1
|
Guo L, Wu N, Zhang S, Zeng H, Yang J, Han X, Duan H, Liu Y, Wang L. Emerging Advances around Nanofluidic Transport and Mass Separation under Confinement in Atomically Thin Nanoporous Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404087. [PMID: 39031097 DOI: 10.1002/smll.202404087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Membrane separation stands as an environmentally friendly, high permeance and selectivity, low energy demand process that deserves scientific investigation and industrialization. To address intensive demand, seeking appropriate membrane materials to surpass trade-off between permeability and selectivity and improve stability is on the schedule. 2D materials offer transformational opportunities and a revolutionary platform for researching membrane separation process. Especially, the atomically thin graphene with controllable porosity and structure, as well as unique properties, is widely considered as a candidate for membrane materials aiming to provide extreme stability, exponentially large selectivity combined with high permeability. Currently, it has shown promising opportunities to develop separation membranes to tackle bottlenecks of traditional membranes, and it has been of great interest for tremendously versatile applications such as separation, energy harvesting, and sensing. In this review, starting from transport mechanisms of separation, the material selection bank is narrowed down to nanoporous graphene. The study presents an enlightening overview of very recent developments in the preparation of atomically thin nanoporous graphene and correlates surface properties of such 2D nanoporous materials to their performance in critical separation applications. Finally, challenges related to modulation and manufacturing as well as potential avenues for performance improvements are also pointed out.
Collapse
Affiliation(s)
- Liping Guo
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Ningran Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Shengping Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Haiou Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Jing Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Xiao Han
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Hongwei Duan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
| | - Yuancheng Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Luda Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| |
Collapse
|
2
|
Moreno C, Diaz de Cerio X, Tenorio M, Gao F, Vilas-Varela M, Sarasola A, Peña D, Garcia-Lekue A, Mugarza A. On-surface synthesis of porous graphene nanoribbons mediated by phenyl migration. Commun Chem 2024; 7:219. [PMID: 39343837 PMCID: PMC11439924 DOI: 10.1038/s42004-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Advancements in the on-surface synthesis of atomically precise graphene nanostructures are propelled by the introduction of innovative precursor designs and reaction types. Until now, the latter has been confined to cross-coupling and cyclization reactions that involve the cleavage of specific atoms or groups. In this article, we elucidate how the migration of phenyl substituents attached to graphene nanoribbons can be harnessed to generate arrays of [18]-annulene pores at the edges of the nanostructures. This sequential pathway is revealed through a comprehensive study employing bond-resolved scanning tunneling microscopy and ab-initio computational techniques. The yield of pore formation is maximized by anchoring the graphene nanoribbons at steps of vicinal surfaces, underscoring the potential of these substrates to guide reaction paths. Our study introduces a new reaction to the on-surface synthesis toolbox along with a sequential route, altogether enabling the extension of this strategy towards the formation of other porous nanostructures.
Collapse
Affiliation(s)
- César Moreno
- Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, Santander, Spain.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193, Barcelona, Spain.
| | | | - Maria Tenorio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193, Barcelona, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), 28049, Madrid, Spain
| | - Fei Gao
- Donostia International Physics Center, San Sebastian, Spain
| | - Manuel Vilas-Varela
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ane Sarasola
- Donostia International Physics Center, San Sebastian, Spain
- Departamento de Física Aplicada, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Aran Garcia-Lekue
- Donostia International Physics Center, San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193, Barcelona, Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Yuan Z, Liang Z, Yang L, Zhou D, He Z, Yang J, Wang C, Jiang L, Guo W. Light-Driven Ionic and Molecular Transport through Atomically Thin Single Nanopores in MoS 2/WS 2 Heterobilayers. ACS NANO 2024; 18:24581-24590. [PMID: 39137115 DOI: 10.1021/acsnano.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Nanofluidic ionic and molecular transport through atomically thin nanopore membranes attracts broad research interest from both scientific and industrial communities for environmental, healthcare, and energy-related technologies. To mimic the biological ion pumping functions, recently, light-induced and quantum effect-facilitated charge separation in heterogeneous 2D-material assemblies is proposed as the fourth type of driving force to achieve active and noninvasive transport of ionic species through synthetic membrane materials. However, to date, engineering versatile van der Waals heterostructures into 2D nanopore membranes remains largely unexplored. Herein, we fabricate single nanopores in heterobilayer transition metal dichalcogenide membranes with helium ion beam irradiation and demonstrate the light-driven ionic transport and molecular translocation phenomena through the atomically thin nanopores. Experimental and simulation results further elucidate the driving mechanism as the photoinduced near-pore electric potential difference due to type II band alignment of the semiconducting WS2 and MoS2 monolayers. The strength of the photoinduced localized electric field near the pore region can be approximately 1.5 times stronger than that of its counterpart under the conventional voltage-driven mode. Consequently, the light-driven mode offers better spatial resolution for single-molecule detection. Light-driven ionic and molecular transport through nanopores in van der Waals heterojunction membranes anticipates transformative working principles for next-generation biomolecular sequencing and gives rise to fascinating opportunities for light-to-chemical energy harvesting nanosystems.
Collapse
Affiliation(s)
- Zhishan Yuan
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhuohua Liang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Liusi Yang
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Zihua He
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Junyu Yang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lei Jiang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P. R. China
| | - Wei Guo
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, P. R. China
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Chou YC, Lin CY, Castan A, Chen J, Keneipp R, Yasini P, Monos D, Drndić M. Coupled nanopores for single-molecule detection. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01746-7. [PMID: 39143316 DOI: 10.1038/s41565-024-01746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Rapid sensing of molecules is increasingly important in many studies and applications, such as DNA sequencing and protein identification. Here, beyond atomically thin 2D nanopores, we conceptualize, simulate and experimentally demonstrate coupled, guiding and reusable bilayer nanopore platforms, enabling advanced ultrafast detection of unmodified molecules. The bottom layer can collimate and decelerate the molecule before it enters the sensing zone, and the top 2D pore (~2 nm) enables position sensing. We varied the number of pores in the bottom layer from one to nine while fixing one 2D pore in the top layer. When the number of pores in the bottom layer is reduced to one, sensing is performed by both layers, and distinct T- and W-shaped translocation signals indicate the precise position of molecules and are sensitive to fragment lengths. This is uniquely enabled by microsecond resolution capabilities and precision nanofabrication. Coupled nanopores represent configurable multifunctional systems with inter- and intralayer structures for improved electromechanical control and prolonged dwell times in a 2D sensing zone.
Collapse
Affiliation(s)
- Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Castan
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachael Keneipp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisa Yasini
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri Monos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Zhang X, Hu N, Wang Y, Zhao Y, Wang D. Effect of Membrane Thickness on Ion Transport in pH-Regulated Zero-Depth Interfacial Nanopores. Anal Chem 2024; 96:11009-11017. [PMID: 38934578 DOI: 10.1021/acs.analchem.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Zero-depth interfacial nanopores, which are formed by two crossed nanoscale channels at their intersection interface, have been proposed to increase the spatial resolution of solid-state nanopores. However, research on zero-depth interfacial nanopores is still in its early stages. Although it has been shown that the current passing through an interfacial nanopore is largely independent of the membrane thickness, existing studies have not fully considered the impact of membrane thickness on other ion transport characteristics within these nanopores. In this paper, we investigate the electrokinetic ion transport phenomenon in the zero-depth interfacial nanopores, especially focusing on the influence of membrane thickness on the ion transport phenomenon. Our model incorporates the Poisson-Nernst-Planck equations and the Navier-Stokes equations, featuring a pH-regulated surface charge density. We find that when the thickness of the nanochannels is close to the interface size of the formed interfacial nanopore, the phenomenon of ion transport in the interfacial nanopore is similar to that in a conventional cylindrical nanopore. However, when the thickness of the nanochannels is much greater than the interface size of the formed interfacial nanopore, several distinct phenomena occur. The surface charge density on the inner walls of the interfacial nanopores has a small peak at the interface of the two crossing nanochannels, and the anion concentration changes greatly between the two nanochannels; that is, a much greater anion concentration forms in the nanochannel near the anode side than in the nanochannel near the cathode side. When the surface charge is nonzero, the electric field within the interfacial nanopore creates three extreme points, and the directions of the local electric fields are opposite at the ends of the membrane.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yunjiao Wang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Yun Zhao
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, P. R. China
| | - Deqiang Wang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| |
Collapse
|
6
|
Shah A, Pathak S, Li K, Garaj S, Bazant MZ, Gupta A, Doyle PS. A Universal Approximation for Conductance Blockade in Thin Nanopore Membranes. NANO LETTERS 2024. [PMID: 38437028 DOI: 10.1021/acs.nanolett.3c04997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Nanopore-based sensing platforms have transformed single-molecule detection and analysis. The foundation of nanopore translocation experiments lies in conductance measurements, yet existing models, which are largely phenomenological, are inaccurate in critical experimental conditions such as thin and tightly fitting pores. Of the two components of the conductance blockade, channel and access resistance, the access resistance is poorly modeled. We present a comprehensive investigation of the access resistance and associated conductance blockade in thin nanopore membranes. By combining a first-principles approach, multiscale modeling, and experimental validation, we propose a unified theoretical modeling framework. The analytical model derived as a result surpasses current approaches across a broad parameter range. Beyond advancing our theoretical understanding, our framework's versatility enables analyte size inference and predictive insights into conductance blockade behavior. Our results will facilitate the design and optimization of nanopore devices for diverse applications, including nanopore base calling and data storage.
Collapse
Affiliation(s)
- Arjav Shah
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602
| | - Shakul Pathak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Kun Li
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602
| | - Slaven Garaj
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602
- Department of Physics, National University of Singapore, Singapore 119077
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Ankur Gupta
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Singapore-MIT Alliance for Research and Technology Centre, Singapore 138602
| |
Collapse
|
7
|
Kalyuzhnyi YV, Patsahan T, Holovko M, Cummings PT. Phase behavior of patchy colloids confined in patchy porous media. NANOSCALE 2024; 16:4668-4677. [PMID: 38305436 DOI: 10.1039/d3nr02866f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A simple model for functionalized disordered porous media is proposed and the effects of confinement on self-association, percolation and phase behavior of a fluid of patchy particles are studied. The media are formed by randomly distributed hard-sphere obstacles fixed in space and decorated by a certain number of off-center square-well sites. The properties of the fluid of patchy particles, represented by the fluid of hard spheres each bearing a set of the off-center square-well sites, are studied using an appropriate combination of the scaled particle theory for the porous media, Wertheim's thermodynamic perturbation theory, and Flory-Stockmayer theory. To assess the accuracy of the theory a set of computer simulations have been performed. In general, predictions of the theory appeared to be in good agreement with the computer simulation results. Confinement and competition between the formation of bonds connecting the fluid particles, and connecting fluid particles and obstacles of the matrix, gave rise to a re-entrant phase behavior with three critical points and two separate regions of the liquid-gas phase coexistence.
Collapse
Affiliation(s)
- Yurij V Kalyuzhnyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine.
| | - Taras Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine.
- Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv, Ukraine
| | - Myroslav Holovko
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukraine.
| | - Peter T Cummings
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
8
|
Ma L, Liu Z, Ai B, Man J, Li J, Wu K, Qiu Y. Ion transport through short nanopores modulated by charged exterior surfaces. J Chem Phys 2024; 160:074701. [PMID: 38363999 DOI: 10.1063/5.0188959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Short nanopores find extensive applications, capitalizing on their high throughput and detection resolution. Ionic behaviors through long nanopores are mainly determined by charged inner-pore walls. When pore lengths decrease to sub-200 nm, charged exterior surfaces provide considerable modulation to ion current. We find that the charge status of inner-pore walls affects the modulation of ion current from charged exterior surfaces. For 50-nm-long nanopores with neutral inner-pore walls, the charged exterior surfaces on the voltage (surfaceV) and ground (surfaceG) sides enhance and inhibit the ion transport by forming ion enrichment and depletion zones inside nanopores, respectively. For nanopores with both charged inner-pore and exterior surfaces, continuous electric double layers enhance the ion transport through nanopores significantly. The charged surfaceV results in higher ion current by simultaneously weakening the ion depletion at pore entrances and enhancing the intra-pore ion enrichment. The charged surfaceG expedites the exit of ions from nanopores, resulting in a decrease in ion enrichment at pore exits. Through adjustment in the width of charged-ring regions near pore boundaries, the effective charged width of the charged exterior is explored at ∼20 nm. Our results may provide a theoretical guide for further optimizing the performance of nanopore-based applications, such as seawater desalination, biosensing, and osmotic energy conversion.
Collapse
Affiliation(s)
- Long Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| | - Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Bowen Ai
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
9
|
Metya AK, Das CK. Electrolyte under Molybdenum Disulfide Surfaces: Molecular Insights on Structure and Dynamics of Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320269 DOI: 10.1021/acs.langmuir.3c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Molybdenum disulfide (MoS2) is a two-dimensional (2D) material that offers molecular transport and sieving properties and might be a potential candidate for membrane technologies for energy and environmental applications. To facilitate the separation application, understanding the structural and dynamic properties of water near the substrate-aqueous solution is essential. Employing the molecular dynamics simulation, we investigate the density, local water network at the solid-liquid interface, and water dynamics in aqueous electrolyte solutions with various chloride salts confined in MoS2 nanochannels with different pore sizes and electrolyte concentrations. Our simulation results confirm that the layering of interfacial water at the hydrophilic MoS2 surface and the water density variation depends on the nature of the ions. The simulation results imply a strong attraction of cations to the surface-liquid interfaces, whereas anions are expelled from the surface due to electrostatic interaction. An examination of the dynamical property of water reveals that the confinement effect is more pronounced on water mobility when the pore width is less than 3 nm, and the salt concentration is below 1 M, whereas the electrolyte concentration greater than 1 M, ions predominantly drive the water mobility as compared to confinement one. These simulation results enhance experimental observations and provide molecular insights into the local ordering mechanism that can be crucial in controlling water dynamics in nanofiltration applications.
Collapse
Affiliation(s)
- Atanu K Metya
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Patna 801106, India
| | - Chandan K Das
- Department of Chemical Engineering, National Institute of Technology Raurkela, Rourkela, Odisha 769008, India
| |
Collapse
|
10
|
Bahri M, Yu D, Zhang CY, Chen Z, Yang C, Douadji L, Qin P. Unleashing the potential of tungsten disulfide: Current trends in biosensing and nanomedicine applications. Heliyon 2024; 10:e24427. [PMID: 38293340 PMCID: PMC10826743 DOI: 10.1016/j.heliyon.2024.e24427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The discovery of graphene ignites a great deal of interest in the research and advancement of two-dimensional (2D) layered materials. Within it, semiconducting transition metal dichalcogenides (TMDCs) are highly regarded due to their exceptional electrical and optoelectronic properties. Tungsten disulfide (WS2) is a TMDC with intriguing properties, such as biocompatibility, tunable bandgap, and outstanding photoelectric characteristics. These features make it a potential candidate for chemical sensing, biosensing, and tumor therapy. Despite the numerous reviews on the synthesis and application of TMDCs in the biomedical field, no comprehensive study still summarizes and unifies the research trends of WS2 from synthesis to biomedical applications. Therefore, this review aims to present a complete and thorough analysis of the current research trends in WS2 across several biomedical domains, including biosensing and nanomedicine, covering antibacterial applications, tissue engineering, drug delivery, and anticancer treatments. Finally, this review also discusses the potential opportunities and obstacles associated with WS2 to deliver a new outlook for advancing its progress in biomedical research.
Collapse
Affiliation(s)
- Mohamed Bahri
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Can Yang Zhang
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengming Yang
- University of Science and Technology Hospital, Shenzhen, Guangdong Province, China
| | - Lyes Douadji
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing City, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
11
|
Ma L, Liu Z, Man J, Li J, Siwy ZS, Qiu Y. Modulation mechanism of ionic transport through short nanopores by charged exterior surfaces. NANOSCALE 2023; 15:18696-18706. [PMID: 37947348 DOI: 10.1039/d3nr04467j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Short nanopores have various applications in biosensing, desalination, and energy conversion. Here, the modulation of ionic transport by charged exterior surfaces is investigated through simulations with sub-200 nm long nanopores under applied voltages. Detailed analysis of the ionic current, electric field strength, and fluid flow inside and outside nanopores reveals that charged exterior surfaces can increase ionic conductance by increasing both the concentration and migration speed of charge carriers. The electric double layers near charged exterior surfaces provide an ion pool and an additional passageway for counterions, which lead to enhanced exterior surface conductance and ionic concentrations at pore entrances and inside the nanopores. We also report that charges on the membrane surfaces increase the electric field strength inside nanopores. The effective width of a ring with surface charges placed at pore entrances (Lcs) is considered as well by studying the dependence of the current on Lcs. We find a linear relationship between the effective Lcs and the surface charge density and voltage, and an inverse relationship between the geometrical pore length and salt concentration. Our results elucidate the modulation mechanism of ionic transport through short nanopores by charged exterior surfaces, which is important for the design and fabrication of porous membranes.
Collapse
Affiliation(s)
- Long Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000, China
| | - Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000, China
- Suzhou Research Institute of Shandong University, Suzhou, 215123, China
| |
Collapse
|
12
|
Byrne DO, Raja A, Noy A, Ciston J, Smolyanitsky A, Allen FI. Fabrication of Atomically Precise Nanopores in 2D Hexagonal Boron Nitride Using Electron and Ion Beam Microscopes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1375-1376. [PMID: 37613635 DOI: 10.1093/micmic/ozad067.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Dana O Byrne
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA, USA
| | - Archana Raja
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA, USA
| | - Aleksandr Noy
- Materials Science Division, Lawrence Livermore National Laboratory, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Jim Ciston
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA, USA
| | - Alex Smolyanitsky
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, USA
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, CA, USA
| |
Collapse
|
13
|
Ye J, Zheng J, Lu X, Wu F, Liu N, Dong Y, Shi Q, Xu L, Liu D. Single-Molecular Poly(propylene oxide) (PPO) Nucleus-Guided Assembly for Hydrophobicity-Dependent Molecular Transport in the Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4537-4543. [PMID: 36926892 DOI: 10.1021/acs.langmuir.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By combining DNA nanotechnology and solid-phase nanopore technology, the aggregation behavior of polymer guided by a single-molecular poly(propylene) (PPO) nucleus in a 3D DNA network has been studied. At low temperature, the PPO chain is evenly dispersed in the rigid 3D DNA network; at higher temperature, the PPO chain self-collapses to a single-molecular nucleus; and upon addition of amphiphilic block copolymers below the critical micelle concentration (CMC), the chains tend to aggregate on the isolated hydrophobic nucleus through intermolecular hydrophobic interactions. The process has been characterized by a rheological test and an electrochemical test. This study not only provides a preliminary understanding of the nucleation and growth process of block copolymers but also offers a theoretical basis for the study of protein self-folding and aggregation in the future. On this basis, utilizing this nucleation and growth event, a novel smart nanopore has been developed for hydrophobicity-dependent molecular transport.
Collapse
Affiliation(s)
- Jianhan Ye
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Zheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xin Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanchen Dong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
15
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Huang C, Li Z, Zhu X, Ma X, Li N, Fan J. Two Detection Modes of Nanoslit Sensing Based on Planar Heterostructure of Graphene/Hexagonal Boron Nitride. ACS NANO 2023; 17:3301-3312. [PMID: 36638059 DOI: 10.1021/acsnano.2c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-state nanopore sequencing is now confronted with problems of stochastic pore clogging and too fast speed during the DNA permeation through a nanopore, although this technique is revolutionary with long readability and high efficiency. These two problems are related to controlling molecular transportation during sequencing. To control the DNA motion and identify the four bases, we propose nanoslit sensing based on the planar heterostructure of two-dimensional graphene and hexagonal boron nitride. Molecular dynamics simulations are performed on investigating the motion of DNA molecules on the heterostructure with a nanoslit sensor. Results show that the DNA molecules are confined within the hexagonal boron nitride (HBN) domain of the heterostructure. And the confinement effects of the heterostructure can be optimized by tailoring the stripe length. Besides, there are two ways of DNA permeation through nanoslits: the DNA can cross or translocate the nanoslit under applied voltages along the y and z directions. The two detection modes are named cross-slit and trans-slit, respectively. In both modes, the ionic current drops can be observed when the nanoslit is occupied by the DNA. And the ionic currents and dwell times can be simultaneously detected to identify the four different DNA bases. This study can shed light on the sensing mechanism based on the nanoslit sensor of a planar heterostructure and provide theoretical guidance on designing devices controlling molecular transportation during nanopore sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Na Li
- School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan030000, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
17
|
Thakur M, Cai N, Zhang M, Teng Y, Chernev A, Tripathi M, Zhao Y, Macha M, Elharouni F, Lihter M, Wen L, Kis A, Radenovic A. High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing. NPJ 2D MATERIALS AND APPLICATIONS 2023; 7:11. [PMID: 38665480 PMCID: PMC11041726 DOI: 10.1038/s41699-023-00373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/10/2023] [Indexed: 04/28/2024]
Abstract
Nanopores in two-dimensional (2D) membranes hold immense potential in single-molecule sensing, osmotic power generation, and information storage. Recent advances in 2D nanopores, especially on single-layer MoS2, focus on the scalable growth and manufacturing of nanopore devices. However, there still remains a bottleneck in controlling the nanopore stability in atomically thin membranes. Here, we evaluate the major factors responsible for the instability of the monolayer MoS2 nanopores. We identify chemical oxidation and delamination of monolayers from their underlying substrates as the major reasons for the instability of MoS2 nanopores. Surface modification of the substrate and reducing the oxygen from the measurement solution improves nanopore stability and dramatically increases their shelf-life. Understanding nanopore growth and stability can provide insights into controlling the pore size, shape and can enable long-term measurements with a high signal-to-noise ratio and engineering durable nanopore devices.
Collapse
Affiliation(s)
- Mukeshchand Thakur
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Nianduo Cai
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Miao Zhang
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Yunfei Teng
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Andrey Chernev
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Mukesh Tripathi
- Laboratory of Nanoscale Electronics and Structure, Institute of Electrical Engineering and Institute of Materials Science and Engineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Yanfei Zhao
- Laboratory of Nanoscale Electronics and Structure, Institute of Electrical Engineering and Institute of Materials Science and Engineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Michal Macha
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Farida Elharouni
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Martina Lihter
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Andras Kis
- Laboratory of Nanoscale Electronics and Structure, Institute of Electrical Engineering and Institute of Materials Science and Engineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
DNA-decorated multilamellar cholesterol assemblies for nucleic acid detection in the micrometer-scale solid-state nanopore. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Lin CY, Fotis R, Xia Z, Kavetsky K, Chou YC, Niedzwiecki DJ, Biondi M, Thei F, Drndić M. Ultrafast Polymer Dynamics through a Nanopore. NANO LETTERS 2022; 22:8719-8727. [PMID: 36315497 DOI: 10.1021/acs.nanolett.2c03546] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrathin nanopore sensors allow single-molecule and polymer measurements at sub-microsecond time resolution enabled by high current signals (∼10-30 nA). We demonstrate for the first time the experimental probing of the ultrafast translocation and folded dynamics of double-stranded DNA (dsDNA) through a nanopore at 10 MHz bandwidth with acquisition of data points per 25 ns (150 MB/s). By introducing a rigorous algorithm, we are able to accurately identify each current level present within translocation events and elucidate the dynamic folded and unfolded behaviors. The remarkable sensitivity of this system reveals distortions of short-lived folded states at a lower bandwidth. This work revisits probing of dsDNA as a model polymer and develops broadly applicable methods. The combined improvements in sensor signals, instrumentation, and large data analysis methods uncover biomolecular dynamics at unprecedentedly small time scales.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Riley Fotis
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania 19146, United States
| | - Kyril Kavetsky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Material Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Macha M, Marion S, Tripathi M, Thakur M, Lihter M, Kis A, Smolyanitsky A, Radenovic A. High-Throughput Nanopore Fabrication and Classification Using Xe-Ion Irradiation and Automated Pore-Edge Analysis. ACS NANO 2022; 16:16249-16259. [PMID: 36153997 DOI: 10.1021/acsnano.2c05201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large-area nanopore drilling is a major bottleneck in state-of-the-art nanoporous 2D membrane fabrication protocols. In addition, high-quality structural and statistical descriptions of as-fabricated porous membranes are key to predicting the corresponding membrane-wide permeation properties. In this work, we investigate Xe-ion focused ion beam as a tool for scalable, large-area nanopore fabrication on atomically thin, free-standing molybdenum disulfide. The presented irradiation protocol enables designing ultrathin membranes with tunable porosity and pore dimensions, along with spatial uniformity across large-area substrates. Fabricated nanoporous membranes are then characterized using scanning transmission electron microscopy imaging, and the observed nanopore geometries are analyzed through a pore-edge detection and analysis script. We further demonstrate that the obtained structural and statistical data can be readily passed on to computational and analytical tools to predict the permeation properties at both individual pore and membrane-wide scales. As an example, membranes featuring angstrom-scale pores are investigated in terms of their emerging water and ion flow properties through extensive all-atom molecular dynamics simulations. We believe that the combination of experimental and analytical approaches presented here will yield accurate physics-based property estimates and thus potentially enable a true function-by-design approach to fabrication for applications such as osmotic power generation and desalination/filtration.
Collapse
Affiliation(s)
- Michal Macha
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Sanjin Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Interuniversity Microelectronics Centre (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
| | - Mukesh Tripathi
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Mukeshchand Thakur
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Martina Lihter
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andras Kis
- Laboratory of Nanoscale Electronics and Structures, Electrical Engineering Institute and Institute of Materials Science Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Alex Smolyanitsky
- National Institute of Standards and Technology, Applied Chemicals and Materials Division, 325 Broadway, Boulder, Colorado 80305, United States
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
21
|
Priya AK, Gnanasekaran L, Kumar PS, Jalil AA, Hoang TKA, Rajendran S, Soto-Moscoso M, Balakrishnan D. Recent trends and advancements in nanoporous membranes for water purification. CHEMOSPHERE 2022; 303:135205. [PMID: 35667502 DOI: 10.1016/j.chemosphere.2022.135205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
When it comes to electrocatalysis, the creation of nanodevices, the research of energy and the environment, and diagnostics, nanoporous materials are an asset. Nanoporous membranes, which can be used to filter water, have recently been the subject of new research and are summarized in this review. These membranes are used to remove salts and metallic ions from the water following an analysis of several nanoporous membrane types and production procedures. Demonstrations and discussions of these membrane systems are then conducted. Nanoporous membranes can be used to filter water, according to the conclusions of this study, which will help readers better grasp how they work. As a result, novel water purification nanoporous compounds that are easy to manufacture, inexpensive, and effective will be developed. Merits and demerits of nanoporous membrane for water treatment and its advancements in purification were discussed.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A A Jalil
- School of Chemical and Energy Engineering Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | | | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| |
Collapse
|
22
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
23
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Xia Z, Patchin M, McKay CP, Drndić M. Deoxyribonucleic Acid Extraction from Mars Analog Soils and Their Characterization with Solid-State Nanopores. ASTROBIOLOGY 2022; 22:992-1008. [PMID: 35731031 DOI: 10.1089/ast.2021.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Life detection on Mars is an important topic that includes a direct search for biomarkers. This requires instruments for in situ biomarker detection that are compact, lightweight, and able to withstand operations in space. Solid-state nanopores are excellent candidates that allow fast single-molecule detection. They can withstand high temperatures and be sterilized to minimize planetary contamination. The instruments are portable with low-power requirements. We demonstrate a few key results in advancing the use of nanopores for in-space applications. First, we developed modified deoxyribonucleic acid (DNA) extraction protocols to extract DNA from Mars analog soils. Second, we used silicon nitride nanopores to demonstrate the detection of extracted DNA and corresponding current characteristics. The yields and properties of extracted DNA (e.g., estimated diameters) varied somewhat by soil types, extraction methods, and nanopores used. The yields varied from a minimum of 0.9 ng DNA/g soil for a magnesium carbonate sample from Lake Salda to a maximum of 210 ng DNA/g soil for a calcium carbonate sample from Trona Pinnacles. For a given soil type, yields from different methods varied by a factor of up to 50. These observations motivate future studies with a broader range of Mars-like soils and improved instruments to increase signal-to-noise-ratio at higher measurement bandwidths.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Pennovation Works, Philadelphia, Pennsylvania, USA
| | - Margaret Patchin
- Goeppert LLC, Pennovation Works, Philadelphia, Pennsylvania, USA
| | - Christopher P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Marija Drndić
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
26
|
Li Y, Gutiérrez Moreno JJ, Song Z, Liu D, Wang M, Ramiere A, Feng Z, Niu QJ, Sasaki T, Cai X. Controlled Synthesis of Perforated Oxide Nanosheets with High Density Nanopores Showing Superior Water Purification Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18513-18524. [PMID: 35437011 DOI: 10.1021/acsami.2c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A method for creating genuine nanopores in high area density on monolayer two-dimensional (2D) metallic oxides has been developed. By use of the strong reduction capability of hydroiodic acid, active metal ions, such as FeIII and CoIII, in 2D oxide nanosheets can be reduced to a divalent charge state (2+). The selective removal of FeO2 and CoO2 metal oxide units from the framework can be tuned to produce pores in a range of 1-4 nm. By monitoring of the redox reaction kinetics, the pore area density can be also tuned from ∼0.9 × 104 to ∼3.3 × 105 μm-2. The universality of this method to produce much smaller pores and higher area density than the previously reported ones has been proven in different oxide nanosheets. To demonstrate their potential applications, ultrasmall metal organic framework particles were grown inside the pores of perforated titania oxide nanosheets. The optimized hybrid film showed ∼100% rejection of methylene blue (MB) from the water. Its water permeance reached 4260 L m-2 h-1 bar-1, which is 1-3 orders of that for reported 2D membranes with good MB rejections.
Collapse
Affiliation(s)
- Yongtao Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | | | - Zhaoqi Song
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Aymeric Ramiere
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Qingshan Jason Niu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Takayoshi Sasaki
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
27
|
Xia Z, Lin CY, Drndić M. Protein-enabled detection of ibuprofen and sulfamethoxazole using solid-state nanopores. Proteomics 2022; 22:e2100071. [PMID: 34974637 DOI: 10.1002/pmic.202100071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Enabled by proteins, we present an all-electrical method for rapid detection of small pharmaceuticals (ibuprofen and sulfamethoxazole [SMZ]) in aqueous media using silicon nitride pores. Specifically, we use carrier proteins, bovine serum albumin (BSA), and take advantage of their interactions with two small drug molecules to form BSA-drug complexes which can be detected by nm-diameter pores, thereby confirming the presence of small pharmaceuticals. We demonstrate detection of ibuprofen and SMZ at concentrations down to 100 nM (∼21 μg/L) and 48.5 nM (12 μg/L), respectively. We observe changes in electrical signal characteristics (reflected in event durations, rates, current magnitudes, and estimated particle diameters) of BSA-drug complexes compared to BSA-only, and differences between these two small pharmaceuticals, possibly paving a path toward developing selective sensors by identifying "electrical fingerprints" of these molecules in the future. These distinct electrical signals are likely a combined result of diffusion, electrophoretic and electroosmotic effects, interactions between the pore and particles, which depend on pore diameters, pH, and the resulting surface charges. The use of single-molecule-counting nanopores allows sensing of small pharmaceuticals, studies of protein conformational changes, and may aid in efforts to evaluate the impact of small drug molecules on aquatic and human life.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Sateesh J, Guha K, Dutta A, Sengupta P, Rao KS. Design and Modeling of Bioreactor Utilizing Electrophoresis and Di-electrophoresis Techniques for Regenerating Reabsorption Function of Human Kidney PCT in Microfluidics Environment. IEEE Trans Nanobioscience 2021; 21:529-541. [PMID: 34847037 DOI: 10.1109/tnb.2021.3131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The need for innovation in medical device technology is immense; especially to replace the dialysis techniques the necessity is extremely high. The available techniques that promised to replace dialysis have not yet geared up to the marketization level. The utilization of live kidney cells makes these devices costly, delicate, and unreliable. This paper aims to design a bioreactor to mimic the reabsorption function of the kidney that is fully artificial and highly controllable, which can be one step forward to the emerging Kidney-on-Chip (KOC) technology. The additional benefit of the proposed design is that it utilizes size-dependent reabsorption along with charge-dependent reabsorption phenomena to make it more compatible with human kidney function. The electrophoresis (EP), and di-electrophoresis (DEP) techniques are utilized to mimic the reabsorption function in this report. The structure utilized in the present design exactly replicates the proximal convoluted tubule (PCT) dimensions and functions as well. The whole setup is implemented in the COMSOL Multiphysics FEM benchmark tool for simulation, and analysis with appropriate boundary conditions. The device when excited by an electric field, Electrophoresis has produced a maximum velocity of 1.07 m/s for DC excitation and di-electrophoresis has produced a maximum flow velocity of 1.23 m/s, where both the offset voltages are the same (0.7 V). The flow velocity obtained utilizing both EP and DEP produced a reabsorption rate of 50-58% depending on the voltage applied and dimensions considered which is close to 60% reabsorption rate of the normal human kidney PCT. In accordance with the outcomes produced, the di-electrophoresis technique proved to be more efficient in realizing bioreactor as compared to electrophoresis. The novelty of the present work lies in the creation of a simulation environment, rigorous analysis, and optimization of the bioreactor supported by compact mathematical model.
Collapse
|
29
|
Hsu KJ, Villalobos LF, Huang S, Chi HY, Dakhchoune M, Lee WC, He G, Mensi M, Agrawal KV. Multipulsed Millisecond Ozone Gasification for Predictable Tuning of Nucleation and Nucleation-Decoupled Nanopore Expansion in Graphene for Carbon Capture. ACS NANO 2021; 15:13230-13239. [PMID: 34319081 PMCID: PMC8388115 DOI: 10.1021/acsnano.1c02927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/23/2021] [Indexed: 06/01/2023]
Abstract
Predictable and tunable etching of angstrom-scale nanopores in single-layer graphene (SLG) can allow one to realize high-performance gas separation even from similar-sized molecules. We advance toward this goal by developing two etching regimes for SLG where the incorporation of angstrom-scale vacancy defects can be controlled. We screen several exposure profiles for the etchant, controlled by a multipulse millisecond treatment, using a mathematical model predicting the nucleation and pore expansion rates. The screened profiles yield a narrow pore-size-distribution (PSD) with a majority of defects smaller than missing 16 carbon atoms, suitable for CO2/N2 separation, attributing to the reduced pore expansion rate at a high pore density. Resulting nanoporous SLG (N-SLG) membranes yield attractive CO2 permeance of 4400 ± 2070 GPU and CO2/N2 selectivity of 33.4 ± 7.9. In the second etching regime, by limiting the supply of the etchant, the nanopores are allowed to expand while suppressing the nucleation events. Extremely attractive carbon capture performance marked with CO2 permeance of 8730 GPU, and CO2/N2 selectivity of 33.4 is obtained when CO2-selective polymeric chains are functionalized on the expanded nanopores. We show that the etching strategy is uniform and scalable by successfully fabricating high-performance centimeter-scale membrane.
Collapse
Affiliation(s)
- Kuang-Jung Hsu
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Luis Francisco Villalobos
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Shiqi Huang
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Mostapha Dakhchoune
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Wan-Chi Lee
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Guangwei He
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Mounir Mensi
- Institut
des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
30
|
Niedzwiecki DJ, DiPaolo B, Lin CY, Castan A, Keneipp R, Drndić M. Devices for Nanoscale Guiding of DNA through a 2D Nanopore. ACS Sens 2021; 6:2534-2545. [PMID: 34228425 DOI: 10.1021/acssensors.1c00829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We fabricate on-chip solid-state nanofluidic-2D nanopore systems that can limit the range of motion for DNA in the sensing region of a nanopore. We do so by creating devices containing one or more silicon nitride pores and silicon nitride pillars supporting a 2D pore that orient DNA within a nanopore device to a restricted geometry, yet allow the free motion of ions to maintain a high signal-to-noise ratio. We discuss two concepts with two and three independent electrical connections and corresponding nanopore chip device architectures to achieve this goal in practice. Here, we describe device fabrication and transmission electron microscope (TEM) images, and provide simulated translocations based on the finite element analysis in 3D to demonstrate its merit. In both methods, there is a main 2D nanopore which we refer to as a "sensing" nanopore (monolayer MoS2 in this paper). A secondary layer is either an array of guiding pores sharing the same electrode pair as the sensing pore (Method 1) or a single, independently contacted, guiding pore (Method 2). These pores are constructed parallel to the "sensing" pore and serve as "guiding" elements to stretch and feed DNA into the atomically thin sensing pore. We discuss the practical implementation of these concepts with nanofluidic and Si-based technology, including detailed fabrication steps and challenges involved for DNA applications in solution.
Collapse
Affiliation(s)
- David J. Niedzwiecki
- Goeppert LLC, Pennovation, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, United States
| | - Brian DiPaolo
- Goeppert LLC, Pennovation, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, United States
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Alice Castan
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Rachael Keneipp
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
31
|
Barabash M, Gibby WAT, Guardiani C, Luchinsky DG, Luan B, Smolyanitsky A, McClintock PVE. Field-Dependent Dehydration and Optimal Ionic Escape Paths for C 2N Membranes. J Phys Chem B 2021; 125:7044-7059. [PMID: 34115497 PMCID: PMC8279548 DOI: 10.1021/acs.jpcb.1c03255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Most analytic theories describing electrostatically driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through subnanometer pores under finite bias is difficult to interpret analytically. Given recent advances in subnanometer pore fabrication and the rapid progress in detailed computer simulations, it is important to identify and understand the specific field-induced phenomena arising during ion transport. Here we consider an atomistic model of electrostatically driven ion permeation through subnanoporous C2N membranes. We analyze probability distributions of ionic escape trajectories and show that the optimal escape path switches between two different configurations depending on the bias magnitude. We identify two distinct mechanisms contributing to field-induced changes in transport-opposing barriers: a weak one arising from field-induced ion dehydration and a strong one due to the field-induced asymmetry of the hydration shells. The simulated current-voltage characteristics are compared with the solution of the 1D Nernst-Planck model. Finally, we show that the deviation of simulated currents from analytic estimates for large fields is consistent with the field-induced barriers and the observed changes in the optimal ion escape path.
Collapse
Affiliation(s)
| | - William A. T. Gibby
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Carlo Guardiani
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Department
of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome, Italy
| | - Dmitry G. Luchinsky
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Ames
Research Center, KBR, Inc., Moffett Field, California 94035, United States
| | - Binquan Luan
- Computational
Biological Center, IBM Thomas J. Watson
Research, Yorktown
Heights, New York 10598, United States
| | - Alex Smolyanitsky
- Applied
Chemicals and Materials Division, National
Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | | |
Collapse
|
32
|
Su S, Wang X, Xue J. Nanopores in two-dimensional materials: accurate fabrication. MATERIALS HORIZONS 2021; 8:1390-1408. [PMID: 34846448 DOI: 10.1039/d0mh01412e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials such as graphene and molybdenum disulfide have been demonstrated with a wide range of applications in electronic devices, chemical catalysis, single-molecule detection, and energy conversion. In the 2D materials, nanopores can be created, and the 2D nanoporous membranes possess many unique properties such as ultrathin thickness, high surface area, and excellent particle sieving capability, showing extraordinary promise in plenty of applications, such as sea water desalination, gas separation, and DNA sequencing. The performances of these membranes are mainly determined by the nanopore size, structure, and density, which, in turn, rely on the fabrication techniques of the nanopores. This review covers the important progress of nanopore fabrication in 2D materials and comprehensively compares these methods for the features of the introduced nanopores and their formation processes. Future perspectives are discussed on the opportunities and challenges in fabricating high-grade 2D nanopores.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.
| | | | | |
Collapse
|
33
|
Computer vision AC-STEM automated image analysis for 2D nanopore applications. Ultramicroscopy 2021; 231:113249. [PMID: 33902953 DOI: 10.1016/j.ultramic.2021.113249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/15/2021] [Accepted: 02/27/2021] [Indexed: 01/17/2023]
Abstract
Transmission electron microscopy (TEM) has led to important discoveries in atomic imaging and as an atom-by-atom fabrication tool. Using electron beams, atomic structures can be patterned, annealed and crystallized, and nanopores can be drilled in thin membranes. We review current progress in TEM analysis and implement a computer vision nanopore-detection algorithm that achieves a 96% pixelwise precision in TEM images of nanopores in 2D membranes (WS2), and discuss parameter optimization including a variation on the traditional grid search and gradient ascent. Such nanopores have applications in ion detection, water filtration, and DNA sequencing, where ionic conductance through the pore should be concordant with its TEM-measured size. Standard computer vision methods have their advantages as they are intuitive and do not require extensive training data. For completeness, we briefly comment on related machine learning for 2D materials analysis and discuss relevant progress in these fields. Image analysis alongside TEM allows correlated fabrication and analysis done simultaneously in situ to engineer devices at the atomic scale.
Collapse
|
34
|
Nanopores: a versatile tool to study protein dynamics. Essays Biochem 2021; 65:93-107. [PMID: 33296461 DOI: 10.1042/ebc20200020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
Collapse
|
35
|
Yue XY, Li YY, Zhang QW, Liao G, Yi HB. Synergistic effects of hydration shells and ion association on Li+ selectivity of bivalent cations adsorbed carboxylate graphene nanopore: A molecular simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Chou YC, Chen J, Lin CY, Drndić M. Engineering adjustable two-pore devices for parallel ion transport and DNA translocations. J Chem Phys 2021; 154:105102. [PMID: 33722020 PMCID: PMC7952139 DOI: 10.1063/5.0044227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
We report ionic current and double-stranded DNA (dsDNA) translocation measurements through solid-state membranes with two TEM-drilled ∼3-nm diameter silicon nitride nanopores in parallel. Nanopores are fabricated with similar diameters but varying in effective thicknesses (from 2.6 to 10 nm) ranging from a thickness ratio of 1:1 to 1:3.75, producing distinct conductance levels. This was made possible by locally thinning the silicon nitride membrane to shape the desired topography with nanoscale precision using electron beam lithography (EBL). Two nanopores are engineered and subsequently drilled in either the EBL-thinned or the surrounding membrane region. By designing the interpore separation a few orders of magnitude larger than the pore diameter (e.g., ∼900 vs 3 nm), we show analytically, numerically, and experimentally that the total conductance of the two pores is the sum of the individual pore conductances. For a two-pore device with similar diameters yet thicknesses in the ratio of 1:3, a ratio of ∼1:2.2 in open-pore conductances and translocation current signals is expected, as if they were measured independently. Introducing dsDNA as analytes to both pores simultaneously, we detect more than 12 000 events within 2 min and trace them back with a high likelihood to which pore the dsDNA translocated through. Moreover, we monitor translocations through one active pore only when the other pore is clogged. This work demonstrates how two-pore devices can fundamentally open up a parallel translocation reading system for solid-state nanopores. This approach could be creatively generalized to more pores with desired parameters given a sufficient signal-to-noise ratio.
Collapse
Affiliation(s)
- Yung-Chien Chou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joshua Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Mojtabavi M, VahidMohammadi A, Ganeshan K, Hejazi D, Shahbazmohamadi S, Kar S, van Duin ACT, Wanunu M. Wafer-Scale Lateral Self-Assembly of Mosaic Ti 3C 2T x MXene Monolayer Films. ACS NANO 2021; 15:625-636. [PMID: 33405898 DOI: 10.1021/acsnano.0c06393] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bottom-up assembly of two-dimensional (2D) materials into macroscale morphologies with emergent properties requires control of the material surroundings, so that energetically favorable conditions direct the assembly process. MXenes, a class of recently developed 2D materials, have found new applications in areas such as electrochemical energy storage, nanoscale electronics, sensors, and biosensors. In this paper, we present a lateral self-assembly method for wafer-scale deposition of a mosaic-type 2D MXene flake monolayer that spontaneously orders at the interface between two immiscible solvents. ReaxFF molecular dynamics simulations elucidate the interactions of a MXene flake with the solvents and its stability at the liquid/liquid interface, the prerequisite for MXene flakes self-assembly at the interface. Moreover, facile transfer of this monolayer onto a flat substrate (Si, glass) results in high-coverage monolayer films with uniform thickness and homogeneous optical properties. Multiscale characterization of the resulting films reveals the mosaic structure and sheds light on the electronic properties of the films, which exhibit good electrical conductivity over cm-scale areas.
Collapse
Affiliation(s)
- Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Armin VahidMohammadi
- Innovation Partnership Building, UConn TechPark, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Karthik Ganeshan
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Davoud Hejazi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sina Shahbazmohamadi
- Innovation Partnership Building, UConn TechPark, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Swastik Kar
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
38
|
Huang C, Zhu X, Li N, Ma X, Li Z, Fan J. Simultaneous Sensing of Force and Current Signals to Recognize Proteinogenic Amino Acids at a Single-Molecule Level. J Phys Chem Lett 2021; 12:793-799. [PMID: 33411544 DOI: 10.1021/acs.jpclett.0c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The identification ability of nanopore sequencing is severely hindered by the diversity of amino acids in a protein. To tackle this problem, a graphene nanoslit sensor is adopted to collect force and current signals to distinguish 20 residues. Extensive molecular dynamics simulations are performed on sequencing peptides under pulling force and applied electric field. Results show that the signals of force and current can be simultaneously collected. Tailoring the geometry of the nanoslit sensor optimizes signal differences between tyrosine and alanine residues. Using the tailored geometry, the characteristic signals of 20 types of residues are detected, enabling excellent distinguishability so that the residues are well-grouped by their properties and signals. The signals reveal a trend in which the larger amino acids have larger pulling forces and lower ionic currents. Generally, the graphene nanoslit sensor can be employed to simultaneously sense two signals, thereby enhancing the identification ability and providing an effective mode of nanopore protein sequencing.
Collapse
Affiliation(s)
- Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
39
|
Chernev A, Marion S, Radenovic A. Prospects of Observing Ionic Coulomb Blockade in Artificial Ion Confinements. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1430. [PMID: 33353100 PMCID: PMC7766073 DOI: 10.3390/e22121430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Nanofluidics encompasses a wide range of advanced approaches to study charge and mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore, nanofluidic platforms show great potential to act as a test field for theoretical models. This review aims to highlight ionic Coulomb blockade (ICB)-an effect that is proposed to be the key player of ion channel selectivity, which is based upon electrostatic exclusion limiting ion transport. Thus, in this perspective, we focus on the most promising approaches that have been reported on the subject. We consider ion confinements of various dimensionalities and highlight the most recent advancements in the field. Furthermore, we concentrate on the most critical obstacles associated with these studies and suggest possible solutions to advance the field further.
Collapse
Affiliation(s)
| | | | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland; (A.C.); (S.M.)
| |
Collapse
|
40
|
Arima A, Tsutsui M, Washio T, Baba Y, Kawai T. Solid-State Nanopore Platform Integrated with Machine Learning for Digital Diagnosis of Virus Infection. Anal Chem 2020; 93:215-227. [PMID: 33251802 DOI: 10.1021/acs.analchem.0c04353] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Akihide Arima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
41
|
Sahu S, Zwolak M. Diffusion Limitations and Translocation Barriers in Atomically Thin Biomimetic Pores. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1326. [PMID: 33287091 PMCID: PMC7712548 DOI: 10.3390/e22111326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/30/2022]
Abstract
Ionic transport in nano- to sub-nano-scale pores is highly dependent on translocation barriers and potential wells. These features in the free-energy landscape are primarily the result of ion dehydration and electrostatic interactions. For pores in atomically thin membranes, such as graphene, other factors come into play. Ion dynamics both inside and outside the geometric volume of the pore can be critical in determining the transport properties of the channel due to several commensurate length scales, such as the effective membrane thickness, radii of the first and the second hydration layers, pore radius, and Debye length. In particular, for biomimetic pores, such as the graphene crown ether we examine here, there are regimes where transport is highly sensitive to the pore size due to the interplay of dehydration and interaction with pore charge. Picometer changes in the size, e.g., due to a minute strain, can lead to a large change in conductance. Outside of these regimes, the small pore size itself gives a large resistance, even when electrostatic factors and dehydration compensate each other to give a relatively flat-e.g., near barrierless-free energy landscape. The permeability, though, can still be large and ions will translocate rapidly after they arrive within the capture radius of the pore. This, in turn, leads to diffusion and drift effects dominating the conductance. The current thus plateaus and becomes effectively independent of pore-free energy characteristics. Measurement of this effect will give an estimate of the magnitude of kinetically limiting features, and experimentally constrain the local electromechanical conditions.
Collapse
Affiliation(s)
- Subin Sahu
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Research in Electronics and Applied Physics and Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| |
Collapse
|
42
|
Liu L, Liu Y, Qi Y, Song M, Jiang L, Fu G, Li J. Hexagonal boron nitride with nanoslits as a membrane for water desalination: A molecular dynamics investigation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
44
|
Thiruraman JP, Masih Das P, Drndić M. Stochastic Ionic Transport in Single Atomic Zero-Dimensional Pores. ACS NANO 2020; 14:11831-11845. [PMID: 32790336 PMCID: PMC9615559 DOI: 10.1021/acsnano.0c04716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report on single atomic zero-dimensional (0D) pores fabricated using aberration-corrected scanning transmission electron microscopy (AC-STEM) in monolayer MoS2. Pores are comprised of a few atoms missing in the two-dimensional (2D) lattice (1-5 Mo atoms) of characteristic sizes from ∼0.5 to 1.2 nm, and pore edges directly probed by AC-STEM to map the atomic structure. We categorize them into ∼30 geometrically possible zigzag, armchair, and mixed configurations. While theoretical studies predict that transport properties of 2D pores in this size range depend strongly on pore size and their atomic configuration, 0D pores show an average conductance in the range from ∼0.6-1 nS (bias up to 0.1 V), similar to biological pores. In some devices, the current was immeasurably small and/or pores could not be wet. Furthermore, current-voltage (I-V) characteristics are largely independent of bulk molarity (10 mM to 3 M KCl) and the type of cation (K+, Li+, Mg2+). This work lays the experimental foundation for understanding of the confinement effects possible in atomic-scale 2D material pores and the realization of solid-state analogues of ion channels in biology.
Collapse
|
45
|
Ghaderzadeh S, Ladygin V, Ghorbani-Asl M, Hlawacek G, Schleberger M, Krasheninnikov AV. Freestanding and Supported MoS 2 Monolayers under Cluster Irradiation: Insights from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37454-37463. [PMID: 32814400 DOI: 10.1021/acsami.0c09255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) materials with nanometer-size holes are promising systems for DNA sequencing, water purification, and molecule selection/separation. However, controllable creation of holes with uniform sizes and shapes is still a challenge, especially when the 2D material consists of several atomic layers as, e.g., MoS2, the archetypical transition metal dichalcogenide. We use analytical potential molecular dynamics simulations to study the response of 2D MoS2 to cluster irradiation. We model both freestanding and supported sheets and assess the amount of damage created in MoS2 by the impacts of noble gas clusters in a wide range of cluster energies and incident angles. We show that cluster irradiation can be used to produce uniform holes in 2D MoS2 with the diameter being dependent on cluster size and energy. Energetic clusters can also be used to displace sulfur atoms preferentially from either top or bottom layers of S atoms in MoS2 and also clean the surface of MoS2 sheets from adsorbents. Our results for MoS2, which should be relevant to other 2D transition metal dichalcogenides, suggest new routes toward cluster beam engineering of devices based on 2D inorganic materials.
Collapse
Affiliation(s)
- Sadegh Ghaderzadeh
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Vladimir Ladygin
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia
| | - Mahdi Ghorbani-Asl
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Gregor Hlawacek
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Marika Schleberger
- Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47057 Duisburg, Germany
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Department of Applied Physics, Aalto University, Aalto, 00076 Espoo, Finland
| |
Collapse
|
46
|
Thiruraman JP, Masih Das P, Drndić M. Ions and Water Dancing through Atom-Scale Holes: A Perspective toward "Size Zero". ACS NANO 2020; 14:3736-3746. [PMID: 32195580 PMCID: PMC9463116 DOI: 10.1021/acsnano.0c01625] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We provide an overview of atom-scale apertures in solid-state membranes, from "pores" and "tubes" to "channels", with characteristic sizes comparable to the sizes of ions and water molecules. In this regime of ∼1 nm diameter pores, water molecules and ions are strongly geometrically confined: the size of water molecules (∼0.3 nm) and the size of "hydrated" ions in water (∼0.7-1 nm) are similar to the pore diameters, physically limiting the ion flow through the hole. The pore sizes are comparable to the classical Debye screening length governing the spatial range of electrostatic interaction, ∼0.3 to 1 nm for 1 to 0.1 M KCl. In such small structures, charges can be unscreened, leading to new effects. We discuss experiments on ∼1 nm diameter nanopores, with a focus on carbon nanotube pores and ion transport studies. Finally, we present an outlook for artificial "size zero" pores in the regime of small diameters and small thicknesses. Beyond mimicking protein channels in nature, solid-state pores may offer additional possibilities where sensing and control are performed at the pore, such as in electrically and optically addressable solid-state materials.
Collapse
|
47
|
Mandyam SV, Kim HM, Drndić M. Large area few-layer TMD film growths and their applications. JPHYS MATERIALS 2020; 3:024008. [PMID: 36092286 PMCID: PMC9458871 DOI: 10.1088/2515-7639/ab82b3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Research on 2D materials is one of the core themes of modern condensed matter physics. Prompted by the experimental isolation of graphene, much attention has been given to the unique optical, electronic, and structural properties of these materials. In the past few years, semiconducting transition metal dichalcogenides (TMDs) have attracted increasing interest due to properties such as direct band gaps and intrinsically broken inversion symmetry. Practical utilization of these properties demands large-area synthesis. While films of graphene have been by now synthesized on the order of square meters, analogous achievements are difficult for TMDs given the complexity of their growth kinetics. This article provides an overview of methods used to synthesize films of mono- and few-layer TMDs, comparing spatial and time scales for the different growth strategies. A special emphasis is placed on the unique applications enabled by such large-scale realization, in fields such as electronics and optics.
Collapse
Affiliation(s)
- Srinivas V Mandyam
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Hyong M Kim
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Marija Drndić
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| |
Collapse
|
48
|
Niedzwiecki DJ, Chou YC, Xia Z, Thei F, Drndić M. Detection of single analyte and environmental samples with silicon nitride nanopores: Antarctic dirt particulates and DNA in artificial seawater. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:031301. [PMID: 32259993 DOI: 10.1063/1.5138210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Nanopore sensing is a powerful tool for the detection of biomolecules. Solid-state nanopores act as single-molecule sensors that can function in harsh conditions. Their resilient nature makes them attractive candidates for taking this technology into the field to measure environmental samples for life detection in space and water quality monitoring. Here, we discuss the fabrication of silicon nitride pores from ∼1.6 to 20 nm in diameter in 20-nm-thick silicon nitride membranes suspended on glass chips and their performance. We detect pure laboratory samples containing a single analyte including DNA, BSA, microRNA, TAT, and poly-D-lys-hydrobromide. We also measured an environmental (mixed-analyte) sample, containing Antarctic dirt provided by NASA Ames. For DNA measurements, in addition to using KCl and NaCl solutions, we used the artificial (synthetic) seawater, which is a mixture of different salts mimicking the composition of natural seawater. These samples were spiked with double-stranded DNA (dsDNA) fragments at different concentrations to establish the limits of nanopore sensitivity in candidate environment conditions. Nanopore chips were cleaned and reused for successive measurements. A stand-alone, 1-MHz-bandwidth Chimera amplifier was used to determine the DNA concentration in artificial seawater that we can detect in a practical time scale of a few minutes. We also designed and developed a new compact nanopore reader, a portable read-out device with miniaturized fluidic cells, which can obtain translocation data at bandwidths up to 100 kHz. Using this new instrument, we record translocations of 400 bp, 1000 bp, and 15000 bp dsDNA fragments and show discrimination by analysis of current amplitude and event duration histograms.
Collapse
Affiliation(s)
- David J Niedzwiecki
- Goeppert LLC, Pennovation Works, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, USA
| | - Yung-Chien Chou
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, Pennsylvania 19103, USA
| | - Zehui Xia
- Goeppert LLC, Pennovation Works, 3401 Grays Ferry Avenue, Philadelphia, Pennsylvania 19146, USA
| | - Federico Thei
- Elements, SRL, Viale G. Marconi 438, Cesena 47521, Italy
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, Pennsylvania 19103, USA
| |
Collapse
|
49
|
|
50
|
Bandarkar P, Yang H, Henley RY, Wanunu M, Whitford PC. How Nanopore Translocation Experiments Can Measure RNA Unfolding. Biophys J 2020; 118:1612-1620. [PMID: 32075749 DOI: 10.1016/j.bpj.2020.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022] Open
Abstract
Electrokinetic translocation of biomolecules through solid-state nanopores represents a label-free single-molecule technique that may be used to measure biomolecular structure and dynamics. Recent investigations have attempted to distinguish individual transfer RNA (tRNA) species based on the associated pore translocation times, ion-current noise, and blockage currents. By manufacturing sufficiently smaller pores, each tRNA is required to undergo a deformation to translocate. Accordingly, differences in nanopore translocation times and distributions may be used to infer the mechanical properties of individual tRNA molecules. To bridge our understanding of tRNA structural dynamics and nanopore measurements, we apply molecular dynamics simulations using a simplified "structure-based" energetic model. Calculating the free-energy landscape for distinct tRNA species implicates transient unfolding of the terminal RNA helix during nanopore translocation. This provides a structural and energetic framework for interpreting current experiments, which can aid the design of methods for identifying macromolecules using nanopores.
Collapse
Affiliation(s)
- Prasad Bandarkar
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Huan Yang
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Robert Y Henley
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts.
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|