1
|
Kufazvinei TTJ, Chai J, Boden KA, Channon KM, Choudhury RP. Emerging opportunities to target inflammation: myocardial infarction and type 2 diabetes. Cardiovasc Res 2024; 120:1241-1252. [PMID: 39027945 DOI: 10.1093/cvr/cvae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/05/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
After myocardial infarction (MI), patients with type 2 diabetes have an increased rate of adverse outcomes, compared to patients without. Diabetes confers a 1.5-2-fold increase in early mortality and, importantly, this discrepancy has been consistent over recent decades, despite advances in treatment and overall survival. Certain assumptions have emerged to explain this increased risk, such as differences in infarct size or coronary artery disease severity. Here, we re-evaluate that evidence and show how contemporary analyses using state-of-the-art characterization tools suggest that the received wisdom tells an incomplete story. Simultaneously, epidemiological and mechanistic biological data suggest additional factors relating to processes of diabetes-related inflammation might play a prominent role. Inflammatory processes after MI mediate injury and repair and are thus a potential therapeutic target. Recent studies have shown how diabetes affects immune cell numbers and drives changes in the bone marrow, leading to pro-inflammatory gene expression and functional suppression of healing and repair. Here, we review and re-evaluate the evidence around adverse prognosis in patients with diabetes after MI, with emphasis on how targeting processes of inflammation presents unexplored, yet valuable opportunities to improve cardiovascular outcomes in this vulnerable patient group.
Collapse
Affiliation(s)
- Tafadzwa T J Kufazvinei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jason Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Katherine A Boden
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Basu C, Cannon PL, Awgulewitsch CP, Galindo CL, Gamazon ER, Hatzopoulos AK. Transcriptome analysis of cardiac endothelial cells after myocardial infarction reveals temporal changes and long-term deficits. Sci Rep 2024; 14:9991. [PMID: 38693202 PMCID: PMC11063162 DOI: 10.1038/s41598-024-59155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.
Collapse
Affiliation(s)
- Chitra Basu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Presley L Cannon
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassandra P Awgulewitsch
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristi L Galindo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric R Gamazon
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Galili U, Li J, Schaer GL. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:730. [PMID: 38668224 PMCID: PMC11055133 DOI: 10.3390/nano14080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (J.L.); (G.L.S.)
| | | | | |
Collapse
|
4
|
Zhang F, Zhang Y, Qian S, Qian X, Jiao J, Ma B, Chen J, Cheng H, Li X, Lin Y, Li H, Cui C, Chen M. Injectable and Conductive Nanomicelle Hydrogel with α-Tocopherol Encapsulation for Enhanced Myocardial Infarction Repair. ACS NANO 2024; 18:10216-10229. [PMID: 38436241 DOI: 10.1021/acsnano.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Substantial advancements have been achieved in the realm of cardiac tissue repair utilizing functional hydrogel materials. Additionally, drug-loaded hydrogels have emerged as a research hotspot for modulating adverse microenvironments and preventing left ventricular remodeling after myocardial infarction (MI), thereby fostering improved reparative outcomes. In this study, diacrylated Pluronic F127 micelles were used as macro-cross-linkers for the hydrogel, and the hydrophobic drug α-tocopherol (α-TOH) was loaded. Through the in situ synthesis of polydopamine (PDA) and the incorporation of conductive components, an injectable and highly compliant antioxidant/conductive composite FPDA hydrogel was constructed. The hydrogel exhibited exceptional stretchability, high toughness, good conductivity, cell affinity, and tissue adhesion. In a rabbit model, the material was surgically implanted onto the myocardial tissue, subsequent to the ligation of the left anterior descending coronary artery. Four weeks postimplantation, there was discernible functional recovery, manifesting as augmented fractional shortening and ejection fraction, alongside reduced infarcted areas. The findings of this investigation underscore the substantial utility of FPDA hydrogels given their proactive capacity to modulate the post-MI infarct microenvironment and thereby enhance the therapeutic outcomes of myocardial infarction.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Yike Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Sichong Qian
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing 100029, China
| | - Xuetian Qian
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jincheng Jiao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Biao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiuzhou Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Hongyi Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiaopei Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongping Lin
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Haiyang Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing 100029, China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
5
|
Pawłowska M, Mila-Kierzenkowska C. Effect of Alpha-1 Antitrypsin and Irisin on Post-Exercise Inflammatory Response: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:205-218. [PMID: 38680225 PMCID: PMC11053258 DOI: 10.30476/ijms.2023.97480.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 05/01/2024]
Abstract
Physical activity has a positive effect on human health and emotional well-being. However, in both amateur and professional athletes, training poses a risk of acute or chronic injury through repetitive overloading of bones, joints, and muscles. Inflammation can be an adverse effect of intense exercise caused by several factors including oxidative stress. The present narrative review summarizes current knowledge on inflammatory markers induced by physical exercise. Post-exercise recovery may reduce inflammatory responses and is key to effective training and adaptation of muscle tissues to sustained physical exertion.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
6
|
Lai J, Pan Q, Chen G, Liu Y, Chen C, Pan Y, Liu L, Zeng B, Yu L, Xu Y, Tang J, Yang Y, Rao L. Triple Hybrid Cellular Nanovesicles Promote Cardiac Repair after Ischemic Reperfusion. ACS NANO 2024; 18:4443-4455. [PMID: 38193813 DOI: 10.1021/acsnano.3c10784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The management of myocardial ischemia/reperfusion (I/R) damage in the context of reperfusion treatment remains a significant hurdle in the field of cardiovascular disorders. The injured lesions exhibit distinctive features, including abnormal accumulation of necrotic cells and subsequent inflammatory response, which further exacerbates the impairment of cardiac function. Here, we report genetically engineered hybrid nanovesicles (hNVs), which contain cell-derived nanovesicles overexpressing high-affinity SIRPα variants (SαV-NVs), exosomes (EXOs) derived from human mesenchymal stem cells (MSCs), and platelet-derived nanovesicles (PLT-NVs), to facilitate the necrotic cell clearance and inhibit the inflammatory responses. Mechanistically, the presence of SαV-NVs suppresses the CD47-SIRPα interaction, leading to the promotion of the macrophage phagocytosis of dead cells, while the component of EXOs aids in alleviating inflammatory responses. Moreover, the PLT-NVs endow hNVs with the capacity to evade immune surveillance and selectively target the infarcted area. In I/R mouse models, coadministration of SαV-NVs and EXOs showed a notable synergistic effect, leading to a significant enhancement in the left ventricular ejection fraction (LVEF) on day 21. These findings highlight that the hNVs possess the ability to alleviate myocardial inflammation, minimize infarct size, and improve cardiac function in I/R models, offering a simple, safe, and robust strategy in boosting cardiac repair after I/R.
Collapse
Affiliation(s)
- Jialin Lai
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
7
|
Galili U. Antibody production and tolerance to the α-gal epitope as models for understanding and preventing the immune response to incompatible ABO carbohydrate antigens and for α-gal therapies. Front Mol Biosci 2023; 10:1209974. [PMID: 37449060 PMCID: PMC10338101 DOI: 10.3389/fmolb.2023.1209974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
This review describes the significance of the α-gal epitope (Galα-3Galβ1-4GlcNAc-R) as the core of human blood-group A and B antigens (A and B antigens), determines in mouse models the principles underlying the immune response to these antigens, and suggests future strategies for the induction of immune tolerance to incompatible A and B antigens in human allografts. Carbohydrate antigens, such as ABO antigens and the α-gal epitope, differ from protein antigens in that they do not interact with T cells, but B cells interacting with them require T-cell help for their activation. The α-gal epitope is the core of both A and B antigens and is the ligand of the natural anti-Gal antibody, which is abundant in all humans. In A and O individuals, anti-Gal clones (called anti-Gal/B) comprise >85% of the so-called anti-B activity and bind to the B antigen in facets that do not include fucose-linked α1-2 to the core α-gal. As many as 1% of B cells are anti-Gal B cells. Activation of quiescent anti-Gal B cells upon exposure to α-gal epitopes on xenografts and some protozoa can increase the titer of anti-Gal by 100-fold. α1,3-Galactosyltransferase knockout (GT-KO) mice lack α-gal epitopes and can produce anti-Gal. These mice simulate human recipients of ABO-incompatible human allografts. Exposure for 2-4 weeks of naïve and memory mouse anti-Gal B cells to α-gal epitopes in the heterotopically grafted wild-type (WT) mouse heart results in the elimination of these cells and immune tolerance to this epitope. Shorter exposures of 7 days of anti-Gal B cells to α-gal epitopes in the WT heart result in the production of accommodating anti-Gal antibodies that bind to α-gal epitopes but do not lyse cells or reject the graft. Tolerance to α-gal epitopes due to the elimination of naïve and memory anti-Gal B cells can be further induced by 2 weeks in vivo exposure to WT lymphocytes or autologous lymphocytes engineered to present α-gal epitopes by transduction of the α1,3-galactosyltransferase gene. These mouse studies suggest that autologous human lymphocytes similarly engineered to present the A or B antigen may induce corresponding tolerance in recipients of ABO-incompatible allografts. The review further summarizes experimental works demonstrating the efficacy of α-gal therapies in amplifying anti-viral and anti-tumor immune-protection and regeneration of injured tissues.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical College, Chicago, IL, United States
| |
Collapse
|
8
|
Kleinbongard P, Lieder HR, Skyschally A, Heusch G. No robust reduction of infarct size and no-reflow by metoprolol pretreatment in adult Göttingen minipigs. Basic Res Cardiol 2023; 118:23. [PMID: 37289247 PMCID: PMC10250284 DOI: 10.1007/s00395-023-00993-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023]
Abstract
Whereas prior experiments in juvenile pigs had reported infarct size reduction by intravenous metoprolol early during myocardial ischaemia, two major clinical trials in patients with reperfused acute myocardial infarction were equivocal. We, therefore, went back and tested the translational robustness of infarct size reduction by metoprolol in minipigs. Using a power analysis-based prospective design, we pretreated 20 anaesthetised adult Göttingen minipigs with 1 mg kg-1 metoprolol or placebo and subjected them to 60-min coronary occlusion and 180-min reperfusion. Primary endpoint was infarct size (triphenyl tetrazolium chloride staining) as a fraction of area at risk; no-reflow area (thioflavin-S staining) was a secondary endpoint. There was no significant reduction in infarct size (46 ± 8% of area at risk with metoprolol vs. 42 ± 8% with placebo) or area of no-reflow (19 ± 21% of infarct size with metoprolol vs. 15 ± 23% with placebo). However, the inverse relationship between infarct size and ischaemic regional myocardial blood flow was modestly, but significantly shifted downwards with metoprolol, whereas ischaemic blood flow tended to be reduced by metoprolol. With an additional dose of 1 mg kg-1 metoprolol after 30-min ischaemia in 4 additional pigs, infarct size was also not reduced (54 ± 9% vs. 46 ± 8% in 3 contemporary placebo, n.s.), and area of no-reflow tended to be increased (59 ± 20% vs. 29 ± 12%, n.s.).Infarct size reduction by metoprolol in pigs is not robust, and this result reflects the equivocal clinical trials. The lack of infarct size reduction may be the result of opposite effects of reduced infarct size at any given blood flow and reduced blood flow, possibly through unopposed alpha-adrenergic coronary vasoconstriction.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
9
|
Blanco-Blázquez V, Báez-Díaz C, Sánchez-Margallo FM, González-Bueno I, Martín H, Blázquez R, Casado JG, Usón A, Solares J, Palacios I, Steendam R, Crisóstomo V. Intracoronary Administration of Microencapsulated HGF in a Reperfused Myocardial Infarction Swine Model. J Cardiovasc Dev Dis 2023; 10:86. [PMID: 36826582 PMCID: PMC9960949 DOI: 10.3390/jcdd10020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Therapy microencapsulation allows minimally invasive, safe, and effective administration. Hepatocyte growth factor (HGF) has angiogenic, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties. Our objective was to evaluate the cardiac safety and effectiveness of intracoronary (IC) administration of HGF-loaded extended release microspheres in an acute myocardial infarction (AMI) swine model. An IC infusion of 5 × 106 HGF-loaded microspheres (MS+HGF, n = 7), 5 × 106 placebo microspheres (MS, n = 7), or saline (SAL, n = 7) was performed two days after AMI. TIMI flow and Troponin I (TnI) values were assessed pre- and post-treatment. Cardiac function was evaluated with magnetic resonance imaging (cMR) before injection and at 10 weeks. Plasma cytokines were determined to evaluate the inflammatory profile and hearts were subjected to histopathological evaluation. Post-treatment coronary flow was impaired in five animals (MS+HGF and MS group) without significant increases in TnI. One animal (MS group) died during treatment. There were no significant differences between groups in cMR parameters at any time (p > 0.05). No statistically significant changes were found between groups neither in cytokines nor in histological analyses. The IC administration of 5 × 106 HGF-loaded-microspheres 48 h post-AMI did not improve cardiac function, nor did it decrease inflammation or cardiac fibrosis in this experimental setting.
Collapse
Affiliation(s)
- Virginia Blanco-Blázquez
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
| | - Claudia Báez-Díaz
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Irene González-Bueno
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Helena Martín
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Rebeca Blázquez
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | - Javier G. Casado
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain
| | - Alejandra Usón
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
| | | | | | - Rob Steendam
- Innocore Pharmaceuticals, 9713 GX Groningen, The Netherlands
| | - Verónica Crisóstomo
- Cardiovascular Area, Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Cardiovasculares CIBERCV, 28029 Madrid, Spain
| |
Collapse
|
10
|
Tryptamine, a Microbial Metabolite in Fermented Rice Bran Suppressed Lipopolysaccharide-Induced Inflammation in a Murine Macrophage Model. Int J Mol Sci 2022; 23:ijms231911209. [PMID: 36232510 PMCID: PMC9570467 DOI: 10.3390/ijms231911209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Fermentation is thought to alter the composition and bioavailability of bioactive compounds in rice bran. However, how this process affects the anti-inflammatory effects of rice bran and the bioactive compounds that might participate in this function is yet to be elucidated. This study aimed to isolate bioactive compounds in fermented rice bran that play a key role in its anti-inflammatory function. The fermented rice bran was fractionated using a succession of solvent and solid-phase extractions. The fermented rice bran fractions were then applied to lipopolysaccharide (LPS)-activated murine macrophages to evaluate their anti-inflammatory activity. The hot water fractions (FRBA), 50% ethanol fractions (FRBB), and n-hexane fractions (FRBC) were all shown to be able to suppress the pro-inflammatory cytokine expression from LPS-stimulated RAW 264.7 cells. Subsequent fractions from the hot water fraction (FRBF and FRBE) were also able to reduce the inflammatory response of these cells to LPS. Further investigation revealed that tryptamine, a bacterial metabolite of tryptophan, was abundantly present in these extracts. These results indicate that tryptamine may play an important role in the anti-inflammatory effects of fermented rice bran. Furthermore, the anti-inflammatory effects of FRBE and tryptamine may depend on the activity of the aryl hydrocarbon receptor.
Collapse
|
11
|
Wang Y, Yuan M, Ma Y, Shao C, Wang Y, Qi M, Ren B, Gao D. The Admission (Neutrophil+Monocyte)/Lymphocyte Ratio Is an Independent Predictor for In-Hospital Mortality in Patients With Acute Myocardial Infarction. Front Cardiovasc Med 2022; 9:870176. [PMID: 35463771 PMCID: PMC9021423 DOI: 10.3389/fcvm.2022.870176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
PurposePeripheral differential leukocyte counts are accepted prognostic indicators in patients with acute myocardial infarction (AMI). Herein, we assessed the value of the admission (neutrophil+monocyte)/lymphocyte ratio (NMLR) in predicting in-hospital mortality in these patients.Materials and MethodsSamples of patients from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database meeting the criteria were included. Receiver operating characteristic (ROC) curves were plotted to explore the predictive value and the optimum cut-off value of admission NMLR. Univariate and multivariate Cox regression analyses and restricted cubic spline (RCS) were performed to determine and visualize the association between admission NMLR and in-hospital mortality. The Kaplan-Meier (KM) method was used to plot survival curves of two groups with different admission NMLR levels.ResultsSamples in the non-survival group had higher admission NMLR values than samples in the survival group (12.11 [7.22–21.05] vs. 6.38 [3.96–11.25], P < 0.05). The area under the ROC curve (AUROC) [0.707 (95% Confidence Interval, 0.677–0.737)] was significantly better than those of other indicators related to peripheral differential leukocyte counts, and the optimal cut-off value was 8.518. Cox regression analysis identified that higher admission NMLR was an independent risk factor for in-hospital mortality. RCS visualized the uptrend and the non-linear relationship between admission NMLR and in-hospital mortality (P-value for non-linearity <0.05). The KM survival curve of the high admission NMLR group was significantly lower than that of the low admission NMLR group (P < 0.001), and the former was associated with an increased risk of in-hospital mortality compared to the latter (Hazard Ratio, 1.452; 95% Confidence Interval, 1.132–1.862; P < 0.05).ConclusionAn elevated admission NMLR is an independent predictor for high in-hospital mortality in patients with AMI. And it is superior to other leukocyte-related indexes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Miao Yuan
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Ma
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Congcong Shao
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuan Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Mengyao Qi
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Bincheng Ren
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Rheumatology and Immunology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Dengfeng Gao,
| |
Collapse
|
12
|
Zha Z, Cheng Y, Cao L, Qian Y, Liu X, Guo Y, Wang J. Monomeric CRP Aggravates Myocardial Injury After Myocardial Infarction by Polarizing the Macrophage to Pro-Inflammatory Phenotype Through JNK Signaling Pathway. J Inflamm Res 2022; 14:7053-7064. [PMID: 34984018 PMCID: PMC8703048 DOI: 10.2147/jir.s316816] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objective A polarized macrophage response plays a critical role in the pathophysiological process of myocardial infarction (MI). Several studies have shown a pro-inflammatory role for monomeric C-reactive protein (mCRP) in cardiovascular disease. However, the mechanism of how mCRP regulates macrophage phenotype switching remains unknown. In the present study, the effect of mCRP on macrophage polarization and its pathological function in myocardial repair after myocardial infarction was investigated. Methods MI was induced by permanent ligation of the left anterior descending coronary artery in ICR mice. Adult mice were injected with mCRP (2.5 mg/kg) with or without SP600125 (15 mg/kg, JNK inhibitor) 45 min before MI. The cardiac function, scar size as well as cardiac fibrosis, infiltration of inflammatory cells, and the level of proteins in the JNK signaling pathway in infarcted myocardium were assessed. In addition, the phenotypic characterization of macrophages was further measured by ELISA, flow cytometry and quantitative RT-PCR in cultured THP-1 cells or peritoneal macrophages. Results Cardiac function deterioration, ventricular dilatation and fibrosis were exacerbated in mice pretreatment with mCRP following MI. Meanwhile, an increased accumulation of infiltrated inflammatory cells in infarcted myocardium was observed in the mCRP group. Moreover, activation of the JNK signaling pathway was markedly elevated in mCRP treated animals post-MI. In contrast, pharmacological inhibition of JNK phosphorylation activity by SP600125 muted the detrimental effects of mCRP in MI mice. Furthermore, in vitro and in vivo co-culture experiments showed that mCRP shifted macrophage polarization towards pro-inflammatory phenotypes, and this polarization could be abolished by sp600125. Conclusion Taken together, our results imply that mCRP impairs myocardial repair after myocardial infarction by polarizing the macrophages into the pro-inflammatory M1 phenotype via the JNK-dependent pathway.
Collapse
Affiliation(s)
- Zhimin Zha
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yujia Cheng
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lu Cao
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanxia Qian
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinjian Liu
- Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Pathogen Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan Guo
- Department of Gerontology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Liang H, Li F, Li H, Wang R, Du M. Overexpression of lncRNA HULC Attenuates Myocardial Ischemia/reperfusion Injury in Rat Models and Apoptosis of Hypoxia/reoxygenation Cardiomyocytes via Targeting miR-377-5p through NLRP3/Caspase‑1/IL‑1β Signaling Pathway Inhibition. Immunol Invest 2021; 50:925-938. [PMID: 32674625 DOI: 10.1080/08820139.2020.1791178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) is characterized by myocardial tissue necrosis and activation of inflammatory response. This study aims to elucidate the potential mechanism underlying the protective effects of long non-coding RNA (lncRNA) highly up-regulated in liver cancer (HULC) against myocardial ischemia/reperfusion (I/R) injury in rat models and apoptosis of cardiomyocytes. METHODS We firstly established rat models of myocardial I/R injury and rat cardiomyocyte (H9c2 cells) models of hypoxia/reoxygenation (H/R) injury. Sprague-Dawley (SD) neonatal rats were randomized into four groups: sham, I/R, I/R+ microRNA (miR) -377-5p mimic, and I/R+ miR-377-5p antagomir, respectively. Then, histopathological examination was applied. Apoptosis was evaluated by transferase-mediated dUTP nick end labeling (TUNEL) staining. Cell vitality was measured using MTT assay. The concentrations of creatine kinase MB (CK-MB), cardiac troponin I (cTnI), interleukin (IL) -6 (IL-6), and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The expression of Cleaved-Caspase-3, Caspase-3, NOD-like receptor P3 (NLRP3), Caspase-1, and IL-1β was analyzed by immunohistochemical (IHC) or Western blot analysis. RESULTS We found that HULC was downregulated and miR-377-5p was upregulated in IR-injured myocardial tissue and the H/R-induced H9c2 cell. Overexpression of miR-377-5p increased myocardial dysfunction and apoptosis and activated formation and secretion of IL-6 and TNF-α. The preprocessing of miR-377-5p silencing emerged opposite results. Strikingly, dual luciferase reporter assay showed that HULC was a sponge of miR-377-5p. Subsequently, mechanism experiments revealed that NLRP3/Caspase‑1/IL‑1β was a target axis of miR-377-5p. In vitro, the protective effect of HULC overexpression on H9c2 cell viability and inflammation was offset by miR-377-5p silencing. Finally, rescue assay suggested that HULC-miR-377-5p -NLRP3/Caspase‑1/IL‑1β axis regulated the apoptosis and inflammation of H/R-induced H9c2 cells. CONCLUSIONS Overall, these results indicate that the protective effect of HULC against myocardial I/R injury and H/R cardiomyocyte apoptosis partially relies on the inhibition of NLRP3/Caspase‑1/IL‑1β signaling pathway.
Collapse
Affiliation(s)
- Huiqing Liang
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Fangjiang Li
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Huixian Li
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Rui Wang
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Meiling Du
- Department of Cardiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
14
|
Chong SY, Zharkova O, Yatim SMJ, Wang X, Lim XC, Huang C, Tan CY, Jiang J, Ye L, Tan MS, Angeli V, Versteeg HH, Dewerchin M, Carmeliet P, Lam CS, Chan MY, de Kleijn DP, Wang JW. Tissue factor cytoplasmic domain exacerbates post-infarct left ventricular remodeling via orchestrating cardiac inflammation and angiogenesis. Am J Cancer Res 2021; 11:9243-9261. [PMID: 34646369 PMCID: PMC8490508 DOI: 10.7150/thno.63354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 01/14/2023] Open
Abstract
The coagulation protein tissue factor (TF) regulates inflammation and angiogenesis via its cytoplasmic domain in infection, cancer and diabetes. While TF is highly abundant in the heart and is implicated in cardiac pathology, the contribution of its cytoplasmic domain to post-infarct myocardial injury and adverse left ventricular (LV) remodeling remains unknown. Methods: Myocardial infarction was induced in wild-type mice or mice lacking the TF cytoplasmic domain (TF∆CT) by occlusion of the left anterior descending coronary artery. Heart function was monitored with echocardiography. Heart tissue was collected at different time-points for histological, molecular and flow cytometry analysis. Results: Compared with wild-type mice, TF∆CT had a higher survival rate during a 28-day follow-up after myocardial infarction. Among surviving mice, TF∆CT mice had better cardiac function and less LV remodeling than wild-type mice. The overall improvement of post-infarct cardiac performance in TF∆CT mice, as revealed by speckle-tracking strain analysis, was attributed to reduced myocardial deformation in the peri-infarct region. Histological analysis demonstrated that TF∆CT hearts had in the infarct area greater proliferation of myofibroblasts and better scar formation. Compared with wild-type hearts, infarcted TF∆CT hearts showed less infiltration of proinflammatory cells with concomitant lower expression of protease-activated receptor-1 (PAR1) - Rac1 axis. In particular, infarcted TF∆CT hearts displayed markedly lower ratios of inflammatory M1 macrophages and reparative M2 macrophages (M1/M2). In vitro experiment with primary macrophages demonstrated that deletion of the TF cytoplasmic domain inhibited macrophage polarization toward the M1 phenotype. Furthermore, infarcted TF∆CT hearts presented markedly higher peri-infarct vessel density associated with enhanced endothelial cell proliferation and higher expression of PAR2 and PAR2-associated pro-angiogenic pathway factors. Finally, the overall cardioprotective effects observed in TF∆CT mice could be abolished by subcutaneously infusing a cocktail of PAR1-activating peptide and PAR2-inhibiting peptide via osmotic minipumps. Conclusions: Our findings demonstrate that the TF cytoplasmic domain exacerbates post-infarct cardiac injury and adverse LV remodeling via differential regulation of inflammation and angiogenesis. Targeted inhibition of the TF cytoplasmic domain-mediated intracellular signaling may ameliorate post-infarct LV remodeling without perturbing coagulation.
Collapse
|
15
|
Galili U, Zhu Z, Chen J, Goldufsky JW, Schaer GL. Near Complete Repair After Myocardial Infarction in Adult Mice by Altering the Inflammatory Response With Intramyocardial Injection of α-Gal Nanoparticles. Front Cardiovasc Med 2021; 8:719160. [PMID: 34513957 PMCID: PMC8425953 DOI: 10.3389/fcvm.2021.719160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Neonatal mice, but not older mice, can regenerate their hearts after myocardial-infarction (MI), a process mediated by pro-reparative macrophages. α-Gal nanoparticles applied to skin wounds in adult-mice bind the anti-Gal antibody, activate the complement cascade and generate complement chemotactic peptides that recruit pro-reparative macrophages which are further activated by these nanoparticles. The recruited macrophages decrease wound healing time by ~50%, restore the normal skin structure and prevent fibrosis and scar formation in mice. Objectives: The objective of this study is to determine if α-gal nanoparticles injected into the reperfused myocardium after MI in adult-mice can induce myocardial repair that restores normal structure, similar to that observed in skin injuries. Methods and Results: MI was induced by occluding the mid-portion of the left anterior descending (LAD) coronary artery for 30 min. Immediately following reperfusion, each mouse received two 10 μl injections of 100 μg α-gal nanoparticles in saline into the LAD territory (n = 20), or saline for controls (n = 10). Myocardial infarct size was measured by planimetry following Trichrome staining and macrophage recruitment by hematoxylin-eosin staining. Left ventricular (LV) function was measured by echocardiography. Control mice displayed peak macrophage infiltration at 4-days, whereas treated mice had a delayed peak macrophage infiltration at 7-days. At 28-days, control mice demonstrated large transmural infarcts with extensive scar formation and poor contractile function. In contrast, mice treated with α-gal nanoparticles demonstrated after 28-days a marked reduction in infarct size (~10-fold smaller), restoration of normal myocardium structure and contractile function. Conclusions: Intramyocardial injection of α-gal nanoparticles post-MI in anti-Gal producing adult-mice results in near complete repair of the infarcted territory, with restoration of normal LV structure and contractile function. The mechanism responsible for this benefit likely involves alteration of the usual inflammatory response post-MI, as previously observed with regeneration of injured hearts in adult zebrafish, salamanders and neonatal mice.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Zhongkai Zhu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jiwang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Gary L Schaer
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
16
|
The Evolving Roles of Cardiac Macrophages in Homeostasis, Regeneration, and Repair. Int J Mol Sci 2021; 22:ijms22157923. [PMID: 34360689 PMCID: PMC8347787 DOI: 10.3390/ijms22157923] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages were first described as phagocytic immune cells responsible for maintaining tissue homeostasis by the removal of pathogens that disturb normal function. Historically, macrophages have been viewed as terminally differentiated monocyte-derived cells that originated through hematopoiesis and infiltrated multiple tissues in the presence of inflammation or during turnover in normal homeostasis. However, improved cell detection and fate-mapping strategies have elucidated the various lineages of tissue-resident macrophages, which can derive from embryonic origins independent of hematopoiesis and monocyte infiltration. The role of resident macrophages in organs such as the skin, liver, and the lungs have been well characterized, revealing functions well beyond a pure phagocytic and immunological role. In the heart, recent research has begun to decipher the functional roles of various tissue-resident macrophage populations through fate mapping and genetic depletion studies. Several of these studies have elucidated the novel and unexpected roles of cardiac-resident macrophages in homeostasis, including maintaining mitochondrial function, facilitating cardiac conduction, coronary development, and lymphangiogenesis, among others. Additionally, following cardiac injury, cardiac-resident macrophages adopt diverse functions such as the clearance of necrotic and apoptotic cells and debris, a reduction in the inflammatory monocyte infiltration, promotion of angiogenesis, amelioration of inflammation, and hypertrophy in the remaining myocardium, overall limiting damage extension. The present review discusses the origin, development, characterization, and function of cardiac macrophages in homeostasis, cardiac regeneration, and after cardiac injury or stress.
Collapse
|
17
|
LuQi Formula Regulates NLRP3 Inflammasome to Relieve Myocardial-Infarction-Induced Cardiac Remodeling in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5518083. [PMID: 34257682 PMCID: PMC8257334 DOI: 10.1155/2021/5518083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Background Excessive activation of the nod-like receptor family pyrin domain containing 3(NLRP3) inflammasome plays a significant role in the progression of cardiac injury. In China, it has been well recognized that Chinese herbal medicine is markedly effective in treating cardiovascular diseases (CVDs). LuQi Formula (LQF) has been used clinically for more than 10 years and confirmed to be effective in improving cardiac function and inhibiting apoptosis. However, the specific mechanisms underlying its efficacy are mostly unknown. This study aimed to evaluate whether LQF could alleviate cardiac injury and apoptosis by regulating the NLRP3 inflammasome and the caspase-3/Bax pathway. Purpose In this study, we investigated the effects of LQF on cardiac remodeling in a mouse model of myocardial infarction (MI) in vivo. Methods Forty male C57BL/6 mice were randomly divided into four groups: the sham group, the model group, the LQF group, and the perindopril group, with a sample size (n) of 10 mice in each group. Except the sham group, the other groups received left anterior descending (LAD) coronary artery ligation to induce MI and then treated with LQF, perindopril, or saline. Six weeks after MI, echocardiography was used to evaluate cardiac structure and function. Myocardial tissue morphology was observed by haematoxylin and eosin (H&E) staining, and heart samples were stained with Masson's trichrome to analyse myocardial fibrosis. Myocardial hypertrophy was observed by fluorescent wheat germ agglutinin (WGA) staining. The expressions of NLRP3, ASC, Cle-caspase-1, IL-1β, TXNIP, Cle-caspase-3, Bcl-2, and Bax in heart tissues were assessed by western blot analysis. mRNA expressions of ANP and BNP in heart tissues were measured by RT-PCR. The expression of reactive oxygen species in myocardial tissue was detected by using a DCFH-DA probe. Results Echocardiographic analysis showed that compared with the model group, the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) in the LQF and perindopril group were increased (P < 0.05), left ventricular internal diameter end diastole (LVIDd) and left ventricular internal diameter end-systole (LVIDs) were reduced (P < 0.05), and H&E and Masson's trichrome staining of cardiac tissues showed that LQF and perindopril could partially reverse ventricular remodeling and alleviate myocardial fibrosis (P < 0.05). WGA fluorescence results showed that compared with the model group, myocardial hypertrophy was significantly reduced in the LQF and perindopril group. We also found that LQF and perindopril reduce the oxidative stress response in the heart of MI mice. The protein expression of NLRP3, ASC, Cle-caspase-1, IL-1β, TXNIP, Cle-caspase-3, and Bax was downregulated in the LHF and perindopril treatment group, and Bcl-2 expression was upregulated. Conclusion LQF and perindopril significantly attenuated cardiac injury and apoptosis in the MI model. In addition, we found that LQF effectively inhibited the activation of the NLRP3/ASC/caspase-1/IL-1β cascade, decreased inflammatory infiltration, delayed ventricular remodeling, and downregulated caspase-3/Bax signaling, which can effectively reduce the apoptosis of cardiomyocytes. Perindopril showed the same mechanism.
Collapse
|
18
|
Ni SH, Xu JD, Sun SN, Li Y, Zhou Z, Li H, Liu X, Deng JP, Huang YS, Chen ZX, Feng WJ, Wang JJ, Xian SX, Yang ZQ, Wang S, Wang LJ, Lu L. Single-cell transcriptomic analyses of cardiac immune cells reveal that Rel-driven CD72-positive macrophages induce cardiomyocyte injury. Cardiovasc Res 2021; 118:1303-1320. [PMID: 34100920 DOI: 10.1093/cvr/cvab193] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS The goal of our study was to investigate the heterogeneity of cardiac macrophages (CMφs) in mice with transverse aortic constriction (TAC) via single-cell sequencing and identify a subset of macrophages associated with heart injury. METHODS AND RESULTS We selected all CMφs from CD45+ cells using single-cell mRNA sequencing data. Through dimension reduction, clustering and enrichment analyses, CD72hi CMφs were identified as a subset of proinflammatory macrophages. The pseudotime trajectory and ChIP-Seq analyses identified Rel as the key transcription factor that induces CD72hi CMφ differentiation. Rel KD and Rel-/- bone marrow chimera mice subjected to TAC showed features of mitigated cardiac injury, including decreased levels of cytokines and ROS, which prohibited cardiomyocyte death. The transfer of adoptive Rel-overexpressing monocytes and CD72hi CMφ injection directly aggravated heart injury in the TAC model. The CD72hi macrophages also exerted proinflammatory and cardiac injury effects associated with myocardial infarction (MI). In humans, patients with heart failure exhibit increased CD72hi CMφ levels following dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM). CONCLUSION Bone marrow-derived, Rel-mediated CD72hi macrophages play a proinflammatory role, induce cardiac injury and, thus, may serve as a therapeutic target for multiple cardiovascular diseases. TRANSLATIONAL PERSPECTIVE Heart failure (HF) imposes an enormous clinical and economic burden worldwide and presents limited therapeutic approaches. Given the close association between inflammation and adverse outcomes, proinflammatory immune cells are considered potential therapeutic targets for HF treatment. The present studies identified a specific macrophage subset associated with myocardial injury, which may provide an alternative approach for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jin-Dong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yue Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zheng Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jian-Ping Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Xin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Wen-Jun Feng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jia-Jia Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.,Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| |
Collapse
|
19
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
20
|
Zou L, Zong Q, Fu W, Zhang Z, Xu H, Yan S, Mao J, Zhang Y, Cao S, Lv C. Long-Term Exposure to Ambient Air Pollution and Myocardial Infarction: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:616355. [PMID: 33816520 PMCID: PMC8010182 DOI: 10.3389/fmed.2021.616355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Objective: An increasing number of epidemiological original studies suggested that long-term exposure to particulate matter (PM2.5 and PM10) could be associated with the risk of myocardial infarction (MI), but the results were inconsistent. We aimed to synthesized available cohort studies to identify the association between ambient air pollution (PM2.5 and PM10) and MI risk by a meta-analysis. Methods: PubMed and Embase were searched through September 2019 to identify studies that met predetermined inclusion criteria. Reference lists from retrieved articles were also reviewed. A random-effects model was used to calculate the pooled relative risk (RR) and 95% confidence intervals (CI). Results: Twenty-seven cohort studies involving 6,764,987 participants and 94,540 patients with MI were included in this systematic review. The pooled results showed that higher levels of ambient air pollution (PM2.5 and PM10) exposure were significantly associated with the risk of MI. The pooled relative risk (RR) for each 10-μg/m3 increment in PM2.5 and PM10 were 1.18 (95% CI: 1.11–1.26), and 1.03 (95% CI: 1.00–1.05), respectively. Exclusion of any single study did not materially alter the combined risk estimate. Conclusions: Integrated evidence from cohort studies supports the hypothesis that long-term exposure to PM2.5 and PM10 is a risk factor for MI.
Collapse
Affiliation(s)
- Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiao Zong
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenning Fu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Zeyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongbin Xu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiao Yan
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,School of International Education, Hainan Medical University, Haikou, China
| | - Jin Mao
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China.,Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,Emergency and Trauma College, Hainan Medical University, Haikou, China.,Research Unit of Island Emergency Medicine, Medical University, Chinese Academy of Medical Sciences, Haikou, China
| |
Collapse
|
21
|
Wang J, Zhang J, Lin X, Wang Y, Wu X, Yang F, Gao W, Zhang Y, Sun J, Jiang C, Xu M. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. J Mol Cell Cardiol 2021; 151:3-14. [PMID: 33130149 DOI: 10.1016/j.yjmcc.2020.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
AIMS The progression of myocardial infarction (MI) involves multiple metabolic disorders. Bile acid metabolites have been increasingly recognized as pleiotropic signaling molecules that regulate multiple cardiovascular functions. G protein-coupled bile acid receptor (TGR5) is one of the receptors sensing bile acids to mediate their biological functions. In this study, we aimed to elucidate the effects of bile acids-TGR5 signaling pathways in myocardial infarction (MI). METHODS AND RESULTS Blood samples of AMI patients or control subjects were collected and plasma was used for bile acid metabolism analysis. We discovered that bile acid levels were altered and deoxycholic acid (DCA) was substantially reduced in the plasma of AMI patients. Mice underwent either the LAD ligation model of MI or sham operation. Both MI and sham mice were gavaged with 10 mg/kg/d DCA or vehicle control since 3-day before the operation. Cardiac function was assessed by ultrasound echocardiography, infarct area was evaluated by TTC staining and Masson trichrome staining. Administration of DCA improved cardiac function and reduced ischemic injury at the 7th-day post-MI. The effects of DCA were dependent on binding to its receptor TGR5. Tgr5-/- mice underwent the same MI model. Cardiac function deteriorated and infarct size was increased at the 7th-day post-MI, which were not savaged by DCA administration. Moreover, DCA inhibited interleukin (IL)-1β expression in the infarcted hearts, and ameliorated IL-1β activation at 1-day post-MI. DCA inhibited NF-κB signaling and further IL-1β expression in cultured neonatal mouse cardiomyocytes under hypoxia as well as cardio-fibroblasts with the treatment of LPS. CONCLUSIONS DCA-TGR5 signaling pathway activation decreases inflammation and ameliorates heart function post-infarction. Strategies that control bile acid metabolism and TGR5 signaling to ameliorate the inflammatory responses may provide beneficial effects in patients with myocardial infarction.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jianshu Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xianjuan Lin
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yupeng Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xiang Wu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China.
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Pappalardo F, Malara G, Montisci A. Multitarget Approach to Cardiogenic Shock after Acute Myocardial Infarction: Extracorporeal Life Support (ECLS) and Beyond. MEMBRANES 2021; 11:87. [PMID: 33513892 PMCID: PMC7911652 DOI: 10.3390/membranes11020087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/19/2023]
Abstract
Cardiogenic shock following acute myocardial infarction is associated with high mortality, substantially unchanged for the previous 20 years. Several approaches have been sought to achieve a therapeutic breakthrough, from myocardial revascularization strategies to the use of mechanical circulatory support. Many issues are, as yet, unresolved. Systemic inflammation seems to play a key role but is still lacking in effective therapies, and is potentially compounded by the death spiral of hypoperfusion and/or artificial devices. In this review, a multitarget approach to cardiogenic shock following acute myocardial infarction is proposed.
Collapse
Affiliation(s)
- Federico Pappalardo
- Department of Anesthesia and Intensive Care, IRCCS ISMETT, UPMC Italy, 90127 Palermo, Italy
| | - Giulia Malara
- Cardiothoracic Center, Department of Anesthesia and Intensive Care, Istituto Clinico Sant’Ambrogio, 20149 Milan, Italy; (G.M.); (A.M.)
| | - Andrea Montisci
- Cardiothoracic Center, Department of Anesthesia and Intensive Care, Istituto Clinico Sant’Ambrogio, 20149 Milan, Italy; (G.M.); (A.M.)
| |
Collapse
|
23
|
Yang W, Tu H, Tang K, Huang H, Ou S, Wu J. Reynoutrin Improves Ischemic Heart Failure in Rats Via Targeting S100A1. Front Pharmacol 2021; 12:703962. [PMID: 34366855 PMCID: PMC8343003 DOI: 10.3389/fphar.2021.703962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
This study investigated the effects of reynoutrin on the improvement of ischemic heart failure (IHF) and its possible mechanism in rats. The rat heart failure model was established by permanently ligating the left anterior descending coronary artery (LAD) and administering different doses of reynoutrin. Cardiac function, inflammatory factors releasing, oxidative stress, cardiomyocytes apoptosis, and myocardial fibrosis were evaluated. Western blotting was used to determine protein expression levels of S100 calcium-binding protein A1 (S100A1), matrix metallopeptidase 2(MMP2), MMP9, phosphorylated (p-) p65, and transforming growth factor -β1 (TGF-β1) in myocardial tissue of the left ventricle. Results showed that reynoutrin significantly improved cardiac function, suppressed the release of inflammatory factors, reduced oxidative stress, inhibited cardiomyocytes apoptosis, and attenuated myocardial fibrosis in rats with IHF. In rat myocardial tissue, permanent LAD-ligation resulted in a significant down-regulation in S100A1 expression, whereas reynoutrin significantly up-regulated S100A1 protein expression while down-regulating MMP2, MMP9, p-p65, and TGF-β1 expressions. However, when S100A1 was knocked down in myocardial tissue, the above-mentioned positive effects of reynoutrin were significantly reversed. Reynoutrin is a potential natural drug for the treatment of IHF, and its mechanism of action involves the up-regulation of S100A1 expression, thereby inhibiting expressions of MMPs and the transcriptional activity of nuclear factor kappa-B.
Collapse
Affiliation(s)
- Wenkai Yang
- Department of Cardiovascular Surgery, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- *Correspondence: Wenkai Yang,
| | - Hanjian Tu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiovascular Surgery, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Haozhong Huang
- Department of Cardiovascular Surgery, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Shi Ou
- Department of Cardiovascular Surgery, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Jianguo Wu
- Department of Cardiovascular Surgery, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
24
|
El Kazzi M, Rayner BS, Chami B, Dennis JM, Thomas SR, Witting PK. Neutrophil-Mediated Cardiac Damage After Acute Myocardial Infarction: Significance of Defining a New Target Cell Type for Developing Cardioprotective Drugs. Antioxid Redox Signal 2020; 33:689-712. [PMID: 32517486 PMCID: PMC7475094 DOI: 10.1089/ars.2019.7928] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Significance: Acute myocardial infarction (AMI) is a leading cause of death worldwide. Post-AMI survival rates have increased with the introduction of angioplasty as a primary coronary intervention. However, reperfusion after angioplasty represents a clinical paradox, restoring blood flow to the ischemic myocardium while simultaneously inducing ion and metabolic imbalances that stimulate immune cell recruitment and activation, mitochondrial dysfunction and damaging oxidant production. Recent Advances: Preclinical data indicate that these metabolic imbalances contribute to subsequent heart failure through sustaining local recruitment of inflammatory leukocytes and oxidative stress, cardiomyocyte death, and coronary microvascular disturbances, which enhance adverse cardiac remodeling. Both left ventricular dysfunction and heart failure are strongly linked to inflammation and immune cell recruitment to the damaged myocardium. Critical Issues: Overall, therapeutic anti-inflammatory and antioxidant agents identified in preclinical trials have failed in clinical trials. Future Directions: The versatile neutrophil-derived heme enzyme, myeloperoxidase (MPO), is gaining attention as an important oxidative mediator of reperfusion injury, vascular dysfunction, adverse ventricular remodeling, and atrial fibrillation. Accordingly, there is interest in therapeutically targeting neutrophils and MPO activity in the setting of heart failure. Herein, we discuss the role of post-AMI inflammation linked to myocardial damage and heart failure, describe previous trials targeting inflammation and oxidative stress post-AMI, highlight the potential adverse impact of neutrophil and MPO, and detail therapeutic options available to target MPO clinically in AMI patients.
Collapse
Affiliation(s)
- Mary El Kazzi
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | - Belal Chami
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Joanne Marie Dennis
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Shane Ross Thomas
- Department of Pathology, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Paul Kenneth Witting
- Discipline of Pathology, Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Kang Y, Nasr M, Guo Y, Uchida S, Weirick T, Li H, Kim J, Moore JB, Muthusamy S, Bolli R, Wysoczynski M. Administration of cardiac mesenchymal cells modulates innate immunity in the acute phase of myocardial infarction in mice. Sci Rep 2020; 10:14754. [PMID: 32901075 PMCID: PMC7479609 DOI: 10.1038/s41598-020-71580-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
Although cardiac mesenchymal cell (CMC) therapy mitigates post-infarct cardiac dysfunction, the underlying mechanisms remain unidentified. It is acknowledged that donor cells are neither appreciably retained nor meaningfully contribute to tissue regeneration-suggesting a paracrine-mediated mechanism of action. As the immune system is inextricably linked to wound healing/remodeling in the ischemically injured heart, the reparative actions of CMCs may be attributed to their immunoregulatory properties. The current study evaluated the consequences of CMC administration on post myocardial infarction (MI) immune responses in vivo and paracrine-mediated immune cell function in vitro. CMC administration preferentially elicited the recruitment of cell types associated with innate immunity (e.g., monocytes/macrophages and neutrophils). CMC paracrine signaling assays revealed enhancement in innate immune cell chemoattraction, survival, and phagocytosis, and diminished pro-inflammatory immune cell activation; data that identifies and catalogues fundamental immunomodulatory properties of CMCs, which have broad implications regarding the mechanism of action of CMCs in cardiac repair.
Collapse
Affiliation(s)
- Yi Kang
- Diabetes and Obesity Center, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Marjan Nasr
- Diabetes and Obesity Center, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, Univerity of Louisville School of Medicine, Louisville, KY, USA
| | - Tyler Weirick
- Cardiovascular Innovation Institute, Univerity of Louisville School of Medicine, Louisville, KY, USA
| | - Hong Li
- Diabetes and Obesity Center, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Jae Kim
- Diabetes and Obesity Center, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Diabetes and Obesity Center, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, University of Louisville School of Medicine, 580 South Preston St. - Rm 204B, Louisville, KY, 40202, USA.
| |
Collapse
|
26
|
Mahtta D, Sudhakar D, Koneru S, Silva GV, Alam M, Virani SS, Jneid H. Targeting Inflammation After Myocardial Infarction. Curr Cardiol Rep 2020; 22:110. [PMID: 32770365 DOI: 10.1007/s11886-020-01358-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Inflammation plays a key role in clearing cellular debris and recovery after acute myocardial infarction (AMI). Dysregulation of or prolonged inflammation may result in adverse cardiac remodeling and major adverse clinical events (MACE). Several pre-clinical studies and moderate sized clinical trials have investigated the role of immunomodulation in improving clinical outcomes in patients with AMI. RECENT FINDINGS Clinical data from the Canakinumab Atherothrombosis Outcome (CANTOS) and Colchicine Cardiovascular Outcomes Trial (COLCOT) have provided encouraging results among patients with AMI. Several other clinical and pre-clinical trials have brought about the prospect of modulating inflammation at various junctures of the inflammatory cascade including inhibition of complement cascade, interleukins, and matrix metalloproteinases. In patients with AMI, modulation of residual inflammation via various inflammatory pathways and mediators may hold promise for further reducing MACE. Learning from current data and understanding the nuances of immunomodulation in AMI are key for future trials and before widespread dissemination of such therapies.
Collapse
Affiliation(s)
- Dhruv Mahtta
- Health Policy, Quality & Informatics Program,, Michael E. DeBakey VA Medical Center Health Services Research & Development Center for Innovations in Quality, Effectiveness, and Safety, Houston, TX, USA
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Deepthi Sudhakar
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Srikanth Koneru
- Division of Cardiovascular Medicine,, Texas Heart Institute and Baylor College of Medicine, Houston, TX, USA
| | - Guilherme Vianna Silva
- Division of Cardiovascular Medicine,, Texas Heart Institute and Baylor College of Medicine, Houston, TX, USA
| | - Mahboob Alam
- Division of Cardiovascular Medicine,, Texas Heart Institute and Baylor College of Medicine, Houston, TX, USA
| | - Salim S Virani
- Health Policy, Quality & Informatics Program,, Michael E. DeBakey VA Medical Center Health Services Research & Development Center for Innovations in Quality, Effectiveness, and Safety, Houston, TX, USA
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Hani Jneid
- Division of Cardiovascular Medicine, Baylor College of Medicine, Houston, TX, USA.
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Baruah J, Chaudhuri S, Mastej V, Axen C, Hitzman R, Ribeiro IMB, Wary KK. Low-Level Nanog Expression in the Regulation of Quiescent Endothelium. Arterioscler Thromb Vasc Biol 2020; 40:2244-2264. [PMID: 32640900 PMCID: PMC7447188 DOI: 10.1161/atvbaha.120.314875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supplemental Digital Content is available in the text. Nanog is expressed in adult endothelial cells (ECs) at a low-level, however, its functional significance is not known. The goal of our study was to elucidate the role of Nanog in adult ECs using a genetically engineered mouse model system.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- From the Department of Psychiatry, Harvard Medical School, Boston, MA (J.B.).,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA (J.B.)
| | - Suhnrita Chaudhuri
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Victoria Mastej
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Cassondra Axen
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Ryan Hitzman
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Isabella M B Ribeiro
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago (V.M., S.C., C.A., R.H., I.M.B.R., K.K.W.)
| |
Collapse
|
28
|
Bertelli A, Sanmarco LM, Pascuale CA, Postan M, Aoki MP, Leguizamón MS. Anti-inflammatory Role of Galectin-8 During Trypanosoma cruzi Chronic Infection. Front Cell Infect Microbiol 2020; 10:285. [PMID: 32714876 PMCID: PMC7343849 DOI: 10.3389/fcimb.2020.00285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Galectins are animal lectins with high affinity for β-galactosides that drive the immune response through several mechanisms. In particular, the role of galectin-8 (Gal-8) in inflammation remains controversial. To analyze its role in a chronic inflammatory environment, we studied a murine model of Trypanosoma cruzi infection. The parasite induces alterations that lead to the development of chronic cardiomyopathy and/or megaviscera in 30% of infected patients. The strong cardiac inflammation along with fibrosis leads to cardiomyopathy, the most relevant consequence of Chagas disease. By analyzing infected wild-type (iWT) and Gal-8-deficient (iGal-8KO) C57BL/6J mice at the chronic phase (4–5 months post-infection), we observed that the lack of Gal-8 favored a generalized increase in heart, skeletal muscle, and liver inflammation associated with extensive fibrosis, unrelated to tissue parasite loads. Remarkably, increased frequencies of neutrophils and macrophages were observed within cardiac iGal-8KO tissue by flow cytometry. It has been proposed that Gal-8, as well as other galectins, induces the surface expression of the inner molecule phosphatidylserine on activated neutrophils, which serves as an “eat-me” signal for macrophages, favoring viable neutrophil removal and tissue injury protection, a process known as preaparesis. We found that the increased neutrophil rates could be associated with the absence of Gal-8-dependent preaparesis, leading to a diminished neutrophil-clearing capability in macrophages. Thus, our results support that Gal-8 exerts an anti-inflammatory role in chronic T. cruzi infection.
Collapse
Affiliation(s)
- Adriano Bertelli
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, San Martín, Argentina.,Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Liliana M Sanmarco
- Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Carla A Pascuale
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, San Martín, Argentina.,Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Departamento de Investigación, Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén, Buenos Aires, Argentina
| | - Maria P Aoki
- Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - María S Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, San Martín, Argentina.,Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
29
|
Aladio JM, Costa D, Matsudo M, Pérez de la Hoz A, González D, Brignoli A, Swieszkowski SP, Pérez de la Hoz R. Cortisol-Mediated Stress Response and Mortality in Acute Coronary Syndrome. Curr Probl Cardiol 2020; 46:100623. [PMID: 32505389 DOI: 10.1016/j.cpcardiol.2020.100623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/08/2023]
Abstract
Acute coronary syndrome is a frequent cause of morbidity and mortality, and a known stress response trigger. We aim to investigate the association between cortisol, as a primary stress hormone, and prognosis/mortality in this scenario. Single-center, prospective, observational, and analytical study in patients admitted for acute coronary syndrome. Clinical characteristics and prognosis markers were registered, along with serum cortisol levels on admission and in-hospital mortality. Cortisol levels were higher in patients with a depressed ST segment (18.22 ± 13.38 μg/dL), compared to those with an isoelectric ST segment (12.66 ± 10.47 μg/dL), and highest in patients with an elevated ST segment (22.61 ± 14.45 μg/dL), with P< 0.001. Also, cortisol was significantly increased in patients with elevated troponin I values (18.90 ± 14.19 μg/dL vs 11.87 ± 8.21 μg/dL, P< 0.001). Patients with Killip-Kimball class I or II had a lower mean serum cortisol (14.66 ± 10.82 μg/dL) than those with class III or IV (41.34 ± 15.57 μg/dL), P< 0.001. Finally, we found that patients who died during hospitalization had higher cortisol on admission: 36.39 ± 17.85 μg/dL vs 15.26 ± 11.59 μg/dL, P= 0.003. Cortisol was directly related to the electrocardiographic presentation of ACS and with the maximum troponin I value. This indicates that serum cortisol levels parallel the extension of ischemia and myocardial injury, and in this way affect the clinical prognosis, evidenced by the Killip-Kimball class and the increase in mortality.
Collapse
|
30
|
Qi Dan Li Xin pill improves chronic heart failure by regulating mTOR/p70S6k-mediated autophagy and inhibiting apoptosis. Sci Rep 2020; 10:6105. [PMID: 32269242 PMCID: PMC7142096 DOI: 10.1038/s41598-020-63090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial remodeling represents a key factor in chronic heart failure (CHF) development, and is characterized by chronic death of cardiomyocytes. Cardiac function changes may be attributed to inflammation, apoptosis and autophagy. This study assessed the effects of Qi Dan Li Xin Pill (QD) on heart function, inflammatory factors, autophagy and apoptosis in cardiac remodeling in CHF rats upon myocardial infarction (MI) induction. Male SD rats underwent a sham procedure or left anterior descending coronary artery (LADCA) ligation, causing MI. Twenty-eight days after modeling, the animals were treated daily with QD, valsartan and saline for 4 weeks. Echocardiography after 4 weeks of drug intervention revealed substantially improved left ventricular remodeling and cardiac function following QD treatment. As demonstrated by decreased IL-1β, IL-6 and TNF-α amounts, this treatment also inhibited the apoptotic process and protected the viability of the myocardium. These outcomes may be attributed to enhanced autophagy in cardiomyocytes, which further reduced pro-inflammatory and pro apoptotic effects. This process may be achieved by QD regulation of the mTOR/P70S6K signaling pathway, suggesting that the traditional Chinese medicine Qi Dan Li Xin pill is effective in heart protective treatment, and is worth further investigation.
Collapse
|
31
|
Bloise N, Rountree I, Polucha C, Montagna G, Visai L, Coulombe KLK, Munarin F. Engineering Immunomodulatory Biomaterials for Regenerating the Infarcted Myocardium. Front Bioeng Biotechnol 2020; 8:292. [PMID: 32318563 PMCID: PMC7154131 DOI: 10.3389/fbioe.2020.00292] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Coronary artery disease is a severe ischemic condition characterized by the reduction of blood flow in the arteries of the heart that results in the dysfunction and death of cardiac tissue. Despite research over several decades on how to reduce long-term complications and promote angiogenesis in the infarct, the medical field has yet to define effective treatments for inducing revascularization in the ischemic tissue. With this work, we have developed functional biomaterials for the controlled release of immunomodulatory cytokines to direct immune cell fate for controlling wound healing in the ischemic myocardium. The reparative effects of colony-stimulating factor (CSF-1), and anti-inflammatory interleukins 4/6/13 (IL4/6/13) have been evaluated in vitro and in a predictive in vivo model of ischemia (the skin flap model) to optimize a new immunomodulatory biomaterial that we use for treating infarcted rat hearts. Alginate hydrogels have been produced by internal gelation with calcium carbonate (CaCO3) as carriers for the immunomodulatory cues, and their stability, degradation, rheological properties and release kinetics have been evaluated in vitro. CD14 positive human peripheral blood monocytes treated with the immunomodulatory biomaterials show polarization into pro-healing macrophage phenotypes. Unloaded and CSF-1/IL4 loaded alginate gel formulations have been implanted in skin flap ischemic wounds to test the safety and efficacy of the delivery system in vivo. Faster wound healing is observed with the new therapeutic treatment, compared to the wounds treated with the unloaded controls at day 14. The optimized therapy has been evaluated in a rat model of myocardial infarct (ischemia/reperfusion). Macrophage polarization toward healing phenotypes and global cardiac function measured with echocardiography and immunohistochemistry at 4 and 15 days demonstrate the therapeutic potential of the proposed immunomodulatory treatment in a clinically relevant infarct model.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, ICS Maugeri, IRCCS, Pavia, Italy
| | - Isobel Rountree
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Giulia Montagna
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, ICS Maugeri, IRCCS, Pavia, Italy
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Fabiola Munarin
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
32
|
Susca MG, Hodas R, Benedek T, Benedek I, Chitu M, Opincariu D, Chiotoroiu A, Rezus C. Impact of cardiac rehabilitation programs on left ventricular remodeling after acute myocardial infarction: Study Protocol Clinical Trial (SPIRIT Compliant). Medicine (Baltimore) 2020; 99:e19759. [PMID: 32311978 PMCID: PMC7220465 DOI: 10.1097/md.0000000000019759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION While the role of early mobilization in the immediate postinfarction period has been well demonstrated, little is known in present about the link between early mobilization and reduction of systemic inflammation. At the same time, the impact of early mobilization on regression of left ventricular remodeling has not been elucidated so far. MATERIAL AND METHODS Here we present the study protocol of the REHAB trial, a clinical descriptive, prospective study, conducted in a single-center, with the purpose to analyze the impact of early mobilization in reducing left ventricular remodeling, the complication rates and mortality in patients who had suffered a recent acute myocardial infarction (AMI). At the same time, the study aims to demonstrate the contribution of early mobilization to reduction of systemic inflammation, thus reducing the inflammation-mediated ventricular remodeling. 100 patients with AMI in the last 12 hours, and successful revascularization of the culprit artery within the first 12 hours after the onset of symptoms in ST-segment elevation acute myocardial infarction or within first 48 hours in non ST-segment elevation AMI will be enrolled in the study. Based on the moment of mobilization after AMI patients will be distributed in 2 groups: group 1 - patients with early mobilization (<2 days after the onset of symptoms) and; group 2 - subjects with delayed mobilization after AMI (>2 days after the onset of symptoms). Study outcomes will consist in the impact of early mobilization after AMI on the ventricular remodeling in the post-infarction period, as assessed by cardiac magnetic resonance imaging, the rate of in-hospital mortality, the rate of repeated revascularization or MACE and the effect of early mobilization on systemic inflammation in the immediate postinfarction phase. CONCLUSION In conclusion, REHAB will be the first trial that will elucidate the impact of early mobilization in the first period after AMI, as a first step of a complex cardiac rehabilitation program, to reduce systemic inflammation and prevent deleterious ventricular remodeling in patients who suffered a recent AMI.
Collapse
Affiliation(s)
| | | | - Theodora Benedek
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu Mures
| | - Imre Benedek
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures
| | - Monica Chitu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures
| | - Diana Opincariu
- Clinic of Cardiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures
- Department of Advanced Research in Multimodality Cardiovascular Imaging, Cardio Med Medical Center, Targu Mures
| | - Andreea Chiotoroiu
- University of Medicine, Pharmacy, Sciences and Technology of Targu Mures
| | - Ciprian Rezus
- University of Medicine and Pharmacy ‘Gr.T.Popa’, Iasi, Romania
| |
Collapse
|
33
|
Cheng Y, Luo D, Zhao Y, Rong J. N-Propargyl caffeate amide (PACA) prevents cardiac fibrosis in experimental myocardial infarction by promoting pro-resolving macrophage polarization. Aging (Albany NY) 2020; 12:5384-5398. [PMID: 32203054 PMCID: PMC7138579 DOI: 10.18632/aging.102959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
Macrophages control the initiation and resolution of cardiac fibrosis in post-infarction cardiac remodeling. The aim of the present study was to investigate whether N-propargyl caffeate amide (PACA) could suppress myocardial fibrosis via regulating macrophage polarization. By using rat model of isoproterenol-induced myocardial fibrosis, we discovered that PACA could reduce cardiac fibrosis in a dose-dependent manner. To elucidate the anti-fibrotic mechanisms, we examined whether PACA affected pro-inflammatory M1 and pro-resolving macrophage biomarkers in macrophage polarization. As result, PACA reduced the expression of pro-inflammatory M1 biomarkers (e.g., iNOS, TNF-α, CXCL10, IL-6, CCL2 and CD80) while increased the expression of pro-resolving M2a biomarkers (e.g., IL-10, arginase-1, FZZ1, YM-1 and CD163) in LPS-stimulated RAW264.7 macrophages. PACA also suppressed the elevation of M1 biomarker ED1 in the early phase but up-regulated the expression of pro-resolving biomarker ED2 in the later phase. Moreover, PACA reduced the expression of pro-fibrotic TGF-β1 and PDGF-α while maintained or even increased the production of pro-apoptotic MMP-13, MMP-9 and TRAIL. Importantly, mechanistic studies revealed that PACA might promote the switch of macrophage polarization towards a pro-resolving macrophage phenotype via activating PPAR-γ pathway. Taken together, this study suggested that PACA might be a drug candidate for preventing cardiac fibrosis in myocardial infarction.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dan Luo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yingke Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
34
|
Electroacupuncture preconditioning attenuates acute myocardial ischemia injury through inhibiting NLRP3 inflammasome activation in mice. Life Sci 2020; 248:117451. [PMID: 32088213 DOI: 10.1016/j.lfs.2020.117451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
AIMS Electro-acupuncture pretreatment (EAP) plays a protective role in myocardial ischemia (MI) injury. However, the underlying mechanism remains unclear. A growing body of evidence suggests postinfarction inflammatory response directly affects the remodeling of ventricular function. The purpose of this study was to investigate whether EAP alleviates MI through NLRP3 inflammasome inhibition. MATERIALS AND METHODS We constructed an AMI model by ligating the left anterior descending (LAD) coronary artery after 3 days of EAP with C57BL/6 mice. Echocardiography and TTC staining were employed to evaluate cardiac function and infarct size after 24 h of ischemia. HE staining and immunohistochemistry were employed to determine inflammatory level. Then, inflammasome activation was detected by western blotting, and macrophage polarization and neutrophil infiltration were observed by flow cytometry. KEY FINDINGS Our preliminary findings showed that EAP reduced the infarct area and increased fractional shortening (FS) and ejection fraction (EF) and decreased the degree of inflammation after AMI injury. Meanwhile, EAP inhibited the expression of NLRP3, cleaved caspase-1 and IL-1β in ischemia myocardial tissue, companied by inhibiting the expression of F4/80+, CD11b+, CD206low macrophages and activated M2 macrophage, and decreasing Ly-6G+CD11b+ neutrophils in ischemia myocardial and spleen tissue. SIGNIFICANCE EAP inhibits the activation of NLRP3 inflammasome, promotes M2 polarization of macrophages and reduces the recruitment of neutrophils in damaged myocardium, thereby decreases the infarct size and improves the cardiac function.
Collapse
|
35
|
Achilli F, Pontone G, Bassetti B, Squadroni L, Campodonico J, Corrada E, Facchini C, Mircoli L, Esposito G, Scarpa D, Pidello S, Righetti S, Di Gennaro F, Guglielmo M, Muscogiuri G, Baggiano A, Limido A, Lenatti L, Di Tano G, Malafronte C, Soffici F, Ceseri M, Maggiolini S, Colombo GI, Pompilio G. G-CSF for Extensive STEMI. Circ Res 2019; 125:295-306. [PMID: 31138020 DOI: 10.1161/circresaha.118.314617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE In the exploratory Phase II STEM-AMI (Stem Cells Mobilization in Acute Myocardial Infarction) trial, we reported that early administration of G-CSF (granulocyte colony-stimulating factor), in patients with anterior ST-segment-elevation myocardial infarction and left ventricular (LV) dysfunction after successful percutaneous coronary intervention, had the potential to significantly attenuate LV adverse remodeling in the long-term. OBJECTIVE The STEM-AMI OUTCOME CMR (Stem Cells Mobilization in Acute Myocardial Infarction Outcome Cardiac Magnetic Resonance) Substudy was adequately powered to evaluate, in a population showing LV ejection fraction ≤45% after percutaneous coronary intervention for extensive ST-segment-elevation myocardial infarction, the effects of early administration of G-CSF in terms of LV remodeling and function, infarct size assessed by late gadolinium enhancement, and myocardial strain. METHODS AND RESULTS Within the Italian, multicenter, prospective, randomized, Phase III STEM-AMI OUTCOME trial, 161 ST-segment-elevation myocardial infarction patients were enrolled in the CMR Substudy and assigned to standard of care (SOC) plus G-CSF or SOC alone. In 119 patients (61 G-CSF and 58 SOC, respectively), CMR was available at baseline and 6-month follow-up. Paired imaging data were independently analyzed by 2 blinded experts in a core CMR lab. The 2 groups were similar for clinical characteristics, cardiovascular risk factors, and pharmacological treatment, except for a trend towards a larger infarct size and longer symptom-to-balloon time in G-CSF patients. ANCOVA showed that the improvement of LV ejection fraction from baseline to 6 months was 5.1% higher in G-CSF patients versus SOC (P=0.01); concurrently, there was a significant between-group difference of 6.7 mL/m2 in the change of indexed LV end-systolic volume in favor of G-CSF group (P=0.02). Indexed late gadolinium enhancement significantly decreased in G-CSF group only (P=0.04). Moreover, over time improvement of global longitudinal strain was 2.4% higher in G-CSF patients versus SOC (P=0.04). Global circumferential strain significantly improved in G-CSF group only (P=0.006). CONCLUSIONS Early administration of G-CSF exerted a beneficial effect on top of SOC in patients with LV dysfunction after extensive ST-segment-elevation myocardial infarction in terms of global systolic function, adverse remodeling, scar size, and myocardial strain. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01969890.
Collapse
Affiliation(s)
- Felice Achilli
- From the Departments of Cardiology (F.A., S.R., C.M., F.S.), ASST-Monza, San Gerardo Hospital, Monza, Italy
| | - Gianluca Pontone
- Cardiovascular Imaging (G. Pontone, M.G., G.M., A.B.), Centro Cardiologico Monzino IRCCS, Milano, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Italy (G.P.)
| | - Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit (B.B., G. Pompilio), Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Lidia Squadroni
- Department of Cardiology, San Carlo Borromeo Hospital, Milano, Italy (L.S.)
| | - Jeness Campodonico
- Intensive Cardiac Care Unit (J.C.), Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Elena Corrada
- Cardiovascular Department, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy (E.C.)
| | | | - Luca Mircoli
- Cardiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy (L.M.)
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, Napoli, Italy (G.E.)
| | - Daniele Scarpa
- Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy (D.S.)
| | - Stefano Pidello
- Cardiology, Città della Salute e della Scienza University Hospital of Torino, Italy (S.P.)
| | - Stefano Righetti
- From the Departments of Cardiology (F.A., S.R., C.M., F.S.), ASST-Monza, San Gerardo Hospital, Monza, Italy
| | | | - Marco Guglielmo
- Cardiovascular Imaging (G. Pontone, M.G., G.M., A.B.), Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Giuseppe Muscogiuri
- Cardiovascular Imaging (G. Pontone, M.G., G.M., A.B.), Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Andrea Baggiano
- Cardiovascular Imaging (G. Pontone, M.G., G.M., A.B.), Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Alberto Limido
- Coronary Intensive Care Unit, ASST-Settelaghi, Ospedale di Circolo-Fondazione Macchi, Varese, Italy (A.L.)
| | - Laura Lenatti
- Cardiology, Alessandro Manzoni Hospital, Lecco, Italy (L.L.)
| | | | - Cristina Malafronte
- From the Departments of Cardiology (F.A., S.R., C.M., F.S.), ASST-Monza, San Gerardo Hospital, Monza, Italy
| | - Federica Soffici
- From the Departments of Cardiology (F.A., S.R., C.M., F.S.), ASST-Monza, San Gerardo Hospital, Monza, Italy
| | - Martina Ceseri
- ANMCO Research Center, Heart Care Foundation, Firenze, Italy (M.C.)
| | | | - Gualtiero I Colombo
- Immunology and Functional Genomics Unit (G.I.C.), Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit (B.B., G. Pompilio), Centro Cardiologico Monzino IRCCS, Milano, Italy
| | | |
Collapse
|
36
|
Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S. Anti-fibrotic Actions of Roselle Extract in Rat Model of Myocardial Infarction. Cardiovasc Toxicol 2019; 19:72-81. [PMID: 30128816 DOI: 10.1007/s12012-018-9478-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Disease Models, Animal
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hibiscus/chemistry
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Inflammation Mediators/blood
- Interleukin-10/blood
- Interleukin-10/genetics
- Interleukin-6/blood
- Interleukin-6/genetics
- Isoproterenol
- Male
- Myocardial Infarction/chemically induced
- Myocardial Infarction/drug therapy
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Rats, Wistar
- Troponin T/blood
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Shafreena Shaukat Ali
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Siti Fatimah Azaharah Mohamed
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nur Hafiqah Rozalei
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Yap Wei Boon
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, School of Diagnostic Sciences & Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Wernly B, Mirna M, Rezar R, Prodinger C, Jung C, Podesser BK, Kiss A, Hoppe UC, Lichtenauer M. Regenerative Cardiovascular Therapies: Stem Cells and Beyond. Int J Mol Sci 2019; 20:E1420. [PMID: 30901815 PMCID: PMC6470623 DOI: 10.3390/ijms20061420] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Although reperfusion therapy has improved outcomes, acute myocardial infarction (AMI) is still associated with both significant mortality and morbidity. Once irreversible myocardial cell death due to ischemia and reperfusion sets in, scarring leads to reduction in left ventricular function and subsequent heart failure. Regenerative cardiovascular medicine experienced a boost in the early 2000s when regenerative effects of bone marrow stem cells in a murine model of AMI were described. Translation from an animal model to stem cell application in a clinical setting was rapid and the first large trials in humans suffering from AMI were conducted. However, high initial hopes were early shattered by inconsistent results of randomized clinical trials in patients suffering from AMI treated with stem cells. Hence, we provide an overview of both basic science and clinical trials carried out in regenerative cardiovascular therapies. Possible pitfalls in specific cell processing techniques and trial design are discussed as these factors influence both basic science and clinical outcomes. We address possible solutions. Alternative mechanisms and explanations for effects seen in both basic science and some clinical trials are discussed here, with special emphasis on paracrine mechanisms via growth factors, exosomes, and microRNAs. Based on these findings, we propose an outlook in which stem cell therapy, or therapeutic effects associated with stem cell therapy, such as paracrine mechanisms, might play an important role in the future. Optimizing stem cell processing and a better understanding of paracrine signaling as well as its effect on cardioprotection and remodeling after AMI might improve not only AMI research, but also our patients' outcomes.
Collapse
Affiliation(s)
- Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Moritz Mirna
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Richard Rezar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Christine Prodinger
- Department of Dermatology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research, Medical University Vienna, 1090 Vienna, Austria.
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research, Medical University Vienna, 1090 Vienna, Austria.
| | - Uta C Hoppe
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
38
|
Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019; 114:19. [PMID: 30887214 DOI: 10.1007/s00395-019-0722-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Heart failure is a consequence of various cardiovascular diseases and associated with poor prognosis. Despite progress in the treatment of heart failure in the past decades, prevalence and hospitalisation rates are still increasing. Heart failure is typically associated with cardiac remodelling. Here, inflammation and fibrosis are thought to play crucial roles. During cardiac inflammation, immune cells invade the cardiac tissue and modulate tissue-damaging responses. Cardiac fibrosis, however, is characterised by an increased amount and a disrupted composition of extracellular matrix proteins. As evidence exists that cardiac inflammation and fibrosis are potentially reversible in experimental and clinical set ups, they are interesting targets for innovative heart failure treatments. In this context, animal models are important as they mimic clinical conditions of heart failure patients. The advantages of mice in this respect are short generation times and genetic modifications. As numerous murine models of heart failure exist, the selection of a proper disease model for a distinct research question is demanding. To facilitate this selection, this review aims to provide an overview about the current understanding of the pathogenesis of cardiac inflammation and fibrosis in six frequently used murine models of heart failure. Hence, it compares the models of myocardial infarction with or without reperfusion, transverse aortic constriction, chronic subjection to angiotensin II or deoxycorticosterone acetate, and coxsackievirus B3-induced viral myocarditis in this context. It furthermore provides information about the clinical relevance and the limitations of each model, and, if applicable, about the recent advancements in their methodological proceedings.
Collapse
|
39
|
Huang K, Hu S, Cheng K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv Healthc Mater 2019; 8:e1801011. [PMID: 30548836 PMCID: PMC6368830 DOI: 10.1002/adhm.201801011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI), caused by coronary heart disease (CHD), remains one of the most common causes of death in the United States. Over the last few decades, scientists have invested considerable resources on the study and development of cell therapies for myocardial regeneration after MI. However, due to a number of limitations, they are not yet readily available for clinical applications. Mounting evidence supports the theory that paracrine products are the main contributors to the regenerative effects attributed to these cell therapies. The next generation of cell-based MI therapies will identify and isolate cell products and derivatives, integrate them with biocompatible materials and technologies, and use them for the regeneration of damaged myocardial tissue. This review discusses the progress made thus far in pursuit of this new generation of cell therapies. Their fundamental regenerative mechanisms, their potential to combine with other therapeutic products, and their role in shaping new clinical approaches for heart tissue engineering, are addressed.
Collapse
Affiliation(s)
- Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
- Pharmacoengineeirng and Molecular Pharmaceutics Division, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
40
|
Mouton AJ, Rivera Gonzalez OJ, Kaminski AR, Moore ET, Lindsey ML. Matrix metalloproteinase-12 as an endogenous resolution promoting factor following myocardial infarction. Pharmacol Res 2018; 137:252-258. [PMID: 30394317 DOI: 10.1016/j.phrs.2018.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Following myocardial infarction (MI), timely resolution of inflammation promotes wound healing and scar formation while limiting excessive tissue damage. Resolution promoting factors (RPFs) are agents that blunt leukocyte trafficking and inflammation, promote necrotic and apoptotic cell clearance, and stimulate scar formation. Previously identified RPFs include mediators derived from lipids (resolvins, lipoxins, protectins, and maresins), proteins (glucocorticoids, annexin A1, galectin 1, and melanocortins), or gases (CO, H2S, and NO). Matrix metalloproteinase-12 (MMP-12; macrophage elastase) has shown promising RPF qualities in a variety of disease states. We review here the evidence that MMP-12 may serve as a novel RPF with potential therapeutic efficacy in the setting of MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Osvaldo J Rivera Gonzalez
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Amanda R Kaminski
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Edwin T Moore
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, United States; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, 1500 E Woodrow Wilson Ave, Jackson, MS, 39216, United States.
| |
Collapse
|
41
|
Trial J, Cieslik KA. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am J Physiol Heart Circ Physiol 2018; 315:H745-H755. [PMID: 29906228 DOI: 10.1152/ajpheart.00237.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cardiac fibroblast plays a central role in tissue homeostasis and in repair after injury. With aging, dysregulated cardiac fibroblasts have a reduced capacity to activate a canonical transforming growth factor-β-Smad pathway and differentiate poorly into contractile myofibroblasts. That results in the formation of an insufficient scar after myocardial infarction. In contrast, in the uninjured aged heart, fibroblasts are activated and acquire a profibrotic phenotype that leads to interstitial fibrosis, ventricular stiffness, and diastolic dysfunction, all conditions that may lead to heart failure. There is an apparent paradox in aging, wherein reparative fibrosis is impaired but interstitial, adverse fibrosis is augmented. This could be explained by analyzing the effectiveness of signaling pathways in resident fibroblasts from young versus aged hearts. Whereas defective signaling by transforming growth factor-β leads to insufficient scar formation by myofibroblasts, enhanced activation of the ERK1/2 pathway may be responsible for interstitial fibrosis mediated by activated fibroblasts. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/fibroblast-phenotypic-changes-in-the-aging-heart/ .
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| |
Collapse
|