1
|
Chavez J, Crank K, Barber C, Gerrity D, Iverson T, Mongillo J, Weil A, Rider L, Lacross N, Oakeson K, Rossi A. Early Introductions of Candida auris Detected by Wastewater Surveillance, Utah, USA, 2022-2023. Emerg Infect Dis 2024; 30:2107-2117. [PMID: 39320163 PMCID: PMC11431928 DOI: 10.3201/eid3010.240173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Candida auris is considered a nosocomial pathogen of high concern and is currently spreading across the United States. Infection control measures for C. auris focus mainly on healthcare facilities, yet transmission levels may already be significant in the community before outbreaks are detected in healthcare settings. Wastewater-based epidemiology (culture, quantitative PCR, and whole-genome sequencing) can potentially gauge pathogen transmission in the general population and lead to early detection of C. auris before it is detected in clinical cases. To learn more about the sensitivity and limitations of wastewater-based surveillance, we used wastewater-based methods to detect C. auris in a southern Utah jurisdiction with no known clinical cases before and after the documented transfer of colonized patients from bordering Nevada. Our study illustrates the potential of wastewater-based surveillance for being sufficiently sensitive to detect C. auris transmission during the early stages of introduction into a community.
Collapse
|
2
|
Lindner BG, Choudhury RA, Pinamang P, Bingham L, D'Amico I, Hatt JK, Konstantinidis KT, Graham KE. Advancing Source Tracking: Systematic Review and Source-Specific Genome Database Curation of Fecally Shed Prokaryotes. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:931-939. [PMID: 39280079 PMCID: PMC11391576 DOI: 10.1021/acs.estlett.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Advancements within fecal source tracking (FST) studies are complicated by a lack of knowledge regarding the genetic content and distribution of fecally shed microbial populations. To address this gap, we performed a systematic literature review and curated a large collection of genomes (n = 26,018) representing fecally shed prokaryotic species across broad and narrow source categories commonly implicated in FST studies of recreational waters (i.e., cats, dogs, cows, seagulls, chickens, pigs, birds, ruminants, human feces, and wastewater). We find that across these sources the total number of prokaryotic genomes recovered from materials meeting our initial inclusion criteria varied substantially across fecal sources: from none in seagulls to 9,085 in pigs. We examined genome sequences recovered from these metagenomic and isolation-based studies extensively via comparative genomic approaches to characterize trends across source categories and produce a finalized genome database for each source category which is available online (n = 12,730). On average, 81% of the genomes representing species-level populations occur only within a single source. Using fecal slurries to test the performance of each source database, we report read capture rates that vary with fecal source alpha diversity and database size. We expect this resource to be useful to FST-related objectives, One Health research, and sanitation efforts globally.
Collapse
Affiliation(s)
- Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rakin A Choudhury
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Princess Pinamang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lilia Bingham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Isabelle D'Amico
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Becsei Á, Fuschi A, Otani S, Kant R, Weinstein I, Alba P, Stéger J, Visontai D, Brinch C, de Graaf M, Schapendonk CME, Battisti A, De Cesare A, Oliveri C, Troja F, Sironen T, Vapalahti O, Pasquali F, Bányai K, Makó M, Pollner P, Merlotti A, Koopmans M, Csabai I, Remondini D, Aarestrup FM, Munk P. Time-series sewage metagenomics distinguishes seasonal, human-derived and environmental microbial communities potentially allowing source-attributed surveillance. Nat Commun 2024; 15:7551. [PMID: 39215001 PMCID: PMC11364805 DOI: 10.1038/s41467-024-51957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Sewage metagenomics has risen to prominence in urban population surveillance of pathogens and antimicrobial resistance (AMR). Unknown species with similarity to known genomes cause database bias in reference-based metagenomics. To improve surveillance, we seek to recover sewage genomes and develop a quantification and correlation workflow for these genomes and AMR over time. We use longitudinal sewage sampling in seven treatment plants from five major European cities to explore the utility of catch-all sequencing of these population-level samples. Using metagenomic assembly methods, we recover 2332 metagenome-assembled genomes (MAGs) from prokaryotic species, 1334 of which were previously undescribed. These genomes account for ~69% of sequenced DNA and provide insight into sewage microbial dynamics. Rotterdam (Netherlands) and Copenhagen (Denmark) show strong seasonal microbial community shifts, while Bologna, Rome, (Italy) and Budapest (Hungary) have occasional blooms of Pseudomonas-dominated communities, accounting for up to ~95% of sample DNA. Seasonal shifts and blooms present challenges for effective sewage surveillance. We find that bacteria of known shared origin, like human gut microbiota, form communities, suggesting the potential for source-attributing novel species and their ARGs through network community analysis. This could significantly improve AMR tracking in urban environments.
Collapse
Affiliation(s)
- Ágnes Becsei
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alessandro Fuschi
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - Saria Otani
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Ravi Kant
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ilja Weinstein
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Patricia Alba
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, Italy
| | - József Stéger
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Visontai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Christian Brinch
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Miranda de Graaf
- Viroscience Department and Pandemic and Disaster Preparedness Research Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Claudia M E Schapendonk
- Viroscience Department and Pandemic and Disaster Preparedness Research Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Antonio Battisti
- Department of General Diagnostics, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Rome, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - Chiara Oliveri
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - Fulvia Troja
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - Tarja Sironen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Krisztián Bányai
- Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Péter Pollner
- Data-Driven Health Division of National Laboratory for Health Security, Health Services Management Training Centre, Semmelweis University, Budapest, Hungary
- Department of Biological Physics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alessandra Merlotti
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - Marion Koopmans
- Viroscience Department and Pandemic and Disaster Preparedness Research Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Vestergaard SZ, Dottorini G, Peces M, Murguz A, Dueholm MKD, Nierychlo M, Nielsen PH. Microbial core communities in activated sludge plants are strongly affected by immigration and geography. ENVIRONMENTAL MICROBIOME 2024; 19:63. [PMID: 39210447 PMCID: PMC11361056 DOI: 10.1186/s40793-024-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km2). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence. RESULTS We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km2). CONCLUSIONS The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.
Collapse
Affiliation(s)
- Sofie Zacho Vestergaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Giulia Dottorini
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Admir Murguz
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
5
|
Bouchali R, Mandon C, Danty-Berger E, Géloën A, Marjolet L, Youenou B, Pozzi ACM, Vareilles S, Galia W, Kouyi GL, Toussaint JY, Cournoyer B. Runoff microbiome quality assessment of a city center rainwater harvesting zone shows a differentiation of pathogen loads according to human mobility patterns. Int J Hyg Environ Health 2024; 260:114391. [PMID: 38781750 DOI: 10.1016/j.ijheh.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.
Collapse
Affiliation(s)
- Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Claire Mandon
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Emmanuelle Danty-Berger
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Alain Géloën
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Adrien C M Pozzi
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Sophie Vareilles
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Wessam Galia
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | | | - Jean-Yves Toussaint
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France.
| |
Collapse
|
6
|
Naudin SA, Ferran AA, Imazaki PH, Arpaillange N, Marcuzzo C, Vienne M, Demmou S, Bousquet-Mélou A, Ramon-Portugal F, Lacroix MZ, Hoede C, Barret M, Dupouy V, Bibbal D. Development of an in vitro biofilm model for the study of the impact of fluoroquinolones on sewer biofilm microbiota. Front Microbiol 2024; 15:1377047. [PMID: 38601931 PMCID: PMC11004435 DOI: 10.3389/fmicb.2024.1377047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Sewer biofilms are likely to constitute hotspots for selecting and accumulating antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study aimed to optimize culture conditions to obtain in vitro biofilms, mimicking the biofilm collected in sewers, to study the impact of fluoroquinolones (FQs) on sewer biofilm microbiota. Biofilms were grown on coupons in CDC Biofilm Reactors®, continuously fed with nutrients and inoculum (1/100 diluted wastewater). Different culture conditions were tested: (i) initial inoculum: diluted wastewater with or without sewer biofilm, (ii) coupon material: concrete vs. polycarbonate, and (iii) time of culture: 7 versus 14 days. This study found that the biomass was highest when in vitro biofilms were formed on concrete coupons. The biofilm taxonomic diversity was not affected by adding sewer biofilm to the initial inoculum nor by the coupon material. Pseudomonadales, Burkholderiales and Enterobacterales dominated in the sewer biofilm composition, whereas in vitro biofilms were mainly composed of Enterobacterales. The relative abundance of qnrA, B, D and S genes was higher in in vitro biofilms than sewer biofilm. The resistome of sewer biofilm showed the highest Shannon diversity index compared to wastewater and in vitro biofilms. A PCoA analysis showed differentiation of samples according to the nature of the sample, and a Procrustes analysis showed that the ARG changes observed were linked to changes in the microbial community. The following growing conditions were selected for in vitro biofilms: concrete coupons, initial inoculation with sewer biofilm, and a culture duration of 14 days. Then, biofilms were established under high and low concentrations of FQs to validate our in vitro biofilm model. Fluoroquinolone exposure had no significant impact on the abundance of qnr genes, but high concentration exposure increased the proportion of mutations in gyrA (codons S83L and D87N) and parC (codon S80I). In conclusion, this study allowed the determination of the culture conditions to develop an in vitro model of sewer biofilm; and was successfully used to investigate the impact of FQs on sewer microbiota. In the future, this setup could be used to clarify the role of sewer biofilms in disseminating resistance to FQs in the environment.
Collapse
Affiliation(s)
- Sarah A. Naudin
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Aude A. Ferran
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | | | - Maïna Vienne
- Université de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, Castanet-Tolosan, France
- Université de Toulouse, INRAE, UR 875 MIAT, Castanet-Tolosan, France
| | - Sofia Demmou
- Centre de Recherche sur la Biodiversité et l’Environnement, Université de Toulouse, CNRS, IRD, Toulouse INP, Université de Toulouse, Toulouse, France
| | | | | | | | - Claire Hoede
- Université de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, Castanet-Tolosan, France
- Université de Toulouse, INRAE, UR 875 MIAT, Castanet-Tolosan, France
| | - Maialen Barret
- Centre de Recherche sur la Biodiversité et l’Environnement, Université de Toulouse, CNRS, IRD, Toulouse INP, Université de Toulouse, Toulouse, France
| | | | - Delphine Bibbal
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
7
|
Yan Y, Han IL, Lee J, Li G, Srinivasan V, McCullough K, Klaus S, Kang D, Wang D, He P, Patel A, Bott C, Gu AZ. Revisiting the role of Acinetobacter spp. in side-stream enhanced biological phosphorus removal (S2EBPR) systems. WATER RESEARCH 2024; 251:121089. [PMID: 38277823 DOI: 10.1016/j.watres.2023.121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
We piloted the incorporation of side-stream enhanced biological phosphorus removal (S2EBPR) with A/B stage short-cut nitrogen removal processes to enable simultaneous carbon-energy-efficient nutrients removal. This unique configuration and system conditions exerted selective force on microbial populations distinct from those in conventional EBPR. Interestingly, effective P removal was achieved with the predominance of Acinetobacter (21.5 ± 0.1 %) with nearly negligible level of known conical PAOs (Ca. Accumulibacter and Tetrasphaera were 0.04 ± 0.10 % and 0.47 ± 0.32 %, respectively). Using a combination of techniques, such as fluorescence in situ hybridization (FISH) coupled with single cell Raman spectroscopy (SCRS), the metabolic tracing of Acinetobacter-like cells exerted PAO-like phenotypic profiling. In addition, comparative metagenomics analysis of the closely related Acinetobacter spp. revealed the EBPR relevant metabolic pathways. Further oligotyping analysis of 16s rRNA V4 region revealed sub-clusters (microdiversity) of the Acinetobacter and revealed that the sub-group (oligo type 1, identical (100 % alignment identity) hits from Acinetobacter_midas_s_49494, and Acinetobacter_midas_s_55652) correlated with EBPR activities parameters, provided strong evidence that the identified Acinetobacter most likely contributed to the overall P removal in our A/B-shortcut N-S2EBPR system. To the best of our knowledge, this is the first study to confirm the in situ EBPR activity of Acinetobacter using combined genomics and SCRS Raman techniques. Further research is needed to identify the specific taxon, and phenotype of the Acinetobacter that are responsible for the P-removal.
Collapse
Affiliation(s)
- Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States
| | - Varun Srinivasan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States
| | - Kester McCullough
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States; Hampton Roads Sanitation District, Virginia Beach, VA, 23454, United States; modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, Canada
| | - Stephanie Klaus
- Hampton Roads Sanitation District, Virginia Beach, VA, 23454, United States
| | - Da Kang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States; Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Dongqi Wang
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States
| | - Anand Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, 23454, United States.
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, United States.
| |
Collapse
|
8
|
Mthethwa-Hlongwa NP, Amoah ID, Gomez A, Davison S, Reddy P, Bux F, Kumari S. Profiling pathogenic protozoan and their functional pathways in wastewater using 18S rRNA and shotgun metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169602. [PMID: 38154626 DOI: 10.1016/j.scitotenv.2023.169602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Despite extensive research, little is known about the composition of eukaryotic protists in environmental samples. This is due to low parasite concentrations, the complexity of parasite diversity, and a lack of suitable reference databases and standardized protocols. To bridge this knowledge gap, this study used 18S rRNA short amplicon and shotgun metagenomic sequencing approaches to profile protozoan microbial communities as well as their functional pathways in treated and untreated wastewater samples collected from different regions of South Africa. Results demonstrated that protozoan diversity (Shannon index P-value = 0.03) and taxonomic composition (PERMANOVA, P-value = 0.02) was mainly driven by the type of wastewater samples (treated & untreated) and geographic location. However, these WWTPs were also found to contain a core community of protozoan parasites. The untreated wastewater samples revealed a predominant presence of free-living, parasitic, and potentially pathogenic protists typically found in humans and animals, ranging from Alveolata (27 %) phylum (Apicomplexa and Ciliophora) to Excavata (3.88 %) (Discoba and Parasalia) and Amoebozoa (2.84 %) (Entamoeba and Acanthamoeba). Shotgun metagenomics analyses in a subset of the untreated wastewater samples confirmed the presence of public health-importance protozoa, including Cryptosporidium species (3.48 %), Entamoeba hystolitica (6.58 %), Blastocystis hominis (2.91 %), Naegleria gruberi (2.37 %), Toxoplasma gondii (1.98 %), Cyclospora cayetanensis (1.30 %), and Giardia intestinalis (0.31 %). Virulent gene families linked to pathogenic protozoa, such as serine/threonine protein phosphatase and mucin-desulfating sulfatase were identified. Additionally, enriched pathways included thiamine diphosphate biosynthesis III, heme biosynthesis, Methylerythritol 4-Phosphate Pathway, methyl erythritol phosphate (MEP), and pentose phosphate pathways. These findings suggest that protozoan pathogens may possess metabolic and growth potential within WWTPs, posing a severe risk of transmission to humans and animals if inadequately disinfected before release. This study provides a baseline for the future investigation of diverse protozoal communities in wastewater, which are of public health importance.
Collapse
Affiliation(s)
- Nonsikelelo P Mthethwa-Hlongwa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa; Department Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa; Department of Environmental Science, The University of Arizona, Shantz Building Rm 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, St. Paul, MN, USA
| | - Sam Davison
- Department of Animal Science, University of Minnesota, St. Paul, MN, USA
| | - Poovendhree Reddy
- Department Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
9
|
Verhoeven MD, Nielsen PH, Dueholm MKD. Amplicon-guided isolation and cultivation of previously uncultured microbial species from activated sludge. Appl Environ Microbiol 2023; 89:e0115123. [PMID: 38051071 PMCID: PMC10734543 DOI: 10.1128/aem.01151-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Biological wastewater treatment relies on complex microbial communities that assimilate nutrients and break down pollutants in the wastewater. Knowledge about the physiology and metabolism of bacteria in wastewater treatment plants (WWTPs) may therefore be used to improve the efficacy and economy of wastewater treatment. Our current knowledge is largely based on 16S rRNA gene amplicon profiling, fluorescence in situ hybridization studies, and predictions based on metagenome-assembled genomes. Bacterial isolates are often required to validate genome-based predictions as they allow researchers to analyze a specific species without interference from other bacteria and with simple bulk measurements. Unfortunately, there are currently very few pure cultures representing the microbes commonly found in WWTPs. To address this, we introduce an isolation strategy that takes advantage of state-of-the-art microbial profiling techniques to uncover suitable growth conditions for key WWTP microbes. We furthermore demonstrate that this information can be used to isolate key organisms representing global WWTPs.
Collapse
Affiliation(s)
- Maarten D. Verhoeven
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Xia J, Yu K, Yao Z, Sheng H, Mao L, Lu D, Gan H, Zhang S, Zhu DZ. Toward an intensive understanding of sewer sediment prokaryotic community assembly and function. Front Microbiol 2023; 14:1327523. [PMID: 38173681 PMCID: PMC10761402 DOI: 10.3389/fmicb.2023.1327523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Prokaryotic communities play important roles in sewer sediment ecosystems, but the community composition, functional potential, and assembly mechanisms of sewer sediment prokaryotic communities are still poorly understood. Here, we studied the sediment prokaryotic communities in different urban functional areas (multifunctional, commercial, and residential areas) through 16S rRNA gene amplicon sequencing. Our results suggested that the compositions of prokaryotic communities varied significantly among functional areas. Desulfomicrobium, Desulfovibrio, and Desulfobacter involved in the sulfur cycle and some hydrolytic fermentation bacteria were enriched in multifunctional area, while Methanospirillum and Methanoregulaceae, which were related to methane metabolism were significantly discriminant taxa in the commercial area. Physicochemical properties were closely related to overall community changes (p < 0.001), especially the nutrient levels of sediments (i.e., total nitrogen and total phosphorus) and sediment pH. Network analysis revealed that the prokaryotic community network of the residential area sediment was more complex than the other functional areas, suggesting higher stability of the prokaryotic community in the residential area. Stochastic processes dominated the construction of the prokaryotic community. These results expand our understanding of the characteristics of prokaryotic communities in sewer sediment, providing a new perspective for studying sewer sediment prokaryotic community structure.
Collapse
Affiliation(s)
- Jingjing Xia
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lijuan Mao
- Zhenhai Urban Planning and Survey Research Institute of Ningbo, Ningbo, China
| | - Dingnan Lu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - HuiHui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
| | - Shulin Zhang
- Zhenhai Urban Planning and Survey Research Institute of Ningbo, Ningbo, China
| | - David Z. Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
- Institute of Ocean Engineering, Ningbo University, Ningbo, China
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Shi X, Xu D, Chen Y, Ren B, Jin X, Jin P. Formation characteristics of bacteria and fungi in sewers: In terms of signal molecule generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166475. [PMID: 37625723 DOI: 10.1016/j.scitotenv.2023.166475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Bio-metabolism of diverse communities is the main reason of water quality variation in sewers, and the signal molecule generation of communities is dementated to be the key regulation procedure for community metabolism. To reveal the mechanism of pollutant biotransformation in complex sewer environment, this study explored the formation of bacteria and fungi and the signal molecule transduction characteristics in a pilot sewer. In this study, several kinds of signal molecules that produced by bacteria and fungi (C4-HSL, C6-HSL, C8-HSL, farnesol and tyrosol) were detected along the formation process of sewer biofilms. The results showed that, in the early stage, bacterial AHLs signaling molecules are beneficial to the synthesis of EPS, providing a good material basis for the growth of bacterial flora. In addition, tyrosol stimulates the formation of embryonic tubes in yeast cells, further promoting the growth of hyphae. At the later stage, AHLs signaling molecules and tyrosol jointly promoted the growth of biofilms. In conclusion, it is precisely because of the coexistence of bacteria and fungi in the sewer system that the generated signal molecules can jointly promote the synthesis and growth of biofilms through different pathways, and have positive feedback on the biodegradation of various pollutants. Based on the exploration, the ecological patterns of bacterial-fungal communities in urban sewer system were proposed and it could improve the understanding on the pollutant transformation behaviors in sewers.
Collapse
Affiliation(s)
- Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Dongwei Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Yaxin Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Bo Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China.
| |
Collapse
|
12
|
Li D, Van De Werfhorst LC, Ervin J, Poresky A, Steets B, Rivers C, Sharp G, Smith J, Holden PA. Municipal separate storm sewer system (MS4) dry weather flows and potential flow sources as assessed by conventional and advanced bacterial analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122521. [PMID: 37678735 DOI: 10.1016/j.envpol.2023.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Municipal separate storm sewer systems (MS4s) function in urbanized areas to convey flows during both wet weather (i.e., stormwater) and dry weather (i.e., urban runoff as well as subsurface sources of flow) to receiving waters. While urban stormwater is known to contain microbial and chemical pollutants, MS4 dry weather flows, or non-stormwater discharges (NSWDs), are much less studied, although they are also known to contain pollutants, especially when these flows include raw sewage. In addition, some natural NSWDs (e.g., from groundwater infiltrating MS4 pipes) are critical for aquatic habitat protection. Thus, it is important to distinguish NSWD sources to prevent non-natural flows while retaining natural waters (i.e., groundwater). Here, MS4 dry weather flows were assessed by analyzing water samples from MS4 outfalls across multiple watersheds and water provider service areas in south Orange County, CA; potential NSWD sources including sewage, recycled water, potable water, and groundwater were sampled and analyzed for their likely contributions to overall NSWDs. Geochemical and microbiological water quality indicators, as well as bacterial communities, differed across NSWDs, yet water quality within most locations did not vary significantly diurnally or by sampling date. Meanwhile, NSWD source waters had distinctly different bacterial taxa abundances and specific bacterial genera. Shared geochemical and microbial characteristics of certain sources and outfall flows suggested the contributions of sources to outfall flows. The average proportions by sources contributing to MS4 outfalls were further estimated by SourceTracker and FEAST, respectively. The results of this study highlight the use of multiple tools when assessing chemical and microbiological water quality to predict sources of NSWDs contributing to urban MS4 flows during dry weather. This information can be used to support management actions to reduce unnatural and high risk sources of dry weather drainage while preserving natural sources important to environmental health in downstream receiving waters.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, USA
| | | | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA, 93101, USA
| | - Aaron Poresky
- Geosyntec Consultants, Santa Barbara, CA, 93101, USA
| | | | - Cindy Rivers
- Orange County Public Works (OCPW), Orange County, CA, USA
| | - Grant Sharp
- Orange County Public Works (OCPW), Orange County, CA, USA
| | - Jen Smith
- California NanoSystems Institute, University of California, Santa Barbara, USA
| | - Patricia A Holden
- Bren School of Environmental Science & Management, University of California, Santa Barbara, USA.
| |
Collapse
|
13
|
Dos Santos Ribeiro P, Carvalho NB, Aburjaile F, Sousa T, Veríssimo G, Gomes T, Neves F, Blanco L, Lima JA, de Oliveira D, Jaiswal AK, Brenig B, Soares S, Ramos R, Matiuzzi M, Góes-Neto A, Figueira CP, Costa F, Ristow P, Azevedo V. Environmental Biofilms from an Urban Community in Salvador, Brazil, Shelter Previously Uncharacterized Saprophytic Leptospira. MICROBIAL ECOLOGY 2023; 86:2488-2501. [PMID: 37326636 DOI: 10.1007/s00248-023-02253-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Biofilms are complex microecosystems with valuable ecological roles that can shelter a variety of microorganisms. Spirochetes from the genus Leptospira have been observed to form biofilms in vitro, in rural environments, and in the kidneys of reservoir rats. The genus Leptospira is composed of pathogenic and non-pathogenic species, and the description of new species is ongoing due to the advent of whole genome sequencing. Leptospires have increasingly been isolated from water and soil samples. To investigate the presence of Leptospira in environmental biofilms, we collected three distinct samples of biofilms formed in an urban setting with poor sanitation: Pau da Lima, in Salvador, Bahia, Brazil. All biofilm samples were negative for the presence of pathogenic leptospires via conventional PCR, but cultures containing saprophytic Leptospira were identified. Whole genomes were generated and analyzed for twenty isolates obtained from these biofilms. For species identification, we used digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analysis. The obtained isolates were classified into seven presumptive species from the saprophytic S1 clade. ANI and dDDH analysis suggest that three of those seven species were new. Classical phenotypic tests confirmed the novel isolated bacteria as saprophytic Leptospira. The isolates presented typical morphology and ultrastructure according to scanning electron microscopy and formed biofilms under in vitro conditions. Our data indicate that a diversity of saprophytic Leptospira species survive in the Brazilian poorly sanitized urban environment, in a biofilm lifestyle. We believe our results contribute to a better understanding of Leptospira biology and ecology, considering biofilms as natural environmental reservoirs for leptospires.
Collapse
Affiliation(s)
- Priscyla Dos Santos Ribeiro
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Bacteriology and Health, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Natália Barbosa Carvalho
- Laboratory of Bacteriology and Health, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Flávia Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Sousa
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Graciete Veríssimo
- Laboratory of Bacteriology and Health, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Talita Gomes
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Bacteriology and Health, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Fábio Neves
- Institute of Collective Health, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luiza Blanco
- Laboratory of Bacteriology and Health, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - João Antonio Lima
- Laboratory of Bacteriology and Health, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Daiana de Oliveira
- Institute of Collective Health, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardt Weg, University of Göttingen, Göttingen, Germany
| | - Siomar Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rommel Ramos
- Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Mateus Matiuzzi
- Federal University of Vale Do São Francisco, Petrolina, Pernambuco, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Federico Costa
- Institute of Collective Health, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, USA
- Lancaster Medical School, Lancaster University, Lancaster, LA1 4YW, UK
| | - Paula Ristow
- Laboratory of Bacteriology and Health, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil.
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil.
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil.
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Basili M, Perini L, Zaggia L, Luna GM, Quero GM. Integrating culture-based and molecular methods provides an improved assessment of microbial quality in a coastal lagoon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122140. [PMID: 37414126 DOI: 10.1016/j.envpol.2023.122140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Faecal pollution in aquatic environments is a worldwide public health concern, yet the reliability and comprehensiveness of the methods used to assess faecal contamination are still debated. We compared three approaches, namely a culture-based method to enumerate Faecal Indicator Bacteria (FIB), a FIB-targeting qPCR assay, and High-Throughput Sequencing (HTS) to detect faeces- and sewage-associated taxa in water and sediment samples of an impacted model lagoon and its adjacent sea across one year. Despite at different levels, all approaches agreed in showing a higher contamination in the lagoon than in the sea, and higher in sediments than water. FIB significantly correlated when considering separately sediment and water, and when using both cultivation and qPCR. Similarly, FIB correlated between cultivation and qPCR, but qPCR provided consistently higher estimates of FIB. Faeces-associated bacteria positively correlated with cultivated FIB in both compartments, whereas sewage-associated bacteria did only in water. Considering their benefits and limitations, we conclude that, in our study site, improved quali-quantitative information on contamination is provided when at least two approaches are combined (e.g., cultivation and qPCR or HTS data). Our results provide insights to move beyond the use of FIB to improve faecal pollution management in aquatic environments and to incorporate HTS analysis into routine monitoring.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Laura Perini
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131, Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy.
| |
Collapse
|
15
|
Aoki M, Takemura Y, Kawakami S, Yoochatchaval W, Tran P. T, Tomioka N, Ebie Y, Syutsubo K. Quantitative detection and reduction of potentially pathogenic bacterial groups of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex, and Mycobacterium in wastewater treatment facilities. PLoS One 2023; 18:e0291742. [PMID: 37768925 PMCID: PMC10538766 DOI: 10.1371/journal.pone.0291742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Water quality parameters influence the abundance of pathogenic bacteria. The genera Aeromonas, Arcobacter, Klebsiella, and Mycobacterium are among the representative pathogenic bacteria identified in wastewater. However, information on the correlations between water quality and the abundance of these bacteria, as well as their reduction rate in existing wastewater treatment facilities (WTFs), is lacking. Hence, this study aimed to determine the abundance and reduction rates of these bacterial groups in WTFs. Sixty-eight samples (34 influent and 34 non-disinfected, treated, effluent samples) were collected from nine WTFs in Japan and Thailand. 16S rRNA gene amplicon sequencing analysis revealed the presence of Aeromonas, Arcobacter, and Mycobacterium in all influent wastewater and treated effluent samples. Quantitative real-time polymerase chain reaction (qPCR) was used to quantify the abundance of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex (KpSC), and Mycobacterium. The geometric mean abundances of Aeromonas, Arcobacter, KpSC, and Mycobacterium in the influent wastewater were 1.2 × 104-2.4 × 105, 1.0 × 105-4.5 × 106, 3.6 × 102-4.3 × 104, and 6.9 × 103-5.5 × 104 cells mL-1, respectively, and their average log reduction values were 0.77-2.57, 1.00-3.06, 1.35-3.11, and -0.67-1.57, respectively. Spearman's rank correlation coefficients indicated significant positive or negative correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile suspended solids, and oxidation-reduction potential. This study provides valuable information on the development and appropriate management of WTFs to produce safe, hygienic water.
Collapse
Affiliation(s)
- Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Shuji Kawakami
- Department of Civil Engineering, National Institute of Technology (KOSEN), Nagaoka College, Nagaoka, Niigata, Japan
| | - Wilasinee Yoochatchaval
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Thao Tran P.
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Noriko Tomioka
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yoshitaka Ebie
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
de Campos EG, de Almeida OGG, De Martinis ECP. The role of microorganisms in the biotransformation of psychoactive substances and its forensic relevance: a critical interdisciplinary review. Forensic Sci Res 2023; 8:173-184. [PMID: 38221972 PMCID: PMC10785599 DOI: 10.1093/fsr/owad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2023] [Indexed: 01/16/2024] Open
Abstract
Microorganisms are widespread on the planet being able to adapt, persist, and grow in diverse environments, either rich in nutrient sources or under harsh conditions. The comprehension of the interaction between microorganisms and drugs is relevant for forensic toxicology and forensic chemistry, elucidating potential pathways of microbial metabolism and their implications. Considering the described scenario, this paper aims to provide a comprehensive and critical review of the state of the art of interactions amongst microorganisms and common drugs of abuse. Additionally, other drugs of forensic interest are briefly discussed. This paper outlines the importance of this area of investigation, covering the intersections between forensic microbiology, forensic chemistry, and forensic toxicology applied to drugs of abuse, and it also highlights research potentialities. Key points Microorganisms are widespread on the planet and grow in a myriad of environments.Microorganisms can often be found in matrices of forensic interest.Drugs can be metabolized or produced (e.g. ethanol) by microorganisms.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Otávio G G de Almeida
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine C P De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Guo B, Frigon D. Cellular RNA levels define heterotrophic substrate-uptake rate sub-guilds in activated sludge microbial communities. Interface Focus 2023; 13:20220080. [PMID: 37303744 PMCID: PMC10251117 DOI: 10.1098/rsfs.2022.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 06/13/2023] Open
Abstract
A heterotrophic-specialist model was proposed previously to divide wastewater treatment plant (WWTP) heterotrophs into sub-guilds of consumers of readily or slowly degradable substrates (RDS or SDS, respectively). The substrate degradation rate model coupled to metabolic considerations predicted that RNA and polyhydroxyalkanoate (PHA) levels would be positively correlated in the activated sludge communities with high RNA and PHA occurring in RDS-consumers, and low RNA with no PHA accumulation occurring in SDS-consumers because their external substrates are always present. This prediction was verified in previous studies and in the current one. Thus, RNA and PHA levels were used as biomarkers of the RDS- and SDS-consumer sub-guilds for cell sorting using flow cytometry of samples from three WWTPs. Subsequently, 16S rRNA gene amplicon sequencing revealed that the sorted groups were highly similar over time and among WWTPs, and demonstrated a clear segregation by RNA levels. Predicted ecophysiological traits based on 16S rRNA phylogeny suggested that the high-RNA population showed RDS-consumer traits such as higher rrn copy numbers per genome. Using a mass-flow immigration model, it appeared that the high-RNA populations exhibited high immigration rates more frequently than low-RNA populations, but the differences in frequencies were less with increasing solids residence times.
Collapse
Affiliation(s)
- Bing Guo
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C3
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C3
| |
Collapse
|
18
|
Jones DC, LaMartina EL, Lewis JR, Dahl AJ, Nadig N, Szabo A, Newton RJ, Skwor TA. One Health and Global Health View of Antimicrobial Susceptibility through the "Eye" of Aeromonas: Systematic Review and Meta-Analysis. Int J Antimicrob Agents 2023; 62:106848. [PMID: 37201798 PMCID: PMC10524465 DOI: 10.1016/j.ijantimicag.2023.106848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Antimicrobial resistance (AMR) is one of the most pressing public health concerns; therefore, it is imperative to advance our understanding of the factors influencing AMR from Global and One Health perspectives. To address this, Aeromonas populations were identified using 16S rRNA gene libraries among human, agriculture, aquaculture, drinking water, surface water, and wastewater samples, supporting its use as indicator bacteria to study AMR. A systematic review and meta-analysis was then performed from Global and One Health perspectives, including data from 221 articles describing 15 891 isolates from 57 countries. The interconnectedness of different environments was evident as minimal differences were identified between sectors among 21 different antimicrobials. However, resistance to critically important antibiotics (aztreonam and cefepime) was significantly higher among wastewater populations compared with clinical isolates. Additionally, isolates from untreated wastewater typically exhibited increased AMR compared with those from treated wastewater. Furthermore, aquaculture was associated with increased AMR to ciprofloxacin and tetracycline compared with wild-caught seafood. Using the World Health Organization AWaRe classifications, countries with lower consumption of "Access" compared to "Watch" drugs from 2000 to 2015 demonstrated higher AMR levels. The current analysis revealed negative correlations between AMR and anthropogenic factors, such as environmental performance indices and socioeconomic standing. Environmental health and sanitation were two of the environmental factors most strongly correlated with AMR. The current analysis highlights the negative impacts of "Watch" drug overconsumption, anthropogenic activity, absence of wastewater infrastructure, and aquaculture on AMR, thus stressing the need for proper infrastructure and global regulations to combat this growing problem.
Collapse
Affiliation(s)
| | - Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Jenna Rachel Lewis
- Department of Biological Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Andrew James Dahl
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Nischala Nadig
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA
| | - Troy A Skwor
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Hallsworth JE, Udaondo Z, Pedrós‐Alió C, Höfer J, Benison KC, Lloyd KG, Cordero RJB, de Campos CBL, Yakimov MM, Amils R. Scientific novelty beyond the experiment. Microb Biotechnol 2023; 16:1131-1173. [PMID: 36786388 PMCID: PMC10221578 DOI: 10.1111/1751-7915.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Höfer
- Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Kathleen C. Benison
- Department of Geology and GeographyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Karen G. Lloyd
- Microbiology DepartmentUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Radamés J. B. Cordero
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Claudia B. L. de Campos
- Institute of Science and TechnologyUniversidade Federal de Sao Paulo (UNIFESP)São José dos CamposSPBrazil
| | | | - Ricardo Amils
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Nicolás Cabrera n° 1, Universidad Autónoma de MadridMadridSpain
- Department of Planetology and HabitabilityCentro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| |
Collapse
|
20
|
Xu R, Zhang W, Fu Y, Fan F, Zhou Z, Chen J, Liu W, Meng F. The positive roles of influent species immigration in mitigating membrane fouling in membrane bioreactors treating municipal wastewater. WATER RESEARCH 2023; 235:119907. [PMID: 37001232 DOI: 10.1016/j.watres.2023.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The influence of influent species immigration (ISI) on membrane fouling behaviors of membrane bioreactors (MBRs) treating municipal wastewater remains elusive, leading to an incomprehensive understanding of fouling ecology in MBRs. To address this issue, two anoxic/aerobic MBRs, which were fed with raw (named MBR-C) and sterilized (MBR-E) municipal wastewater, were operated. Compared with the MBR-E, the average fouling rate of the MBR-C was lowered by 30% over the long-term operation. In addition, the MBR-E sludge had significantly higher unified membrane fouling index and biofilm formation potential than the MBR-C sludge. Considerably larger flocs size and lower soluble microbial products (SMP) concentrations were observed in the MBR-C than in the MBR-E. Moreover, the 16S rRNA gene sequencing results showed that highly diverse and abundant populations responsible for floc-forming, hydrolysis/fermentation and SMP degradation readily inhabited the influent, shaping a unique microbial niche. Based on species mass balance-based assessment, most of these populations were nongrowing and their relative abundances were higher in the MBR-C than in the MBR-E. This suggested an important contribution of the ISI on the assemblage of these bacteria, thus supporting the increased flocs size and lowered SMP concentrations in the MBR-C. Moreover, the SMP-degrading related bacteria and functional pathways played a more crucial role in the MBR-C ecosystem as revealed by the bacterial co-occurrence network and Picrust2 analysis. Taken together, this study reveals the positive role of ISI in fouling mitigation and highlights the necessity for incorporating influent wastewater communities for fouling control in MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Wentian Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Zanmin Zhou
- Zhuhai Urban Drainage Co., Ltd., Zhuhai, 519000, China
| | - Jincan Chen
- Zhuhai Urban Drainage Co., Ltd., Zhuhai, 519000, China
| | - Wanli Liu
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, 519000, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
21
|
Sharma E, Sivakumar M, Kelso C, Zhang S, Shi J, Gao J, Gao S, Zhou X, Jiang G. Effects of sewer biofilms on the degradability of carbapenems in wastewater using laboratory scale bioreactors. WATER RESEARCH 2023; 233:119796. [PMID: 36863281 DOI: 10.1016/j.watres.2023.119796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbapenems are last-resort antibiotics used to treat bacterial infections unsuccessfully treated by most common categories of antibiotics in humans. Most of their dosage is secreted unchanged as waste, thereby making its way into the urban water system. There are two major knowledge gaps addressed in this study to gain a better understanding of the effects of their residual concentrations on the environment and environmental microbiome: development of a UHPLC-MS/MS method of detection and quantification from raw domestic wastewater via direct injection and study of their stability in sewer environment during the transportation from domestic sewers to wastewater treatment plants. The UHPLC-MS/MS method was developed for four carbapenems: meropenem, doripenem, biapenem and ertapenem, and validation was performed in the range of 0.5-10 μg/L for all analytes, with limit of detection (LOD) and limit of quantification (LOQ) values ranging from 0.2-0.5 μg/L and 0.8-1.6 μg/L respectively. Laboratory scale rising main (RM) and gravity sewer (GS) bioreactors were employed to culture mature biofilms with real wastewater as the feed. Batch tests were conducted in RM and GS sewer bioreactors fed with carbapenem-spiked wastewater to evaluate the stability of carbapenems and compared against those in a control reactor (CTL) without sewer biofilms, over a duration of 12 h. Significantly higher degradation was observed for all carbapenems in RM and GS reactors (60 - 80%) as opposed to CTL reactor (5 - 15%), which indicates that sewer biofilms play a significant role in the degradation. First order kinetics model was applied to the concentration data along with Friedman's test and Dunn's multiple comparisons analysis to establish degradation patterns and differences in the degradation observed in sewer reactors. As per Friedman's test, there was a statistically significant difference in the degradation of carbapenems observed depending on the reactor type (p = 0.0017 - 0.0289). The results from Dunn's test indicate that the degradation in the CTL reactor was statistically different from that observed in either RM (p = 0.0033 - 0.1088) or GS (p = 0.0162 - 0.1088), with the latter two showing insignificant difference in the degradation rates observed (p = 0.2850 - 0.5930). The findings contribute to the understanding about the fate of carbapenems in urban wastewater and the potential application of wastewater-based epidemiology.
Collapse
Affiliation(s)
- Elipsha Sharma
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia; Molecular Horizons, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzen University, Shenzen, 518060, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangming Jiang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia.
| |
Collapse
|
22
|
Noyer M, Bernard M, Verneau O, Palacios C. Insights on the particle-attached riverine archaeal community shifts linked to seasons and to multipollution during a Mediterranean extreme storm event. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49685-49702. [PMID: 36780079 DOI: 10.1007/s11356-023-25637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/26/2023] [Indexed: 02/14/2023]
Abstract
Even if Archaea deliver important ecosystem services and are major players in global biogeochemical cycles, they remain poorly understood in freshwater ecosystems. To our knowledge, no studies specifically address the direct impact of xenobiotics on the riverine archaeome. Using environmental DNA metabarcoding of the 16S ribosomal gene, we previously demonstrated bacterial communities significant shifts linked to pollutant mixtures during an extreme flood in a typical Mediterranean coastal watercourse. Here, using the same methodology, we sought to determine whether archaeal community shifts coincided with the delivery of environmental stressors during the same flood. Further, we wanted to determine how archaea taxa compared at different seasons. In contrast to the bacteriome, the archaeome showed a specific community in summer compared to winter and autumn. We also identified a significant relationship between in situ archaeome shifts and changes in physicochemical parameters along the flood, but a less marked link to those parameters correlated to river hydrodynamics than bacteria. New urban-specific archaeal taxa significantly related to multiple stressors were identified. Through statistical modeling of both domains, our results demonstrate that Archaea, seldom considered as bioindicators of water quality, have the potential to improve monitoring methods of watersheds.
Collapse
Affiliation(s)
- Mégane Noyer
- Univ. Perpignan Via Domitia, Cefrem, UMR5110, F-66860, Perpignan, France.,Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110 CNRS-UPVD Université de Perpignan Via Domitia 52 Avenue Paul Alduy 66860, Perpignan Cedex, France
| | - Maria Bernard
- Univ. Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Olivier Verneau
- Univ. Perpignan Via Domitia, Cefrem, UMR5110, F-66860, Perpignan, France.,Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110 CNRS-UPVD Université de Perpignan Via Domitia 52 Avenue Paul Alduy 66860, Perpignan Cedex, France.,Unit. for Environmental Sciences and Management, North-West University, Potchefstroom, ZA-2520, South Africa
| | - Carmen Palacios
- Univ. Perpignan Via Domitia, Cefrem, UMR5110, F-66860, Perpignan, France. .,Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110 CNRS-UPVD Université de Perpignan Via Domitia 52 Avenue Paul Alduy 66860, Perpignan Cedex, France.
| |
Collapse
|
23
|
Gao Y, Shi X, Jin X, Wang XC, Jin P. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems. WATER RESEARCH 2023; 228:119398. [PMID: 36436409 DOI: 10.1016/j.watres.2022.119398] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
In-sewer physio-biochemical processes cause significant variations of wastewater quality during conveyance, which affects the influent to a wastewater treatment plant (WWTP) and arguably the microbial community of biological treatment units in a WWTP. In wet weather, contaminants stored in sewer deposits can be resuspended and migrate downstream or be released during combined sewer overflows to the urban water bodies, posing challenges to the treatment facilities or endangering urban water quality. Therefore, in-sewer transformation and migration of contaminants have been extensively studied. The compiled results from representative research in the past few decades showed that biochemical reactions are both cross-sectionally and longitudinally organized in the deposits and the sewage, following the redox potential as well as the sequence of macromolecule/contaminant degradation. The sewage organic contents and sewer biofilm microorganisms were found to covary but more systematic studies are required to examine the temporal stability of the feature. Besides, unique communities can be developed in the sewage phase. The enrichment of the major sewage-associated microorganisms can be explained by the availability of biodegradable organic contents in sewers. The sewer deposits, including biofilms, harbor both microorganisms and contaminants and usually can provide longer residence time for in-sewer transformation than wastewater. However, the interrelationships among contaminant transformation, microorganisms in the deposits/biofilms, and those in the sewage are largely unclear. Specifically, the formation and migration of FOG (fat, oil, and grease) deposits, generation and transport of contaminants in the sewer atmosphere (e.g., H2S, CH4, volatile organic compounds, bioaerosols), transport and transformation of nonconventional contaminants, such as pharmaceuticals and personal care products, and wastewater quality variation during the biofilm rehabilitation period after damages caused by rains/storms are some topics for future research. Moreover, systematic and standardized field analysis of real sewers under dynamic wastewater discharge conditions is necessary. We believe that an improved understanding of these processes would assist in sewer management and better prepare us for the challenges brought about by climate change and water shortage.
Collapse
Affiliation(s)
- Yaohuan Gao
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Shi
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xin Jin
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Pengkang Jin
- Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Entezari S, Al MA, Mostashari A, Ganjidoust H, Ayati B, Yang J. Microplastics in urban waters and its effects on microbial communities: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88410-88431. [PMID: 36327084 DOI: 10.1007/s11356-022-23810-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.
Collapse
Affiliation(s)
- Saber Entezari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Amir Mostashari
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Hossein Ganjidoust
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran.
| | - Bita Ayati
- Environmental Engineering Division, Faculty of Civil & Env. Eng., TMU, Tehran, Iran
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
25
|
Global Distribution and Diversity of Prevalent Sewage Water Plasmidomes. mSystems 2022; 7:e0019122. [PMID: 36069451 PMCID: PMC9600348 DOI: 10.1128/msystems.00191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sewage water from around the world contains an abundance of short plasmids, several of which harbor antimicrobial resistance genes (ARGs). The global dynamics of plasmid-derived antimicrobial resistance and functions are only starting to be unveiled. Here, we utilized a previously created data set of 159,332 assumed small plasmids from 24 different global sewage samples. The detailed phylogeny, as well as the interplay between their protein domains, ARGs, and predicted bacterial host genera, were investigated to understand sewage plasmidome dynamics globally. A total of 58,429 circular elements carried genes encoding plasmid-related features, and MASH distance analyses showed a high degree of diversity. A single (yet diverse) cluster of 520 predicted Acinetobacter plasmids was predominant among the European sewage water. Our results suggested a prevalence of plasmid-backbone gene combinations over others. This could be related to selected bacterial genera that act as bacterial hosts. These combinations also mirrored the geographical locations of the sewage samples. Our functional domain network analysis identified three groups of plasmids. However, these backbone domains were not exclusive to any given group, and Acinetobacter was the dominant host genus among the theta-replicating plasmids, which contained a reservoir of the macrolide resistance gene pair msr(E) and mph(E). Macrolide resistance genes were the most common in the sewage plasmidomes and were found in the largest number of unique plasmids. While msr(E) and mph(E) were limited to Acinetobacter, erm(B) was disseminated among a range of Firmicutes plasmids, including Staphylococcus and Streptococcus, highlighting a potential reservoir of antibiotic resistance for these pathogens from around the globe. IMPORTANCE Antimicrobial resistance is a global threat to human health, as it inhibits our ability to treat infectious diseases. This study utilizes sewage water plasmidomes to identify plasmid-derived features and highlights antimicrobial resistance genes, particularly macrolide resistance genes, as abundant in sewage water plasmidomes in Firmicutes and Acinetobacter hosts. The emergence of macrolide resistance in these bacteria suggests that macrolide selective pressure exists in sewage water and that the resident bacteria can readily acquire macrolide resistance via small plasmids.
Collapse
|
26
|
A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. mSystems 2022; 7:e0065122. [PMID: 36121163 PMCID: PMC9599454 DOI: 10.1128/msystems.00651-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome.
Collapse
|
27
|
Zillien C, Posthuma L, Roex E, Ragas A. The role of the sewer system in estimating urban emissions of chemicals of emerging concern. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:957-991. [PMID: 36311376 PMCID: PMC9589831 DOI: 10.1007/s11157-022-09638-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/02/2022] [Indexed: 05/28/2023]
Abstract
UNLABELLED The use of chemicals by society has resulted in calls for more effective control of their emissions. Many of these chemicals are poorly characterized because of lacking data on their use, environmental fate and toxicity, as well as lacking detection techniques. These compounds are sometimes referred to as contaminants of emerging concern (CECs). Urban areas are an important source of CECs, where these are typically first collected in sewer systems and then discharged into the environment after being treated in a wastewater treatment plant. A combination of emission estimation techniques and environmental fate models can support the early identification and management of CEC-related environmental problems. However, scientific insight in the processes driving the fate of CECs in sewer systems is limited and scattered. Biotransformation, sorption and ion-trapping can decrease CEC loads, whereas enzymatic deconjugation of conjugated metabolites can increase CEC loads as metabolites are back-transformed into their parent respective compounds. These fate processes need to be considered when estimating CEC emissions. This literature review collates the fragmented knowledge and data on in-sewer fate of CECs to develop practical guidelines for water managers on how to deal with in-sewer fate of CECs and highlights future research needs. It was assessed to what extent empirical data is in-line with text-book knowledge and integrated sewer modelling approaches. Experimental half-lives (n = 277) of 96 organic CECs were collected from literature. The findings of this literature review can be used to support environmental modelling efforts and to optimize monitoring campaigns, including field studies in the context of wastewater-based epidemiology. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11157-022-09638-9.
Collapse
Affiliation(s)
- Caterina Zillien
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Leo Posthuma
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Erwin Roex
- Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ad Ragas
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Roguet A, Newton RJ, Eren AM, McLellan SL. Guts of the Urban Ecosystem: Microbial Ecology of Sewer Infrastructure. mSystems 2022; 7:e0011822. [PMID: 35762794 PMCID: PMC9426572 DOI: 10.1128/msystems.00118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Microbes have inhabited the oceans and soils for millions of years and are uniquely adapted to their habitat. In contrast, sewer infrastructure in modern cities dates back only ~150 years. Sewer pipes transport human waste and provide a view into public health, but the resident organisms that likely modulate these features are relatively unexplored. Here, we show that the bacterial assemblages sequenced from untreated wastewater in 71 U.S. cities were highly coherent at a fine sequence level, suggesting that urban infrastructure separated by great spatial distances can give rise to strikingly similar communities. Within the overall microbial community structure, temperature had a discernible impact on the distribution patterns of closely related amplicon sequence variants, resulting in warm and cold ecotypes. Two bacterial genera were dominant in most cities regardless of their size or geographic location; on average, Arcobacter accounted for 11% and Acinetobacter 10% of the entire community. Metagenomic analysis of six cities revealed these highly abundant resident organisms carry clinically important antibiotic resistant genes blaCTX-M, blaOXA, and blaTEM. In contrast, human fecal bacteria account for only ~13% of the community; therefore, antibiotic resistance gene inputs from human sources to the sewer system could be comparatively small, which will impact measurement capabilities when monitoring human populations using wastewater. With growing awareness of the metabolic potential of microbes within these vast networks of pipes and the ability to examine the health of human populations, it is timely to increase our understanding of the ecology of these systems. IMPORTANCE Sewer infrastructure is a relatively new habitat comprised of thousands of kilometers of pipes beneath cities. These wastewater conveyance systems contain large reservoirs of microbial biomass with a wide range of metabolic potential and are significant reservoirs of antibiotic resistant organisms; however, we lack an adequate understanding of the ecology or activity of these communities beyond wastewater treatment plants. The striking coherence of the sewer microbiome across the United States demonstrates that the sewer environment is highly selective for a particular microbial community composition. Therefore, results from more in-depth studies or proven engineering controls in one system could be extrapolated more broadly. Understanding the complex ecology of sewer infrastructure is critical for not only improving our ability to treat human waste and increasing the sustainability of our cities but also to create scalable and effective sewage microbial observatories, which are inevitable investments of the future to monitor health in human populations.
Collapse
Affiliation(s)
- Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - A. Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
29
|
Williams NLR, Siboni N, McLellan SL, Potts J, Scanes P, Johnson C, James M, McCann V, Seymour JR. Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119456. [PMID: 35561796 DOI: 10.1016/j.envpol.2022.119456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.
Collapse
Affiliation(s)
- Nathan L R Williams
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sandra L McLellan
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E Greenfield Ave, Milwaukee, WI, USA
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Melanie James
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Justin R Seymour
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Damashek J, Westrich JR, McDonald JMB, Teachey ME, Jackson CR, Frye JG, Lipp EK, Capps KA, Ottesen EA. Non-point source fecal contamination from aging wastewater infrastructure is a primary driver of antibiotic resistance in surface waters. WATER RESEARCH 2022; 222:118853. [PMID: 35870389 DOI: 10.1016/j.watres.2022.118853] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a global threat to human health. Many surface water resources are environmental hotspots of antibiotic resistant gene (ARG) transfer, with agricultural runoff and human waste highlighted as common sources of ARGs to aquatic systems. Here we quantified fecal marker genes and ARGs in 992 stream water samples collected seasonally during a 5-year period from 115 sites across the Upper Oconee watershed (Georgia, USA), an area characterized by gradients of agricultural and urban development. Widespread fecal contamination was found from humans (48% of samples), ruminants (55%), and poultry (19%), and 73% of samples tested positive for at least one of the six targeted ARGs (ermB, tet(B), blaCTX-M-1, blaKPC, blaSHV, and qnrS). While ARGs were strongly correlated with human fecal markers, many highly contaminated samples were not associated with sewage outfalls, an expected source of fecal and ARG pollution. To determine sources of contamination, we synthesized ARG and fecal marker data with geospatial data on land use/land cover and wastewater infrastructure across the watershed. This novel analysis found strong correlations between ARGs and measures of sewer density, sewer length, and septic system age within sample watersheds, indicating non-point sources of fecal contamination from aging wastewater infrastructure can be critical disseminators of anthropogenic ARGs in the environment.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA
| | - Jason R Westrich
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA
| | - Jacob M Bateman McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, 2636 Mathis Drive, Oakwood, GA 30566, USA
| | - Morgan E Teachey
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Road, Athens, GA 30605, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Road, Athens, GA 30605, USA
| | - Erin K Lipp
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, USA
| | - Krista A Capps
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA; Savannah River Ecology Laboratory, University of Georgia, SRS Building 737A, Aiken, SC 29808, USA
| | - Elizabeth A Ottesen
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
31
|
Williams NLR, Siboni N, Potts J, Campey M, Johnson C, Rao S, Bramucci A, Scanes P, Seymour JR. Molecular microbiological approaches reduce ambiguity about the sources of faecal pollution and identify microbial hazards within an urbanised coastal environment. WATER RESEARCH 2022; 218:118534. [PMID: 35537251 DOI: 10.1016/j.watres.2022.118534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Urbanised beaches are regularly impacted by faecal pollution, but management actions to resolve the causes of contamination are often obfuscated by the inability of standard Faecal Indicator Bacteria (FIB) analyses to discriminate sources of faecal material or detect other microbial hazards, including antibiotic resistance genes (ARGs). We aimed to determine the causes, spatial extent, and point sources of faecal contamination within Rose Bay, a highly urbanised beach within Sydney, Australia's largest city, using molecular microbiological approaches. Sampling was performed across a network of transects originating at 9 stormwater drains located on Rose Bay beach over the course of a significant (67.5 mm) rainfall event, whereby samples were taken 6 days prior to any rain, on the day of initial rainfall (3.8 mm), three days later after 43 mm of rain and then four days after any rain. Quantitative PCR (qPCR) was used to target marker genes from bacteria (i.e., Lachnospiraceae and Bacteroides) that have been demonstrated to be specific to human faeces (sewage), along with gene sequences from Heliobacter and Bacteriodes that are specific to bird and dog faeces respectively, and ARGs (sulI, tetA, qnrS, dfrA1 and vanB). 16S rRNA gene amplicon sequencing was also used to discriminate microbial signatures of faecal contamination. Prior to the rain event, low FIB levels (mean: 2.4 CFU/100 ml) were accompanied by generally low levels of the human and animal faecal markers, with the exception of one transect, potentially indicative of a dry weather sewage leak. Following 43 mm of rain, levels of both human faecal markers increased significantly in stormwater drain and seawater samples, with highest levels of these markers pinpointing several stormwater drains as sources of sewage contamination. During this time, sewage contamination was observed up to 1000 m from shore and was significantly and positively correlated with often highly elevated levels of the ARGs dfrA1, qnrS, sulI and vanB. Significantly elevated levels of the dog faecal marker in stormwater drains at this time also indicated that rainfall led to increased input of dog faecal material from the surrounding catchment. Using 16S rRNA gene amplicon sequencing, several indicator taxa for stormwater contamination such as Arcobacter spp. and Comamonadaceae spp. were identified and the Bayesian SourceTracker tool was used to model the relative impact of specific stormwater drains on the surrounding environment, revealing a heterogeneous contribution of discrete stormwater drains during different periods of the rainfall event, with the microbial signature of one particular drain contributing up to 50% of bacterial community in the seawater directly adjacent. By applying a suite of molecular microbiological approaches, we have precisely pinpointed the causes and point-sources of faecal contamination and other associated microbiological hazards (e.g., ARGs) at an urbanised beach, which has helped to identify the most suitable locations for targeted management of water quality at the beach.
Collapse
Affiliation(s)
- Nathan L R Williams
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Meredith Campey
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Shivanesh Rao
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Anna Bramucci
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Justin R Seymour
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
32
|
A Review on the Prevalence of Arcobacter in Aquatic Environments. WATER 2022. [DOI: 10.3390/w14081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arcobacter is an emerging pathogen that is associated with human and animal diseases. Since its first introduction in 1991, 33 Arcobacter species have been identified. Studies have reported that with the presence of Arcobacter in environmental water bodies, animals, and humans, a possibility of its transmission via water and food makes it a potential waterborne and foodborne pathogen. Therefore, this review article focuses on the general characteristics of Arcobacter, including its pathogenicity, antimicrobial resistance, methods of detection by cultivation and molecular techniques, and its presence in water, fecal samples, and animal products worldwide. These detection methods include conventional culture methods, and rapid and accurate Arcobacter identification at the species level, using quantitative polymerase chain reaction (qPCR) and multiplex PCR. Arcobacter has been identified worldwide from feces of various hosts, such as humans, cattle, pigs, sheep, horses, dogs, poultry, and swine, and also from meat, dairy products, carcasses, buccal cavity, and cloacal swabs. Furthermore, Arcobacter has been detected in groundwater, river water, wastewater (influent and effluent), canals, treated drinking water, spring water, and seawater. Hence, we propose that understanding the prevalence of Arcobacter in environmental water and fecal-source samples and its infection of humans and animals will contribute to a better strategy to control and prevent the survival and growth of the bacteria.
Collapse
|
33
|
Morales Medina WR, Eramo A, Fahrenfeld NL. Metabolically Active Prokaryotes and Actively Transcribed Antibiotic Resistance Genes in Sewer Systems: Implications for Public Health and Microbially Induced Corrosion. MICROBIAL ECOLOGY 2022; 83:583-595. [PMID: 34117524 PMCID: PMC8195243 DOI: 10.1007/s00248-021-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 05/11/2023]
Abstract
Sewer systems are reservoirs of pathogens and bacteria carrying antibiotic resistance genes (ARGs). However, most recent high-throughput studies rely on DNA-based techniques that cannot provide information on the physiological state of the cells nor expression of ARGs. In this study, wastewater and sewer sediment samples were collected from combined and separate sanitary sewer systems. The metabolically active prokaryote community was evaluated using 16S rRNA amplicon sequencing and actively transcribed ARG abundance was measured using mRNA RT-qPCR. Three (sul1, blaTEM, tet(G)) of the eight tested ARGs were quantifiable in select samples. Sewer sediment samples had greater abundance of actively transcribed ARGs compared to wastewater. Microbiome analysis showed the presence of metabolically active family taxa that contain clinically relevant pathogens (Pseudomonadaceae, Enterobacteraceae, Streptococcaceae, Arcobacteraceae, and Clostridiaceae) and corrosion-causing prokaryotes (Desulfobulbaceae and Desulfovibrionaceae) in both matrices. Spirochaetaceae and methanogens were more common in the sediment matrix while Mycobacteraceae were more common in wastewater. The microbiome obtained from 16S rRNA sequencing had a significantly different structure from the 16S rRNA gene microbiome. Overall, this study demonstrates active transcription of ARGs in sewer systems and provides insight into the abundance and physiological state of taxa of interest in the different sewer matrices and sewer types relevant for wastewater-based epidemiology, corrosion, and understanding the hazard posed by different matrices during sewer overflows.
Collapse
Affiliation(s)
- William R Morales Medina
- Microbiology & Molecular Genetics, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ, 08854, USA
| | - Alessia Eramo
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ, 08854, USA
| | - N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ, 08854, USA.
| |
Collapse
|
34
|
Bouchali R, Mandon C, Marti R, Michalon J, Aigle A, Marjolet L, Vareilles S, Kouyi GL, Polomé P, Toussaint JY, Cournoyer B. Bacterial assemblages of urban microbiomes mobilized by runoff waters match land use typologies and harbor core species involved in pollutant degradation and opportunistic human infections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152662. [PMID: 34963611 DOI: 10.1016/j.scitotenv.2021.152662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Cities are patchworks of urban catchments divided into functional units according to their commercial, residential and industrial activities, and socio-urbanistic patterns. The hypothesis of city surface microbiomes being structured by socio-urbanistic variables leading to an emergence of synurbic taxa was tested. According to the r/K microbial ecology theory, a gradient of well-adapted synurbic K-strategists and of opportunistic -r-strategists should occur over city surfaces. K-strategists would be core components while r-ones would be transiently detected. To resolve these patterns, sub-catchments (n = 21) of an area of high commercial and industrial activities were investigated over three time periods covering one year. The sub-catchments' land use patterns and associated human behaviors were converted into socio-urbanistic variables and groupings. Bacterial cells mobilized by runoffs per sub-catchment were recovered, and analyzed by classical approaches, microbial source tracking DNA assays and DNA meta-barcoding approaches. Relationships between these datasets, the runoff physico-chemical properties, and descriptors of the socio-urbanistic groupings were investigated. 16S rRNA meta-barcoding analyses showed evidence of the occurrence of K- and r-like strategists. Twenty-eight core genera were identified, and correlation networks revealed large bacterial modules organized around actinobacterial taxa involved in hydrocarbon degradation processes. Other bacterial networks were related to the occurrences of hygienic wastes, and involved bacteria originating from fecal contaminations. Several r-strategists like Sulfurospirillum were recorded and found associated to point source pollutions. The tpm-metabarcoding approach deciphered these r / K strategists at the species level among more than ten genera. Nine core K-like Pseudomomas species were identified. The P. aeruginosa human opportunistic pathogen and P. syringae phytopathogens were part of these K-strategists. Other tpm-harboring bacterial pathogens showed r-like opportunistic distribution patterns. Correlation network analyses indicated a strong incidence of hygienic wastes and hydrocarbon-pollutions on tpm-harboring bacteria. These analyses demonstrated the occurrence of core synurbic bacterial K-strategists over city surfaces.
Collapse
Affiliation(s)
- Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, 69280 Marcy L'Etoile, France
| | - Claire Mandon
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362 Lyon, France
| | - Romain Marti
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, 69280 Marcy L'Etoile, France
| | - Jérôme Michalon
- Université de Lyon, UMR Triangle, CNRS 5206 Université Jean Monnet Saint Etienne, 6 rue Basse des Rives, 42023 Saint-Etienne, France
| | - Axel Aigle
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, 69280 Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, 69280 Marcy L'Etoile, France
| | - Sophie Vareilles
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362 Lyon, France
| | - Gislain Lipeme Kouyi
- Université de Lyon, INSA Lyon, DEEP, EA7429, 11 rue de la physique, 69621 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon, UMR GATE, CNRS 5824, Université Lumière Lyon 2, 93 chemin des Mouilles, 69131 Ecully, France
| | - Jean-Yves Toussaint
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362 Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, 69280 Marcy L'Etoile, France.
| |
Collapse
|
35
|
Hutinel M, Larsson DGJ, Flach CF. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151433. [PMID: 34748849 DOI: 10.1016/j.scitotenv.2021.151433] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistance among bacterial pathogens is to a large extent mediated by mobile antibiotic resistance genes (ARGs). The prevalence and geographic distribution of several newly discovered ARGs, as well as some clinically important ARGs conferring resistance to last resort antibiotics, are largely unknown. Targeted analysis of wastewater samples could allow estimations of carriage in the population connected to the sewers as well as release to the environment. Here we quantified ARGs conferring resistance to linezolid (optrA and cfr(A)) and colistin (mcr-1, -2, -3, -4 and -5) and the recently discovered gar (aminoglycoside ARG) and sul4 (sulphonamide ARG) in raw hospital and municipal wastewater as well as treated municipal wastewater during five years in a low antibiotic resistance prevalence setting (Gothenburg, Sweden). Additionally, variations in bacterial composition of the wastewaters characterized by 16S rRNA sequencing were related to the variations of the ARGs in an attempt to reveal if the presence of known or suspected bacterial host taxa could explain the presence of the ARGs in wastewater. The mcr-1, mcr-3, mcr-4, mcr-5, sul4 and gar genes were detected regularly in all types of wastewater samples while optrA and cfr(A) were detected only in hospital wastewater. The most abundant genes were mcr-3 and mcr-5, especially in municipal wastewater. The detection of optrA was restricted to a peak during one year. Most of the ARGs correlated with taxa previously described as bacterial hosts and associated with humans. Although some of the tentative hosts may include bacteria also thriving in wastewater environments, detection of the ARGs in the wastewaters could reflect their presence in the gut flora of the contributing populations. If so, they could already today or in the near future hinder treatment of bacterial infections in a setting where they currently are rarely targeted/detected during clinical surveillance.
Collapse
Affiliation(s)
- Marion Hutinel
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
36
|
Peces M, Dottorini G, Nierychlo M, Andersen KS, Dueholm MKD, Nielsen PH. Microbial communities across activated sludge plants show recurring species-level seasonal patterns. ISME COMMUNICATIONS 2022; 2:18. [PMID: 37938743 PMCID: PMC9723569 DOI: 10.1038/s43705-022-00098-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 04/27/2023]
Abstract
Microbial communities in activated sludge (AS) are the core of sanitation in wastewater treatment plants (WWTPs). Microbial communities in AS have shown seasonal changes, however, long-term experiments (>2 years) are rarely conducted, limiting our understanding of the true seasonal dynamics in WWTPs. In this study, we resolved the microbial seasonal dynamics at the species level in four municipal full-scale WWTPs, sampled every 7-10 days, during 3-5 consecutive years. By applying a new time-series analysis approach, we revealed that the seasonal pattern was species-specific, where species belonging to the same functional guild or genus may show different seasonal dynamics. Species could be grouped into cohorts according to their seasonal patterns, where seasonal cohorts showed repeatable annual dynamics across years and plants. Species were also grouped according to their net growth rate in the AS (i.e., growing species and disappearing species). Growing species were more prevailing in spring and autumn cohorts, while disappearing species, which were only present due to the continuous immigration from influent wastewater, were mostly associated with winter and spring cohorts. Most known process-critical species, such as nitrifiers, polyphosphate accumulating organisms and filamentous organisms, showed distinct species-specific patterns. Overall, our study showed that overarching seasonal patterns affected microbial species in full-scale AS plants, with similar seasonal patterns across plants for many dominant species. These recurrent seasonal variations should be taken into account in the operation, understanding and management of the WWTPs.
Collapse
Affiliation(s)
- Miriam Peces
- Department of Chemistry and Bioscience, Section of Biotechnology, Center for Microbial Communities, Aalborg University, Aalborg East, 9220, Denmark
| | - Giulia Dottorini
- Department of Chemistry and Bioscience, Section of Biotechnology, Center for Microbial Communities, Aalborg University, Aalborg East, 9220, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Section of Biotechnology, Center for Microbial Communities, Aalborg University, Aalborg East, 9220, Denmark
| | - Kasper Skytte Andersen
- Department of Chemistry and Bioscience, Section of Biotechnology, Center for Microbial Communities, Aalborg University, Aalborg East, 9220, Denmark
| | - Morten Kam Dahl Dueholm
- Department of Chemistry and Bioscience, Section of Biotechnology, Center for Microbial Communities, Aalborg University, Aalborg East, 9220, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Section of Biotechnology, Center for Microbial Communities, Aalborg University, Aalborg East, 9220, Denmark.
| |
Collapse
|
37
|
Lindner BG, Suttner B, Zhu KJ, Conrad RE, Rodriguez-R LM, Hatt JK, Brown J, Konstantinidis KT. Toward shotgun metagenomic approaches for microbial source tracking sewage spills based on laboratory mesocosms. WATER RESEARCH 2022; 210:117993. [PMID: 34979467 DOI: 10.1016/j.watres.2021.117993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Little is known about the genomic diversity of the microbial communities associated with raw municipal wastewater (sewage), including whether microbial populations specific to sewage exist and how such populations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun metagenomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome-assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater control at our analytical limit of detection. Tracking the dynamics of the populations represented by these MAGs revealed varied decay kinetics, depending on (inferred) phenotypes, e.g., anaerobes decayed faster than aerobes under the well-aerated incubation conditions. Notably, a portion of these populations showed decay patterns similar to those of common markers, Enterococcus and HF183. Despite the apparent decay of these populations, the abundance of β-lactamase encoding genes remained high throughout incubation relative to the control. Lastly, we constructed genomic libraries representing several different fecal sources and outline a bioinformatic approach which leverages these libraries for identifying and apportioning contamination signal among multiple probable sources using shotgun metagenomic data.
Collapse
Affiliation(s)
- Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brittany Suttner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kevin J Zhu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roth E Conrad
- Ocean Science and Engineering, Georgia Institute of Technology, 311 Ferst Drive, ES&T Building, Room 3321, Atlanta, GA 30332, USA
| | - Luis M Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
38
|
Pelsma KAJ, In 't Zandt MH, Op den Camp HJM, Jetten MSM, Dean JF, Welte CU. Amsterdam urban canals contain novel niches for methane-cycling microorganisms. Environ Microbiol 2021; 24:82-97. [PMID: 34863018 PMCID: PMC9299808 DOI: 10.1111/1462-2920.15864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane‐cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co‐occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate‐limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome‐assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human‐impacted carbon cycle.
Collapse
Affiliation(s)
- Koen A J Pelsma
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Michiel H In 't Zandt
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Joshua F Dean
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
39
|
Tomenchok LE, Abdool-Ghany AA, Elmir SM, Gidley ML, Sinigalliano CD, Solo-Gabriele HM. Trends in regional enterococci levels at marine beaches and correlations with environmental, global oceanic changes, community populations, and wastewater infrastructure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148641. [PMID: 34328980 DOI: 10.1016/j.scitotenv.2021.148641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
An increase in the number of advisories issued for recreational beaches across south Florida (due to the fecal indicator bacteria, enterococci) has been observed in recent years. To evaluate the possible reasons for this increase, we reviewed weekly monitoring data for 18 beaches in Miami-Dade County, Florida, for the years 2000-2019. Our objective was to evaluate this dataset for trends in enterococci levels and correlations with various factors that might have influenced enterococci levels at these beaches. For statistical analyses, we divided the 20-year period of record into 5-year increments (2000-2004, 2005-2009, 2010-2014, and 2015-2019). The Wilcoxon rank sum test was used to identify statistically significant differences between the geometric mean of different periods. When all 18 beaches were collectively considered, a significant increase (p = 0.03) in enterococci was observed during 2015-2019, compared to the prior 15-year period of record. To better understand the potential causes for this increase, correlations were evaluated with environmental parameters (rainfall, air temperature, and water temperature), global oceanic changes (sea level and Sargassum), community populations (county population estimates and beach visitation numbers), and wastewater infrastructure (sewage effluent flow rates to ocean outfalls and deep well injection). In relation to the enterococci geometric mean, the correlation with Sargassum was statistically significant at a 95% confidence interval (p = 0.035). Population (p = 0.078), air temperature (p = 0.092), and sea level (p = 0.098) were statistically significant at 90% confidence intervals. Rainfall, water temperature, beach visitation numbers, and sewage effluent flow rates via deep well injection had positive correlations but were not significant factors. Sewage effluent flow rates to ocean outfalls had a negative correlation.
Collapse
Affiliation(s)
- Lara E Tomenchok
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Afeefa A Abdool-Ghany
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Samir M Elmir
- Miami-Dade County Health Department, 1725 NW 167 Street, Miami, FL 33056, USA
| | - Maribeth L Gidley
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Miami, FL 33149, USA; National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL 33149, USA
| | - Christopher D Sinigalliano
- National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL 33149, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
40
|
McClary-Gutierrez JS, Driscoll Z, Nenn C, Newton RJ. Human Fecal Contamination Corresponds to Changes in the Freshwater Bacterial Communities of a Large River Basin. Microbiol Spectr 2021; 9:e0120021. [PMID: 34494860 PMCID: PMC8557911 DOI: 10.1128/spectrum.01200-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial water quality is generally monitored by culturable fecal indicator bacteria (FIB), which are intended to signal human health risk due to fecal pollution. However, FIB have limited utility in most urbanized watersheds as they do not discriminate among fecal pollution sources, tend to make up a small fraction of the total microbial community, and do not inform on pollution impacts on the native ecosystem. To move beyond these limitations, we assessed entire bacterial communities and investigated how bacterial diversity relates to traditional ecological and human health-relevant water quality indicators throughout the Milwaukee River Basin. Samples were collected from 16 sites on 5 days during the summer, including both wet and dry weather events, and were processed by 16S rRNA gene amplicon sequencing. Historical water quality at each sampling location, as opposed to upstream land use, was associated significantly with bacterial community alpha diversity. Source partitioning the sequence data was important for determining water quality relationships. Sewage-associated bacterial sequences were detected in all samples, and the relative abundance of sewage sequences was strongly associated with the human Bacteroides fecal marker. From this relationship, we developed a preliminary threshold for human sewage pollution when using bacterial community sequence data. Certain abundant freshwater bacterial sequences were also associated with human fecal pollution, suggesting their possible utility in water quality monitoring. This study sheds light on how bacterial community analysis can be used to supplement current water quality monitoring techniques to better understand interactions between ecological water quality and human health indicators. IMPORTANCE Surface waters in highly developed mixed-use watersheds are frequently impacted by a wide variety of pollutants, leading to a range of impairments that must be monitored and remediated. With advancing technologies, microbial community sequencing may soon become a feasible method for routine evaluation of the ecological quality and human health risk of a water body. In this study, we partnered with a local citizen science organization to evaluate the utility of microbial community sequencing for identifying pollution sources and ecological impairments in a large mixed-use watershed. We show that changes in microbial community diversity and composition are indicative of both long-term ecological impairments and short-term fecal pollution impacts. By source partitioning the sequence data, we also estimate a threshold target for human sewage pollution, which may be useful as a starting point for future development of sequencing-based water quality monitoring techniques.
Collapse
Affiliation(s)
| | - Zac Driscoll
- Milwaukee Riverkeeper, Milwaukee, Wisconsin, USA
| | - Cheryl Nenn
- Milwaukee Riverkeeper, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Abstract
Wastewater treatment plants are engineering technologies used worldwide to protect the environment and human health. Microbial communities sustain these plants, so it is crucial to know the key factors responsible for the community assembly. We show, in contrast to existing understanding, that microbial immigration largely controls the community structure in these plants and that the fate (growth or death) of immigrating species in the plants is controlled by local factors. The community structure was quantitatively predicted by the immigrating microbial community, highlighting the need to revise the way we today understand, design, and manage microbial communities in wastewater treatment plants. The assembly of bacterial communities in wastewater treatment plants (WWTPs) is affected by immigration via wastewater streams, but the impact and extent of bacterial immigrants are still unknown. Here, we quantify the effect of immigration at the species level in 11 Danish full-scale activated sludge (AS) plants. All plants have different source communities but have very similar process design, defining the same overall environmental growth conditions. The AS community composition in each plant was strongly reflected by the corresponding influent wastewater (IWW) microbial composition. Most species in AS across the plants were detected and quantified in the corresponding IWW, allowing us to identify their fate in the AS: growing, disappearing, or surviving. Most of the abundant species in IWW disappeared in AS, so their presence in the AS biomass was only due to continuous mass-immigration. In AS, most of the abundant growing species were present in the IWW at very low abundances. We predicted the AS species abundances from their abundance in IWW by using a partial least square regression model. Some species in AS were predicted by their own abundance in IWW, while others by multiple species abundances. Detailed analyses of functional guilds revealed different prediction patterns for different species. We show, in contrast to the present understanding, that the AS microbial communities were strongly controlled by the IWW source community and could be quantitatively predicted by taking into account immigration. This highlights a need to revise the way we understand, design, and manage the microbial communities in WWTPs.
Collapse
|
42
|
LaMartina EL, Mohaimani AA, Newton RJ. Urban wastewater bacterial communities assemble into seasonal steady states. MICROBIOME 2021; 9:116. [PMID: 34016155 PMCID: PMC8139061 DOI: 10.1186/s40168-021-01038-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microorganisms in urban sanitary sewers exhibit community properties that suggest sewers are a novel ecosystem. Sewer microorganisms present both an opportunity as a control point for wastewater treatment and a risk to human health. If treatment processes are to be improved and health risks quantified, then it is necessary to understand microbial distributions and dynamics within this community. Here, we use 16S rRNA gene sequencing to characterize raw influent wastewater bacterial communities in a 5-year time series from two wastewater treatment plants in Milwaukee, WI; influent wastewater from 77 treatment plants across the USA; and wastewater in 12 Milwaukee residential sewers. RESULTS In Milwaukee, we find that in transit from residences to treatment plants, the human bacterial component of wastewater decreases in proportion and exhibits stochastic temporal variation. In contrast, the resident sewer community increases in abundance during transit and cycles seasonally according to changes in wastewater temperature. The result is a bacterial community that assembles into two distinct community states each year according to the extremes in wastewater temperature. Wastewater bacterial communities from other northern US cities follow temporal trends that mirror those in Milwaukee, but southern US cities have distinct community compositions and differ in their seasonal patterns. CONCLUSIONS Our findings provide evidence that environmental conditions associated with seasonal change and climatic differences related to geography predictably structure the bacterial communities residing in below-ground sewer pipes. Video abstract.
Collapse
Affiliation(s)
- Emily Lou LaMartina
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Aurash A Mohaimani
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
- Present Address: Analytical Technologies, Biogen, 5000 Davis Dr, Morrisville, NC, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| |
Collapse
|
43
|
Xu R, Fan F, Lin Q, Yuan S, Meng F. Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6270-6280. [PMID: 33830745 DOI: 10.1021/acs.est.0c07891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Qining Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, P. R. China
| |
Collapse
|
44
|
Li L, Nesme J, Quintela-Baluja M, Balboa S, Hashsham S, Williams MR, Yu Z, Sørensen SJ, Graham DW, Romalde JL, Dechesne A, Smets BF. Extended-Spectrum β-Lactamase and Carbapenemase Genes are Substantially and Sequentially Reduced during Conveyance and Treatment of Urban Sewage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5939-5949. [PMID: 33886308 DOI: 10.1021/acs.est.0c08548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Urban wastewater systems (UWSs) are a main receptacle of excreted antibiotic resistance genes (ARGs) and their host microorganisms. However, we lack integrated and quantitative observations of the occurrence of ARGs in the UWS to characterize the sources and identify processes that contribute to their fate. We sampled the UWSs from three medium-size cities in Denmark, Spain, and the United Kingdom and quantified 70 clinically important extended-spectrum β-lactamase and carbapenemase genes along with the mobile genetic elements and microbial communities. Results from all three countries showed that sewage-especially from hospitals-carried substantial loads of ARGs (106-107 copies per person equivalent), but these loads progressively declined along sewers and through sewage treatment plants, resulting in minimal emissions (101-104 copies per person equivalent). Removal was primarily during sewage conveyance (65 ± 36%) rather than within sewage treatment (34 ± 23%). The extended-spectrum β-lactamase and carbapenemase genes were clustered in groups based on their persistence in the UWS compartments. The less-persistent groups were associated to putative host taxa (especially Enterobacteriaceae and Moraxellaceae), while the more persistent groups appeared horizontally transferred and correlated significantly with total cell numbers and mobile genetic elements. This documentation of a substantial ARG reduction during sewage conveyance provides opportunities for antibiotic resistance management and a caution for sewage-based antibiotic resistance surveillance.
Collapse
Affiliation(s)
- Liguan Li
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, DK
| | - Joseph Nesme
- Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Sabela Balboa
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Syed Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing 48824, Michigan, USA
| | - Maggie R Williams
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant 48859, Michigan, USA
| | - Zhuofeng Yu
- Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, DK
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, DK
| |
Collapse
|
45
|
Ekhlas D, Kurisu F, Kasuga I, Cernava T, Berg G, Liu M, Furumai H. Identification of new eligible indicator organisms for combined sewer overflow via 16S rRNA gene amplicon sequencing in Kanda River, Tokyo. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112059. [PMID: 33556826 DOI: 10.1016/j.jenvman.2021.112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Fecal indicator bacteria (FIB) are commonly used to evaluate the pollution impact of combined sewer overflows (CSOs) in urban rivers. Although water quality assessment with FIB has a long tradition, recent studies demonstrated that FIB have a low correlation with pathogens and therefore are not accurate enough for the assessment of potential human hazards in water. Consequently, new eligible and more specific indicators have to be identified, which was done in this study via sequencing of genetic markers from total community DNA. To identify potential microbiome-based indicators, microbial communities in samples from an urban river in Tokyo under different climatic conditions (dry and rainy) were compared with the influent and effluent of three domestic wastewater treatment plants (WWTPs) by analyzing 16 S rRNA gene amplicon libraries. In the first part of this study, physicochemical parameters and FIB quantification with selective culture techniques facilitated the identification of samples contaminated with CSO, sewage, or both. This allowed the grouping of samples into CSO-contaminated and non-contaminated samples, an essential step prior to the microbiome comparison between samples. Increased turbidity, ammonia concentrations, and E. coli [up to (9.37 ± 0.95) × 102 CFU/mL after 11.5 mm of rainfall] were observed in CSO-contaminated river samples. Comparison of dry weather (including WWTP samples) and rainy weather samples showed a reduction in microbial diversity in CSO-contaminated samples. Furthermore, the results of this study suggest Bacteroides spp. as a novel indicator of sewage pollution in surface waters.
Collapse
Affiliation(s)
- Daniel Ekhlas
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria; Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| | - Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Miaomiao Liu
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
46
|
Wang H, Hou L, Liu Y, Liu K, Zhang L, Huang F, Wang L, Rashid A, Hu A, Yu C. Horizontal and vertical gene transfer drive sediment antibiotic resistome in an urban lagoon system. J Environ Sci (China) 2021; 102:11-23. [PMID: 33637236 DOI: 10.1016/j.jes.2020.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Rapid urbanization has resulted in pervasive occurrence of antibiotic resistance genes (ARGs) in urban aquatic ecosystems. However, limited information is available concerning the ARG profiles and the forces responsible for their assembly in urban landscape lagoon systems. Here, we employed high-throughput quantitative PCR (HT-qPCR) to characterize the spatial variations of ARGs in surface and core sediments of Yundang Lagoon, China. The results indicated that the average richness and absolute abundance of ARGs were 11 and 53 times higher in the lagoon sediments as compared to pristine reference Tibetan lake sediments, highlighting the role of anthropogenic activities in ARG pollution. Co-occurrence network analysis indicated that various anaerobic prokaryotic genera belonging to Alpha-, Deltaproteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes and Synergistetes were the potential hosts of ARGs. The partial least squares-path modeling (PLS-PM) analysis revealed positive and negative indirect effects of physicochemical factors and heavy metals on the lagoon ARG profiles, via biotic factors, respectively. The horizontal (mediated by mobile genetic elements) and vertical (mediated by prokaryotic communities) gene transfer may directly contribute the most to drive the abundance and composition of ARGs, respectively. Furthermore, the neutral community model demonstrated that the assembly of sediment ARG communities was jointly governed by deterministic and stochastic processes. Overall, this study provides novel insights into the diversity and distribution of ARGs in the benthic habitat of urban lagoon systems and underlying mechanisms for the spread and proliferation of ARGs.
Collapse
Affiliation(s)
- Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Hou
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Huang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 25000, Pakistan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Changping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
47
|
Verburg I, van Veelen HPJ, Waar K, Rossen JWA, Friedrich AW, Hernández Leal L, García-Cobos S, Schmitt H. Effects of Clinical Wastewater on the Bacterial Community Structure from Sewage to the Environment. Microorganisms 2021; 9:718. [PMID: 33807193 PMCID: PMC8065902 DOI: 10.3390/microorganisms9040718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
This study pertains to measure differences in bacterial communities along the wastewater pathway, from sewage sources through the environment. Our main focus was on taxa which include pathogenic genera, and genera harboring antibiotic resistance (henceforth referred to as "target taxa"). Our objective was to measure the relative abundance of these taxa in clinical wastewaters compared to non-clinical wastewaters, and to investigate what changes can be detected along the wastewater pathway. The study entailed a monthly sampling campaign along a wastewater pathway, and taxa identification through 16S rRNA amplicon sequencing. Results indicated that clinical and non-clinical wastewaters differed in their overall bacterial composition, but that target taxa were not enriched in clinical wastewater. This suggests that treatment of clinical wastewater before release into the wastewater system would only remove a minor part of the potential total pathogen load in wastewater treatment plants. Additional findings were that the relative abundance of most target taxa was decreased after wastewater treatment, yet all investigated taxa were detected in 68% of the treated effluent samples-meaning that these bacteria are continuously released into the receiving surface water. Temporal variation was only observed for specific taxa in surface water, but not in wastewater samples.
Collapse
Affiliation(s)
- Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - H. Pieter J. van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
| | - Karola Waar
- Izore, Centrum Infectieziekten Friesland, 8900 JA Leeuwarden, The Netherlands;
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - Alex W. Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - Lucia Hernández Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
| | - Silvia García-Cobos
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
- Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
48
|
Li C, Zhang X, Wei L, Wei D, Chen Z, Cao Z, Zhao Q, Chang CC. Molecular biological methods in environmental engineering. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1786-1793. [PMID: 32762138 DOI: 10.1002/wer.1432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Microbes are sensitive to environmental changes and can respond in a short time. Genomics, proteomics, transcriptomics, metabolomics, and multigroup association are used to characterize the composition, function, and metabolism of microorganisms, and to evaluate the environment according to the changes in microorganisms, which has important reference and guiding significance of environmental monitoring, management, and repair. In this paper, the application of molecular biological methods to study environmental microorganisms in the fields of wastewater treatment, pollution control, soil improvement, and environmental monitoring in 2019 is reviewed.
Collapse
Affiliation(s)
- Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Zhongxi Chen
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Zhenkun Cao
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Qiushi Zhao
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
49
|
Gonzalez D, Keeling D, Thompson H, Larson A, Denby J, Curtis K, Yetka K, Rondini M, Yeargan E, Egerton T, Barker D, Gonzalez R. Collection system investigation microbial source tracking (CSI-MST): Applying molecular markers to identify sewer infrastructure failures. J Microbiol Methods 2020; 178:106068. [PMID: 32980335 DOI: 10.1016/j.mimet.2020.106068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023]
Abstract
Collection System Investigation Microbial Source Tracking (CSI-MST) is a novel, sensitive approach for identifying sewer infrastructure deficiencies using molecular markers. This method requires both a detailed understanding of collection and conveyance system infrastructure and quickly turned around molecular data to advise an adaptive, targeted in-pipe approach to detect deficiencies. Here we explain the CSI-MST approach and provide several case study examples of how this approach can be adapted to different scale watersheds to identify potential sewer infrastructure issues. This approach has been used to locate and confirm the remediation of numerous needed infrastructure repairs in the southeastern Virginia region. The selected case studies presented here serve as a proof of concept-this methodology can be adopted by other utilities and municipalities to address necessary wastewater infrastructure repairs in different regions.
Collapse
Affiliation(s)
- Dana Gonzalez
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - David Keeling
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | | | - Allison Larson
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Jack Denby
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Kyle Curtis
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Kathleen Yetka
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | | | | | | | - Danny Barker
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Raul Gonzalez
- Hampton Roads Sanitation District, Virginia Beach, VA, USA.
| |
Collapse
|
50
|
Improved culture enrichment broth for isolation of Arcobacter-like species from the marine environment. Sci Rep 2020; 10:14547. [PMID: 32884057 PMCID: PMC7471115 DOI: 10.1038/s41598-020-71442-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Arcobacter-like species are found associated with many matrices, including shellfish in marine environments. The culture media and conditions play a major role in the recovery of new Arcobacter-like species. This study was aimed to develop a culture media for isolation and enhanced growth of Arcobacter-like spp. from marine and shellfish matrices. For this purpose, 14 different Arcobacter-like spp. mostly isolated from shellfish, were grown in 24 different formulations of enrichment broths. The enrichment broths consisted of five main groups based on the organic contents (fresh oyster homogenate, lyophilized oyster either alone or in combination with other standard media), combined with artificial seawater (ASW) or 2.5% NaCl. Optical density (OD420nm) measurements after every 24 h were compared with the growth in control media (Arcobacter broth) in parallel. The mean and standard deviation were calculated for each species in each broth and statistical differences (p < 0.05) among broths were calculated by ANOVA. The results indicated that shellfish-associated Arcobacter-like species growth was significantly higher in Arcobacter broth + 50% ASW and the same media supplemented with lyophilized oysters. This is the first study to have used fresh or lyophilized oyster flesh in the enrichment broth for isolation of shellfish-associated Arcobacter-like spp.
Collapse
|