1
|
Góngora E, Lirette AO, Freyria NJ, Greer CW, Whyte LG. Metagenomic survey reveals hydrocarbon biodegradation potential of Canadian high Arctic beaches. ENVIRONMENTAL MICROBIOME 2024; 19:72. [PMID: 39294752 PMCID: PMC11411865 DOI: 10.1186/s40793-024-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to characterize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential for hydrocarbon degradation in these microbiomes. RESULTS We observed taxonomic and functional gene evidence supporting the potential of NWP beach microbes to degrade various types of hydrocarbons. The metagenomic and metagenome-assembled genome (MAG) taxonomy showed that known hydrocarbon-degrading taxa are present in these beaches. Additionally, we detected the presence of biomarker genes of aerobic and anaerobic degradation pathways of alkane and aromatic hydrocarbons along with complete degradation pathways for aerobic alkane degradation. Alkane degradation genes were present in all samples and were also more abundant (33.8 ± 34.5 hits per million genes, HPM) than their aromatic hydrocarbon counterparts (11.7 ± 12.3 HPM). Due to the ubiquity of MAGs from the genus Rhodococcus (23.8% of the MAGs), we compared our MAGs with Rhodococcus genomes from NWP isolates obtained using hydrocarbons as the carbon source to corroborate our results and to develop a pangenome of Arctic Rhodococcus. Our analysis revealed that the biodegradation of alkanes is part of the core pangenome of this genus. We also detected nitrogen and sulfur pathways as additional energy sources and electron donors as well as carbon pathways providing alternative carbon sources. These pathways occur in the absence of hydrocarbons allowing microbes to survive in these nutrient-poor beaches. CONCLUSIONS Our metagenomic analyses detected the genetic potential for hydrocarbon biodegradation in these NWP shoreline microbiomes. Alkane metabolism was the most prevalent type of hydrocarbon degradation observed in these tidal beach ecosystems. Our results indicate that bioremediation could be used as a cleanup strategy, but the addition of adequate amounts of N and P fertilizers, should be considered to help bacteria overcome the oligotrophic nature of NWP shorelines.
Collapse
Affiliation(s)
- Esteban Góngora
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Antoine-O Lirette
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Nastasia J Freyria
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
2
|
Siddique A, Al Disi Z, AlGhouti M, Zouari N. Diversity of hydrocarbon-degrading bacteria in mangroves rhizosphere as an indicator of oil-pollution bioremediation in mangrove forests. MARINE POLLUTION BULLETIN 2024; 205:116620. [PMID: 38955089 DOI: 10.1016/j.marpolbul.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Mangrove ecosystems, characterized by high levels of productivity, are susceptible to anthropogenic activities, notably oil pollution arising from diverse origins including spills, transportation, and industrial effluents. Owing to their role in climate regulation and economic significance, there is a growing interest in developing mangrove conservation strategies. In the Arabian Gulf, mangroves stand as the sole naturally occurring green vegetation due to the region's hot and arid climate. However, they have faced persistent oil pollution for decades. This review focuses on global mangrove distribution, with a specific emphasis on Qatar's mangroves. It highlights the ongoing challenges faced by mangroves, particularly in relation to the oil industry, and the impact of oil pollution on these vital ecosystems. It outlines major oil spill incidents worldwide and the diverse hydrocarbon-degrading bacterial communities within polluted areas, elucidating their potential for bioremediation. The use of symbiotic interactions between mangrove plants and bacteria offers a more sustainable, cost-effective and environmentally friendly alternative. However, the success of these bioremediation strategies depends on a deep understanding of the dynamics of bacterial communities, environmental factors and specific nature of the pollutants.
Collapse
Affiliation(s)
- Afrah Siddique
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Zulfa Al Disi
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar; Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad AlGhouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar.
| |
Collapse
|
3
|
Liu Q, Peng Y, Liao J, Liu X, Peng J, Wang JH, Shao Z. Broad-spectrum hydrocarbon-degrading microbes in the global ocean metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171746. [PMID: 38521276 DOI: 10.1016/j.scitotenv.2024.171746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yongyi Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiaxue Peng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519099, China.
| |
Collapse
|
4
|
Tulloch CL, Bargiela R, Williams GB, Chernikova TN, Cotterell BM, Wellington EMH, Christie-Oleza J, Thomas DN, Jones DL, Golyshin PN. Microbial communities colonising plastics during transition from the wastewater treatment plant to marine waters. ENVIRONMENTAL MICROBIOME 2024; 19:27. [PMID: 38685074 PMCID: PMC11057073 DOI: 10.1186/s40793-024-00569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Plastics pollution and antimicrobial resistance (AMR) are two major environmental threats, but potential connections between plastic associated biofilms, the 'plastisphere', and dissemination of AMR genes are not well explored. RESULTS We conducted mesocosm experiments tracking microbial community changes on plastic surfaces transitioning from wastewater effluent to marine environments over 16 weeks. Commonly used plastics, polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE) and polyethylene terephthalate (PET) incubated in wastewater effluent, river water, estuarine water, and in the seawater for 16 weeks, were analysed via 16S rRNA gene amplicon and shotgun metagenome sequencing. Within one week, plastic-colonizing communities shifted from wastewater effluent-associated microorganisms to marine taxa, some members of which (e.g. Oleibacter-Thalassolituus and Sphingomonas spp., on PET, Alcanivoracaceae on PET and PP, or Oleiphilaceae, on all polymers), were selectively enriched from levels undetectable in the starting communities. Remarkably, microbial biofilms were also susceptible to parasitism, with Saprospiraceae feeding on biofilms at late colonisation stages (from week 6 onwards), while Bdellovibrionaceae were prominently present on HDPE from week 2 and LDPE from day 1. Relative AMR gene abundance declined over time, and plastics did not become enriched for key AMR genes after wastewater exposure. CONCLUSION Although some resistance genes occurred during the mesocosm transition on plastic substrata, those originated from the seawater organisms. Overall, plastic surfaces incubated in wastewater did not act as hotspots for AMR proliferation in simulated marine environments.
Collapse
Affiliation(s)
- Constance L Tulloch
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Gwion B Williams
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Tatyana N Chernikova
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Benjamin M Cotterell
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | | | - Joseph Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK.
| |
Collapse
|
5
|
Zhang Y, Cao Y, Chen B, Dong G, Zhao Y, Zhang B. Marine biodegradation of plastic films by Alcanivorax under various ambient temperatures: Bacterial enrichment, morphology alteration, and release of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170527. [PMID: 38286285 DOI: 10.1016/j.scitotenv.2024.170527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The global ocean has been receiving massive amounts of plastic wastes. Marine biodegradation, influenced by global climate, naturally breaks down these wastes. In this study, we systematically compared the biodegradation performance of petroleum- and bio-based plastic films, i.e., low-density polyethylene (LDPE), polylactic acid (PLA), and polyhydroxyalkanoates (PHAs) under three ambient temperatures (4, 15, and 22 °C). We deployed the our previously isolated cold-tolerant plastic-degrading Alcanivorax to simulate the accelerated marine biodegradation process and evaluated the alteration of bacterial growth, plastic films, and released degradation products. Notably, we found that marine biodegradation of PHA films enriched more bacterial amounts, induced more conspicuous morphological damage, and released more microplastics (MPs) and dissolved organic carbon (DOC) under all temperatures compared to LDPE and PLA. Particularly, MPs were released from film edges and cracks with a mean size of 2.8 μm under all temperatures. In addition, the degradation products released by biodegradation of PHA under 22 °C induced the highest acute toxicity to Vibrio fischeri. Our results highlighted that: (1) marine biodegradation of plastics would release millions of MPs per cm2 exposed surface area even in cold environments within 60 days; (2) different marine biodegradation scenarios of these plastics may raise disparate impacts and mitigation-related studies.
Collapse
Affiliation(s)
- Yuanmei Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
6
|
Tedesco P, Balzano S, Coppola D, Esposito FP, de Pascale D, Denaro R. Bioremediation for the recovery of oil polluted marine environment, opportunities and challenges approaching the Blue Growth. MARINE POLLUTION BULLETIN 2024; 200:116157. [PMID: 38364643 DOI: 10.1016/j.marpolbul.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.
Collapse
Affiliation(s)
- Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Sergio Balzano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; Institute of Biochemistry and Cellular Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Renata Denaro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti Rome, Italy.
| |
Collapse
|
7
|
Garrison CE, Pachiadaki MG, Soliman S, Helfrich A, Taylor GT. Microbes and microplastics: Community shifts along an urban coastal contaminant gradient. Environ Microbiol 2024; 26:e16563. [PMID: 38151777 DOI: 10.1111/1462-2920.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Plastic substrates introduced to the environment during the Anthropocene have introduced new pathways for microbial selection and dispersal. Some plastic-colonising microorganisms have adapted phenotypes for plastic degradation (selection), while the spatial transport (dispersal) potential of plastic colonisers remains controlled by polymer-specific density, hydrography and currents. Plastic-degrading enzyme abundances have recently been correlated with concentrations of plastic debris in open ocean environments, making it critical to better understand colonisation of hydrocarbon degraders with plastic degradation potential in urbanised watersheds where plastic pollution often originates. We found that microbial colonisation by reputed hydrocarbon degraders on microplastics (MPs) correlated with a spatial contaminant gradient (New York City/Long Island waterways), polymer types, temporal scales, microbial domains and putative cell activity (DNA vs. RNA). Hydrocarbon-degrading taxa enriched on polyethylene and polyvinyl chloride substrates relative to other polymers and were more commonly recovered in samples proximal to New York City. These differences in MP colonisation could indicate phenotypic adaptation processes resulting from increased exposure to urban plastic runoff as well as differences in carbon bioavailability across polymer types. Shifts in MP community potential across urban coastal contaminant gradients and polymer types improve our understanding of environmental plastic discharge impacts toward biogeochemical cycling across the global ocean.
Collapse
Affiliation(s)
- Cody E Garrison
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | | | | | - Anthony Helfrich
- School of Professional Development, Stony Brook University, Stony Brook, New York, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
8
|
Rubin-Blum M, Yudkovsky Y, Marmen S, Raveh O, Amrani A, Kutuzov I, Guy-Haim T, Rahav E. Tar patties are hotspots of hydrocarbon turnover and nitrogen fixation during a nearshore pollution event in the oligotrophic southeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 197:115747. [PMID: 37995430 DOI: 10.1016/j.marpolbul.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Yana Yudkovsky
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Sophi Marmen
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Alon Amrani
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilya Kutuzov
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
9
|
Singleton SL, Davis EW, Arnold HK, Daniels AMY, Brander SM, Parsons RJ, Sharpton TJ, Giovannoni SJ. Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment. Front Microbiol 2023; 14:1259014. [PMID: 37869676 PMCID: PMC10585116 DOI: 10.3389/fmicb.2023.1259014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Plastic waste accumulation in marine environments has complex, unintended impacts on ecology that cross levels of community organization. To measure succession in polyolefin-colonizing marine bacterial communities, an in situ time-series experiment was conducted in the oligotrophic coastal waters of the Bermuda Platform. Our goals were to identify polyolefin colonizing taxa and isolate bacterial cultures for future studies of the biochemistry of microbe-plastic interactions. HDPE, LDPE, PP, and glass coupons were incubated in surface seawater for 11 weeks and sampled at two-week intervals. 16S rDNA sequencing and ATR-FTIR/HIM were used to assess biofilm community structure and chemical changes in polymer surfaces. The dominant colonizing taxa were previously reported cosmopolitan colonizers of surfaces in marine environments, which were highly similar among the different plastic types. However, significant differences in rare community composition were observed between plastic types, potentially indicating specific interactions based on surface chemistry. Unexpectedly, a major transition in community composition occurred in all material treatments between days 42 and 56 (p < 0.01). Before the transition, Alteromonadaceae, Marinomonadaceae, Saccharospirillaceae, Vibrionaceae, Thalassospiraceae, and Flavobacteriaceae were the dominant colonizers. Following the transition, the relative abundance of these taxa declined, while Hyphomonadaceae, Rhodobacteraceae and Saprospiraceae increased. Over the course of the incubation, 8,641 colonizing taxa were observed, of which 25 were significantly enriched on specific polyolefins. Seven enriched taxa from families known to include hydrocarbon degraders (Hyphomonadaceae, Parvularculaceae and Rhodobacteraceae) and one n-alkane degrader (Ketobacter sp.). The ASVs that exhibited associations with specific polyolefins are targets of ongoing investigations aimed at retrieving plastic-degrading microbes in culture.
Collapse
Affiliation(s)
| | - Edward W. Davis
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Holly K. Arnold
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - Susanne M. Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, United States
| | | | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
10
|
Villela H, Modolon F, Schultz J, Delgadillo-Ordoñez N, Carvalho S, Soriano AU, Peixoto RS. Genome analysis of a coral-associated bacterial consortium highlights complementary hydrocarbon degradation ability and other beneficial mechanisms for the host. Sci Rep 2023; 13:12273. [PMID: 37507453 PMCID: PMC10382565 DOI: 10.1038/s41598-023-38512-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Here we report the oil degradation genetic potential of six oil-degrading bacteria (ODB), previously used as a bioremediation consortium, isolated from the hydrocoral Millepora alcicornis and seawater. The strains were identified as Halomonas sp. (LC_1), Cobetia sp. (LC_6), Pseudoalteromonas shioyasakiensis (LC_2), Halopseudomonas aestusnigri (LC_3), Shewanella algae (LC_4), and Brucella intermedia (LC_5). The taxonomic identification differed from that of the original paper when we used whole genome gene markers instead of just 16S rRNA gene. Genes responsible for the degradation of aromatic hydrocarbons and n-alkanes were found in all genomes, although different (and complementary) steps of the metabolic pathways were unique to each strain. Genes for naphthalene and toluene degradation were found in various strains. We annotated quinate degradation genes in LC_6, while LC_3 and LC_5 presented genes for biosurfactant and rhamnolipid biosynthesis. We also annotated genes related to beneficial mechanisms for corals, such as genes involved in nitrogen and DMSP metabolism, cobalamin biosynthesis and antimicrobial compounds production. Our findings reinforce the importance of using bacterial consortia for bioremediation approaches instead of single strains, due to their complementary genomic arsenals. We also propose a genome-based framework to select complementary ODB that can provide additional benefits to coral health.
Collapse
Affiliation(s)
- Helena Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Flúvio Modolon
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Júnia Schultz
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Computational Biology Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Nathalia Delgadillo-Ordoñez
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | | | - Raquel Silva Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division King, Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
- Computational Biology Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
- Marine Science and Bioscience Programs, Biological, Environmental and Engineering Sciences Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
11
|
Vogel AL, Thompson KJ, Straub D, App CB, Gutierrez T, Löffler FE, Kleindienst S. Substrate-independent expression of key functional genes in Cycloclasticus pugetii strain PS-1 limits their use as markers for PAH biodegradation. Front Microbiol 2023; 14:1185619. [PMID: 37455737 PMCID: PMC10338962 DOI: 10.3389/fmicb.2023.1185619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
Microbial degradation of petroleum hydrocarbons is a crucial process for the clean-up of oil-contaminated environments. Cycloclasticus spp. are well-known polycyclic aromatic hydrocarbon (PAH) degraders that possess PAH-degradation marker genes including rhd3α, rhd2α, and pahE. However, it remains unknown if the expression of these genes can serve as an indicator for active PAH degradation. Here, we determined transcript-to-gene (TtG) ratios with (reverse transcription) qPCR in cultures of Cycloclasticus pugetii strain PS-1 grown with naphthalene, phenanthrene, a mixture of these PAHs, or alternate substrates (i.e., no PAHs). Mean TtG ratios of 1.99 × 10-2, 1.80 × 10-3, and 3.20 × 10-3 for rhd3α, rhd2α, and pahE, respectively, were measured in the presence or absence of PAHs. The TtG values suggested that marker-gene expression is independent of PAH degradation. Measurement of TtG ratios in Arctic seawater microcosms amended with water-accommodated crude oil fractions, and incubated under in situ temperature conditions (i.e., 1.5°C), only detected Cycloclasticus spp. rhd2α genes and transcripts (mean TtG ratio of 4.15 × 10-1). The other marker genes-rhd3α and pahE-were not detected, suggesting that not all Cycloclasticus spp. carry these genes and a broader yet-to-be-identified repertoire of PAH-degradation genes exists. The results indicate that the expression of PAH marker genes may not correlate with PAH-degradation activity, and transcription data should be interpreted cautiously.
Collapse
Affiliation(s)
- Anjela L. Vogel
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Katharine J. Thompson
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Daniel Straub
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Constantin B. App
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Frank E. Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States
| | - Sara Kleindienst
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Galarza–Verkovitch D, Turak O, Wiese J, Rahn T, Hentschel U, Borchert E. Bioprospecting for polyesterase activity relevant for PET degradation in marine Enterobacterales isolates. AIMS Microbiol 2023; 9:518-539. [PMID: 37649797 PMCID: PMC10462454 DOI: 10.3934/microbiol.2023027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 09/01/2023] Open
Abstract
Plastics have quickly become an integral part of modern life. Due to excessive production and improper waste disposal, they are recognized as contaminants present in practically all habitat types. Although there are several polymers, polyethylene terephthalate (PET) is of particular concern due to its abundance in the environment. There is a need for a solution that is both cost-effective and ecologically friendly to address this pollutant. The use of microbial depolymerizing enzymes could offer a biological avenue for plastic degradation, though the full potential of these enzymes is yet to be uncovered. The purpose of this study was to use (1) plate-based screening methods to investigate the plastic degradation potential of marine bacteria from the order Enterobacterales collected from various organismal and environmental sources, and (2) perform genome-based analysis to identify polyesterases potentially related to PET degradation. 126 bacterial isolates were obtained from the strain collection of RD3, Research Unit Marine Symbioses-GEOMAR-and sequentially tested for esterase and polyesterase activity, in combination here referred to as PETase-like activity. The results show that members of the microbial families Alteromonadaceae, Shewanellaceae, and Vibrionaceae, derived from marine sponges and bryozoans, are the most promising candidates within the order Enterobacterales. Furthermore, 389 putative hydrolases from the α/β superfamily were identified in 23 analyzed genomes, of which 22 were sequenced for this study. Several candidates showed similarities with known PETases, indicating underlying enzymatic potential within the order Enterobacterales for PET degradation.
Collapse
Affiliation(s)
| | - Onur Turak
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
- Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
13
|
Guo X, Zhang J, Han L, Lee J, Williams SC, Forsberg A, Xu Y, Austin RN, Feng L. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nat Commun 2023; 14:2180. [PMID: 37069165 PMCID: PMC10110569 DOI: 10.1038/s41467-023-37869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juliet Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shoshana C Williams
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Allison Forsberg
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90007, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Iriarte J, Dachs J, Casas G, Martínez-Varela A, Berrojalbiz N, Vila-Costa M. Snow-Dependent Biogeochemical Cycling of Polycyclic Aromatic Hydrocarbons at Coastal Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1625-1636. [PMID: 36655903 PMCID: PMC9893724 DOI: 10.1021/acs.est.2c05583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
The temporal trend of polycyclic aromatic hydrocarbons (PAHs) in coastal waters with highly dynamic sources and sinks is largely unknown, especially for polar regions. Here, we show the concurrent measurements of 73 individual PAHs and environmental data, including the composition of the bacterial community, during three austral summers at coastal Livingston (2015 and 2018) and Deception (2017) islands (Antarctica). The Livingston 2015 campaign was characterized by a larger snow melting input of PAHs and nutrients. The assessment of PAH diagnostic ratios, such as parent to alkyl-PAHs or LMW to HMW PAHs, showed that there was a larger biodegradation during the Livingston 2015 campaign than in the Deception 2017 and Livingston 2018 campaigns. The biogeochemical cycling, including microbial degradation, was thus yearly dependent on snow-derived inputs of matter, including PAHs, consistent with the microbial community significantly different between the different campaigns. The bivariate correlations between bacterial taxa and PAH concentrations showed that a decrease in PAH concentrations was concurrent with the higher abundance of some bacterial taxa, specifically the order Pseudomonadales in the class Gammaproteobacteria, known facultative hydrocarbonoclastic bacteria previously reported in degradation studies of oil spills. The work shows the potential for elucidation of biogeochemical processes by intensive field-derived time series, even in the harsh and highly variable Antarctic environment.
Collapse
|
15
|
Wei G, Li S, Ye S, Wang Z, Zarringhalam K, He J, Wang W, Shao Z. High-Resolution Small RNAs Landscape Provides Insights into Alkane Adaptation in the Marine Alkane-Degrader Alcanivorax dieselolei B-5. Int J Mol Sci 2022; 23:ijms232415995. [PMID: 36555635 PMCID: PMC9788540 DOI: 10.3390/ijms232415995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Alkanes are widespread in the ocean, and Alcanivorax is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species Alcanivorax dieselolei B-5 under alkane (n-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of Alcanivorax, and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (ompS), chemotaxis (mcp, cheR, cheW2), transporting (ompT1, ompT2, ompT3) and hydroxylation (alkB1, alkB2, almA) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.
Collapse
Affiliation(s)
- Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Sujie Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Sida Ye
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Zining Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jianguo He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Correspondence: (W.W.); (Z.S.)
| | - Zongze Shao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: (W.W.); (Z.S.)
| |
Collapse
|
16
|
Liu J, Zhou X, Wang T, Fan L, Liu S, Wu N, Xu A, Qian X, Li Z, Jiang M, Zhou J, Dong W. Construction and comparison of synthetic microbial consortium system (SMCs) by non-living or living materials immobilization and application in acetochlor degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129460. [PMID: 35803189 DOI: 10.1016/j.jhazmat.2022.129460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The microbial degradation of pesticides by pure or mixed microbial cultures has been thoroughly explored, however, they are still difficult to apply in real environmental remediation. Here, we constructed a synthetic microbial consortium system (SMCs) through the immobilization technology by non-living or living materials to improve the acetochlor degradation efficiency. Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1 were isolated for the SMCs construction. The free-floating consortium with the composition ratio of 1:2:2 (Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1) demonstrated 94.8% degradation of acetochlor, and the accumulation of intermediate metabolite 2-methyl-6-ethylaniline was decreased by 3 times. The immobilized consortium using composite materials showed synergistic effects on the acetochlor degradation with maximum degradation efficiency of 97.81%. In addition, a novel immobilization method with the biofilm of Myxococcus xanthus DK1622 as living materials was proposed. The maximum 96.62% degradation was obtained in non-trophic media. Furthermore, the immobilized SMCs showed significantly enhanced environmental robustness, reusability and stability. The results indicate the promising application of the immobilization methods using composite and living materials in pollutant-contaminated environments.
Collapse
Affiliation(s)
- Jingyuan Liu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiaoli Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Tong Wang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lingling Fan
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Shixun Liu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Nan Wu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Anming Xu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiujuan Qian
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Li
- Key Laboratory of Agriculture Environmental Microbiology, College of Life Science, Nanjing Agriculture University, Nanjing 210095, PR China
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
17
|
Crisafi F, Smedile F, Yakimov MM, Aulenta F, Fazi S, La Cono V, Martinelli A, Di Lisio V, Denaro R. Bacterial biofilms on medical masks disposed in the marine environment: a hotspot of biological and functional diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155731. [PMID: 35533867 DOI: 10.1016/j.scitotenv.2022.155731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 05/06/2023]
Abstract
The present paper was aimed at investigating the role of disposable medical masks as a substrate for microbial biofilm growth and for the selection of specific microbial traits in highly impacted marine environments. In this view, we have immerged masks in a coastal area affected by a continuous input of artisanal fishery wastes and hydrocarbons pollution caused by intense maritime traffic. Masks maintained one month in the field were colonized by a bacterial community significantly different from that detected in the natural matrices from the same areas (seawater and sediments). The masks served as a viable substrate for the growth and enrichment of phototrophic microorganisms (Oxyphotobacteria), as well as Ruminococcaceae, Gracilibacteria, and Holophageae. In a follow-up investigation, masks previously colonized in the field were transferred in lab-scale microcosms which were supplemented with hydrocarbons and which contained also a piece of a virgin mask. After one month, a shift in the community composition, likely triggered by hydrocarbons addition, was observed in the previously colonized mask, with signatures characteristic of hydrocarbon-degrading microbial groups. Such hydrocarbon-degrading bacteria were also found to colonize the virgin mask. Remarkably, SEM micrographs provided indications of the occurrence of morphological modifications of the surface components of the virgin masks colonized by hydrocarbonoclastic bacteria. Overall, for the first time, we have demonstrated the potential risk for human and animal health determined by the uncorrected disposal of masks which are suitable substrates for pathogens colonization, permanence and spreading. Moreover, we have herein strengthened the knowledge on the role of hydrocarbon-degrading bacteria in the colonization and modification of fossil-based plastics in marine environment.
Collapse
Affiliation(s)
- F Crisafi
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Smedile
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - M M Yakimov
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Aulenta
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - S Fazi
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - V La Cono
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - A Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - V Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain
| | - R Denaro
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
18
|
Rui Y, Qian C. Characteristics of Different Bacteria and Their Induced Biominerals. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria. SUSTAINABILITY 2022. [DOI: 10.3390/su14148241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics.
Collapse
|
20
|
Carr CM, de Oliveira BFR, Jackson SA, Laport MS, Clarke DJ, Dobson ADW. Identification of BgP, a Cutinase-Like Polyesterase From a Deep-Sea Sponge-Derived Actinobacterium. Front Microbiol 2022; 13:888343. [PMID: 35495686 PMCID: PMC9039725 DOI: 10.3389/fmicb.2022.888343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many marine bacteria produce extracellular enzymes that degrade complex molecules to facilitate their growth in environmental conditions that are often harsh and low in nutrients. Marine bacteria, including those inhabiting sea sponges, have previously been reported to be a promising source of polyesterase enzymes, which have received recent attention due to their potential ability to degrade polyethylene terephthalate (PET) plastic. During the screening of 51 marine bacterial isolates for hydrolytic activities targeting ester and polyester substrates, a Brachybacterium ginsengisoli B129SM11 isolate from the deep-sea sponge Pheronema sp. was identified as a polyesterase producer. Sequence analysis of genomic DNA from strain B129SM11, coupled with a genome "mining" strategy, allowed the identification of potential polyesterases, using a custom database of enzymes that had previously been reported to hydrolyze PET or other synthetic polyesters. This resulted in the identification of a putative PET hydrolase gene, encoding a polyesterase-type enzyme which we named BgP that shared high overall similarity with three well-characterized PET hydrolases-LCC, TfCut2, and Cut190, all of which are key enzymes currently under investigation for the biological recycling of PET. In silico protein analyses and homology protein modeling offered structural and functional insights into BgP, and a detailed comparison with Cut190 revealed highly conserved features with implications for both catalysis and substrate binding. Polyesterase activity was confirmed using an agar-based polycaprolactone (PCL) clearing assay, following heterologous expression of BgP in Escherichia coli. This is the first report of a polyesterase being identified from a deep-sea sponge bacterium such as Brachybacterium ginsengisoli and provides further insights into marine-derived polyesterases, an important family of enzymes for PET plastic hydrolysis. Microorganisms living in association with sponges are likely to have increased exposure to plastics and microplastics given the wide-scale contamination of marine ecosystems with these plastics, and thus they may represent a worthwhile source of enzymes for use in new plastic waste management systems. This study adds to the growing knowledge of microbial polyesterases and endorses further exploration of marine host-associated microorganisms as a potentially valuable source of this family of enzymes for PET plastic hydrolysis.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| | - Bruno Francesco Rodrigues de Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities. Microorganisms 2022; 10:microorganisms10030623. [PMID: 35336197 PMCID: PMC8950563 DOI: 10.3390/microorganisms10030623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Antarctic sea-ice is exposed to a wide range of environmental conditions during its annual existence; however, there is very little information describing the change in sea-ice-associated microbial communities (SIMCOs) during the changing seasons. It is well known that during the solar seasons, SIMCOs play an important role in the polar carbon-cycle, by increasing the total photosynthetic primary production of the South Ocean and participating in the remineralization of phosphates and nitrogen. What remains poorly understood is the dynamic of SIMCO populations and their ecological contribution to carbon and nutrient cycling throughout the entire annual life of Antarctic sea-ice, especially in winter. Sea ice at this time of the year is an extreme environment, characterized by complete darkness (which stops photosynthesis), extremely low temperatures in its upper horizons (down to −45 °C) and high salinity (up to 150–250 psu) in its brine inclusions, where SIMCOs thrive. Without a permanent station, wintering expeditions in Antarctica are technically difficult; therefore, in this study, the process of autumn freezing was modelled under laboratory conditions, and the resulting ‘young ice’ was further incubated in cold and darkness for one month. The ice formation experiment was primarily designed to reproduce two critical conditions: (i) total darkness, causing the photosynthesis to cease, and (ii) the presence of a large amount of algae-derived organic matter. As expected, in the absence of photosynthesis, the activity of aerobic heterotrophs quickly created micro-oxic conditions, which caused the emergence of new players, namely facultative anaerobic and anaerobic microorganisms. Following this finding, we can state that Antarctic pack-ice and its surrounding ambient (under-ice seawater and platelet ice) are likely to be very dynamic and can quickly respond to environmental changes caused by the seasonal fluctuations. Given the size of Antarctic pack-ice, even in complete darkness and cessation of photosynthesis, its ecosystem appears to remain active, continuing to participate in global carbon-and-sulfur cycling under harsh conditions.
Collapse
|