1
|
Feng T, Zhang C, Chen W, Zhou J, Chen L, Wang L, Wang Y, Xie Z, Xu S, Xiang J. Resting-state connectivity enhancement in Aphasia patients post-speech therapy: a localization model. Brain Imaging Behav 2025:10.1007/s11682-025-00968-0. [PMID: 39900770 DOI: 10.1007/s11682-025-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Resting-state functional connectivity has become a valuable tool in studying post-stroke aphasia (PSA). However, the specific distribution of increased functional connectivity areas (IFCAs) in PSA patients after speech-language therapy (SLT) remains unclear, particularly compared with the intrinsic brain network (IBN) observed in healthy controls. This study aimed to explore the effects of SLT and spontaneous recovery on functional connectivity changes in the brain. We recruited twenty healthy controls and twelve PSA patients, each of whom underwent one month of SLT. The Chinese version of the Western Aphasia Battery (WAB) was administered to assess language function recovery. The Dice coefficients were calculated between each patient's lesion and the reference lesion, which showed moderate to high intensity. The results revealed a close association between the spatial distribution of IFCAs and improvements in specific language functions. Our findings indicate that the distribution pattern of IFCAs may serve as a significant marker of recovery in PSA patients.
Collapse
Affiliation(s)
- Tao Feng
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Zhang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weiwei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| | - Jie Zhou
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lingmin Wang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yanan Wang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhiyuan Xie
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Siwei Xu
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
- Department of Rehabilitation, The Third Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Hopkins WD, Spocter MA, Mulholland MM, Sherwood CC. Gray matter volume and asymmetry in Broca's and Wernicke's area homologs in chimpanzees (Pan troglodytes) using a probabilistic region of interest approach. Neuroimage 2025; 307:121038. [PMID: 39826775 DOI: 10.1016/j.neuroimage.2025.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Broca's and Wernicke's areas are comprised of Brodmann areas 44, 45 and 22 in the human brain. Because of their roles in higher cognitive and linguistic function, there has been historical and contemporary interest in comparative studies on the morphology and cytoarchitectonic organization in Broca's and Wernicke's between primate species. One challenge to comparative morphological studies between human and nonhuman primates for Broca's and Wernicke's areas is the absence in homologous sulci used to define these regions. To address this limitation, we created probabilistic atlas maps of BA44, BA45 and BA22 based on previously reported cytoarchitectonic maps of these regions in chimpanzees. We then applied the maps to segmented gray matter volume to estimate gray matter within each region and hemisphere. Females were found to have significantly higher gray matter volumes for BA44 and BA45 compared males. Significant negative associations were found between age and gray matter volume for BA44 and BA45 but not BA22. Population-level asymmetries were found for BA44, BA45 and BA22 but there are some limitations in the interpretation of these findings. Lastly, using quantitative genetic analyses, we found significant heritability in the average gray matter volume for BA44 and BA45 but not BA22. The sex and age effects found in chimpanzees are consistent with previous studies in humans.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.
| | | | - Michele M Mulholland
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington DC, USA
| |
Collapse
|
3
|
Cacciante L, Pregnolato G, Salvalaggio S, Federico S, Kiper P, Smania N, Turolla A. Language and gesture neural correlates: A meta-analysis of functional magnetic resonance imaging studies. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:902-912. [PMID: 37971416 DOI: 10.1111/1460-6984.12987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Humans often use co-speech gestures to promote effective communication. Attention has been paid to the cortical areas engaged in the processing of co-speech gestures. AIMS To investigate the neural network underpinned in the processing of co-speech gestures and to observe whether there is a relationship between areas involved in language and gesture processing. METHODS & PROCEDURES We planned to include studies with neurotypical and/or stroke participants who underwent a bimodal task (i.e., processing of co-speech gestures with relative speech) and a unimodal task (i.e., speech or gesture alone) during a functional magnetic resonance imaging (fMRI) session. After a database search, abstract and full-text screening were conducted. Qualitative and quantitative data were extracted, and a meta-analysis was performed with the software GingerALE 3.0.2, performing contrast analyses of uni- and bimodal tasks. MAIN CONTRIBUTION The database search produced 1024 records. After the screening process, 27 studies were included in the review. Data from 15 studies were quantitatively analysed through meta-analysis. Meta-analysis found three clusters with a significant activation of the left middle frontal gyrus and inferior frontal gyrus, and bilateral middle occipital gyrus and inferior temporal gyrus. CONCLUSIONS There is a close link at the neural level for the semantic processing of auditory and visual information during communication. These findings encourage the integration of the use of co-speech gestures during aphasia treatment as a strategy to foster the possibility to communicate effectively for people with aphasia. WHAT THIS PAPER ADDS What is already known on this subject Gestures are an integral part of human communication, and they may have a relationship at neural level with speech processing. What this paper adds to the existing knowledge During processing of bi- and unimodal communication, areas related to semantic processing and multimodal processing are activated, suggesting that there is a close link between co-speech gestures and spoken language at a neural level. What are the potential or actual clinical implications of this work? Knowledge of the functions related to gesture and speech processing neural networks will allow for the adoption of model-based neurorehabilitation programs to foster recovery from aphasia by strengthening the specific functions of these brain networks.
Collapse
Affiliation(s)
- Luisa Cacciante
- Laboratory of Healthcare Innovation Technology, IRCCS San Camillo Hospital, Venice, Italy
| | - Giorgia Pregnolato
- Laboratory of Healthcare Innovation Technology, IRCCS San Camillo Hospital, Venice, Italy
| | - Silvia Salvalaggio
- Laboratory of Computational Neuroimaging, IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Sara Federico
- Laboratory of Healthcare Innovation Technology, IRCCS San Camillo Hospital, Venice, Italy
| | - Pawel Kiper
- Laboratory of Healthcare Innovation Technology, IRCCS San Camillo Hospital, Venice, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
5
|
Papitto G, Friederici AD, Zaccarella E. Distinct neural mechanisms for action access and execution in the human brain: insights from an fMRI study. Cereb Cortex 2024; 34:bhae163. [PMID: 38629799 PMCID: PMC11022341 DOI: 10.1093/cercor/bhae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Goal-directed actions are fundamental to human behavior, whereby inner goals are achieved through mapping action representations to motor outputs. The left premotor cortex (BA6) and the posterior portion of Broca's area (BA44) are two modulatory poles of the action system. However, how these regions support the representation-output mapping within the system is not yet understood. To address this, we conducted a finger-tapping functional magnetic resonance imaging experiment using action categories ranging from specific to general. Our study found distinct neural behaviors in BA44 and BA6 during action category processing and motor execution. During access of action categories, activity in a posterior portion of BA44 (pBA44) decreased linearly as action categories became less specific. Conversely, during motor execution, activity in BA6 increased linearly with less specific categories. These findings highlight the differential roles of pBA44 and BA6 in action processing. We suggest that pBA44 facilitates access to action categories by utilizing motor information from the behavioral context while the premotor cortex integrates motor information to execute the selected action. This finding enhances our understanding of the interplay between prefrontal cortical regions and premotor cortex in mapping action representation to motor execution and, more in general, of the cortical mechanisms underlying human behavior.
Collapse
Affiliation(s)
- Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Stephanstraße 1a, 04103 Leipzig, Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Gerrits R. Variability in Hemispheric Functional Segregation Phenotypes: A Review and General Mechanistic Model. Neuropsychol Rev 2024; 34:27-40. [PMID: 36576683 DOI: 10.1007/s11065-022-09575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022]
Abstract
Many functions of the human brain are organized asymmetrically and are subject to strong population biases. Some tasks, like speaking and making complex hand movements, exhibit left hemispheric dominance, whereas others, such as spatial processing and recognizing faces, favor the right hemisphere. While pattern of preference implies the existence of a stereotypical way of distributing functions between the hemispheres, an ever-increasing body of evidence indicates that not everyone follows this pattern of hemispheric functional segregation. On the contrary, the review conducted in this article shows that departures from the standard hemispheric division of labor are routinely observed and assume many distinct forms, each having a different prevalence rate. One of the key challenges in human neuroscience is to model this variability. By integrating well-established and recently emerged ideas about the mechanisms that underlie functional lateralization, the current article proposes a general mechanistic model that explains the observed distribution of segregation phenotypes and generates new testable hypotheses.
Collapse
Affiliation(s)
- Robin Gerrits
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Cona G, Santacesaria P, Scarpazza C. Envisioning the future: An ALE meta-analysis on neural correlates of future thinking, prospective memory and delay discounting. Neurosci Biobehav Rev 2023; 153:105355. [PMID: 37562654 DOI: 10.1016/j.neubiorev.2023.105355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Our representations of the future are processed in the service of several different cognitive functions, including episodic future thinking, prospective memory, and temporal discounting. The present meta-analysis used the Activation Likelihood Estimation method to understand whether there is a core network underlying future-oriented cognition and to identify the specific brain regions that support future-related processes in each function. Following the PRISMA guidelines, a total of 24, 19, and 27 neuroimaging studies were included for future thinking, prospective memory, and temporal discounting, respectively. Results showed that there is no specific region or network for the future. Instead, the 'future' seems to be represented on an anterior-posterior tangibility gradient, based on the level of abstractness/concreteness of the simulated scenario. Additionally, future-oriented cognition is mediated by two distinct networks: the Default Network and the Salience Network. The Default Network is mainly active in supporting future thinking, whereas the Salience Network is primarily involved in prospective memory and delay discounting.
Collapse
Affiliation(s)
- Giorgia Cona
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padua, Italy; Padova Neuroscience Center, University of Padua, Italy.
| | - Paola Santacesaria
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padua, Italy; Padova Neuroscience Center, University of Padua, Italy
| | - Cristina Scarpazza
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padua, Italy; IRCSS San Camillo Hospital, Venice, Italy
| |
Collapse
|
8
|
Wang Y, Yu N, Lu J, Zhang X, Wang J, Shu Z, Cheng Y, Zhu Z, Yu Y, Liu P, Han J, Wu J. Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:165-178. [PMID: 36872789 PMCID: PMC10041419 DOI: 10.3233/jpd-223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND In Parkinson's disease (PD), walking may depend on the activation of the cerebral cortex. Understanding the patterns of interaction between cortical regions during walking tasks is of great importance. OBJECTIVE This study investigated differences in the effective connectivity (EC) of the cerebral cortex during walking tasks in individuals with PD and healthy controls. METHODS We evaluated 30 individuals with PD (62.4±7.2 years) and 22 age-matched healthy controls (61.0±6.4 years). A mobile functional near-infrared spectroscopy (fNIRS) was used to record cerebral oxygenation signals in the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left parietal lobe (LPL), and right parietal lobe (RPL) and analyze the EC of the cerebral cortex. A wireless movement monitor was used to measure the gait parameters. RESULTS Individuals with PD demonstrated a primary coupling direction from LPL to LPFC during walking tasks, whereas healthy controls did not demonstrate any main coupling direction. Compared with healthy controls, individuals with PD showed statistically significantly increased EC coupling strength from LPL to LPFC, from LPL to RPFC, and from LPL to RPL. Individuals with PD showed decreased gait speed and stride length and increased variability in speed and stride length. The EC coupling strength from LPL to RPFC negatively correlated with speed and positively correlated with speed variability in individuals with PD. CONCLUSION In individuals with PD, the left prefrontal cortex may be regulated by the left parietal lobe during walking. This may be the result of functional compensation in the left parietal lobe.
Collapse
Affiliation(s)
- Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Yuanyuan Cheng
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| |
Collapse
|
9
|
Grant JH, Parker AJ, Hodgson JC, Hudson JM, Bishop DVM. Testing the relationship between lateralization on sequence-based motor tasks and language laterality using an online battery. Laterality 2023; 28:1-31. [PMID: 36205529 DOI: 10.1080/1357650x.2022.2129668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACTStudies have highlighted an association between motor laterality and speech production laterality. It is thought that common demands for sequential processing may underlie this association. However, most studies in this area have relied on relatively small samples and have infrequently explored the reliability of the tools used to assess lateralization. We, therefore, established the validity and reliability of an online battery measuring sequence-based motor laterality and language laterality before exploring the associations between laterality indices on language and motor tasks. The online battery was completed by 621 participants, 52 of whom returned to complete the battery a second time. The three motor tasks included in the battery showed good between-session reliability (r ≥ .78) and were lateralized in concordance with hand preference. The novel measure of speech production laterality was left lateralized at population level as predicted, but reliability was less satisfactory (r = .62). We found no evidence of an association between sequence-based motor laterality and language laterality. Those with a left-hand preference were more strongly lateralized on motor tasks requiring midline crossing; this effect was not observed in right-handers. We conclude that there is little evidence of the co-lateralization of language and sequence-based motor skill on this battery.
Collapse
Affiliation(s)
- Jack H Grant
- School of Psychology, University of Lincoln, Lincoln, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Adam J Parker
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | | | - John M Hudson
- School of Psychology, University of Lincoln, Lincoln, UK
| | | |
Collapse
|
10
|
Structural Brain Asymmetries for Language: A Comparative Approach across Primates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor.
Collapse
|
11
|
Cerebral Polymorphisms for Lateralisation: Modelling the Genetic and Phenotypic Architectures of Multiple Functional Modules. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent fMRI and fTCD studies have found that functional modules for aspects of language, praxis, and visuo-spatial functioning, while typically left, left and right hemispheric respectively, frequently show atypical lateralisation. Studies with increasing numbers of modules and participants are finding increasing numbers of module combinations, which here are termed cerebral polymorphisms—qualitatively different lateral organisations of cognitive functions. Polymorphisms are more frequent in left-handers than right-handers, but it is far from the case that right-handers all show the lateral organisation of modules described in introductory textbooks. In computational terms, this paper extends the original, monogenic McManus DC (dextral-chance) model of handedness and language dominance to multiple functional modules, and to a polygenic DC model compatible with the molecular genetics of handedness, and with the biology of visceral asymmetries found in primary ciliary dyskinesia. Distributions of cerebral polymorphisms are calculated for families and twins, and consequences and implications of cerebral polymorphisms are explored for explaining aphasia due to cerebral damage, as well as possible talents and deficits arising from atypical inter- and intra-hemispheric modular connections. The model is set in the broader context of the testing of psychological theories, of issues of laterality measurement, of mutation-selection balance, and the evolution of brain and visceral asymmetries.
Collapse
|
12
|
Becker Y, Claidière N, Margiotoudi K, Marie D, Roth M, Nazarian B, Anton JL, Coulon O, Meguerditchian A. Broca area homologue's asymmetry reflects gestural communication lateralisation in monkeys (Papio anubis). eLife 2022; 11:70521. [PMID: 35108197 PMCID: PMC8846582 DOI: 10.7554/elife.70521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Manual gestures and speech recruit a common neural network, involving Broca’s area in the left hemisphere. Such speech-gesture integration gave rise to theories on the critical role of manual gesturing in the origin of language. Within this evolutionary framework, research on gestural communication in our closer primate relatives has received renewed attention for investigating its potential language-like features. Here, using in vivo anatomical MRI in 50 baboons, we found that communicative gesturing is related to Broca homologue’s marker in monkeys, namely the ventral portion of the Inferior Arcuate sulcus (IA sulcus). In fact, both direction and degree of gestural communication’s handedness – but not handedness for object manipulation are associated and correlated with contralateral depth asymmetry at this exact IA sulcus portion. In other words, baboons that prefer to communicate with their right hand have a deeper left-than-right IA sulcus, than those preferring to communicate with their left hand and vice versa. Interestingly, in contrast to handedness for object manipulation, gestural communication’s lateralisation is not associated to the Central sulcus depth asymmetry, suggesting a double dissociation of handedness’ types between manipulative action and gestural communication. It is thus not excluded that this specific gestural lateralisation signature within the baboons’ frontal cortex might reflect a phylogenetical continuity with language-related Broca lateralisation in humans.
Collapse
Affiliation(s)
- Yannick Becker
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Nicolas Claidière
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Konstantina Margiotoudi
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Damien Marie
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Muriel Roth
- Centre IRMf Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Bruno Nazarian
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Jean-Luc Anton
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
13
|
Jia G, Liu G, Niu H. Hemispheric Lateralization of Visuospatial Attention Is Independent of Language Production on Right-Handers: Evidence From Functional Near-Infrared Spectroscopy. Front Neurol 2022; 12:784821. [PMID: 35095729 PMCID: PMC8795708 DOI: 10.3389/fneur.2021.784821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
It is well-established that visuospatial attention is mainly lateralized to the right hemisphere, whereas language production is mainly left-lateralized. However, there is a significant controversy regarding how these two kinds of lateralization interact with each other. The present research used functional near-infrared spectroscopy (fNIRS) to examine whether visuospatial attention is indeed right-lateralized, whereas language production is left-lateralized, and more importantly, whether the extent of lateralization in the visuospatial task is correlated with that in the task involving language. Specifically, fifty-two healthy right-handed participants participated in this study. Multiple-channel fNIRS technique was utilized to record the cerebral hemodynamic changes when participants were engaged in naming objects depicted in pictures (the picture naming task) or judging whether a presented line was bisected correctly (the landmark task). The degree of hemispheric lateralization was quantified according to the activation difference between the left and right hemispheres. We found that the picture-naming task predominantly activated the inferior frontal gyrus (IFG) of the left hemisphere. In contrast, the landmark task predominantly activated the inferior parietal sulcus (IPS) and superior parietal lobule (SPL) of the right hemisphere. The quantitative calculation of the laterality index also showed a left-lateralized distribution for the picture-naming task and a right-lateralized distribution for the landmark task. Intriguingly, the correlation analysis revealed no significant correlation between the laterality indices of these two tasks. Our findings support the independent hypothesis, suggesting that different cognitive tasks may engender lateralized processing in the brain, but these lateralized activities may be independent of each other. Meanwhile, we stress the importance of handedness in understanding the relationship between functional asymmetries. Methodologically, we demonstrated the effectiveness of using the multichannel fNIRS technique to investigate the hemispheric specialization of different cognitive tasks and their lateralization relations between different tasks. Our findings and methods may have important implications for future research to explore lateralization-related issues in individuals with neural pathologies.
Collapse
Affiliation(s)
| | | | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Limb Preference in Animals: New Insights into the Evolution of Manual Laterality in Hominids. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until the 1990s, the notion of brain lateralization—the division of labor between the two hemispheres—and its more visible behavioral manifestation, handedness, remained fiercely defined as a human specific trait. Since then, many studies have evidenced lateralized functions in a wide range of species, including both vertebrates and invertebrates. In this review, we highlight the great contribution of comparative research to the understanding of human handedness’ evolutionary and developmental pathways, by distinguishing animal forelimb asymmetries for functionally different actions—i.e., potentially depending on different hemispheric specializations. Firstly, lateralization for the manipulation of inanimate objects has been associated with genetic and ontogenetic factors, with specific brain regions’ activity, and with morphological limb specializations. These could have emerged under selective pressures notably related to the animal locomotion and social styles. Secondly, lateralization for actions directed to living targets (to self or conspecifics) seems to be in relationship with the brain lateralization for emotion processing. Thirdly, findings on primates’ hand preferences for communicative gestures accounts for a link between gestural laterality and a left-hemispheric specialization for intentional communication and language. Throughout this review, we highlight the value of functional neuroimaging and developmental approaches to shed light on the mechanisms underlying human handedness.
Collapse
|
15
|
Deng X, Wang B, Zong F, Yin H, Yu S, Zhang D, Wang S, Cao Y, Zhao J, Zhang Y. Right-hemispheric language reorganization in patients with brain arteriovenous malformations: A functional magnetic resonance imaging study. Hum Brain Mapp 2021; 42:6014-6027. [PMID: 34582074 PMCID: PMC8596961 DOI: 10.1002/hbm.25666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 11/09/2022] Open
Abstract
Brain arteriovenous malformation (AVM), a presumed congenital lesion, may involve traditional language areas but usually does not lead to language dysfunction unless it ruptures. The objective of this research was to study right-hemispheric language reorganization patterns in patients with brain AVMs using functional magnetic resonance imaging (fMRI). We prospectively enrolled 30 AVM patients with lesions involving language areas and 32 age- and sex-matched healthy controls. Each subject underwent fMRI during three language tasks: visual synonym judgment, oral word reading, and auditory sentence comprehension. The activation differences between the AVM and control groups were investigated by voxelwise analysis. Lateralization indices (LIs) for the frontal lobe, temporal lobe, and cerebellum were compared between the two groups, respectively. Results suggested that the language functions of AVM patients and controls were all normal. Voxelwise analysis showed no significantly different activations between the two groups in visual synonym judgment and oral word reading tasks. In auditory sentence comprehension task, AVM patients had significantly more activations in the right precentral gyrus (BA 6) and right cerebellar lobule VI (AAL 9042). According to the LI results, the frontal lobe in oral word reading task and the temporal lobe in auditory sentence comprehension task were significantly more right-lateralized in the AVM group. These findings suggest that for patients with AVMs involving language cortex, different language reorganization patterns may develop for different language functions. The recruitment of brain areas in the right cerebral and cerebellar hemispheres may play a compensatory role in the reorganized language network of AVM patients.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bo Wang
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China.,State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fangrong Zong
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hu Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaochen Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
16
|
Corballis MC, Corballis PM. Can the mind be split? A historical introduction. Neuropsychologia 2021; 163:108041. [PMID: 34582823 DOI: 10.1016/j.neuropsychologia.2021.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
The idea that the mind might be composed of distinct conscious entities goes back at least to the mid-19th century, and was at first based on the bilateral symmetry of the brain, with each side seemingly a mirror-image replica of the other. This led to early speculation as to whether section of the forebrain commissures might lead to separate, independent consciousnesses. This was not put to the test until the 1960s, first in commissurotomized cats and monkeys, and then in humans who had undergone commissurotomy for the relief of intractable epilepsy. Initial results did indeed suggest independent consciousness in each separated hemisphere, but later findings have also revealed a degree of mental unity, especially in some perceptual functions and in motor control. Some of these findings might be interpreted in terms of subcortical connections or external cross-cuing, and also address questions about the nature of consciousness in a more concrete way.
Collapse
Affiliation(s)
- Michael C Corballis
- School of Psychology, University of Auckland, Science Centre, 23 Symonds Street, Auckland Central, New Zealand.
| | - Paul M Corballis
- School of Psychology, University of Auckland, Science Centre, 23 Symonds Street, Auckland Central, New Zealand.
| |
Collapse
|
17
|
Huber KB, Marsolek CJ. Do cerebral motivational asymmetries mediate the relationship between handedness and personality? Laterality 2021; 27:21-56. [PMID: 34238115 DOI: 10.1080/1357650x.2021.1942483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Handedness has long been tied to personality, but detailed explanations for the association are lacking. Importantly for purposes of theory development, measures of approach and withdrawal associated with Big Five personality traits have also been traced back to activity in brain areas that relate to handedness. Specifically, increased right-hemisphere frontal activity appears to be linked to both withdrawal motivation and left/inconsistent-handedness, while increased left-hemisphere frontal activity is associated with approach motivation and right/consistent-handedness. Cerebral motivational asymmetries therefore present one plausible mechanism by which approach and withdrawal motivation could mediate the relationship between handedness and personality. We tested this possibility in a large online study (N = 499) in which participants completed multiple survey measures. Results indicated that approach/withdrawal motivation partially accounts for relationships between handedness and personality.
Collapse
Affiliation(s)
- Katie B Huber
- Psychological Sciences Department, University of Wisconsin-River Falls, River Falls, WI, USA.,Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Chad J Marsolek
- Department of Psychology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
18
|
Abstract
Humans belong to the vast clade of species known as the bilateria, with a bilaterally symmetrical body plan. Over the course of evolution, exceptions to symmetry have arisen. Among chordates, the internal organs have been arranged asymmetrically in order to create more efficient functioning and packaging. The brain has also assumed asymmetries, although these generally trade off against the pressure toward symmetry, itself a reflection of the symmetry of limbs and sense organs. In humans, at least, brain asymmetries occur in independent networks, including those involved in language and manual manipulation biased to the left hemisphere, and emotion and face perception biased to the right. Similar asymmetries occur in other species, notably the great apes. A number of asymmetries are correlated with conditions such as dyslexia, autism, and schizophrenia, and have largely independent genetic associations. The origin of asymmetry itself, though, appears to be unitary, and in the case of the internal organs, at least, may depend ultimately on asymmetry at the molecular level.
Collapse
|
19
|
Kroliczak G, Buchwald M, Kleka P, Klichowski M, Potok W, Nowik AM, Randerath J, Piper BJ. Manual praxis and language-production networks, and their links to handedness. Cortex 2021; 140:110-127. [PMID: 33975084 DOI: 10.1016/j.cortex.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
While Liepmann was one of the first researchers to consider a relationship between skilled manual actions (praxis) and language for tasks performed "freely from memory", his primary focus was on the relations between the organization of praxis and left-hemisphere dominance. Subsequent attempts to apply his apraxia model to all cases he studied - including his first patient, a "non-pure right-hander" treated as an exception - left the praxis-handedness issue unresolved. Modern neuropsychological and recent neuroimaging evidence either showed closer associations of praxis and language, than between handedness and any of these two functions, or focused on their dissociations. Yet, present-day developments in neuroimaging and statistics allow us to overcome the limitations of the earlier work on praxis-language-handedness links, and to better quantify their interrelationships. Using functional magnetic resonance imaging (fMRI), we studied tool use pantomimes and subvocal word generation in 125 participants, including righthanders (NRH = 52), ambidextrous individuals (mixedhanders; NMH = 31), and lefthanders (NLH = 42). Laterality indices were calculated both in two critical cytoarchitectonic maps, and 180 multi-modal parcellations of the human cerebral cortex, using voxel count and signal intensity, and the most relevant regions of interest and their networks were further analyzed. We found that atypical organization of praxis was present in all handedness groups (RH = 25.0%, MH = 22.6%; LH = 45.2%), and was about two and a half times as common as atypical organization of language (RH = 3.8%; MH = 6.5%; LH = 26.2%), contingent on ROI selection/LI-calculation method. Despite strong associations of praxis and language, regardless of handedness and typicality, dissociations of atypically represented praxis from typical left-lateralized language were common (~20% of cases), whereas the inverse dissociations of atypically represented language from typical left-lateralized praxis were very rare (in ~2.5% of all cases). The consequences of the existence of such different phenotypes for theoretical accounts of manual praxis, and its links to language and handedness are modeled and discussed.
Collapse
Affiliation(s)
- Gregory Kroliczak
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland.
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland
| | - Pawel Kleka
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Weronika Potok
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Agnieszka M Nowik
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Jennifer Randerath
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Brian J Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
20
|
Ivanova AA, Mineroff Z, Zimmerer V, Kanwisher N, Varley R, Fedorenko E. The Language Network Is Recruited but Not Required for Nonverbal Event Semantics. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:176-201. [PMID: 37216147 PMCID: PMC10158592 DOI: 10.1162/nol_a_00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/07/2021] [Indexed: 05/24/2023]
Abstract
The ability to combine individual concepts of objects, properties, and actions into complex representations of the world is often associated with language. Yet combinatorial event-level representations can also be constructed from nonverbal input, such as visual scenes. Here, we test whether the language network in the human brain is involved in and necessary for semantic processing of events presented nonverbally. In Experiment 1, we scanned participants with fMRI while they performed a semantic plausibility judgment task versus a difficult perceptual control task on sentences and line drawings that describe/depict simple agent-patient interactions. We found that the language network responded robustly during the semantic task performed on both sentences and pictures (although its response to sentences was stronger). Thus, language regions in healthy adults are engaged during a semantic task performed on pictorial depictions of events. But is this engagement necessary? In Experiment 2, we tested two individuals with global aphasia, who have sustained massive damage to perisylvian language areas and display severe language difficulties, against a group of age-matched control participants. Individuals with aphasia were severely impaired on the task of matching sentences to pictures. However, they performed close to controls in assessing the plausibility of pictorial depictions of agent-patient interactions. Overall, our results indicate that the left frontotemporal language network is recruited but not necessary for semantic processing of nonverbally presented events.
Collapse
Affiliation(s)
- Anna A. Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vitor Zimmerer
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rosemary Varley
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Dr. Strangelove demystified: Disconnection of hand and language dominance explains alien-hand syndrome after corpus callosotomy. Seizure 2021; 86:147-151. [PMID: 33621826 DOI: 10.1016/j.seizure.2021.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alien hand syndrome (AHS) is a disabling condition in which one hand behaves in a way that the person finds "alien". This feeling of alienation is related to the occurrence of movements of the respective hand performed without or against conscious intention. Most information on AHS stems from single case observations in patients with frontal, callosal, or parietal brain damage. METHODS Retrospective analysis of distinctive clinical features of three out of 18 epilepsy patients who developed AHS with antagonistic movements of the left hand after corpus callosotomy (CC) (one anterior, two complete) for the control of epileptic seizures, particularly epileptic drop attacks (EDA). RESULTS Remarkably, these three patients, two men and one woman, displayed atypical language dominance with a bilateral, left more than right hemisphere language representation in intracarotidal amobarbital testing before surgery. The overall additional distinctive feature of the target patients was genuine left-handedness, with writing retrained to right-handedness in two patients. After surgery the left hands became alien. The problem was permanent, despite strategies for compensation. CONCLUSION From this observation we suggest that under the conditions of dissociation of language and motor dominance, loss of both intentional control of contralateral action and physiological inhibition of antagonistic movements lead to post-callosotomy alien-hand-like motor phenomena. The dissociation pattern posing this risk seems rare but needs to be considered when evaluating candidates for callosotomy.
Collapse
|
22
|
Woodhead ZVJ, Thompson PA, Karlsson EM, Bishop DVM. An updated investigation of the multidimensional structure of language lateralization in left- and right-handed adults: a test-retest functional transcranial Doppler sonography study with six language tasks. ROYAL SOCIETY OPEN SCIENCE 2021; 8:200696. [PMID: 33972838 PMCID: PMC8074662 DOI: 10.1098/rsos.200696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/04/2021] [Indexed: 05/11/2023]
Abstract
A previous study we reported in this journal suggested that left and right-handers may differ in their patterns of lateralization for different language tasks (Woodhead et al. 2019 R. Soc. Open Sci. 6, 181801. (doi:10.1098/rsos.181801)). However, it had too few left-handers (N = 7) to reach firm conclusions. For this update paper, further participants were added to the sample to create separate groups of left- (N = 31) and right-handers (N = 43). Two hypotheses were tested: (1) that lateralization would be weaker at the group level in left-than right-handers; and (2) that left-handers would show weaker covariance in lateralization between tasks, supporting a two-factor model. All participants performed the same protocol as in our previous paper: lateralization was measured using functional transcranial Doppler sonography during six different language tasks, on two separate testing sessions. The results supported hypothesis 1, with significant differences in laterality between groups for four out of six tasks. For hypothesis 2, structural equation modelling showed that there was stronger evidence for a two-factor model in left than right-handers; furthermore, examination of the factor loadings suggested that the pattern of laterality across tasks may also differ between handedness groups. These results expand on what is known about the differences in laterality between left- and right-handers.
Collapse
Affiliation(s)
- Z. V. J. Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - P. A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - D. V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Towards a unified understanding of lateralized vision: A large-scale study investigating principles governing patterns of lateralization using a heterogeneous sample. Cortex 2020; 133:201-214. [DOI: 10.1016/j.cortex.2020.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022]
|
24
|
Abstract
It is commonly assumed that cerebral asymmetry is unidimensional, but evidence increasingly suggests that different brain circuits are independently lateralized. This might explain why the search for a laterality gene has provided multiple candidates, each with weak linkage. An alternative possibility is that there is a single genetically invariant source of lateralization, perhaps cytoplasmic, and subject to many influences, some genetic, some epigenetic, and some random. This could further explain why laterality is associated with a variety of disorders, such as dyslexia, schizophrenia, stress disorders, and depression.
Collapse
|
25
|
Su WC, Culotta M, Mueller J, Tsuzuki D, Pelphrey K, Bhat A. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): An fNIRS pilot study. PLoS One 2020; 15:e0240301. [PMID: 33119704 PMCID: PMC7595285 DOI: 10.1371/journal.pone.0240301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Engaging in socially embedded actions such as imitation and interpersonal synchrony facilitates relationships with peers and caregivers. Imitation and interpersonal synchrony impairments of children with Autism Spectrum Disorder (ASD) might contribute to their difficulties in connecting and learning from others. Previous fMRI studies investigated cortical activation in children with ASD during finger/hand movement imitation; however, we do not know whether these findings generalize to naturalistic face-to-face imitation/interpersonal synchrony tasks. Using functional near infrared spectroscopy (fNIRS), the current study assessed the cortical activation of children with and without ASD during a face-to-face interpersonal synchrony task. Fourteen children with ASD and 17 typically developing (TD) children completed three conditions: a) Watch-observed an adult clean up blocks; b) Do-cleaned up the blocks on their own; and c) Together-synchronized their block clean up actions to that of an adult. Children with ASD showed lower spatial and temporal synchrony accuracies but intact motor accuracy during the Together/interpersonal synchrony condition. In terms of cortical activation, children with ASD had hypoactivation in the middle and inferior frontal gyri (MIFG) as well as middle and superior temporal gyri (MSTG) while showing hyperactivation in the inferior parietal cortices/lobule (IPL) compared to the TD children. During the Together condition, the TD children showed bilaterally symmetrical activation whereas children with ASD showed more left-lateralized activation over MIFG and right-lateralized activation over MSTG. Additionally, using ADOS scores, in children with ASD greater social affect impairment was associated with lower activation in the left MIFG and more repetitive behavior impairment was associated with greater activation over bilateral MSTG. In children with ASD better communication performance on the VABS was associated with greater MIFG and/or MSTG activation. We identified objective neural biomarkers that could be utilized as outcome predictors or treatment response indicators in future intervention studies.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - Jessica Mueller
- Department of Behavioral Health, Swank Autism Center, A. I. du Pont Nemours Hospital for Children, Wilmington, Delaware, United States of America
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kevin Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
The development and persistence of laterality is a key feature of human motor behavior, with the asymmetry of hand use being the most prominent. The idea that asymmetrical functions of the hands reflect asymmetries in terms of structural and functional brain organization has been tested many times. However, despite advances in laterality research and increased understanding of this population-level bias, the neural basis of handedness remains elusive. Recent developments in diffusion magnetic resonance imaging enabled the exploration of lateralized motor behavior also in terms of white matter and connectional neuroanatomy. Despite incomplete and partly inconsistent evidence, structural connectivity of both intrahemispheric and interhemispheric white matter seems to differ between left and right-handers. Handedness was related to asymmetry of intrahemispheric pathways important for visuomotor and visuospatial processing (superior longitudinal fasciculus), but not to projection tracts supporting motor execution (corticospinal tract). Moreover, the interindividual variability of the main commissural pathway corpus callosum seems to be associated with handedness. The review highlights the importance of exploring new avenues for the study of handedness and presents the latest state of knowledge that can be used to guide future neuroscientific and genetic research.
Collapse
Affiliation(s)
- Sanja Budisavljevic
- Department of General Psychology, University of Padova, Padova, Italy.,The School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Abstract
Until fairly late in the nineteenth century, it was held that the brain was bilaterally symmetrical. With the discovery of left-brain dominance for language, the so-called "laws of symmetry" were revoked, and asymmetry was then seen as critical to the human condition, with the left hemisphere, in particular, assuming superordinate properties. I trace this idea from the early discoveries of the late nineteenth century through the split-brain studies of the 1960s, and beyond. Although the idea has persisted, the evidence has revealed widespread cerebral asymmetries in nonhuman animals, and even language and its asymmetries are increasingly understood to have evolved gradually, rather than in a single speciation event. The left hemisphere nevertheless seemed to take over a role previously taken by other structures, such as the pineal gland and the hippocampus minor, in a determined effort to place humans on a pedestal above all other species.
Collapse
|
28
|
Wüthrich F, Viher PV, Stegmayer K, Federspiel A, Bohlhalter S, Vanbellingen T, Wiest R, Walther S. Dysbalanced Resting-State Functional Connectivity Within the Praxis Network Is Linked to Gesture Deficits in Schizophrenia. Schizophr Bull 2020; 46:905-915. [PMID: 32052844 PMCID: PMC7342100 DOI: 10.1093/schbul/sbaa008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with schizophrenia frequently present deficits in gesture production and interpretation, greatly affecting their communication skills. As these gesture deficits can be found early in the course of illness and as they can predict later outcomes, exploring their neural basis may lead to a better understanding of schizophrenia. While gesturing has been reported to rely on a left lateralized network of brain regions, termed praxis network, in healthy subjects and lesioned patients, studies in patients with schizophrenia are sparse. It is currently unclear whether within-network connectivity at rest is linked to gesture deficit. Here, we compared the functional connectivity between regions of the praxis network at rest between 46 patients and 44 healthy controls. All participants completed a validated test of hand gesture performance before resting-state functional magnetic resonance imaging (fMRI) was acquired. Patients performed gestures poorer than controls in all categories and domains. In patients, we also found significantly higher resting-state functional connectivity between left precentral gyrus and bilateral superior and inferior parietal lobule. Likewise, patients had higher connectivity from right precentral gyrus to left inferior and bilateral superior parietal lobule (SPL). In contrast, they exhibited lower connectivity between bilateral superior temporal gyrus (STG). Connectivity between right precentral gyrus and left SPL, as well as connectivity between bilateral STG, correlated with gesture performance in healthy controls. We failed to detect similar correlations in patients. We suggest that altered resting-state functional connectivity within the praxis network perturbs correct gesture planning in patients, reflecting the gesture deficit often seen in schizophrenia.
Collapse
Affiliation(s)
- Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland,To whom correspondence should be addressed; University Hospital of Psychiatry, Translational Research Center, Bolligenstrasse 111, 3000 Bern 60, Switzerland; tel: +41-31-932-87-13, fax: +41 31 930 99 61, e-mail:
| | - Petra V Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Neurology and Neurorehabilitation Center, Kantonsspital Luzern, Luzern, Switzerland,Department of Clinical Research, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Tim Vanbellingen
- Neurology and Neurorehabilitation Center, Kantonsspital Luzern, Luzern, Switzerland,Department of Clinical Research, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Roland Wiest
- Institute of Neuroradiology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias? Proc Natl Acad Sci U S A 2020; 117:14057-14065. [PMID: 32513702 DOI: 10.1073/pnas.2002981117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans demonstrate a prototypical hemispheric functional segregation pattern, with language and praxis lateralizing to the left hemisphere and spatial attention, face recognition, and emotional prosody to the right hemisphere. In this study, we used fMRI to determine laterality for all five functions in each participant. Crucially, we recruited a sample of left-handers preselected for atypical (right) language dominance (n = 24), which allowed us to characterize hemispheric asymmetry of the other functions and compare their functional segregation pattern with that of left-handers showing typical language dominance (n = 39). Our results revealed that most participants with left language dominance display the prototypical pattern of functional hemispheric segregation (44%) or deviate from this pattern in only one function (35%). Similarly, the vast majority of right language dominant participants demonstrated a completely mirrored brain organization (50%) or a reversal for all but one cognitive function (32%). Participants deviating by more than one function from the standard segregation pattern showed poorer cognitive performance, in line with an oft-presumed biological advantage of hemispheric functional segregation.
Collapse
|
30
|
Prieur J, Le Du G, Stomp M, Barbu S, Blois-Heulin C. Human laterality for manipulation and gestural communication: A study of beach-volleyball players during the Olympic Games. Laterality 2020; 25:229-254. [PMID: 31366285 DOI: 10.1080/1357650x.2019.1648485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Comparative studies can help understand better brain functional lateralization for manipulation and language. This study investigated and compared, for the first time, human adults' laterality for manipulation and gestures in a non-experimental social context. We analysed the manual laterality of 48 beach volleyball athletes for four frequently expressed behaviours: a complex throwing action (jump serve) and three gestures (CLAP HAND, PUMP FIST and SLAP HAND-TO-HAND). We evaluated population-level laterality bias for each of the four behaviours separately, compared manual laterality between behaviours and investigated factors influencing gestural laterality. We furthered our between-gestures comparison by taking into account three categories of factors simultaneously: gesture characteristics (sensory modality), interactional context components (positions of interactants and emotional valence), and individual demographic characteristics (age, sex and country). Our study showed that (1) each behaviour considered presented a population-level right-hand bias, (2) differences of laterality between behaviours were probably related to gesture sensory modality and (3) signaller's laterality was modulated differently in relation to positions of interactants, emotional valence, age and sex. Our results support the literature suggesting that left-hemisphere specialization for manipulation and language (speech and gestures) may have evolved from complex manual activities such as throwing and from gestural communication.
Collapse
Affiliation(s)
- Jacques Prieur
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, Paimpont, France
| | - Gwendoline Le Du
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, Paimpont, France
| | - Mathilde Stomp
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, Paimpont, France
| | - Stéphanie Barbu
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, Paimpont, France
| | - Catherine Blois-Heulin
- CNRS, EthoS (Ethologie animale et humaine), Univ Rennes, Normandie Univ, Paimpont, France
| |
Collapse
|
31
|
Abstract
We belong to a clade of species known as the bilateria, with a body plan that is essentially symmetrical with respect to left and right, an adaptation to the indifference of the natural world to mirror-reflection. Limbs and sense organs are in bilaterally symmetrical pairs, dictating a high degree of symmetry in the brain itself. Bilateral symmetry can be maladaptive, though, especially in the human world where it is important to distinguish between left and right sides, and between left-right mirror images, as in reading directional scripts. The brains of many animals have evolved asymmetries, often but not exclusively in functions not dependent on sensory input or immediate reaction to the environment. Brain asymmetries in humans have led to exaggerate notions of a duality between the sides of the brain. The tradeoff between symmetry and asymmetry results in individual differences in brain asymmetries and handedness, contributing to a diversity of aptitude and divisions of labor. Asymmetries may have their origin in fundamental molecular asymmetries going far back in biological evolution.
Collapse
|
32
|
Abstract
Recent years have witnessed a growing interest in behavioral and neuroimaging studies on the processing of symbolic communicative gestures, such as pantomimes and emblems, but well-controlled stimuli have been scarce. This study describes a dataset of more than 200 video clips of an actress performing pantomimes (gestures that mimic object-directed/object-use actions; e.g., playing guitar), emblems (conventional gestures; e.g., thumbs up), and meaningless gestures. Gestures were divided into four lists. For each of these four lists, 50 Italian and 50 American raters judged the meaningfulness of the gestures and provided names and descriptions for them. The results of these rating and norming measures are reported separately for the Italian and American raters, offering the first normed set of meaningful and meaningless gestures for experimental studies. The stimuli are available for download via the Figshare database.
Collapse
|
33
|
Johnstone LT, Karlsson EM, Carey DP. The validity and reliability of quantifying hemispheric specialisation using fMRI: Evidence from left and right handers on three different cerebral asymmetries. Neuropsychologia 2020; 138:107331. [DOI: 10.1016/j.neuropsychologia.2020.107331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
|
34
|
Functional lateralization of tool-sound and action-word processing in a bilingual brain. HEALTH PSYCHOLOGY REPORT 2020. [DOI: 10.5114/hpr.2020.92718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Tzourio-Mazoyer N, Zago L, Cochet H, Crivello F. Development of handedness, anatomical and functional brain lateralization. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:99-105. [PMID: 32958198 DOI: 10.1016/b978-0-444-64150-2.00011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present chapter offers a report on the recent literature on the neural bases of hemispheric specialization (HS), anatomical and functional developmental timecourse of HS, and on the available knowledge of their relationships with the development of handedness. Strong anatomical asymmetries can be seen located along the end of the sylvian fissure and the superior temporal sulcus (STS) as soon as the 23rd gestational week. They correspond to a leftward sulcal depth asymmetry of the Sylvian fissure coupled with a rightward asymmetry of STS. These neonatal asymmetries targeting speech processing areas do not further change with development. Different from these anatomical asymmetries, the functional asymmetries of language areas develop during childhood. Such a development is characterized at birth by a predominant interhemispheric intrinsic connectivity between homotopic areas that will evolve toward left hemisphere intrahemispheric intrinsic connectivity between anterior and posterior language poles. The development of such a typical architecture of language networks in the left hemisphere dominant for language in more than 90% of humans translates into a continuous increase in the leftward asymmetries of activation during language production throughout childhood. With regard to the rightward cerebral lateralization for visuospatial functions, neuroimaging studies tend to indicate an increase in rightward lateralization of frontal-parietal network with age during visuospatial memory and visuospatial search tasks. In addition, the spatial-attentional behavioral asymmetries emerge early (in preschool children) and, then, can be modulated by factors linked to motor asymmetry and handedness. Finally, the study of manual lateralization in relation to language development has shown the importance of considering several characteristics of manual activities. In particular, the dissociation between manipulative activities and communicative gestures in young children may open further perspectives for future research on HS.
Collapse
Affiliation(s)
| | - Laure Zago
- Institut des Maladies Neurodegeneratives, University of Bordeaux, Bordeaux, France
| | - Hélène Cochet
- Laboratoire Cognition, Langues, Langage, et Ergonomie, Toulouse University, CNRS, UT2J, Toulouse, France
| | - Fabrice Crivello
- Institut des Maladies Neurodegeneratives, University of Bordeaux, Bordeaux, France
| |
Collapse
|
36
|
Papitto G, Friederici AD, Zaccarella E. The topographical organization of motor processing: An ALE meta-analysis on six action domains and the relevance of Broca's region. Neuroimage 2019; 206:116321. [PMID: 31678500 DOI: 10.1016/j.neuroimage.2019.116321] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
Action is a cover term used to refer to a large set of motor processes differing in domain specificities (e.g. execution or observation). Here we review neuroimaging evidence on action processing (N = 416; Subjects = 5912) using quantitative Activation Likelihood Estimation (ALE) and Meta-Analytic Connectivity Modeling (MACM) approaches to delineate the functional specificities of six domains: (1) Action Execution, (2) Action Imitation, (3) Motor Imagery, (4) Action Observation, (5) Motor Learning, (6) Motor Preparation. Our results show distinct functional patterns for the different domains with convergence in posterior BA44 (pBA44) for execution, imitation and imagery processing. The functional connectivity network seeding in the motor-based localized cluster of pBA44 differs from the connectivity network seeding in the (language-related) anterior BA44. The two networks implement distinct cognitive functions. We propose that the motor-related network encompassing pBA44 is recruited when processing movements requiring a mental representation of the action itself.
Collapse
Affiliation(s)
- Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
37
|
Karlsson EM, Johnstone LT, Carey DP. The depth and breadth of multiple perceptual asymmetries in right handers and non-right handers. Laterality 2019; 24:707-739. [PMID: 31399020 DOI: 10.1080/1357650x.2019.1652308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several non-verbal perceptual and attentional processes have been linked with specialization of the right cerebral hemisphere. Given that most people have a left hemispheric specialization for language, it is tempting to assume that functions of these two classes of dominance are related. Unfortunately, such models of complementarity are notoriously hard to test. Here we suggest a method which compares frequency of a particular perceptual asymmetry with known frequencies of left hemispheric language dominance in right-handed and non-right handed groups. We illustrate this idea using the greyscales and colourscales tasks, chimeric faces, emotional dichotic listening, and a consonant-vowel dichotic listening task. Results show a substantial "breadth" of leftward bias on the right hemispheric tasks and rightward bias on verbal dichotic listening. Right handers and non-right handers did not differ in terms of proportions of people who were left biased for greyscales/colourscales. Support for reduced typical biases in non-right handers was found for chimeric faces and for CV dichotic listening. Results are discussed in terms of complementary theories of cerebral asymmetries, and how this type of method could be used to create a taxonomy of lateralized functions, each categorized as related to speech and language dominance, or not.
Collapse
Affiliation(s)
- Emma M Karlsson
- Perception, Action and Memory Research Group, School of Psychology, Bangor University , Bangor , UK
| | | | - David P Carey
- Perception, Action and Memory Research Group, School of Psychology, Bangor University , Bangor , UK
| |
Collapse
|
38
|
Abstract
The human brain is often characterized in terms of a duality, with the left and right brains serving complementary functions, and even individuals are sometimes classified as either "left-brained" or "right-brained." Recent evidence from brain imaging shows that hemispheric asymmetry is multidimensional, comprised of independent lateralized circuits. Cerebral asymmetries, which include handedness, probably arise in phylogenesis through the fissioning of ancestral systems that divided and lateralized with increasing demand for specialization. They also vary between individuals, with some showing absent or reversed asymmetries. It is unlikely that this variation is controlled by a single gene, as sometimes assumed, but depends rather on complex interplay among several, perhaps many, genes. Hemispheric asymmetry has often been regarded as a unique mark of being human, but it has also become evident that behavioral and cerebral asymmetries are not confined to humans, and are widespread among animal species. They nevertheless exist against a fundamental background of bilateral symmetry, suggesting a tradeoff between the two. Individual differences in asymmetry, moreover, are themselves adaptive, contributing to the cognitive and behavioral specializations necessary for societies to operate efficiently.
Collapse
|
39
|
Abstract
Handedness ontogenesis is still under debate in science. This systematic review analyzed articles regarding the theories and basis of handedness formation, highlighting the historical knowledge path that this literature underwent. Cochrane Library, LILACS, Web of Sciences, Science Direct and PubMed databases were searched. This review included review studies with handedness as the main topic. Only papers written in English with analyses exclusively in neurotypical humans (any age range) were included. Different approaches (genetic, neural, social, and behavioural) were reviewed in light of growing evidence, summarizing the current state of the art. Genetic and environmental/social impacts are common points in most of the reviews, each given more or less importance, depending on the author and theory proposed. Multifactorial, developmental approaches to handedness formation seem to be the most up to date view of the phenomenon. Different control mechanisms between hemisphere and neural asymmetries are also contributing factors to handedness formation.
Collapse
Affiliation(s)
- Alexandre Jehan Marcori
- Physical Education Department, Motor Neuroscience Research Group, Londrina State University, Londrina, Brazil
| | - Victor Hugo Alves Okazaki
- Physical Education Department, Motor Neuroscience Research Group, Londrina State University, Londrina, Brazil
| |
Collapse
|
40
|
Prieur J, Lemasson A, Barbu S, Blois‐Heulin C. History, development and current advances concerning the evolutionary roots of human right‐handedness and language: Brain lateralisation and manual laterality in non‐human primates. Ethology 2018. [DOI: 10.1111/eth.12827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Prieur
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Alban Lemasson
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Stéphanie Barbu
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Catherine Blois‐Heulin
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| |
Collapse
|
41
|
Pritchett BL, Hoeflin C, Koldewyn K, Dechter E, Fedorenko E. High-level language processing regions are not engaged in action observation or imitation. J Neurophysiol 2018; 120:2555-2570. [PMID: 30156457 DOI: 10.1152/jn.00222.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A set of left frontal, temporal, and parietal brain regions respond robustly during language comprehension and production (e.g., Fedorenko E, Hsieh PJ, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. J Neurophysiol 104: 1177-1194, 2010; Menenti L, Gierhan SM, Segaert K, Hagoort P. Psychol Sci 22: 1173-1182, 2011). These regions have been further shown to be selective for language relative to other cognitive processes, including arithmetic, aspects of executive function, and music perception (e.g., Fedorenko E, Behr MK, Kanwisher N. Proc Natl Acad Sci USA 108: 16428-16433, 2011; Monti MM, Osherson DN. Brain Res 1428: 33-42, 2012). However, one claim about overlap between language and nonlinguistic cognition remains prominent. In particular, some have argued that language processing shares computational demands with action observation and/or execution (e.g., Rizzolatti G, Arbib MA. Trends Neurosci 21: 188-194, 1998; Koechlin E, Jubault T. Neuron 50: 963-974, 2006; Tettamanti M, Weniger D. Cortex 42: 491-494, 2006). However, the evidence for these claims is indirect, based on observing activation for language and action tasks within the same broad anatomical areas (e.g., on the lateral surface of the left frontal lobe). To test whether language indeed shares machinery with action observation/execution, we examined the responses of language brain regions, defined functionally in each individual participant (Fedorenko E, Hsieh PJ, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. J Neurophysiol 104: 1177-1194, 2010) to action observation ( experiments 1, 2, and 3a) and action imitation ( experiment 3b). With the exception of the language region in the angular gyrus, all language regions, including those in the inferior frontal gyrus (within "Broca's area"), showed little or no response during action observation/imitation. These results add to the growing body of literature suggesting that high-level language regions are highly selective for language processing (see Fedorenko E, Varley R. Ann NY Acad Sci 1369: 132-153, 2016 for a review). NEW & NOTEWORTHY Many have argued for overlap in the machinery used to interpret language and others' actions, either because action observation was a precursor to linguistic communication or because both require interpreting hierarchically-structured stimuli. However, existing evidence is indirect, relying on group analyses or reverse inference. We examined responses to action observation in language regions defined functionally in individual participants and found no response. Thus language comprehension and action observation recruit distinct circuits in the modern brain.
Collapse
Affiliation(s)
- Brianna L Pritchett
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Caitlyn Hoeflin
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kami Koldewyn
- School of Psychology, Bangor University, Gwynedd, United Kingdom
| | - Eyal Dechter
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences/McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
42
|
Do Mechanical Effectiveness and Recipient Species Influence Intentional Signal Laterality in Captive Chimpanzees (Pan troglodytes)? INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0054-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Akbıyık S, Karaduman A, Göksun T, Chatterjee A. The relationship between co-speech gesture production and macrolinguistic discourse abilities in people with focal brain injury. Neuropsychologia 2018; 117:440-453. [PMID: 29981784 DOI: 10.1016/j.neuropsychologia.2018.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/23/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Brain damage is associated with linguistic deficits and might alter co-speech gesture production. Gesture production after focal brain injury has been mainly investigated with respect to intrasentential rather than discourse-level linguistic processing. In this study, we examined 1) spontaneous gesture production patterns of people with left hemisphere damage (LHD) or right hemisphere damage (RHD) in a narrative setting, 2) the neural structures associated with deviations in spontaneous gesture production in these groups, and 3) the relationship between spontaneous gesture production and discourse level linguistic processes (narrative complexity and evaluation competence). Individuals with LHD or RHD (17 people in each group) and neurotypical controls (n = 13) narrated a story from a picture book. Results showed that increase in gesture production for LHD individuals was associated with less complex narratives and lesions of individuals who produced more gestures than neurotypical individuals overlapped in frontal-temporal structures and basal ganglia. Co-speech gesture production of RHD individuals positively correlated with their evaluation competence in narrative. Lesions of RHD individuals who produced more gestures overlapped in the superior temporal gyrus and the inferior parietal lobule. Overall, LHD individuals produced more gestures than neurotypical individuals. The groups did not differ in their use of different gesture forms except that LHD individuals produced more deictic gestures per utterance than RHD individuals and controls. Our findings are consistent with the hypothesis that co-speech gesture production interacts with macro-linguistic levels of discourse and this interaction is affected by the hemispheric lateralization of discourse abilities.
Collapse
Affiliation(s)
| | - Ayşenur Karaduman
- Koç University, Istanbul, Turkey; Bilkent University, Ankara, Turkey
| | | | | |
Collapse
|
44
|
Challenges Facing the Study of the Evolutionary Origins of Human Right-Handedness and Language. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0038-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Zickert N, Geuze RH, van der Feen FE, Groothuis TG. Fitness costs and benefits associated with hand preference in humans: A large internet study in a Dutch sample. EVOL HUM BEHAV 2018. [DOI: 10.1016/j.evolhumbehav.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Prieur J, Barbu S, Blois-Heulin C. Human laterality for manipulation and gestural communication related to 60 everyday activities: Impact of multiple individual-related factors. Cortex 2018; 99:118-134. [DOI: 10.1016/j.cortex.2017.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
|
47
|
Uomini NT, Ruck L. Manual laterality and cognition through evolution: An archeological perspective. PROGRESS IN BRAIN RESEARCH 2018; 238:295-323. [DOI: 10.1016/bs.pbr.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Lozano M, Estalrrich A, Bondioli L, Fiore I, Bermúdez de Castro JM, Arsuaga JL, Carbonell E, Rosas A, Frayer DW. Right-handed fossil humans. Evol Anthropol 2017; 26:313-324. [DOI: 10.1002/evan.21554] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Marina Lozano
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES) and University Rovira i Virgili (URV); Tarragona Spain
| | - Almudena Estalrrich
- Paleoanthropology Group at the Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - Luca Bondioli
- Sezione di Bioarchaeologia at the Museo delle Civiltà, Servizio di Bioarcheologia; Rome Italy
| | - Ivana Fiore
- Museo delle Civiltà, Servizio di Bioarcheologia; Rome Italy
| | - José-Maria Bermúdez de Castro
- Paleobiology of Hominins Program at the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH); Burgos Spain
| | - Juan Luis Arsuaga
- University Complutense de Madrid and Centro UCM-ISCIII of Evolución y Comportamiento Humanos; Madrid Spain
| | - Eudald Carbonell
- University Rovira i Virgili (URV) and Institut Català de Paleoecologia Humana i Evolució Social (IPHES); Tarragona Spain
| | - Antonio Rosas
- Department of Paleobiology and Paleoanthropology Group at the Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - David W. Frayer
- Department of Anthropology; University of Kansas; Lawrence KS
| |
Collapse
|
49
|
Campbell JM, Marcinowski EC, Michel GF. The development of neuromotor skills and hand preference during infancy. Dev Psychobiol 2017; 60:165-175. [PMID: 29168178 DOI: 10.1002/dev.21591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/27/2017] [Indexed: 11/08/2022]
Abstract
Assessing infant handedness has been controversial. Different assessment techniques and theoretical approaches produce different results. Evidence from a dynamic systems perspective showed that the development of postural control during infancy affects the expression of an infant's handedness. However, others found that developmental changes in postural control influenced the amount of symmetrical (bimanual) reaching during infancy, but not hand preference. Since most studies of infant handedness use age to assess development, perhaps measures of an infant's developing neuromotor control, irrespective of age, would better predict changes in an infant's hand preference. To assess neuromotor development, items from [Touwen's (1976) Neurological development in infancy. Lavenham, Suffolk: The Lavenham Press, LTD]. "Group III" indices were used. These items assess developmental changes in neuromotor abilities throughout the 6-14-month age period. Hand preference for acquiring objects was measured during these same months. Group Based Trajectory Models (GBTM) of 380 infants identified four different groups of infants according to the trajectory of the development of their hand preferences (32% Early Right, 12% Early Left, 25% Late Right, 30% No Preference). A multilevel model was used to compare these four developmental trajectories according to age and neuromotor development. Age, not neuromotor development, is a better predictor of differences in developmental trajectories of the four hand preference groups. However, Late Right infants are significantly less developed at 6 months than No Preference, Early Right and Left infants and both Early Right and Left infants are most advanced at 6 months. All groups exhibit similar rates of neuromotor development indicating no "catch-up" by the Late Right infants. Thus, any assessment of infant handedness will incorporate necessarily four groups of infants with differently developing hand preferences and neuromotor abilities.
Collapse
Affiliation(s)
- Julie M Campbell
- Department of Psychology, Illinois State University, Normal, Illinois
| | | | - George F Michel
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
50
|
Nelson EL, Gonzalez SL, Coxe S, Campbell JM, Marcinowski EC, Michel GF. Toddler hand preference trajectories predict 3-year language outcome. Dev Psychobiol 2017; 59:876-887. [PMID: 28888047 PMCID: PMC5630522 DOI: 10.1002/dev.21560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022]
Abstract
A growing body of work suggests that early motor experience affects development in unexpected domains. In the current study, children's hand preference for role-differentiated bimanual manipulation (RDBM) was measured at monthly intervals from 18 to 24 months of age (N = 90). At 3 years of age, children's language ability was assessed using the Preschool Language Scales 5th edition (PLS™-5). Three distinct RDBM hand preference trajectories were identified using latent class growth analysis: (1) children with a left hand preference but a moderate amount of right hand use; (2) children with a right hand preference but a moderate amount of left hand use; and (3) children with a right hand preference and only a mild amount of left hand use. Stability over time within all three trajectories indicated that children did not change hand use patterns from 18 to 24 months. Children with the greatest amount of preferred (i.e., right) hand use demonstrated higher expressive language scores compared to children in both trajectories with moderate levels of non-preferred hand use. Children with the greatest amount of right hand use also had higher scores for receptive language compared to children with a right hand preference but moderate left hand use. Results support that consistency in handedness as measured by the amount of preferred hand use is related to distal language outcomes in development.
Collapse
Affiliation(s)
| | | | - Stefany Coxe
- Department of Psychology, Florida International University
| | | | | | - George F. Michel
- Department of Psychology, University of North Carolina at Greensboro
| |
Collapse
|