrocarbon degradation were found in seven MAGs associated with hydrocarbon-enriched environments, and suggest that some Atribacteria could ferment short-chain n-alkanes into fatty acid while conserving energy. This study expands predicted metabolic capabilities of Atribacteria (JS1) and suggests that they are mediating a key role in subsurface carbon cycling.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Zhen-Zhen Qi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Li-Bin Shou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, P.R. China.
| |
Collapse
|
20
|
Yin X, Wu W, Maeke M, Richter-Heitmann T, Kulkarni AC, Oni OE, Wendt J, Elvert M, Friedrich MW. CO 2 conversion to methane and biomass in obligate methylotrophic methanogens in marine sediments. ISME JOURNAL 2019; 13:2107-2119. [PMID: 31040382 PMCID: PMC6775961 DOI: 10.1038/s41396-019-0425-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 11/24/2022]
Abstract
Methyl substrates are important compounds for methanogenesis in marine sediments but diversity and carbon utilization by methylotrophic methanogenic archaea have not been clarified. Here, we demonstrate that RNA-stable isotope probing (SIP) requires 13C-labeled bicarbonate as co-substrate for identification of methylotrophic methanogens in sediment samples of the Helgoland mud area, North Sea. Using lipid-SIP, we found that methylotrophic methanogens incorporate 60–86% of dissolved inorganic carbon (DIC) into lipids, and thus considerably more than what can be predicted from known metabolic pathways (~40% contribution). In slurry experiments amended with the marine methylotroph Methanococcoides methylutens, up to 12% of methane was produced from CO2, indicating that CO2-dependent methanogenesis is an alternative methanogenic pathway and suggesting that obligate methylotrophic methanogens grow in fact mixotrophically on methyl compounds and DIC. Although methane formation from methanol is the primary pathway of methanogenesis, the observed high DIC incorporation into lipids is likely linked to CO2-dependent methanogenesis, which was triggered when methane production rates were low. Since methylotrophic methanogenesis rates are much lower in marine sediments than under optimal conditions in pure culture, CO2 conversion to methane is an important but previously overlooked methanogenic process in sediments for methylotrophic methanogens.
Collapse
Affiliation(s)
- Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM - Center for Marine Environmental Sciences, Bremen, Germany.,International Max-Planck Research School for Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Weichao Wu
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany.,Department of Geosciences, University of Bremen, Bremen, Germany.,Department of Biogeochemistry of Agroecosystems, University of Goettingen, Goettingen, Germany
| | - Mara Maeke
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,International Max-Planck Research School for Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Ajinkya C Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM - Center for Marine Environmental Sciences, Bremen, Germany.,International Max-Planck Research School for Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Oluwatobi E Oni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM - Center for Marine Environmental Sciences, Bremen, Germany
| | - Jenny Wendt
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany.,Department of Geosciences, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences, Bremen, Germany.,Department of Geosciences, University of Bremen, Bremen, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany. .,MARUM - Center for Marine Environmental Sciences, Bremen, Germany.
| |
Collapse
|
21
|
Egert M, Weis S, Schnell S. RNA-based stable isotope probing (RNA-SIP) to unravel intestinal host-microbe interactions. Methods 2018; 149:25-30. [PMID: 29857194 DOI: 10.1016/j.ymeth.2018.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
The RNA-SIP technology, introduced into molecular microbial ecology in 2002, is an elegant technique to link the structure and function of complex microbial communities, i.e. to identify microbial key-players involved in distinct degradation and assimilation processes under in-situ conditions. Due to its dependence of microbial RNA, this technique is particularly suited for environments with high numbers of very active, i.e. significantly RNA-expressing, bacteria. So far, it was mainly used in environmental studies using microbiotas from soil or water habitats. Here we outline and summarize our application of RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in intestinal samples of human and animal origin. Following an isotope label from a prebiotic substrate into the RNA of distinct bacterial taxa will help to better understand the functionality of these medically and economically important nutrients in an intestinal environment.
Collapse
Affiliation(s)
- Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany.
| | - Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany; Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Germany
| |
Collapse
|
22
|
Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018; 111:1315-1332. [PMID: 29721711 DOI: 10.1007/s10482-018-1088-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
An "in house" taxonomic approach to drug discovery led to the isolation of diverse actinobacteria from hyper-arid, extreme hyper-arid and very high altitude Atacama Desert soils. A high proportion of the isolates were assigned to novel taxa, with many showing activity in standard antimicrobial plug assays. The application of more advanced taxonomic and screening strategies showed that strains classified as novel species of Lentzea and Streptomyces synthesised new specialised metabolites thereby underpinning the premise that the extreme abiotic conditions in the Atacama Desert favour the development of a unique actinobacterial diversity which is the basis of novel chemistry. Complementary metagenomic analyses showed that the soils encompassed an astonishing degree of actinobacterial 'dark matter', while rank-abundance analyses showed them to be highly diverse habitats mainly composed of rare taxa that have not been recovered using culture-dependent methods. The implications of these pioneering studies on future bioprospecting campaigns are discussed.
Collapse
|
23
|
Gomez-Saez GV, Pop Ristova P, Sievert SM, Elvert M, Hinrichs KU, Bühring SI. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System. Front Microbiol 2017; 8:702. [PMID: 28484442 PMCID: PMC5399606 DOI: 10.3389/fmicb.2017.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism.
Collapse
Affiliation(s)
- Gonzalo V Gomez-Saez
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Petra Pop Ristova
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods HoleMA, USA
| | - Marcus Elvert
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Kai-Uwe Hinrichs
- Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University of BremenBremen, Germany
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology Group, MARUM - Center for Marine Environmental Sciences, University of BremenBremen, Germany
| |
Collapse
|
24
|
Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol 2016; 41:114-121. [PMID: 27419912 DOI: 10.1016/j.copbio.2016.06.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/09/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022]
Abstract
The combination of stable isotope probing (SIP), NanoSIMS imaging and microbe identification via fluorescence in situ hybridization (FISH) is often used to link identity to function at the cellular level in microbial communities. Many opportunities remain for nanoSIP to identify metabolic interactions and nutrient fluxes within syntrophic associations and obligate symbioses where exchanges can be extremely rapid. However, additional data, such as genomic potential, gene expression or other imaging modalities are often critical to deciphering the mechanisms underlying specific interactions, and researchers must keep sample preparation artefacts in mind. Here we focus on recent applications of nanoSIP, particularly where used to track exchanges of isotopically labelled molecules between organisms. We highlight metabolic interactions within syntrophic consortia, carbon/nitrogen fluxes between phototrophs and their heterotrophic partners, and symbiont-host nutrient sharing.
Collapse
Affiliation(s)
- Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kilian Weber
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|