1
|
Tafrishi A, Trivedi V, Xing Z, Li M, Mewalal R, Cutler SR, Blaby I, Wheeldon I. Functional genomic screening in Komagataella phaffii enabled by high-activity CRISPR-Cas9 library. Metab Eng 2024; 85:73-83. [PMID: 39019250 DOI: 10.1016/j.ymben.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
CRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences. Conducting fitness screens in the absence of functional non-homologous end joining (NHEJ), the dominant DNA repair mechanism in K. phaffii, provides a quantitative means to assess the activity of each sgRNA in the library. This approach allows for the experimental validation of each guide's targeting activity, leading to more precise screening outcomes. We used this approach to conduct growth screens with glucose as the sole carbon source and identify essential genes. Comparative analysis of the called gene sets identified a core set of K. phaffii essential genes, many of which relate to metabolic engineering targets, including protein production, secretion, and glycosylation. The high activity, genome-wide CRISPR library developed here enables functional genomic screening in K. phaffii, applied here to gene essentiality classification, and promises to enable other genetic screens.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Zenan Xing
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Mengwan Li
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sean R Cutler
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Zhao T, Liu S, Wang P, Zhang Y, Kang X, Pan X, Li L, Li D, Gao P, An Y, Song H, Liu K, Qi J, Zhao X, Dai L, Liu P, Wang P, Wu G, Zhu T, Xu K, Li Y, Gao GF. Protective RBD-dimer vaccines against SARS-CoV-2 and its variants produced in glycoengineered Pichia pastoris. PLoS Pathog 2024; 20:e1012487. [PMID: 39213280 PMCID: PMC11364227 DOI: 10.1371/journal.ppat.1012487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Protective vaccines are crucial for preventing and controlling coronavirus disease 2019 (COVID-19). Updated vaccines are needed to confront the continuously evolving and circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. These vaccines should be safe, effective, amenable to easily scalable production, and affordable. Previously, we developed receptor binding domain (RBD) dimer-based protein subunit vaccines (ZF2001 and updated vaccines) in mammalian cells. In this study, we explored a strategy for producing RBD-dimer immunogens in Pichia pastoris. We found that wild-type P. pastoris produced hyperglycosylated RBD-dimer protein containing four N-glycosylation sites in P. pastoris. Therefore, we engineered the wild type P. pastoris (GS strain) into GSΔOCH1pAO by deleting the OCH1 gene (encoding α-1,6-mannosyltransferase enzyme) to decrease glycosylation, as well as by overexpressing the HIS4 gene (encoding histidine dehydrogenase) to increase histidine synthesis for better growth. In addition, RBD-dimer protein was truncated to remove the R328/F329 cleavage sites in P. pastoris. Several homogeneous RBD-dimer proteins were produced in the GSΔOCH1pAO strain, demonstrating the feasibility of using the P. pastoris expression system. We further resolved the cryo-EM structure of prototype-Beta RBD-dimer complexed with the neutralizing antibody CB6 to reveal the completely exposed immune epitopes of the RBDs. In a murine model, we demonstrated that the yeast-produced RBD-dimer induces robust and protective antibody responses, which is suitable for boosting immunization. This study developed the yeast system for producing SARS-CoV-2 RBD-dimer immunogens, providing a promising platform and pipeline for the future continuous updating and production of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Tongxin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Sheng Liu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Pengyan Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xinrui Kang
- Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xiaoqian Pan
- Medical School, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ping Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yaling An
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Taicheng Zhu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yin Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences (CAS), Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Dalvie NC, Lorgeree TR, Yang Y, Rodriguez-Aponte SA, Whittaker CA, Hinckley JA, Clark JJ, Del Rosario AM, Love KR, Love JC. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome. Microb Cell Fact 2024; 23:217. [PMID: 39085844 PMCID: PMC11293167 DOI: 10.1186/s12934-024-02466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii is widely used for manufacturing recombinant proteins, but secreted titers of recombinant proteins could be improved by genetic engineering. In this study, we hypothesized that cellular resources could be redirected from production of endogenous proteins to production of recombinant proteins by deleting unneeded endogenous proteins. In non-model microorganisms such as K. phaffii, however, genetic engineering is limited by lack gene annotation and knowledge of gene essentiality. RESULTS We identified a set of endogenous secreted proteins in K. phaffii by mass spectrometry and signal peptide prediction. Our efforts to disrupt these genes were hindered by limited annotation of essential genes. To predict essential genes, therefore, we designed, transformed, and sequenced a pooled library of guide RNAs for CRISPR-Cas9-mediated knockout of all endogenous secreted proteins. We then used predicted gene essentiality to guide iterative disruptions of up to 11 non-essential genes. Engineered strains exhibited a ~20× increase in the production of human serum albumin and a twofold increase in the production of a monoclonal antibody. CONCLUSIONS We demonstrated that disruption of as few as six genes can increase production of recombinant proteins. Further reduction of the endogenous proteome of K. phaffii may further improve strain performance. The pooled library of secretome-targeted guides for CRISPR-Cas9 and knowledge of gene essentiality reported here will facilitate future efforts to engineer K. phaffii for production of other recombinant proteins and enzymes.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Timothy R Lorgeree
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Joshua A Hinckley
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - John J Clark
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Amanda M Del Rosario
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| |
Collapse
|
4
|
Vijayakumar VE, Venkataraman K. A Systematic Review of the Potential of Pichia pastoris (Komagataella phaffii) as an Alternative Host for Biologics Production. Mol Biotechnol 2024; 66:1621-1639. [PMID: 37400712 DOI: 10.1007/s12033-023-00803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
The methylotrophic yeast Pichia pastoris is garnering interest as a chassis cell factory for the manufacture of recombinant proteins because it effectively satisfies the requirements of both laboratory and industrial set up. The optimisation of P. pastoris cultivation is still necessary due to strain- and product-specific problems such as promoter strength, methanol utilisation type, and culturing conditions to realize the high yields of heterologous protein(s) of interest. Techniques integrating genetic and process engineering have been used to overcome these problems. Insight into the Pichia as an expression system utilizing MUT pathway and the development of methanol free systems are highlighted in this systematic review. Recent developments in the improved production of proteins in P. pastoris by (i) diverse genetic engineering such as codon optimization and gene dosage; (ii) cultivating tactics including co-expression of chaperones; (iii) advances in the use of the 2A peptide system, and (iv) CRISPR/Cas technologies are widely discussed. We believe that by combining these strategies, P. pastoris will become a formidable platform for the production of high value therapeutic proteins.
Collapse
Affiliation(s)
- Vijay Elakkya Vijayakumar
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Albacar M, Casamayor A, Ariño J. Harnessing alkaline-pH regulatable promoters for efficient methanol-free expression of enzymes of industrial interest in Komagataella Phaffii. Microb Cell Fact 2024; 23:99. [PMID: 38566096 PMCID: PMC10985989 DOI: 10.1186/s12934-024-02362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.
Collapse
Affiliation(s)
- Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
6
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
7
|
Zhao M, Ma J, Zhang L, Qi H. Engineering strategies for enhanced heterologous protein production by Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:32. [PMID: 38247006 PMCID: PMC10801990 DOI: 10.1186/s12934-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Microbial proteins are promising substitutes for animal- and plant-based proteins. S. cerevisiae, a generally recognized as safe (GRAS) microorganism, has been frequently employed to generate heterologous proteins. However, constructing a universal yeast chassis for efficient protein production is still a challenge due to the varying properties of different proteins. With progress in synthetic biology, a multitude of molecular biology tools and metabolic engineering strategies have been employed to alleviate these issues. This review first analyses the advantages of protein production by S. cerevisiae. The most recent advances in improving heterologous protein yield are summarized and discussed in terms of protein hyperexpression systems, protein secretion engineering, glycosylation pathway engineering and systems metabolic engineering. Furthermore, the prospects for efficient and sustainable heterologous protein production by S. cerevisiae are also provided.
Collapse
Affiliation(s)
- Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Jianfan Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Schwob M, Kugler V, Wagner R. Cloning and Overexpressing Membrane Proteins Using Pichia pastoris (Komagataella phaffii). Curr Protoc 2023; 3:e936. [PMID: 37933574 DOI: 10.1002/cpz1.936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Understanding the structure and function of key proteins located within biological membranes is essential for fundamental knowledge and therapeutic applications. Robust cell systems allowing their actual overexpression are required, among which stands the methylotrophic yeast Pichia pastoris. This system proves highly efficient in producing many eukaryotic membrane proteins of various functions and structures at levels and quality compatible with their subsequent isolation and molecular investigation. This article describes a set of basic guidelines and directions to clone and select recombinant P. pastoris clones overexpressing eukaryotic membrane proteins. Illustrative results obtained for a panel of mammalian membrane proteins are presented, and hints are given on a series of experimental parameters that may substantially improve the amount and/or the functionality of the expressed proteins. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Designing and cloning a P. pastoris expression vector Basic Protocol 2: Integrative transformation of P. pastoris and selection of recombinant clones Basic Protocol 3: Culturing transformed P. pastoris for membrane protein expression Basic Protocol 4: Yeast cell lysis and membrane preparation Basic Protocol 5: Immunodetection of expressed membrane proteins: western blot Alternate Protocol 1: Immunodetection of expressed membrane proteins: dot blot Alternate Protocol 2: Immunodetection of expressed membrane proteins: yeastern blot Basic Protocol 6: Activity assay: ligand-binding analysis of an expressed GPCR.
Collapse
Affiliation(s)
- Magali Schwob
- IMPReSs Facility, Biotechnology and Cell Signaling, University of Strasbourg-CNRS, Illkirch, France
- Department of Structural Biology, NovAliX, Strasbourg, France
| | - Valérie Kugler
- IMPReSs Facility, Biotechnology and Cell Signaling, University of Strasbourg-CNRS, Illkirch, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling, University of Strasbourg-CNRS, Illkirch, France
| |
Collapse
|
9
|
Nagar G, Jain S, Rajurkar M, Lothe R, Rao H, Majumdar S, Gautam M, Rodriguez-Aponte SA, Crowell LE, Love JC, Dandekar P, Puranik A, Gairola S, Shaligram U, Jain R. Large-Scale Purification and Characterization of Recombinant Receptor-Binding Domain (RBD) of SARS-CoV-2 Spike Protein Expressed in Yeast. Vaccines (Basel) 2023; 11:1602. [PMID: 37897004 PMCID: PMC10610970 DOI: 10.3390/vaccines11101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
SARS-CoV-2 spike protein is an essential component of numerous protein-based vaccines for COVID-19. The receptor-binding domain of this spike protein is a promising antigen with ease of expression in microbial hosts and scalability at comparatively low production costs. This study describes the production, purification, and characterization of RBD of SARS-CoV-2 protein, which is currently in clinical trials, from a commercialization perspective. The protein was expressed in Pichia pastoris in a large-scale bioreactor of 1200 L capacity. Protein capture and purification are conducted through mixed-mode chromatography followed by hydrophobic interaction chromatography. This two-step purification process produced RBD with an overall productivity of ~21 mg/L at >99% purity. The protein's primary, secondary, and tertiary structures were also verified using LCMS-based peptide mapping, circular dichroism, and fluorescence spectroscopy, respectively. The glycoprotein was further characterized for quality attributes such as glycosylation, molecular weight, purity, di-sulfide bonding, etc. Through structural analysis, it was confirmed that the product maintained a consistent quality across different batches during the large-scale production process. The binding capacity of RBD of spike protein was also assessed using human angiotensin-converting enzyme 2 receptor. A low binding constant range of KD values, ranging between 3.63 × 10-8 to 6.67 × 10-8, demonstrated a high affinity for the ACE2 receptor, revealing this protein as a promising candidate to prevent the entry of COVID-19 virus.
Collapse
Affiliation(s)
- Gaurav Nagar
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Siddharth Jain
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Meghraj Rajurkar
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Rakesh Lothe
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Harish Rao
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Sourav Majumdar
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Manish Gautam
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Sergio A. Rodriguez-Aponte
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Laura E. Crowell
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (L.E.C.); (J.C.L.)
| | - J. Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (L.E.C.); (J.C.L.)
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India;
| | - Amita Puranik
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sunil Gairola
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Umesh Shaligram
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (G.N.); (S.G.)
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
10
|
Lee KS, Rader NA, Miller-Stump OA, Cooper M, Wong TY, Shahrier Amin M, Barbier M, Bevere JR, Ernst RK, Heath Damron F. Intranasal VLP-RBD vaccine adjuvanted with BECC470 confers immunity against Delta SARS-CoV-2 challenge in K18-hACE2-mice. Vaccine 2023; 41:5003-5017. [PMID: 37407405 PMCID: PMC10300285 DOI: 10.1016/j.vaccine.2023.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
As the COVID-19 pandemic transitions into endemicity, seasonal boosters are a plausible reality across the globe. We hypothesize that intranasal vaccines can provide better protection against asymptomatic infections and more transmissible variants of SARS-CoV-2. To formulate a protective intranasal vaccine, we utilized a VLP-based platform. Hepatitis B surface antigen-based virus like particles (VLP) linked with receptor binding domain (RBD) antigen were paired with the TLR4-based agonist adjuvant, BECC 470. K18-hACE2 mice were primed and boosted at four-week intervals with either VLP-RBD-BECC or mRNA-1273. Both VLP-RBD-BECC and mRNA-1273 vaccination resulted in production of RBD-specific IgA antibodies in serum. RBD-specific IgA was also detected in the nasal wash and lung supernatants and were highest in VLP-RBD-BECC vaccinated mice. Interestingly, VLP-RBD-BECC vaccinated mice showed slightly lower levels of pre-challenge IgG responses, decreased RBD-ACE2 binding inhibition, and lower neutralizing activity in vitro than mRNA-1273 vaccinated mice. Both VLP-RBD-BECC and mRNA-1273 vaccinated mice were protected against challenge with a lethal dose of Delta variant SARS-CoV-2. Both vaccines limited viral replication and viral RNA burden in the lungs of mice. CXCL10 is a biomarker of severe SARS-CoV-2 infection and we observed both vaccines limited expression of serum and lung CXCL10. Strikingly, VLP-RBD-BECC when administered intranasally, limited lung inflammation at early timepoints that mRNA-1273 vaccination did not. VLP-RBD-BECC immunization elicited antibodies that do recognize SARS-CoV-2 Omicron variant. However, VLP-RBD-BECC immunized mice were protected from Omicron challenge with low viral burden. Conversely, mRNA-1273 immunized mice had low to no detectable virus in the lungs at day 2. Together, these data suggest that VLP-based vaccines paired with BECC adjuvant can be used to induce protective mucosal and systemic responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Nathaniel A Rader
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Olivia A Miller-Stump
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Md Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
11
|
Love J, Rodriguez-Aponte S, Tostanoski L, Dalvie N, Johnston R, Jacob-Dolan C, Powers O, Hachmann N, Miller J, Hall K, Siamatu M, Mazurek C, Surve N, Barouch D. SARS-CoV-2 RBD dimers elicit response comparable to VLPs in mice. RESEARCH SQUARE 2023:rs.3.rs-2692315. [PMID: 37163131 PMCID: PMC10168475 DOI: 10.21203/rs.3.rs-2692315/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report the direct comparison of monomeric, dimeric and trimeric RBD protein subunit vaccines to a virus-like particle (VLP) displaying RBD. After two and three doses, a RBD dimer and trimer elicited antibody levels in mice comparable to an RBD-VLP. Furthermore, an Omicron (BA.1) RBD hetero-dimer induced neutralizing activity similar to the RBD-VLP. A RBD hetero-dimer and RBD-VLP also shows comparable breadth to other SARS-CoV-2 variants-of-concern (VOCs).
Collapse
|
12
|
Xue S, Liu X, Pan Y, Xiao C, Feng Y, Zheng L, Zhao M, Huang M. Comprehensive Analysis of Signal Peptides in Saccharomyces cerevisiae Reveals Features for Efficient Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203433. [PMID: 36478443 PMCID: PMC9839866 DOI: 10.1002/advs.202203433] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/10/2022] [Indexed: 05/30/2023]
Abstract
Signal peptides (SPs) are N-terminus sequences on the nascent polypeptide for protein export or localization delivery, which are essential for maintaining cell function. SPs are also employed as a key element for industrial production of secreted recombinant proteins. Yet, detailed information and rules about SPs and their cellular interactions are still not well understood. Here, systematic bioinformatics analysis and secretion capacity measurement of genome-wide SPs from the model organism Saccharomyces cerevisiae is performed. Several key features of SPs, including region properties, consensus motifs, evolutionary relationships, codon bias, e.g., are successfully revealed. Diverse cell metabolism can be trigged by using different SPs for heterologous protein secretion. Influences on SPs with different properties by chaperones can cause different secretory efficiencies. Protein secretion by the SP NCW2 in SEC72 deletion strain is 10 times than the control. These findings provide insights into the properties and functions of SPs and contribute to both fundamental research and industrial application.
Collapse
Affiliation(s)
- Songlyu Xue
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| | - Xiufang Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| | - Yuyang Pan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| | - Chufan Xiao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| | - Yunzi Feng
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| | - Lin Zheng
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| | - Mouming Zhao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| | - Mingtao Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research CenterGuangzhou510650China
| |
Collapse
|
13
|
Offei B, Braun-Galleani S, Venkatesh A, Casey WT, O’Connor KE, Byrne KP, Wolfe KH. Identification of genetic variants of the industrial yeast Komagataella phaffii (Pichia pastoris) that contribute to increased yields of secreted heterologous proteins. PLoS Biol 2022; 20:e3001877. [PMID: 36520709 PMCID: PMC9754263 DOI: 10.1371/journal.pbio.3001877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
The yeast Komagataella phaffii (formerly called Pichia pastoris) is used widely as a host for secretion of heterologous proteins, but only a few isolates of this species exist and all the commonly used expression systems are derived from a single genetic background, CBS7435 (NRRL Y-11430). We hypothesized that other genetic backgrounds could harbor variants that affect yields of secreted proteins. We crossed CBS7435 with 2 other K. phaffii isolates and mapped quantitative trait loci (QTLs) for secretion of a heterologous protein, β-glucosidase, by sequencing individual segregant genomes. A major QTL mapped to a frameshift mutation in the mannosyltransferase gene HOC1, which gives CBS7435 a weaker cell wall and higher protein secretion than the other isolates. Inactivation of HOC1 in the other isolates doubled β-glucosidase secretion. A second QTL mapped to an amino acid substitution in IRA1 that tripled β-glucosidase secretion in 1-week batch cultures but reduced cell viability, and its effects are specific to this heterologous protein. Our results demonstrate that QTL analysis is a powerful method for dissecting the basis of biotechnological traits in nonconventional yeasts, and a route to improving their industrial performance.
Collapse
Affiliation(s)
- Benjamin Offei
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Stephanie Braun-Galleani
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Anjan Venkatesh
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - William T. Casey
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Kevin E. O’Connor
- UCD Earth Institute and School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Kevin P. Byrne
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H. Wolfe
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
14
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
15
|
Dalvie NC, Naranjo CA, Rodriguez-Aponte SA, Johnston RS, Christopher Love J. Steric accessibility of the N-terminus improves the titer and quality of recombinant proteins secreted from Komagataella phaffii. Microb Cell Fact 2022; 21:180. [PMID: 36064410 PMCID: PMC9444097 DOI: 10.1186/s12934-022-01905-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Komagataella phaffii is a commonly used alternative host for manufacturing therapeutic proteins, in part because of its ability to secrete recombinant proteins into the extracellular space. Incorrect processing of secreted proteins by cells can, however, cause non-functional product-related variants, which are expensive to remove in purification and lower overall process yields. The secretion signal peptide, attached to the N-terminus of the recombinant protein, is a major determinant of the quality of the protein sequence and yield. In K. phaffii, the signal peptide from the Saccharomyces cerevisiae alpha mating factor often yields the highest secreted titer of recombinant proteins, but the quality of secreted protein can vary highly. RESULTS We determined that an aggregated product-related variant of the SARS-CoV-2 receptor binding domain is caused by N-terminal extension from incomplete cleavage of the signal peptide. We eliminated this variant and improved secreted protein titer up to 76% by extension of the N-terminus with a short, functional peptide moiety or with the EAEA residues from the native signal peptide. We then applied this strategy to three other recombinant subunit vaccine antigens and observed consistent elimination of the same aggregated product-related variant. Finally, we demonstrated that this benefit in quality and secreted titer can be achieved with addition of a single amino acid to the N-terminus of the recombinant protein. CONCLUSIONS Our observations suggest that steric hindrance of proteases in the Golgi that cleave the signal peptide can cause unwanted N-terminal extension and related product variants. We demonstrated that this phenomenon occurs for multiple recombinant proteins, and can be addressed by minimal modification of the N-terminus to improve steric accessibility. This strategy may enable consistent secretion of a broad range of recombinant proteins with the highly productive alpha mating factor secretion signal peptide.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
RBD-VLP Vaccines Adjuvanted with Alum or SWE Protect K18-hACE2 Mice against SARS-CoV-2 VOC Challenge. mSphere 2022; 7:e0024322. [PMID: 35968964 PMCID: PMC9429941 DOI: 10.1128/msphere.00243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (β RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (β/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (β RBD HBsAg+SWE) or without HBsAg (β RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only β/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with β RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.
Collapse
|
17
|
Dalvie NC, Tostanoski LH, Rodriguez-Aponte SA, Kaur K, Bajoria S, Kumru OS, Martinot AJ, Chandrashekar A, McMahan K, Mercado NB, Yu J, Chang A, Giffin VM, Nampanya F, Patel S, Bowman L, Naranjo CA, Yun D, Flinchbaugh Z, Pessaint L, Brown R, Velasco J, Teow E, Cook A, Andersen H, Lewis MG, Camp DL, Silverman JM, Nagar GS, Rao HD, Lothe RR, Chandrasekharan R, Rajurkar MP, Shaligram US, Kleanthous H, Joshi SB, Volkin DB, Biswas S, Love JC, Barouch DH. SARS-CoV-2 receptor binding domain displayed on HBsAg virus-like particles elicits protective immunity in macaques. SCIENCE ADVANCES 2022; 8:eabl6015. [PMID: 35294244 PMCID: PMC8926328 DOI: 10.1126/sciadv.abl6015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/25/2022] [Indexed: 05/16/2023]
Abstract
Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain-hepatitis B surface antigen virus-like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa H. Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sergio A. Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Departments of Infectious Diseases and Global Health and Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Noe B. Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Victoria M. Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felix Nampanya
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shivani Patel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lesley Bowman
- SpyBiotech Limited, Oxford Business Park North, Oxford OX4 2JZ, UK
| | - Christopher A. Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongsoo Yun
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | - Danielle L. Camp
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Sumi Biswas
- SpyBiotech Limited, Oxford Business Park North, Oxford OX4 2JZ, UK
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
18
|
Dalvie NC, Biedermann AM, Rodriguez‐Aponte SA, Naranjo CA, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Johnston RS, Crowell LE, Castelino S, Tracey MK, Whittaker CA, Love JC. Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor-binding domain in engineered Komagataella phaffii. Biotechnol Bioeng 2022; 119:657-662. [PMID: 34780057 PMCID: PMC8653030 DOI: 10.1002/bit.27979] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply ongoing demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor-binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5X by alleviating protein folding stress. Removal of methanol from the production process enabled to scale up to a 1200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Andrew M. Biedermann
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sergio A. Rodriguez‐Aponte
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher A. Naranjo
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | | | | | - Ryan S. Johnston
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Laura E. Crowell
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Seraphin Castelino
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mary K. Tracey
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - J. Christopher Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
19
|
Dalvie NC, Lorgeree T, Biedermann AM, Love KR, Love JC. Simplified Gene Knockout by CRISPR-Cas9-Induced Homologous Recombination. ACS Synth Biol 2022; 11:497-501. [PMID: 34882409 PMCID: PMC8787811 DOI: 10.1021/acssynbio.1c00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Genetic engineering
of industrial cell lines often requires knockout
of multiple endogenous genes. Tools like CRISPR-Cas9 have enabled
serial or parallelized gene disruption in a wide range of industrial
organisms, but common practices for the screening and validation of
genome edits are lacking. For gene disruption, DNA repair by homologous
recombination offers several advantages over nonhomologous end joining,
including more efficient screening for knockout clones and improved
genomic stability. Here we designed and characterized a knockout fragment
intended to repair Cas9-induced gene disruptions by homologous recombination.
We identified knockout clones of Komagataella phaffii with high fidelity by PCR, removing the need for Sanger sequencing.
Short overlap sequences for homologous recombination (30 bp) enabled
the generation of gene-specific knockout fragments by PCR, removing
the need for subcloning. Finally, we demonstrated that the genotype
conferred by the knockout fragment is stable under common cultivation
conditions.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy Lorgeree
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew M. Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kerry R. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Improved Production of Streptomyces sp. FA1 Xylanase in a Dual-Plasmid Pichia pastoris System. Curr Issues Mol Biol 2021; 43:2289-2304. [PMID: 34940135 PMCID: PMC8928940 DOI: 10.3390/cimb43030161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Methanol is considered as a potential hazard in the methanol-induced yeast expression of food-related enzymes. To increase the production efficiency of recombinant proteins in Pichia pastoris without methanol induction, a novel dual-plasmid system was constructed, for the first time, by a combining the strategies of genomic integration and episomal expression. To obtain a high copy number of the target gene, the autonomously replicating sequence derived from Kluyveromyces lactis (PARS) was used to construct episomal vectors carrying the constitutive promoters PGAP and PGCW14. In addition, an integrative vector carrying the PGCW14 promoter was constructed by replacing the PGAP promoter sequence with a partial PGCW14 promoter. Next, using xylanase XynA from Streptomyces sp. FA1 as the model enzyme, recombination strains were transformed with different combinations of integrating and episomal vectors that were constructed to investigate the changes in the protein yield. Results in shake flasks indicated that the highest enzyme yield was achieved when integrated PGAP and episomal PGCW14 were simultaneously transformed into the host strain. Meanwhile, the copy number of xynA increased from 1.14 ± 0.46 to 3.06 ± 0.35. The yield of XynA was successfully increased to 3925 U·mL-1 after 102 h of fermentation in a 3.6 L fermenter, which was 16.7-fold and 2.86-fold of the yields that were previously reported for the constitutive expression and methanol-induced expression of the identical protein, respectively. Furthermore, the high-cell-density fermentation period was shortened from 132 h to 102 h compared to that of methanol-induced system. Since the risk of methanol toxicity is removed, this novel expression system would be suitable for the production of proteins related to the food and pharmaceutical industries.
Collapse
|
21
|
Abstract
The methylotrophic yeast Pichia pastoris is currently one of the most versatile and popular hosts for the production of heterologous proteins, including industrial enzymes. The popularity of P. pastoris stems from its ability to grow to high cell densities, producing high titers of secreted heterologous protein with very low amounts of endogenous proteins. Its ability to express correctly folded proteins with post-translational modifications makes it an excellent candidate for the production of biopharmaceuticals. In addition, production in P. pastoris typically uses the strong, methanol-inducible and tightly regulated promoter (PAOX1), which can result in heterologous protein that constitutes up to 30% of total cell protein upon growth in methanol. In this chapter, we present methodology for the production of secreted recombinant proteins in P. pastoris, and we discuss alternatives to enhance protein production with the desired yield and quality.
Collapse
|
22
|
Dalvie NC, Tostanoski LH, Rodriguez-Aponte SA, Kaur K, Bajoria S, Kumru OS, Martinot AJ, Chandrashekar A, McMahan K, Mercado NB, Yu J, Chang A, Giffin VM, Nampanya F, Patel S, Bowman L, Naranjo CA, Yun D, Flinchbaugh Z, Pessaint L, Brown R, Velasco J, Teow E, Cook A, Andersen H, Lewis MG, Camp DL, Silverman JM, Kleanthous H, Joshi SB, Volkin DB, Biswas S, Love JC, Barouch DH. A modular protein subunit vaccine candidate produced in yeast confers protection against SARS-CoV-2 in non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.13.452251. [PMID: 34282417 PMCID: PMC8288147 DOI: 10.1101/2021.07.13.452251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vaccines against SARS-CoV-2 have been distributed at massive scale in developed countries, and have been effective at preventing COVID-19. Access to vaccines is limited, however, in low- and middle-income countries (LMICs) due to insufficient supply, high costs, and cold storage requirements. New vaccines that can be produced in existing manufacturing facilities in LMICs, can be manufactured at low cost, and use widely available, proven, safe adjuvants like alum, would improve global immunity against SARS-CoV-2. One such protein subunit vaccine is produced by the Serum Institute of India Pvt. Ltd. and is currently in clinical testing. Two protein components, the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen virus-like particles (VLPs), are each produced in yeast, which would enable a low-cost, high-volume manufacturing process. Here, we describe the design and preclinical testing of the RBD-VLP vaccine in cynomolgus macaques. We observed titers of neutralizing antibodies (>104) above the range of protection for other licensed vaccines in non-human primates. Interestingly, addition of a second adjuvant (CpG1018) appeared to improve the cellular response while reducing the humoral response. We challenged animals with SARS-CoV-2, and observed a ~3.4 and ~2.9 log10 reduction in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, compared to sham controls. These results inform the design and formulation of current clinical COVID-19 vaccine candidates like the one described here, and future designs of RBD-based vaccines against variants of SARS-CoV-2 or other betacoronaviruses.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Departments of Infectious Diseases and Global Health and Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Victoria M Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Felix Nampanya
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Patel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lesley Bowman
- SpyBiotech Limited, Oxford Business Park North, Oxford, OX4 2JZ, United Kingdom
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dongsoo Yun
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | - Danielle L Camp
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, 66047, USA
| | - Sumi Biswas
- Bill&Melinda Gates Foundation, Seattle, WA 98109, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT, Harvard, Cambridge, MA 02139, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
23
|
Established tools and emerging trends for the production of recombinant proteins and metabolites in Pichia pastoris. Essays Biochem 2021; 65:293-307. [PMID: 33956085 DOI: 10.1042/ebc20200138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Besides bakers' yeast, the methylotrophic yeast Komagataella phaffii (also known as Pichia pastoris) has been developed into the most popular yeast cell factory for the production of heterologous proteins. Strong promoters, stable genetic constructs and a growing collection of freely available strains, tools and protocols have boosted this development equally as thorough genetic and cell biological characterization. This review provides an overview of state-of-the-art tools and techniques for working with P. pastoris, as well as guidelines for the production of recombinant proteins with a focus on small-scale production for biochemical studies and protein characterization. The growing applications of P. pastoris for in vivo biotransformation and metabolic pathway engineering for the production of bulk and specialty chemicals are highlighted as well.
Collapse
|
24
|
Dalvie NC, Brady JR, Crowell LE, Tracey MK, Biedermann AM, Kaur K, Hickey JM, Kristensen DL, Bonnyman AD, Rodriguez-Aponte SA, Whittaker CA, Bok M, Vega C, Mukhopadhyay TK, Joshi SB, Volkin DB, Parreño V, Love KR, Love JC. Molecular engineering improves antigen quality and enables integrated manufacturing of a trivalent subunit vaccine candidate for rotavirus. Microb Cell Fact 2021; 20:94. [PMID: 33933073 PMCID: PMC8088319 DOI: 10.1186/s12934-021-01583-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Vaccines comprising recombinant subunit proteins are well-suited to low-cost and high-volume production for global use. The design of manufacturing processes to produce subunit vaccines depends, however, on the inherent biophysical traits presented by an individual antigen of interest. New candidate antigens typically require developing custom processes for each one and may require unique steps to ensure sufficient yields without product-related variants. RESULTS We describe a holistic approach for the molecular design of recombinant protein antigens-considering both their manufacturability and antigenicity-informed by bioinformatic analyses such as RNA-seq, ribosome profiling, and sequence-based prediction tools. We demonstrate this approach by engineering the product sequences of a trivalent non-replicating rotavirus vaccine (NRRV) candidate to improve titers and mitigate product variants caused by N-terminal truncation, hypermannosylation, and aggregation. The three engineered NRRV antigens retained their original antigenicity and immunogenicity, while their improved manufacturability enabled concomitant production and purification of all three serotypes in a single, end-to-end perfusion-based process using the biotechnical yeast Komagataella phaffii. CONCLUSIONS This study demonstrates that molecular engineering of subunit antigens using advanced genomic methods can facilitate their manufacturing in continuous production. Such capabilities have potential to lower the cost and volumetric requirements in manufacturing vaccines based on recombinant protein subunits.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joseph R Brady
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Laura E Crowell
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mary Kate Tracey
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew M Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - D Lee Kristensen
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexandra D Bonnyman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Marina Bok
- Instituto de Virología E Innovaciones Tecnológicas, IVIT, CONICET-INTA, Hurlingham,, Buenos Aires, Argentina
| | - Celina Vega
- Instituto de Virología E Innovaciones Tecnológicas, IVIT, CONICET-INTA, Hurlingham,, Buenos Aires, Argentina
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA
| | - Viviana Parreño
- Instituto de Virología E Innovaciones Tecnológicas, IVIT, CONICET-INTA, Hurlingham,, Buenos Aires, Argentina
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Prins RC, Billerbeck S. A buffered media system for yeast batch culture growth. BMC Microbiol 2021; 21:127. [PMID: 33892647 PMCID: PMC8063419 DOI: 10.1186/s12866-021-02191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02191-5.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Dalvie NC, Biedermann AM, Rodriguez-Aponte SA, Naranjo CA, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Johnston RS, Crowell LE, Castelino S, Tracey MK, Whittaker CA, Love JC. Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor binding domain in engineered Komagataella phaffii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.15.440035. [PMID: 33880471 PMCID: PMC8057236 DOI: 10.1101/2021.04.15.440035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply on-going demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii ( Pichia pastoris ). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol-induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5x by alleviating protein folding stress. Removal of methanol from the production process enabled scale up to a 1,200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Andrew M. Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Sergio A. Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher A. Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | | | | | | | | | - Ryan S. Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Laura E. Crowell
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Seraphin Castelino
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mary Kate Tracey
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Charles A. Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| |
Collapse
|
27
|
Alva TR, Riera M, Chartron JW. Translational landscape and protein biogenesis demands of the early secretory pathway in Komagataella phaffii. Microb Cell Fact 2021; 20:19. [PMID: 33472617 PMCID: PMC7816318 DOI: 10.1186/s12934-020-01489-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Eukaryotes use distinct networks of biogenesis factors to synthesize, fold, monitor, traffic, and secrete proteins. During heterologous expression, saturation of any of these networks may bottleneck titer and yield. To understand the flux through various routes into the early secretory pathway, we quantified the global and membrane-associated translatomes of Komagataella phaffii. Results By coupling Ribo-seq with long-read mRNA sequencing, we generated a new annotation of protein-encoding genes. By using Ribo-seq with subcellular fractionation, we quantified demands on co- and posttranslational translocation pathways. During exponential growth in rich media, protein components of the cell-wall represent the greatest number of nascent chains entering the ER. Transcripts encoding the transmembrane protein PMA1 sequester more ribosomes at the ER membrane than any others. Comparison to Saccharomyces cerevisiae reveals conservation in the resources allocated by gene ontology, but variation in the diversity of gene products entering the secretory pathway. Conclusion A subset of host proteins, particularly cell-wall components, impose the greatest biosynthetic demands in the early secretory pathway. These proteins are potential targets in strain engineering aimed at alleviating bottlenecks during heterologous protein production.
Collapse
Affiliation(s)
- Troy R Alva
- Department of Bioengineering, University of California, Riverside, 92521, United States of America.
| | - Melanie Riera
- Department of Bioengineering, University of California, Riverside, 92521, United States of America
| | - Justin W Chartron
- Department of Bioengineering, University of California, Riverside, 92521, United States of America.,Protabit LLC, 1010 E Union St Suite 110, Pasadena, California, 91106, United States of America
| |
Collapse
|
28
|
Ingram Z, Patkar A, Oh D, Zhang KK, Chung C, Lin-Cereghino J, Lin-Cereghino GP. Overcoming Obstacles in Protein Expression in the Yeast Pichia pastoris: Interviews of Leaders in the Pichia Field. PACIFIC JOURNAL OF HEALTH (STOCKTON, CALIF.) 2021; 4:2. [PMID: 36213698 PMCID: PMC9536841 DOI: 10.56031/2576-215x.1010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The yeast Pichia pastoris (also known as Komagataella pastoris) has been used for over 30 years to produce thousands of valuable, heterologous proteins, such as insulin to treat diabetes and antibodies to prevent migraine headaches. Despite its success, there are some common, stubborn problems encountered by research scientists when they try to use the yeast to produce their recombinant proteins. In order to provide those working in this field with strategies to overcome these common obstacles, nine experts in P. pastoris protein expression field were interviewed to create a written review and video (https://www.youtube.com/watch?v=Q1oD6k8CdG8). This review describes how each respected scientist addressed a specific challenge, such as identifying high expression strains, improving secretion efficiency and decreasing hyperglycosylation. Their perspective and practical advice can be a tool to help empower others to express challenging proteins in this popular recombinant host.
Collapse
|
29
|
|
30
|
Marson GV, Saturno RP, Comunian TA, Consoli L, Machado MTDC, Hubinger MD. Maillard conjugates from spent brewer's yeast by-product as an innovative encapsulating material. Food Res Int 2020; 136:109365. [PMID: 32846542 DOI: 10.1016/j.foodres.2020.109365] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Yeast-based by-products are greatly available, have a rich nutritional composition and functional properties. The spent brewer's yeast (SBY) cells after enzymatic hydrolysis may be a sustainable and low-cost alternative as carrier material for encapsulation processes by spray drying. Our work had as main purpose to characterise the hydrolysed SBY cell debris after the Maillard reaction and to study their potential as a microencapsulation wall material. SBY-based Maillard reaction products (MRPs) were used to encapsulate ascorbic acid (AA) by spray drying. The Maillard Reaction was able to improve the solubility of solids and proteins by 15% and promoted brown color development (230% higher Browning Index). SBY-based MRPs resulted in particles of a high encapsulation yield of AA (101.90 ± 5.5%), a moisture content of about 3.4%, water activity of 0.15, hygroscopicity values ranging from 13.8 to 19.3 gH2O/100 g and a glass transition temperature around 71 °C. The shape and microstructure of the produced particles were confirmed by scanning electron microscopy (MEV), indicating very similar structure for control and AA encapsulated particles. Fourier Transform Infrared Spectroscopy (FT-IR) results confirmed the presence of yeast cell debris in the surface of particles. Ascorbic acid was successfully encapsulated in Maillard conjugates of hydrolyzsd yeast cell debris of Saccharomyces pastorianus and maltodextrin as confirmed by optical microscopy, differential scanning calorimetry, MEV and FT-IR.
Collapse
Affiliation(s)
- Gabriela Vollet Marson
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Rafaela Polessi Saturno
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Talita Aline Comunian
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Larissa Consoli
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | | | - Miriam Dupas Hubinger
- Department of Food Engineering, School of Food Engineering, UNICAMP, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| |
Collapse
|
31
|
Guyot L, Hartmann L, Mohammed-Bouteben S, Caro L, Wagner R. Preparation of Recombinant Membrane Proteins from Pichia pastoris for Molecular Investigations. ACTA ACUST UNITED AC 2020; 100:e104. [PMID: 32289210 DOI: 10.1002/cpps.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris is a eukaryotic microorganism reputed for its ability to mass-produce recombinant proteins, including integral membrane proteins, for various applications. This article details a series of protocols that progress towards the production of integral membrane proteins, their extraction and purification in the presence of detergents, and their eventual reconstitution in lipid nanoparticles. These basic procedures can be further optimized to provide integral membrane protein samples that are compatible with a number of structural and/or functional investigations at the molecular level. Each protocol provides general guidelines, technical hints, and specific recommendations, and is illustrated with case studies corresponding to several representative mammalian proteins. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Production of membrane proteins in a P. pastoris recombinant clone using methanol induction Basic Protocol 2: Preparation of whole-membrane fractions Alternate Protocol 1: Preparation of yeast protoplasts Basic Protocol 3: Extraction of membrane proteins from whole-membrane fractions Basic Protocol 4: Purification of membrane proteins Alternate Protocol 2: Purification of membrane proteins from yeast protoplasts Alternate Protocol 3: Simultaneous protoplast preparation and membrane solubilization for purification of membrane proteins Basic Protocol 5: Reconstitution of detergent-purified membrane proteins in lipid nanoparticles.
Collapse
Affiliation(s)
- Lucile Guyot
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France.,NovAliX, Illkirch, France
| | - Lucie Hartmann
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Sarah Mohammed-Bouteben
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Lydia Caro
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| |
Collapse
|
32
|
Brady JR, Whittaker CA, Tan MC, Kristensen DL, Ma D, Dalvie NC, Love KR, Love JC. Comparative genome-scale analysis of Pichia pastoris variants informs selection of an optimal base strain. Biotechnol Bioeng 2020; 117:543-555. [PMID: 31654411 PMCID: PMC7003935 DOI: 10.1002/bit.27209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Komagataella phaffii, also known as Pichia pastoris, is a common host for the production of biologics and enzymes, due to fast growth, high productivity, and advancements in host engineering. Several K. phaffii variants are commonly used as interchangeable base strains, which confounds efforts to improve this host. In this study, genomic and transcriptomic analyses of Y-11430 (CBS7435), GS115, X-33, and eight other variants enabled a comparative assessment of the relative fitness of these hosts for recombinant protein expression. Cell wall integrity explained the majority of the variation among strains, impacting transformation efficiency, growth, methanol metabolism, and secretion of heterologous proteins. Y-11430 exhibited the highest activity of genes involved in methanol utilization, up to two-fold higher transcription of heterologous genes, and robust growth. With a more permeable cell wall, X-33 displayed a six-fold higher transformation efficiency and up to 1.2-fold higher titers than Y-11430. X-33 also shared nearly all mutations, and a defective variant of HIS4, with GS115, precluding robust growth. Transferring two beneficial mutations identified in X-33 into Y-11430 resulted in an optimized base strain that provided up to four-fold higher transformation efficiency and three-fold higher protein titers, while retaining robust growth. The approach employed here to assess unique banked variants in a species and then transfer key beneficial variants into a base strain should also facilitate rational assessment of a broad set of other recombinant hosts.
Collapse
Affiliation(s)
- Joseph R. Brady
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Melody C. Tan
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - D. Lee Kristensen
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Duanduan Ma
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Kerry Routenberg Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - J. Christopher Love
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusetts
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
33
|
Dalvie NC, Leal J, Whittaker CA, Yang Y, Brady JR, Love KR, Love JC. Host-Informed Expression of CRISPR Guide RNA for Genomic Engineering in Komagataella phaffii. ACS Synth Biol 2020; 9:26-35. [PMID: 31825599 PMCID: PMC7814401 DOI: 10.1021/acssynbio.9b00372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is growing interest in the use of nonmodel microorganisms as hosts for biopharmaceutical manufacturing. These hosts require genomic engineering to meet clinically relevant product qualities and titers, but the adaptation of tools for editing genomes, such as CRISPR-Cas9, has been slow for poorly characterized hosts. Specifically, a lack of biochemical characterization of RNA polymerase III transcription has hindered reliable expression of guide RNAs in new hosts. Here, we present a sequencing-based strategy for the design of host-specific cassettes for modular, reliable, expression of guide RNAs. Using this strategy, we achieved up to 95% gene editing efficiency in the methylotrophic yeast Komagataella phaffii. We applied this approach for the rapid, multiplexed engineering of a complex phenotype, achieving humanized product glycosylation in two sequential steps of engineering. Reliable extension of simple gene editing tools to nonmodel manufacturing hosts will enable rapid engineering of manufacturing strains tuned for specific product profiles and potentially decrease the costs and timelines for process development.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Justin Leal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Charles A. Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Joseph R. Brady
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Kerry R. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| |
Collapse
|
34
|
High-Throughput Screening Identifies Two Novel Small Molecule Enhancers of Recombinant Protein Expression. Molecules 2020; 25:molecules25020353. [PMID: 31952231 PMCID: PMC7024190 DOI: 10.3390/molecules25020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 11/20/2022] Open
Abstract
As a primary strategy for production of biological drugs, recombinant proteins produced by transient transfection of mammalian cells are essential for both basic research and industrial production. Here, we established a high-throughput screening platform for improving the expression levels of recombinant proteins. In total, 10,011 small molecule compounds were screened through our platform. After two rounds of screening, we identified two compounds, Apicidin and M-344, that significantly enhanced recombinant protein expression. Both of the selected compounds were histone deacetylase inhibitors, suggesting that the two small molecules increased the expression levels of recombinant proteins by promoting histone acetylation. Moreover, both molecules showed low cytotoxicity. Therefore, our findings suggest that these small molecules may have wide applications in the future.
Collapse
|
35
|
Joubert S, Dodelet V, Béliard R, Durocher Y. [Biomanufacturing of monoclonal antibodies]. Med Sci (Paris) 2020; 35:1153-1159. [PMID: 31903930 DOI: 10.1051/medsci/2019219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibody-based drugs are an increasingly important part of the therapeutic arsenal against a wide variety of medical conditions. As the number of commercial products and pipeline candidates grows, a crucial issue facing the industry is the current and future state of biomanufacturing. The productivity of the protein expression platforms, along with the performance of the technologies impacting upstream and downstream bioprocessing, are critical factors affecting the cost and time of therapeutic antibody development and commercialization. Cell engineering strategies are being used to improve the production of antibodies and to better control their quality in terms of posttranslational modifications, in particular with regards to their glycosylation state, as this can influence their therapeutic activity. Additionally, the advance of "omics" technologies have recently given rise to new possibilities in improving these expression platforms. We review here the various advances in biomanufacturing essential to the continued growth of the therapeutic antibody market.
Collapse
Affiliation(s)
- Simon Joubert
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada
| | - Vincent Dodelet
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada
| | - Roland Béliard
- Laboratoires français du fractionnement et des biotechnologies, Les Ulis, Courtaboeuf Cedex, France
| | - Yves Durocher
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada - Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
36
|
Sarsaiya S, Shi J, Chen J. Bioengineering tools for the production of pharmaceuticals: current perspective and future outlook. Bioengineered 2019; 10:469-492. [PMID: 31656120 PMCID: PMC6844412 DOI: 10.1080/21655979.2019.1682108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/08/2019] [Accepted: 10/11/2019] [Indexed: 01/18/2023] Open
Abstract
The bioengineering tools have significant advantages through less time-consuming and utilized as a promising stage for the production of pharmaceutical bioproducts under the single platform. This review highlighted the advantages and current improvement in the plant, animal and microbial bioengineering tools and outlines feasible approaches by biological and process's bioengineering levels for advancing the economic feasibility of pharmaceutical's production. The critical analysis results revealed that system biology and synthetic biology along with advanced bioengineering tools like transcriptome, proteome, metabolome and nano bioengineering tools have shown a promising impact on the development of pharmaceutical's bioproducts. Tools to overcome and resolve the accompanying encounters of pharmaceutical's production that include nano bioengineering tools are also discussed. As a summary and prospect, it also gives new insight into the challenges and possible breakthrough of the development of pharmaceutical's bioproducts through bioengineering tools.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
37
|
Burgard J, Grünwald-Gruber C, Altmann F, Zanghellini J, Valli M, Mattanovich D, Gasser B. The secretome of Pichia pastoris in fed-batch cultivations is largely independent of the carbon source but changes quantitatively over cultivation time. Microb Biotechnol 2019; 13:479-494. [PMID: 31692260 PMCID: PMC7017826 DOI: 10.1111/1751-7915.13499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023] Open
Abstract
The quantitative changes of the secretome of recombinant Pichia pastoris (Komagataella phaffii) CBS7435 over the time-course of methanol- or glucose-limited fed-batch cultures were investigated by LC-ESI-MS/MS to define the carbon source-specific secretomes under controlled bioreactor conditions. In both set-ups, no indication for elevated cell lysis was found. The quantitative data revealed that intact and viable P. pastoris cells secrete only a low number of endogenous proteins (in total 51), even during high cell density cultivation. Interestingly, no marked differences in the functional composition of the P. pastoris secretome between methanol- and glucose-grown cultures were observed with only few proteins being specifically affected by the carbon source. The 'core secretome' of 22 proteins present in all analysed carbon sources (glycerol, glucose and methanol) consists mainly of cell wall proteins. The quantitative analysis additionally revealed that most secretome proteins were already present after the batch phase, and depletion rather than accumulation occurred during the fed-batch processes. Among the changes over cultivation time, the depletion of both the extracellularly detected chaperones and the only two identified proteases (Pep4 and Yps1-1) during the methanol- or glucose-feed phase appear as most prominent.
Collapse
Affiliation(s)
- Jonas Burgard
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jürgen Zanghellini
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Biotech University of Applied Sciences, Tulln, Austria
| | - Minoska Valli
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
38
|
García-Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos-Seguí JL, Valero F. Rational development of bioprocess engineering strategies for recombinant protein production in Pichia pastoris (Komagataella phaffii) using the methanol-free GAP promoter. Where do we stand? N Biotechnol 2019; 53:24-34. [DOI: 10.1016/j.nbt.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
|
39
|
Marsalek L, Puxbaum V, Buchetics M, Mattanovich D, Gasser B. Disruption of vacuolar protein sorting components of the HOPS complex leads to enhanced secretion of recombinant proteins in Pichia pastoris. Microb Cell Fact 2019; 18:119. [PMID: 31269943 PMCID: PMC6607557 DOI: 10.1186/s12934-019-1155-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background The yeast Pichia pastoris is a widely used host for the secretion of heterologous proteins. Despite being an efficient producer, we observed previously that certain recombinant proteins were mistargeted to the vacuole on their route to secretion. Simultaneous disruption of one vacuolar sorting pathway together with vacuolar proteases prevented this mis-sorting and resulted in higher levels of secreted heterologous protein. Inspired by the positive results, we now set out to investigate the influence of further parts of the vacuolar pathway, namely the Cvt-pathway and the homotypic fusion and protein sorting (HOPS) complex. Results Strains impaired in the Cvt pathway (∆atg11, ∆atg8) had no effect on secretion of the model protein carboxylesterase (CES), but resulted in lower secretion levels of the antibody fragment HyHEL-Fab. Disruption of genes involved in the HOPS complex led to vacuole-like compartments of the B category of vps mutants, which are characteristic for the deleted genes YPT7, VPS41 and VAM6. In particular ∆ypt7 and ∆vam6 strains showed an improvement in secreting the model proteins HyHEL-Fab and CES. Additional disruption of the vacuolar protease Pep4 and the potential protease Vps70 led to even further enhanced secretion in ∆ypt7 and ∆vam6 strains. Nevertheless, intracellular product accumulation was still observed. Therefore, the secretory route was strengthened by overexpression of early or late secretory genes in the vacuolar sorting mutants. Thereby, overexpression of Sbh1, a subunit of the ER translocation pore, significantly increased HyHEL-Fab secretion, leading up to fourfold higher extracellular Fab levels in the ∆ypt7 strain. The beneficial impact on protein secretion and the suitability of these strains for industrial applicability was confirmed in fed-batch cultivations. Conclusions Disruption of genes involved in the HOPS complex, especially YPT7, has a great influence on the secretion of the two different model proteins HyHEL-Fab and CES. Therefore, disruption of HOPS genes shows a high potential to increase secretion of other recombinant proteins as well. Secretion of HyHEL-Fab was further enhanced when overexpressing secretion enhancing factors. As the positive effect was also present in fed-batch cultivations, these modifications likely have promising industrial relevance. Electronic supplementary material The online version of this article (10.1186/s12934-019-1155-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukas Marsalek
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Puxbaum
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Markus Buchetics
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,BHAK/BHAS Stegersbach, Kirchengasse 44, 7551, Stegersbach, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria. .,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
40
|
The Unreasonable Effectiveness of Equations: Advanced Modeling For Biopharmaceutical Process Development. COMPUTER AIDED CHEMICAL ENGINEERING 2019. [DOI: 10.1016/b978-0-12-818597-1.50023-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Bi K, Zhang W, Xiao Z, Zhang D. Characterization, expression and application of a zearalenone degrading enzyme from Neurospora crassa. AMB Express 2018; 8:194. [PMID: 30570697 PMCID: PMC6301899 DOI: 10.1186/s13568-018-0723-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
A gene named zenc, encoding a zearalenone lactonase from Neurospora crassa, was over-expressed in Pichia pastoris. The zenc gene is 888-bp in length, encoding a 295-residue polypeptide. Purified ZENC has maximal activity at pH 8.0 and 45 °C, and is highly stable at pH 6.0–8.0 for 1 h at 37 °C. The activity of the secreted enzyme in shaken-flask fermentation was 40.0 U/ml. A high-density fermentation of the ZENC-producing recombinant strain was performed in a 30-l fermenter and the maximal enzyme activity reached 290.6 U/ml. The Km, Vmax and specific activity toward zearalenone are 38.63 μM, 23.8 μM/s/mg and 530.4 U/mg, respectively. ZENC can resist metal ions and inhibitors to some extent. We applied the enzyme into three different kinds of animal feed. On addition of ZENC (800 U) to distillers dried grains with solubles (DDGS), maize by-products and corn bran (25 g), the concentration of zearalenone was reduced by 70.9%, 88.9% and 94.7% respectively. All these properties of ZENC are promising for applications in the animal feed and food industries.
Collapse
|
42
|
Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A 2018; 115:E11025-E11032. [PMID: 30397111 DOI: 10.1073/pnas.1809921115] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Baker's yeast Saccharomyces cerevisiae is one of the most important and widely used cell factories for recombinant protein production. Many strategies have been applied to engineer this yeast for improving its protein production capacity, but productivity is still relatively low, and with increasing market demand, it is important to identify new gene targets, especially targets that have synergistic effects with previously identified targets. Despite improved protein production, previous studies rarely focused on processes associated with intracellular protein retention. Here we identified genetic modifications involved in the secretory and trafficking pathways, the histone deacetylase complex, and carbohydrate metabolic processes as targets for improving protein secretion in yeast. Especially modifications on the endosome-to-Golgi trafficking was found to effectively reduce protein retention besides increasing protein secretion. Through combinatorial genetic manipulations of several of the newly identified gene targets, we enhanced the protein production capacity of yeast by more than fivefold, and the best engineered strains could produce 2.5 g/L of a fungal α-amylase with less than 10% of the recombinant protein retained within the cells, using fed-batch cultivation.
Collapse
|
43
|
Gasser B, Mattanovich D. A yeast for all seasons – Is Pichia pastoris a suitable chassis organism for future bioproduction? FEMS Microbiol Lett 2018; 365:5056157. [DOI: 10.1093/femsle/fny181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Brigitte Gasser
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|