1
|
Morales Fajardo K, Yan X, Lungoci G, Casado Sánchez M, Mitsis GD, Boudrias MH. The Modulatory Effects of Transcranial Alternating Current Stimulation on Brain Oscillatory Patterns in the Beta Band in Healthy Older Adults. Brain Sci 2024; 14:1284. [PMID: 39766483 PMCID: PMC11675015 DOI: 10.3390/brainsci14121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the last few years, transcranial alternating current stimulation (tACS) has attracted attention as a promising approach to interact with ongoing oscillatory cortical activity and, consequently, to enhance cognitive and motor processes. While tACS findings are limited by high variability in young adults' responses, its effects on brain oscillations in older adults remain largely unexplored. In fact, the modulatory effects of tACS on cortical oscillations in healthy aging participants have not yet been investigated extensively, particularly during movement. This study aimed to examine the after-effects of 20 Hz and 70 Hz High-Definition tACS on beta oscillations both during rest and movement. Methods: We recorded resting state EEG signals and during a handgrip task in 15 healthy older participants. We applied 10 min of 20 Hz HD-tACS, 70 Hz HD-tACS or Sham stimulation for 10 min. We extracted resting-state beta power and movement-related beta desynchronization (MRBD) values to compare between stimulation frequencies and across time. Results: We found that 20 Hz HD-tACS induced a significant reduction in beta power for electrodes C3 and CP3, while 70 Hz did not have any significant effects. With regards to MRBD, 20 Hz HD-tACS led to more negative values, while 70 Hz HD-tACS resulted in more positive ones for electrodes C3 and FC3. Conclusions: These findings suggest that HD-tACS can modulate beta brain oscillations with frequency specificity. They also highlight the focal impact of HD-tACS, which elicits effects on the cortical region situated directly beneath the stimulation electrode.
Collapse
Affiliation(s)
- Kenya Morales Fajardo
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| | - Xuanteng Yan
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - George Lungoci
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Monserrat Casado Sánchez
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Georgios D. Mitsis
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| |
Collapse
|
2
|
Voetterl H, Alyagon U, Middleton VJ, Downar J, Zangen A, Sack AT, van Dijk H, Halloran A, Donachie N, Arns M. Does 18 Hz deep TMS benefit a different subgroup of depressed patients relative to 10 Hz rTMS? The role of the individual alpha frequency. Eur Neuropsychopharmacol 2024; 89:73-81. [PMID: 39395357 DOI: 10.1016/j.euroneuro.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024]
Abstract
Both 10 Hz repetitive transcranial magnetic stimulation (rTMS) as well as 18 Hz deep TMS (dTMS) constitute effective, FDA-approved TMS treatment protocols for depression. However, not all patients experience sufficient symptom relief after either of these protocols. Biomarker-guided treatment stratification could aid in personalizing treatment and thereby enhancing improvement. An individual alpha frequency (iAF)-based EEG-biomarker, Brainmarker-I, can differentially stratify patients to depression treatments. For instance, an iAF close to 10 Hz was associated with better improvement to 10 Hz rTMS, possibly reflecting entrainment of endogenous oscillations to the stimulation frequency. Accordingly, we examined whether 18 Hz dTMS would result in better improvement in individuals whose iAF lies around 9 Hz, a harmonic frequency of 18 Hz. Curve fitting and regression analyses were conducted to assess the relation between iAF and improvement. For treatment stratification purposes, correlations with iAF-distance to 10 Hz compared 18 Hz dTMS (N = 114) to 10 Hz rTMS (N = 72). We found a robust quadratic effect, indicating that patients with an iAF around 9 Hz exhibited least symptom improvement (r2=0.126, p<.001). Improvement correlated positively with iAF-distance to 10 Hz (p=.003). A secondary analysis in 20 Hz figure-of-eight data confirmed this direction. A significant interaction of iAF-distance and stimulation frequency between 10 and 18 Hz datasets emerged (p=.026). These results question entrainment of endogenous oscillations by their harmonic frequency for 18 Hz, and suggest that 10 Hz and 18 Hz TMS target different subgroups of depression patients. This study adds to iAF stratification, augmenting Brainmarker-I with alternative TMS protocols (18 Hz/20 Hz) for patients with a slower iAF, thereby broadening clinical applicability and relevance of the biomarker.
Collapse
Affiliation(s)
- Helena Voetterl
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, , The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands.
| | - Uri Alyagon
- Department of Life Sciences and the Zelman Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Jonathan Downar
- Institute of Medical Science and Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Abraham Zangen
- Department of Life Sciences and the Zelman Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+)
| | - Hanneke van Dijk
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, , The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands; Synaeda Psycho Medisch Centrum, Leeuwarden, , The Netherlands
| | - Aimee Halloran
- Timothy J. Kriske Salience Research Institute, Plano, TX, USA
| | - Nancy Donachie
- Timothy J. Kriske Salience Research Institute, Plano, TX, USA
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, , The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, , The Netherlands; Stanford Brain Stimulation Lab, Stanford University, USA
| |
Collapse
|
3
|
Meng H, Houston M, Dias N, Guo C, Francisco G, Zhang Y, Li S. Efficacy of High-Definition Transcranial Alternating Current Stimulation (HD-tACS) at the M1 Hotspot Versus C3 Site in Modulating Corticospinal Tract Excitability. Biomedicines 2024; 12:2635. [PMID: 39595199 PMCID: PMC11591996 DOI: 10.3390/biomedicines12112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies have shown that beta-band transcranial alternating current stimulation (tACS) applied at the M1 hotspot can modulate corticospinal excitability. However, it remains controversial whether tACS can influence motor unit activities at the spinal cord level. This study aims to compare the efficacy of applying tACS over the hotspot versus the conventional C3 site on motor unit activities and subsequent behavioral changes. This study used a randomized crossover trial design, where fifteen healthy participants performed a paced ball-squeezing exercise while receiving high-definition tACS (HD-tACS) at 21 Hz and 2 mA for 20 min. HD-tACS targeted either the flexor digitorum superficialis (FDS) hotspot or the C3 site, with the order of stimulation randomized for each participant and a 1-week washout period between sessions. Motor unit activities were recorded from the FDS. HD-tACS intervention significantly reduced the variability of motor unit firing rates and increased force variability during isometric force production. The significant modulation effects were seen only when the intervention was applied at the hotspot, but not at the C3 site. Our findings demonstrate that HD-tACS significantly modulates motor unit activities and force variability. The results indicate that cortical-level entrainment by tACS can lead to the modulation of spinal motor neuron activities. Additionally, this study provides further evidence that the C3 site may not be the optimal target for tACS intervention for hand muscles, highlighting the need for personalized neuromodulation strategies.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.M.); (G.F.)
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
- Desai Sethi Urology Institute, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Nicholas Dias
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
| | - Chen Guo
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
| | - Gerard Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.M.); (G.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (M.H.); (N.D.); (C.G.); (Y.Z.)
- Desai Sethi Urology Institute, University of Miami, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
- Miami Project to Cure Paralysis, University of Miami, Miami, FL 33136, USA
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (H.M.); (G.F.)
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
4
|
Qi S, Cao L, Wang Q, Sheng Y, Yu J, Liang Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. BIOLOGY 2024; 13:790. [PMID: 39452099 PMCID: PMC11504865 DOI: 10.3390/biology13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies a stable, low-intensity (1-2 mA) direct current to modulate neuronal activity in the cerebral cortex. This technique is effective, simple to operate, affordable, and widely employed across various fields. tDCS has been extensively used in clinical and translational research, with growing applications in military and competitive sports domains. In recent years, the use of tDCS in sports science has garnered significant attention from researchers. Numerous studies have demonstrated that tDCS can enhance muscle strength, explosive power, and aerobic metabolism, reduce fatigue, and improve cognition, thereby serving as a valuable tool for enhancing athletic performance. Additionally, recent research has shed light on the physiological mechanisms underlying tDCS, including its modulation of neuronal resting membrane potential to alter cortical excitability, enhancement of synaptic plasticity to regulate long-term potentiation, modulation of neurovascular coupling to improve regional cerebral blood flow, and improvement of cerebral network functional connectivity, which activates and reinforces specific brain regions. tDCS also enhances the release of excitatory neurotransmitters, further regulating brain function. This article, after outlining the role of tDCS in improving physical performance, delves into its mechanisms of action to provide a deeper understanding of how tDCS enhances athletic performance and offers novel approaches and perspectives for physical performance enhancement.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan 250102, China
| | - Qingchun Wang
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Yin Sheng
- College of Competitive Sports, Shandong Sport University, Jinan 250102, China
| | - Jinglun Yu
- School of Exercise and Health Sciences, Xi’an Physical Education University, Xi’an 710068, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
6
|
Fang Z, Sack AT, Leunissen I. The phase of tACS-entrained pre-SMA beta oscillations modulates motor inhibition. Neuroimage 2024; 290:120572. [PMID: 38490584 DOI: 10.1016/j.neuroimage.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.
Collapse
Affiliation(s)
- Zhou Fang
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Inge Leunissen
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Meng H, Houston M, Zhang Y, Li S. Exploring the Prospects of Transcranial Electrical Stimulation (tES) as a Therapeutic Intervention for Post-Stroke Motor Recovery: A Narrative Review. Brain Sci 2024; 14:322. [PMID: 38671974 PMCID: PMC11047964 DOI: 10.3390/brainsci14040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Stroke survivors often have motor impairments and related functional deficits. Transcranial Electrical Stimulation (tES) is a rapidly evolving field that offers a wide range of capabilities for modulating brain function, and it is safe and inexpensive. It has the potential for widespread use for post-stroke motor recovery. Transcranial Direct Current Stimulation (tDCS), Transcranial Alternating Current Stimulation (tACS), and Transcranial Random Noise Stimulation (tRNS) are three recognized tES techniques that have gained substantial attention in recent years but have different mechanisms of action. tDCS has been widely used in stroke motor rehabilitation, while applications of tACS and tRNS are very limited. The tDCS protocols could vary significantly, and outcomes are heterogeneous. PURPOSE the current review attempted to explore the mechanisms underlying commonly employed tES techniques and evaluate their prospective advantages and challenges for their applications in motor recovery after stroke. CONCLUSION tDCS could depolarize and hyperpolarize the potentials of cortical motor neurons, while tACS and tRNS could target specific brain rhythms and entrain neural networks. Despite the extensive use of tDCS, the complexity of neural networks calls for more sophisticated modifications like tACS and tRNS.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA;
| | - Sheng Li
- Department of Physical Medicine & Rehabilitation, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- TIRR Memorial Hermann Hospital, Houston, TX 77030, USA
| |
Collapse
|
8
|
Sack AT, Paneva J, Küthe T, Dijkstra E, Zwienenberg L, Arns M, Schuhmann T. Target Engagement and Brain State Dependence of Transcranial Magnetic Stimulation: Implications for Clinical Practice. Biol Psychiatry 2024; 95:536-544. [PMID: 37739330 DOI: 10.1016/j.biopsych.2023.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Transcranial magnetic stimulation (TMS) is capable of noninvasively inducing lasting neuroplastic changes when applied repetitively across multiple treatment sessions. In recent years, repetitive TMS has developed into an established evidence-based treatment for various neuropsychiatric disorders such as depression. Despite significant advancements in our understanding of the mechanisms of action of TMS, there is still much to learn about how these mechanisms relate to the clinical effects observed in patients. If there is one thing about TMS that we know for sure, it is that TMS effects are state dependent. In this review, we describe how the effects of TMS on brain networks depend on various factors, including cognitive brain state, oscillatory brain state, and recent brain state history. These states play a crucial role in determining the effects of TMS at the moment of stimulation and are therefore directly linked to what is referred to as target engagement in TMS therapy. There is no control over target engagement without considering the different brain state dependencies of our TMS intervention. Clinical TMS protocols are largely ignoring this fundamental principle, which may explain the large variability and often still limited efficacy of TMS treatments. We propose that after almost 30 years of research on state dependency of TMS, it is time to change standard clinical practice by taking advantage of this fundamental principle. Rather than ignoring TMS state dependency, we can use it to our clinical advantage to improve the effectiveness of TMS treatments.
Collapse
Affiliation(s)
- Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Brain + Nerve Center, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Jasmina Paneva
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tara Küthe
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Eva Dijkstra
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Heart and Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands; Neurowave, Amsterdam, the Netherlands
| | - Lauren Zwienenberg
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Heart and Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands; Synaeda Psycho Medisch Centrum, Leeuwarden, the Netherlands
| | - Martijn Arns
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Brain + Nerve Center, Maastricht University Medical Center, Maastricht, the Netherlands; Heart and Brain Group, Brainclinics Foundation, Nijmegen, the Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
9
|
Jiao F, Zhuang J, Nitsche MA, Lin Z, Ma Y, Liu Y. Application of transcranial alternating current stimulation to improve eSports-related cognitive performance. Front Neurosci 2024; 18:1308370. [PMID: 38476869 PMCID: PMC10927847 DOI: 10.3389/fnins.2024.1308370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Electronic Sports (eSports) is a popular and still emerging sport. Multiplayer Online Battle Arena (MOBA) and First/Third Person Shooting Games (FPS/TPS) require excellent visual attention abilities. Visual attention involves specific frontal and parietal areas, and is associated with alpha coherence. Transcranial alternating current stimulation (tACS) is a principally suitable tool to improve cognitive functions by modulation of regional oscillatory cortical networks that alters regional and larger network connectivity. Methods In this single-blinded crossover study, 27 healthy college students were recruited and exposed to 10 Hz tACS of the right frontoparietal network. Subjects conducted a Visual Spatial Attention Distraction task in three phases: T0 (pre-stimulation), T1 (during stimulation), T2 (after-stimulation), and an eSports performance task which contained three games ("Exact Aiming," "Flick Aiming," "Press Reaction") before and after stimulation. Results The results showed performance improvements in the "Exact Aiming" task and hint for a prevention of reaction time performance decline in the "Press Reaction" task in the real, as compared to the sham stimulation group. We also found a significant decrease of reaction time in the visual spatial attention distraction task at T1 compared to T0 in the real, but not sham intervention group. However, accuracy and inverse efficiency scores (IES) did not differ between intervention groups in this task. Discussion These results suggest that 10 Hz tACS over the right frontal and parietal cortex might improve eSports-related skill performance in specific tasks, and also improve visual attention in healthy students during stimulation. This tACS protocol is a potential tool to modulate neurocognitive performance involving tracking targets, and might be a foundation for the development of a new concept to enhance eSports performance. This will require however proof in real life scenarios, as well optimization.
Collapse
Affiliation(s)
- Fujia Jiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Michael A. Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Zhenggen Lin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yuanbo Ma
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
10
|
Akaiwa M, Matsuda Y, Kurokawa R, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K, Kozuka N. Does 20 Hz Transcranial Alternating Current Stimulation over the Human Primary Motor Cortex Modulate Beta Rebound Following Voluntary Movement? Brain Sci 2024; 14:74. [PMID: 38248289 PMCID: PMC10813667 DOI: 10.3390/brainsci14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Beta frequency oscillations originating from the primary motor cortex increase in amplitude following the initiation of voluntary movement, a process termed beta rebound. The strength of beta rebound has been reported to predict the recovery of motor function following stroke, suggesting therapeutic applications of beta rebound modulation. The present study examined the effect of 20 Hz transcranial alternating current stimulation (tACS) on the beta rebound induced by self-paced voluntary movement. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded from 16 healthy adults during voluntary movements performed before and after active or sham tACS. There was no significant change in average beta rebound after active tACS. However, the beta rebound amplitude was significantly enhanced in a subset of participants, and the magnitude of the increase across all participants was negatively correlated with the difference between individual peak beta frequency and tACS frequency. Thus, matching the stimulus frequency of tACS with individual beta frequency may facilitate therapeutic enhancement for motor rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ryo Kurokawa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yasushi Sugawara
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan;
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| |
Collapse
|
11
|
Lee S, Shirinpour S, Alekseichuk I, Perera N, Linn G, Schroeder CE, Falchier AY, Opitz A. Predicting the phase distribution during multi-channel transcranial alternating current stimulation in silico and in vivo. Comput Biol Med 2023; 166:107516. [PMID: 37769460 PMCID: PMC10955626 DOI: 10.1016/j.compbiomed.2023.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. TACS experiments have been coupled with computational simulations to predict the electromagnetic fields within the brain. However, existing simulations are focused on the magnitude of the field. As the possibility of inducing the phase gradient in the brain using multiple tACS electrodes arises, a simulation framework is necessary to investigate and predict the phase gradient of electric fields during multi-channel tACS. OBJECTIVE Here, we develop such a framework for phasor simulation using phasor algebra and evaluate its accuracy using in vivo recordings in monkeys. METHODS We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. RESULTS Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues' conductivity. CONCLUSIONS Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Biomedical Engineering, University of Minnesota, MN, USA.
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Nipun Perera
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Gary Linn
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry NYU Grossman School of Medicine, New York City, NY, USA
| | - Charles E Schroeder
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
| | - Arnaud Y Falchier
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, MN, USA.
| |
Collapse
|
12
|
Rostami M, Lee A, Frazer AK, Akalu Y, Siddique U, Pearce AJ, Tallent J, Kidgell DJ. Determining the corticospinal, intracortical and motor function responses to transcranial alternating current stimulation of the motor cortex in healthy adults: A systematic review and meta-analysis. Brain Res 2023; 1822:148650. [PMID: 39491217 DOI: 10.1016/j.brainres.2023.148650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Transcranial Alternating Current Stimulation (tACS) employs low-intensity sinusoidal currents to influence cortical plasticity and motor function. Despite extensive research, inconsistent results require a comprehensive review of tACS efficacy. OBJECTIVE This study systematically assesses tACS effects on corticospinal and intracortical excitability, and motor function over the motor cortex (M1), focusing on alpha, beta, and gamma frequencies. METHODS Relevant studies were identified through database searches and citations were tracked until July 10, 2023. The methodological quality of the included studies (29) was evaluated by Downs and Black. Data synthesis involved meta-analysis (n = 25) and best evidence synthesis (n = 5). RESULTS Meta-analysis revealed that alpha and beta tACS with intensities > 1 mA and tACS with individualized alpha frequency (IAF) increased corticospinal excitability (CSE). tACS over M1 improved motor function, irrespective of stimulation frequency and intensity. Sub-analysis showed that alpha and beta tACS with an intensity ≤ 1 mA led to improved motor function, while gamma tACS at 2 mA enhanced motor function. Additionally, beta tACS at a fixed frequency of 20 Hz, as well as both low gamma (30-55) and high gamma (55-80) tACS, resulted in improved motor function. A stimulation duration of 20 min led to improvements in both CSE and motor function, and tACS with electrode sizes smaller than 35 cm2 and an electrode montage over M1-supraorbital region (SOR) were found to enhance motor function. Notably, both online and offline tACS improved motor function, regardless of stimulation factors. CONCLUSION tACS modulates CSE and improves motor function, with outcomes dependent on stimulation parameters and timing.
Collapse
Affiliation(s)
- Mohamad Rostami
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Annemarie Lee
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Yonas Akalu
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia; Department of Human Physiology, School of Medicine, University of Gondar, Ethiopia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Lee S, Shirinpour S, Alekseichuk I, Perera N, Linn G, Schroeder CE, Falchier AY, Opitz A. Experimental validation of computational models for the prediction of phase distribution during multi-channel transcranial alternating current stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536090. [PMID: 37066288 PMCID: PMC10104155 DOI: 10.1101/2023.04.07.536090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. Neural oscillations exhibit phase-dependent associations with cognitive functions, and tools to manipulate local oscillatory phases can affect communication across remote brain regions. A recent study demonstrated that multi-channel tACS can generate electric fields with a phase gradient or traveling waves in the brain. Computational simulations using phasor algebra can predict the phase distribution inside the brain and aid in informing parameters in tACS experiments. However, experimental validation of computational models for multi-phase tACS is still lacking. Here, we develop such a framework for phasor simulation and evaluate its accuracy using in vivo recordings in nonhuman primates. We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues’ conductivity. Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
Collapse
|
14
|
Resolving equivocal gain modulation of corticospinal excitability. Neuroimage 2023; 269:119891. [PMID: 36706940 DOI: 10.1016/j.neuroimage.2023.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
The ratio between the input and output of neuronal populations, usually referred to as gain modulation, is rhythmically modulated along the oscillatory cycle. Previous research on spinal neurons, however, revealed contradictory findings: both uni- and bimodal patterns of increased responsiveness for synaptic input have been proposed for the oscillatory beta rhythm. In this study, we compared previous approaches of phase estimation directly on simulated data and empirically tested the corresponding predictions in healthy males and females. We applied single-pulse transcranial magnetic stimulation over the primary motor cortex at rest, and assessed the spinal output generated by this input. Specifically, the peak-to-peak amplitude of the motor evoked potential in the contralateral forearm was estimated as a function of the EMG phase at which the stimulus was applied. The findings indicated that human spinal neurons adhere to a unimodal pattern of increased responsiveness, and suggest that the rising phase of the upper beta band maximizes gain modulation. Importantly, a bimodal pattern of increased responsiveness was shown to result in an artifact during data analysis and filtering. This observation of invalid preprocessing could be generalized to other frequency bands (i.e., delta, theta, alpha, and gamma), different task conditions (i.e., voluntary muscle contraction), and EEG-based phase estimations. Appropriate analysis algorithms, such as broad-band filtering, enable us to accurately determine gain modulation of neuronal populations and to avoid erroneous phase estimations. This may facilitate novel phase-specific interventions for targeted neuromodulation.
Collapse
|
15
|
Nakazono H, Taniguchi T, Mitsutake T, Takeda A, Yamada E, Ogata K. Phase-dependent modulation of the vestibular-cerebellar network via combined alternating current stimulation influences human locomotion and posture. Front Neurosci 2022; 16:1057021. [PMID: 36590300 PMCID: PMC9795064 DOI: 10.3389/fnins.2022.1057021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background Human locomotion induces rhythmic movements of the trunk and head. Vestibular signaling is relayed to multiple regions in the brainstem and cerebellum, and plays an essential role in maintaining head stability. However, how the vestibular-cerebellar network contributes to the rhythmic locomotor pattern in humans is unclear. Transcranial alternating current stimulation (tACS) has been used to investigate the effects of the task-related network between stimulation regions in a phase-dependent manner. Here, we investigated the relationship between the vestibular system and the cerebellum during walking imagery using combined tACS over the left cerebellum and alternating current galvanic vestibular stimulation (AC-GVS). Methods In Experiment 1, we tested the effects of AC-GVS alone at around individual gait stride frequencies. In Experiment 2, we then determined the phase-specificity of combined stimulation at the gait frequency. Combined stimulation was applied at in-phase (0° phase lag) or anti-phase (180° phase lag) between the left vestibular and left cerebellar stimulation, and the sham stimulation. We evaluated the AC-GVS-induced periodic postural response during walking imagery or no-imagery using the peak oscillatory power on the angular velocity signals of the head in both experiments. In Experiment 2, we also examined the phase-locking value (PLV) between the periodic postural responses and the left AC-GVS signals to estimate entrainment of the postural response by AC-GVS. Results AC-GVS alone induced the periodic postural response in the yaw and roll axes, but no interactions with imagery walking were observed in Experiment 1 (p > 0.05). By contrast, combined in-phase stimulation increased yaw motion (0.345 ± 0.23) compared with sham (-0.044 ± 0.19) and anti-phase stimulation (-0.066 ± 0.18) during imaginary walking (in-phase vs. other conditions, imagery: p < 0.05; no-imagery: p ≥ 0.125). Furthermore, there was a positive correlation between the yaw peak power of actual locomotion and in-phase stimulation in the imagery session (imagery: p = 0.041; no-imagery: p = 0.177). Meanwhile, we found no imagery-dependent effects in roll peak power or PLV, although in-phase stimulation enhanced roll motion and PLV in Experiment 2. Conclusion These findings suggest that combined stimulation can influence vestibular-cerebellar network activity, and modulate postural control and locomotion systems in a temporally sensitive manner. This novel combined tACS/AC-GVS stimulation approach may advance development of therapeutic applications.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,*Correspondence: Hisato Nakazono,
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Akinori Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| | - Emi Yamada
- Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
16
|
Kemmerer SK, Sack AT, de Graaf TA, Ten Oever S, De Weerd P, Schuhmann T. Frequency-specific transcranial neuromodulation of alpha power alters visuospatial attention performance. Brain Res 2022; 1782:147834. [PMID: 35176250 DOI: 10.1016/j.brainres.2022.147834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) at 10Hz has been shown to modulate spatial attention. However, the frequency-specificity and the oscillatory changes underlying this tACS effect are still largely unclear. Here, we applied high-definition tACS at individual alpha frequency (IAF), two control frequencies (IAF+/-2Hz) and sham to the left posterior parietal cortex and measured its effects on visuospatial attention performance and offline alpha power (using electroencephalography, EEG). We revealed a behavioural and electrophysiological stimulation effect relative to sham for IAF but not control frequency stimulation conditions: there was a leftward lateralization of alpha power for IAF tACS, which differed from sham for the first out of three minutes following tACS. At a high value of this EEG effect (moderation effect), we observed a leftward attention bias relative to sham. This effect was task-specific, i.e. it could be found in an endogenous attention but not in a detection task. Only in the IAF tACS condition, we also found a correlation between the magnitude of the alpha lateralization and the attentional bias effect. Our results support a functional role of alpha oscillations in visuospatial attention and the potential of tACS to modulate it. The frequency-specificity of the effects suggests that an individualization of the stimulation frequency is necessary in heterogeneous target groups with a large variation in IAF.
Collapse
Affiliation(s)
- S K Kemmerer
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands.
| | - A T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - T A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - S Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - P De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - T Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| |
Collapse
|
17
|
Temporal Interference (TI) Stimulation Boosts Functional Connectivity in Human Motor Cortex: A Comparison Study with Transcranial Direct Current Stimulation (tDCS). Neural Plast 2022; 2022:7605046. [PMID: 35140781 PMCID: PMC8820942 DOI: 10.1155/2022/7605046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023] Open
Abstract
Temporal interference (TI) could stimulate deep motor cortex and induce movement without affecting the overlying cortex in previous mouse studies. However, there is still lack of evidence on potential TI effects in human studies. To fill this gap, we collected resting-state functional magnetic resonance imaging data on 40 healthy young participants both before and during TI stimulation on the left primary motor cortex (M1). We also chose a widely used simulation approach (tDCS) as a baseline condition. In the stimulation session, participants were randomly allocated to 2 mA TI or tDCS for 20 minutes. We used a seed-based whole brain correlation analysis method to quantify the strength of functional connectivity among different brain regions. Our results showed that both TI and tDCS significantly boosted functional connection strength between M1 and secondary motor cortex (premotor cortex and supplementary motor cortex). This is the first time to demonstrate substantial stimulation effect of TI in the human brain.
Collapse
|
18
|
Ogata K, Nakazono H, Ikeda T, Oka SI, Goto Y, Tobimatsu S. After-Effects of Intermittent Theta-Burst Stimulation Are Differentially and Phase-Dependently Suppressed by α- and β-Frequency Transcranial Alternating Current Stimulation. Front Hum Neurosci 2021; 15:750329. [PMID: 34867243 PMCID: PMC8636087 DOI: 10.3389/fnhum.2021.750329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation (TMS) is known to produce excitatory after-effects over the primary motor cortex (M1). Recently, transcranial alternating current stimulation (tACS) at 10 Hz (α) and 20 Hz (β) have been shown to modulate M1 excitability in a phase-dependent manner. Therefore, we hypothesized that tACS would modulate the after-effects of iTBS depending on the stimulation frequency and phase. To test our hypothesis, we examined the effects of α- and β-tACS on iTBS using motor evoked potentials (MEPs). Eighteen and thirteen healthy participants were recruited for α and β tACS conditions, respectively. tACS electrodes were attached over the left M1 and Pz. iTBS over left M1 was performed concurrently with tACS. The first pulse of the triple-pulse burst of iTBS was controlled to match the peak (90°) or trough (270°) phase of the tACS. A sham tACS condition was used as a control in which iTBS was administered without tACS. Thus, each participant was tested in three conditions: the peak and trough of the tACS phases and sham tACS. As a result, MEPs were enhanced after iTBS without tACS (sham condition), as observed in previous studies. α-tACS suppressed iTBS effects at the peak phase but not at the trough phase, while β-tACS suppressed the effects at both phases. Thus, although both types of tACS inhibited the facilitatory effects of iTBS, only α-tACS did so in a phase-dependent manner. Phase-dependent inhibition by α-tACS is analogous to our previous finding in which α-tACS inhibited MEPs online at the peak condition. Conversely, β-tACS reduced the effects of iTBS irrespective of its phase. The coupling of brain oscillations and tACS rhythms is considered important in the generation of spike-timing-dependent plasticity. Additionally, the coupling of θ and γ oscillations is assumed to be important for iTBS induction through long-term potentiation (LTP). Therefore, excessive coupling between β oscillations induced by tACS and γ or θ oscillations induced by iTBS might disturb the coupling of θ and γ oscillations during iTBS. To conclude, the action of iTBS is differentially modulated by neuronal oscillations depending on whether α- or β-tACS is applied.
Collapse
Affiliation(s)
- Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Takuro Ikeda
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Shin-Ichiro Oka
- Department of Physical Therapy, School of Health Sciences, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Yoshinobu Goto
- School of Medicine, International University of Health and Welfare, Naritaa, Japan
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
19
|
Iskhakova L, Rappel P, Deffains M, Fonar G, Marmor O, Paz R, Israel Z, Eitan R, Bergman H. Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia beta oscillations. Nat Commun 2021; 12:7026. [PMID: 34857767 PMCID: PMC8640051 DOI: 10.1038/s41467-021-27375-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Βeta oscillatory activity (human: 13-35 Hz; primate: 8-24 Hz) is pervasive within the cortex and basal ganglia. Studies in Parkinson's disease patients and animal models suggest that beta-power increases with dopamine depletion. However, the exact relationship between oscillatory power, frequency and dopamine tone remains unclear. We recorded neural activity in the cortex and basal ganglia of healthy non-human primates while acutely and chronically up- and down-modulating dopamine levels. We assessed changes in beta oscillations in patients with Parkinson's following acute and chronic changes in dopamine tone. Here we show beta oscillation frequency is strongly coupled with dopamine tone in both monkeys and humans. Power, coherence between single-units and local field potentials (LFP), spike-LFP phase-locking, and phase-amplitude coupling are not systematically regulated by dopamine levels. These results demonstrate that beta frequency is a key property of pathological oscillations in cortical and basal ganglia networks.
Collapse
Affiliation(s)
- L Iskhakova
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - P Rappel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Deffains
- University of Bordeaux, UMR 5293, IMN, Bordeaux, France
- CNRS, UMR 5293, IMN, Bordeaux, France
| | - G Fonar
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - O Marmor
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Z Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - R Eitan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Jerusalem Mental Health Center, Hebrew University Medical School, Jerusalem, Israel
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - H Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
20
|
Janssens SEW, Sack AT. Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 2021; 15:802244. [PMID: 34924982 PMCID: PMC8674306 DOI: 10.3389/fnhum.2021.802244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Collapse
Affiliation(s)
- Shanice E. W. Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Centre for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
21
|
Schoenfeld MJ, Grigoras IF, Stagg CJ, Zich C. Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study. Front Hum Neurosci 2021; 15:755748. [PMID: 34867245 PMCID: PMC8635148 DOI: 10.3389/fnhum.2021.755748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Many tasks require the skilled interaction of both hands, such as eating with knife and fork or keyboard typing. However, our understanding of the behavioural and neurophysiological mechanisms underpinning bimanual motor learning is still sparse. Here, we aimed to address this by first characterising learning-related changes of different levels of bimanual interaction and second investigating how beta tACS modulates these learning-related changes. To explore early bimanual motor learning, we designed a novel bimanual motor learning task. In the task, a force grip device held in each hand (controlling x- and y-axis separately) was used to move a cursor along a path of streets at different angles (0°, 22.5°, 45°, 67.5°, and 90°). Each street corresponded to specific force ratios between hands, which resulted in different levels of hand interaction, i.e., unimanual (Uni, i.e., 0°, 90°), bimanual with equal force (Bi eq , 45°), and bimanual with unequal force (Bi uneq 22.5°, 67.5°). In experiment 1, 40 healthy participants performed the task for 45 min with a minimum of 100 trials. We found that the novel task induced improvements in movement time and error, with no trade-off between movement time and error, and with distinct patterns for the three levels of bimanual interaction. In experiment 2, we performed a between-subjects, double-blind study in 54 healthy participants to explore the effect of phase synchrony between both sensorimotor cortices using tACS at the individual's beta peak frequency. The individual's beta peak frequency was quantified using electroencephalography. 20 min of 2 mA peak-to-peak amplitude tACS was applied during task performance (40 min). Participants either received in-phase (0° phase shift), out-of-phase (90° phase shift), or sham (3 s of stimulation) tACS. We replicated the behavioural results of experiment 1, however, beta tACS did not modulate motor learning. Overall, the novel bimanual motor task allows to characterise bimanual motor learning with different levels of bimanual interaction. This should pave the way for future neuroimaging studies to further investigate the underlying mechanism of bimanual motor learning.
Collapse
Affiliation(s)
- Marleen J. Schoenfeld
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ioana-Florentina Grigoras
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Charlotte J. Stagg
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Catharina Zich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
22
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
23
|
Kudo D, Koseki T, Katagiri N, Yoshida K, Takano K, Jin M, Nito M, Tanabe S, Yamaguchi T. Individualized beta-band oscillatory transcranial direct current stimulation over the primary motor cortex enhances corticomuscular coherence and corticospinal excitability in healthy individuals. Brain Stimul 2021; 15:46-52. [PMID: 34742996 DOI: 10.1016/j.brs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Simultaneously modulating individual neural oscillation and cortical excitability may be important for enhancing communication between the primary motor cortex and spinal motor neurons, which plays a key role in motor control. However, it is unknown whether individualized beta-band oscillatory transcranial direct current stimulation (otDCS) enhances corticospinal oscillation and excitability. OBJECTIVE This study investigated the effects of individualized beta-band otDCS on corticomuscular coherence (CMC) and corticospinal excitability in healthy individuals. METHODS In total, 29 healthy volunteers participated in separate experiments. They received the following stimuli for 10 min on different days: 1) 2-mA otDCS with individualized beta-band frequencies, 2) 2-mA transcranial alternating current stimulation (tACS) with individualized beta-band frequencies, and 3) 2-mA transcranial direct current stimulation (tDCS). The changes in CMC between the vertex and tibialis anterior (TA) muscle and TA muscle motor-evoked potentials (MEPs) were assessed before and after (immediately, 10 min, and 20 min after) stimulation on different days. Additionally, 20-Hz otDCS for 10 min was applied to investigate the effects of a fixed beta-band frequency on CMC. RESULTS otDCS significantly increased CMC and MEPs immediately after stimulation, whereas tACS and tDCS had no effects. There was a significant negative correlation between normalized CMC changes in response to 20-Hz otDCS and the numerical difference between the 20-Hz and individualized CMC peak frequency before the stimulation. CONCLUSIONS These findings suggest that simultaneous modulation of neural oscillation and cortical excitability is critical for enhancing corticospinal communication. Individualized otDCS holds potential as a useful method in the field of neurorehabilitation.
Collapse
Affiliation(s)
- Daisuke Kudo
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan; Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Tadaki Koseki
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Natsuki Katagiri
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Kaito Yoshida
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Keita Takano
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Masafumi Jin
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi, 470-1192, Japan.
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
24
|
No aftereffects of high current density 10 Hz and 20 Hz tACS on sensorimotor alpha and beta oscillations. Sci Rep 2021; 11:21416. [PMID: 34725379 PMCID: PMC8560917 DOI: 10.1038/s41598-021-00850-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Application of transcranial alternating current stimulation (tACS) is thought to modulate ongoing brain oscillations in a frequency-dependent manner. However, recent studies report various and sometimes inconsistent results regarding its capacity to induce changes in cortical activity beyond the stimulation period. Here, thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind study using EEG to measure the offline effects of tACS on alpha and beta power. Sham and high current density tACS (1 mA; 10 Hz and 20 Hz; 0.32 mA/cm2) were applied for 20 min over bilateral sensorimotor areas and EEG was recorded at rest before and after stimulation for 20 min. Bilateral tACS was not associated with significant changes in local alpha and beta power frequencies at stimulation sites (C3 and C4 electrodes). Overall, the present results fail to provide evidence that bilateral tACS with high current density applied over sensorimotor regions at 10 and 20 Hz reliably modulates offline brain oscillation power at the stimulation site. These results may have implications for the design and implementation of future protocols aiming to induce sustained changes in brain activity, including in clinical populations.
Collapse
|
25
|
Schilberg L, Ten Oever S, Schuhmann T, Sack AT. Phase and power modulations on the amplitude of TMS-induced motor evoked potentials. PLoS One 2021; 16:e0255815. [PMID: 34529682 PMCID: PMC8445484 DOI: 10.1371/journal.pone.0255815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
The evaluation of transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) promises valuable information about fundamental brain related mechanisms and may serve as a diagnostic tool for clinical monitoring of therapeutic progress or surgery procedures. However, reports about spontaneous fluctuations of MEP amplitudes causing high intra-individual variability have led to increased concerns about the reliability of this measure. One possible cause for high variability of MEPs could be neuronal oscillatory activity, which reflects fluctuations of membrane potentials that systematically increase and decrease the excitability of neuronal networks. Here, we investigate the dependence of MEP amplitude on oscillation power and phase by combining the application of single pulse TMS over the primary motor cortex with concurrent recordings of electromyography and electroencephalography. Our results show that MEP amplitude is correlated to alpha phase, alpha power as well as beta phase. These findings may help explain corticospinal excitability fluctuations by highlighting the modulatory effect of alpha and beta phase on MEPs. In the future, controlling for such a causal relationship may allow for the development of new protocols, improve this method as a (diagnostic) tool and increase the specificity and efficacy of general TMS applications.
Collapse
Affiliation(s)
- Lukas Schilberg
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Janssens SEW, Sack AT, Ten Oever S, de Graaf TA. Calibrating rhythmic stimulation parameters to individual EEG markers: the consistency of individual alpha frequency in practical lab settings. Eur J Neurosci 2021; 55:3418-3437. [PMID: 34363269 PMCID: PMC9541964 DOI: 10.1111/ejn.15418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Rhythmic stimulation can be applied to modulate neuronal oscillations. Such 'entrainment' is optimized when stimulation frequency is individually-calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres, and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short EEG measurements at rest or during an attention task (cognitive state), using single parieto-occipital electrodes in 24 participants on four days (between-sessions), with multiple measurements over an hour on one day (within-session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional 'maximum' method and a 'Gaussian fit' method. IAF was reliable within- and between-sessions for both cognitive states and hemispheres, though task-IAF estimates tended to be more variable. Overall, the 'Gaussian fit' method was more reliable than the 'maximum' method. Furthermore, we evaluated how far from an approximated 'true' task-related IAF the selected 'stimulation frequency' was, when calibrating this frequency based on a short rest-EEG, a short task-EEG, or simply selecting 10Hertz for all participants. For the 'maximum' method, rest-EEG calibration was best, followed by task-EEG, and then 10 Hertz. For the 'Gaussian fit' method, rest-EEG and task-EEG-based calibration were similarly accurate, and better than 10 Hertz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre , Maastricht University Medical Centre+ (MUMC+), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Maastricht Brain Imaging Centre (MBIC), Maastricht, the Netherlands.,Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
27
|
Nakazono H, Ogata K, Takeda A, Yamada E, Oka S, Tobimatsu S. A specific phase of transcranial alternating current stimulation at the β frequency boosts repetitive paired-pulse TMS-induced plasticity. Sci Rep 2021; 11:13179. [PMID: 34162993 PMCID: PMC8222330 DOI: 10.1038/s41598-021-92768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) at 20 Hz (β) has been shown to modulate motor evoked potentials (MEPs) when paired with transcranial magnetic stimulation (TMS) in a phase-dependent manner. Repetitive paired-pulse TMS (rPPS) with I-wave periodicity (1.5 ms) induced short-lived facilitation of MEPs. We hypothesized that tACS would modulate the facilitatory effects of rPPS in a frequency- and phase-dependent manner. To test our hypothesis, we investigated the effects of combined tACS and rPPS. We applied rPPS in combination with peak or trough phase tACS at 10 Hz (α) or β, or sham tACS (rPPS alone). The facilitatory effects of rPPS in the sham condition were temporary and variable among participants. In the β tACS peak condition, significant increases in single-pulse MEPs persisted for over 30 min after the stimulation, and this effect was stable across participants. In contrast, β tACS in the trough condition did not modulate MEPs. Further, α tACS parameters did not affect single-pulse MEPs after the intervention. These results suggest that a rPPS-induced increase in trans-synaptic efficacy could be strengthened depending on the β tACS phase, and that this technique could produce long-lasting plasticity with respect to cortical excitability.
Collapse
Affiliation(s)
- Hisato Nakazono
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan. .,Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan.
| | - Katsuya Ogata
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, 831-8501, Japan
| | - Akinori Takeda
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, 782-8502, Japan
| | - Emi Yamada
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shinichiro Oka
- Department of Physical Therapy, School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, 831-8501, Japan
| | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Orthoptics, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan
| |
Collapse
|
28
|
Peles O, Werner-Reiss U, Bergman H, Israel Z, Vaadia E. Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior. Cell Rep 2021; 30:2555-2566.e3. [PMID: 32101735 DOI: 10.1016/j.celrep.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/13/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.
Collapse
Affiliation(s)
- Oren Peles
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Uri Werner-Reiss
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem 9112102, Israel
| | - Eilon Vaadia
- Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel; Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
29
|
Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci Rep 2021; 11:3854. [PMID: 33594133 PMCID: PMC7887242 DOI: 10.1038/s41598-021-83449-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.
Collapse
|
30
|
Vallence AM, Dansie K, Goldsworthy MR, McAllister SM, Yang R, Rothwell JC, Ridding MC. Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. Eur J Neurosci 2021; 53:2755-2762. [PMID: 33480046 DOI: 10.1111/ejn.15124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 01/18/2023]
Abstract
Many brain regions exhibit rhythmical activity thought to reflect the summed behaviour of large populations of neurons. The endogenous alpha rhythm has been associated with phase-dependent modulation of corticospinal excitability. However, whether exogenous alpha rhythm, induced using transcranial alternating current stimulation (tACS) also has a phase-dependent effect on corticospinal excitability remains unknown. Here, we triggered transcranial magnetic stimuli (TMS) on the up- or down-going phase of a tACS-imposed alpha oscillation and measured motor evoked potential (MEP) amplitude and short-interval intracortical inhibition (SICI). There was no significant difference in MEP amplitude or SICI when TMS was triggered on the up- or down-going phase of the tACS-imposed alpha oscillation. The current study provides no evidence of differences in corticospinal excitability or GABAergic inhibition when targeting the up-going (peak) and down-going (trough) phase of the tACS-imposed oscillation.
Collapse
Affiliation(s)
- Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia
| | - Kathryn Dansie
- Australia and New Zealand Dialysis and Transplant Registry (ANZDATA), South Australian Health and Medical Research Institute (SAHMIR), Adelaide, South, Australia
| | - Mitchell R Goldsworthy
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Suzanne M McAllister
- Formerly of the Discipline of Physiology, School of Medical Science, University of Adelaide, Adelaide, Australia
| | | | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| |
Collapse
|
31
|
Rossi A, Feurra M, Rossi S, Santarnecchi E, Ginanneschi F. Impact of β-range-induced oscillatory activity on human input-output relationship of the corticospinal pathway. Neurol Res 2021; 43:496-502. [PMID: 33441044 DOI: 10.1080/01616412.2020.1870358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The aim of the study was to show that short-lasting (90 s) transcranial alternating current stimulation (tACS) at 20 Hz delivered over the left primary motor cortex (M1) is able to change the shape of recruitment curve of the corticospinal pathway.Methods: The corticospinal pathway was studied during tACS by means of the relationship between the intensity of transcranial magnetic stimulation (TMS) delivered over the left M1 and corresponding motor evoked potentials (MEPs) recorded from the right first dorsal interosseus muscle (FDI), in nine healthy subjects. In order to extract characteristics of the input-output relationship that have particular physiological relevance, data were fitted to the Boltzmann sigmoidal function by the Levenberg-Marquardt nonlinear, least mean squares algorithm.Results: The β-rhythm tACS influenced the shape and parameters of the input-output relation, so that the initial segment of the conditioned curve (from threshold to 30% of maximum muscle size) diverged, while the subsequent segment converged to overlap the unconditioned control curve.Discussion: β-rhythm tACS conditions only a definite subset of corticospinal elements influencing less than 30% of the entire motoneuronal pool. The fact that β-rhythm tACS mainly affects the most excitable motoneurons could explain the observed antikinetic effect of the tACS at β-rhythm applied in the motor regions.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University, Higher School of Economics, Moscow, Russia
| | - Simone Rossi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy.,Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Federica Ginanneschi
- Department of Medical, Surgery and Neurological Sciences, Brain Investigation and Neuromodulation Lab (Si-bin Lab), University of Siena, Siena, Italy
| |
Collapse
|
32
|
Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation. Neurobiol Dis 2020; 147:105159. [PMID: 33152506 DOI: 10.1016/j.nbd.2020.105159] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Movement abnormalities of Parkinson's disease (PD) arise from disordered neural activity in multiple interconnected brain structures. The planning and execution of movement requires recruitment of a heterogeneous collection of pyramidal projection neurons in the primary motor cortex (M1). The neural representations of movement in M1 single-cell and field potential recordings are directly and indirectly influenced by the midbrain dopaminergic neurons that degenerate in PD. This review examines M1 functional alterations in PD as uncovered by electrophysiological recordings and neurostimulation studies in patients and experimental animal models. Dysfunction of the parkinsonian M1 depends on the severity and/or duration of dopamine-depletion and the species examined, and is expressed as alterations in movement-related firing dynamics; functional reorganisation of local circuits; and changes in field potential beta oscillations. Neurostimulation methods that modulate M1 activity directly (e.g., transcranial magnetic stimulation) or indirectly (subthalamic nucleus deep brain stimulation) improve motor function in PD patients, showing that targeted neuromodulation of M1 is a realistic therapy. We argue that the therapeutic profile of M1 neurostimulation is likely to be greatly enhanced with alternative technologies that permit cell-type specific control and incorporate feedback from electrophysiological biomarkers measured locally.
Collapse
|
33
|
Pellegrini M, Zoghi M, Jaberzadeh S. A Checklist to Reduce Response Variability in Studies Using Transcranial Magnetic Stimulation for Assessment of Corticospinal Excitability: A Systematic Review of the Literature. Brain Connect 2020; 10:53-71. [PMID: 32093486 DOI: 10.1089/brain.2019.0715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Response variability between individuals (interindividual variability) and within individuals (intraindividual variability) is an important issue in the transcranial magnetic stimulation (TMS) literature. This has raised questions of the validity of TMS to assess changes in corticospinal excitability (CSE) in a predictable and reliable manner. Several participant-specific factors contribute to this observed response variability with a current lack of consensus on the degree each factor contributes. This highlights a need for consistency and structure in reporting study designs and methodologies. Currently, there is no summarized review of the participant-specific factors that can be controlled and may contribute to response variability. This systematic review aimed to develop a checklist of methodological measures taken by previously published research to increase the homogeneity of participant selection criteria, preparation of participants before experimental testing, participant scheduling, and the instructions given to participants throughout experimental testing to minimize their effect on response variability. Seven databases were searched in full. Studies were included if CSE was measured via TMS and included methodological measures to increase the homogeneity of the participants. Eighty-four studies were included. Twenty-three included measures to increase participant selection homogeneity, 21 included measures to increase participant preparation homogeneity, while 61 included measures to increase participant scheduling and instructions during experimental testing homogeneity. These methodological measures were summarized into a user-friendly checklist with considerations, suggestions, and rationale/justification for their inclusion. This may provide the framework for further insights into ways to reduce response variability in TMS research.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, Discipline of Physiotherapy, School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Wischnewski M, Engelhardt M, Salehinejad MA, Schutter DJLG, Kuo MF, Nitsche MA. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb Cortex 2020; 29:2924-2931. [PMID: 29992259 DOI: 10.1093/cercor/bhy160] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations and excitability levels in the primary motor cortex (M1). These effects can last for more than an hour and an involvement of N-methyl-d-aspartate receptor (NMDAR) mediated synaptic plasticity has been suggested. However, to date the cortical mechanisms underlying tACS after-effects have not been explored. Here, we applied 20 Hz beta tACS to M1 while participants received either the NMDAR antagonist dextromethorphan or a placebo and the effects on cortical beta oscillations and excitability were explored. When a placebo medication was administered, beta tACS was found to increase cortical excitability and beta oscillations for at least 60 min, whereas when dextromethorphan was administered, these effects were completely abolished. These results provide the first direct evidence that tACS can induce NMDAR-mediated plasticity in the motor cortex, which contributes to our understanding of tACS-induced influences on human motor cortex physiology.
Collapse
Affiliation(s)
- M Wischnewski
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M Engelhardt
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Salehinejad
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - D J L G Schutter
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - M-F Kuo
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
35
|
Fiene M, Schwab BC, Misselhorn J, Herrmann CS, Schneider TR, Engel AK. Phase-specific manipulation of rhythmic brain activity by transcranial alternating current stimulation. Brain Stimul 2020; 13:1254-1262. [PMID: 32534253 DOI: 10.1016/j.brs.2020.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/08/2020] [Accepted: 06/06/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oscillatory phase has been proposed as a key parameter defining the spatiotemporal structure of neural activity. To enhance our understanding of brain rhythms and improve clinical outcomes in pathological conditions, modulation of neural activity by transcranial alternating current stimulation (tACS) emerged as a promising approach. However, the phase-specificity of tACS effects in humans is still critically debated. OBJECTIVE Here, we investigated the phase-specificity of tACS on visually evoked steady state responses (SSRs) in 24 healthy human participants. METHODS We used an intermittent electrical stimulation protocol and assessed the influence of tACS on SSR amplitude in the interval immediately following tACS. A neural network model served to validate the plausibility of experimental findings. RESULTS We observed a modulation of SSR amplitudes dependent on the phase shift between flicker and tACS. The tACS effect size was negatively correlated with the strength of flicker-evoked activity. Supported by simulations, data suggest that strong network synchronization limits further neuromodulation by tACS. Neural sources of phase-specific effects were localized in the parieto-occipital cortex within flicker-entrained regions. Importantly, the optimal phase shift between flicker and tACS associated with strongest SSRs was correlated with SSR phase delays in the tACS target region. CONCLUSIONS Overall, our data provide electrophysiological evidence for phase-specific modulations of rhythmic brain activity by tACS in humans. As the optimal timing of tACS application was dependent on cortical SSR phase delays, our data suggest that tACS effects were not mediated by retinal co-stimulation. These findings highlight the potential of tACS for controlled, phase-specific modulations of neural activity.
Collapse
Affiliation(s)
- Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.
| | - Bettina C Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
36
|
de Graaf TA, Thomson A, Janssens SE, van Bree S, ten Oever S, Sack AT. Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. Eur J Neurosci 2020; 51:2299-2313. [PMID: 31943418 PMCID: PMC7317496 DOI: 10.1111/ejn.14677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
Abstract
In recent years, the influence of alpha (7-13 Hz) phase on visual processing has received a lot of attention. Magneto-/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. Studies with transcranial alternating current stimulation (tACS) aim to modulate oscillations and causally impact task performance. Here, we applied right occipital tACS (O2 location) to assess the functional role of alpha phase in a series of experiments. We presented visual stimuli at different pre-determined, experimentally controlled, phases of the entraining tACS signal, hypothesizing that this should result in an oscillatory pattern of visual performance in specifically left hemifield detection tasks. In experiment 1, we applied 10 Hz tACS and used separate psychophysical staircases for six equidistant tACS-phase conditions, obtaining contrast thresholds for detection of visual gratings in left or right hemifield. In experiments 2 and 3, tACS was at EEG-based individual peak alpha frequency. In experiment 2, we measured detection rates for gratings with (pseudo-)fixed contrast. In experiment 3, participants detected brief luminance changes in a custom-built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one-cycle sinusoid. However, post hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT for specifically left hemifield targets in both experiments 1 and 2 (not measured in experiment 3). This observation requires future confirmation, but is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation.
Collapse
Affiliation(s)
- Tom A. de Graaf
- Section Brain Stimulation and CognitionDepartment of Cognitive NeuroscienceFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Brain Imaging Centre (MBIC)Maastricht UniversityMaastrichtThe Netherlands
- Center for Integrative Neuroscience (CIN)MaastrichtThe Netherlands
| | - Alix Thomson
- Section Brain Stimulation and CognitionDepartment of Cognitive NeuroscienceFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Brain Imaging Centre (MBIC)Maastricht UniversityMaastrichtThe Netherlands
- Center for Integrative Neuroscience (CIN)MaastrichtThe Netherlands
| | - Shanice E.W. Janssens
- Section Brain Stimulation and CognitionDepartment of Cognitive NeuroscienceFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Brain Imaging Centre (MBIC)Maastricht UniversityMaastrichtThe Netherlands
| | - Sander van Bree
- School of Psychology & Centre for Human Brain Health (CHBH)University of BirminghamBirminghamUK
| | - Sanne ten Oever
- Section Brain Stimulation and CognitionDepartment of Cognitive NeuroscienceFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Brain Imaging Centre (MBIC)Maastricht UniversityMaastrichtThe Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and CognitionDepartment of Cognitive NeuroscienceFaculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Brain Imaging Centre (MBIC)Maastricht UniversityMaastrichtThe Netherlands
- Center for Integrative Neuroscience (CIN)MaastrichtThe Netherlands
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs)Brain+Nerve CentreMaastricht University Medical Centre+ (MUMC+)MaastrichtThe Netherlands
| |
Collapse
|
37
|
Ten Oever S, De Weerd P, Sack AT. Phase-dependent amplification of working memory content and performance. Nat Commun 2020; 11:1832. [PMID: 32286288 PMCID: PMC7156664 DOI: 10.1038/s41467-020-15629-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
Successful working memory performance has been related to oscillatory mechanisms operating in low-frequency ranges. Yet, their mechanistic interaction with the distributed neural activity patterns representing the content of the memorized information remains unclear. Here, we record EEG during a working memory retention interval, while a task-irrelevant, high-intensity visual impulse stimulus is presented to boost the read-out of distributed neural activity related to the content held in working memory. Decoding of this activity with a linear classifier reveals significant modulations of classification accuracy by oscillatory phase in the theta/alpha ranges at the moment of impulse presentation. Additionally, behavioral accuracy is highest at the phases showing maximized decoding accuracy. At those phases, behavioral accuracy is higher in trials with the impulse compared to no-impulse trials. This constitutes the first evidence in humans that working memory information is maximized within limited phase ranges, and that phase-selective, sensory impulse stimulation can improve working memory.
Collapse
Affiliation(s)
- Sanne Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Max Planck Institute for Psycholinguistics, P.O. Box 310, 6500 AH, Nijmegen, The Netherlands.
- Donders Centre for Cognitive Neuroimaging, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6229 EV, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6229 EV, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain and Nerve Centre, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
38
|
Peters JC, Reithler J, Graaf TAD, Schuhmann T, Goebel R, Sack AT. Concurrent human TMS-EEG-fMRI enables monitoring of oscillatory brain state-dependent gating of cortico-subcortical network activity. Commun Biol 2020; 3:40. [PMID: 31969657 PMCID: PMC6976670 DOI: 10.1038/s42003-020-0764-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
Despite growing interest, the causal mechanisms underlying human neural network dynamics remain elusive. Transcranial Magnetic Stimulation (TMS) allows to noninvasively probe neural excitability, while concurrent fMRI can log the induced activity propagation through connected network nodes. However, this approach ignores ongoing oscillatory fluctuations which strongly affect network excitability and concomitant behavior. Here, we show that concurrent TMS-EEG-fMRI enables precise and direct monitoring of causal dependencies between oscillatory states and signal propagation throughout cortico-subcortical networks. To demonstrate the utility of this multimodal triad, we assessed how pre-TMS EEG power fluctuations influenced motor network activations induced by subthreshold TMS to right dorsal premotor cortex. In participants with adequate motor network reactivity, strong pre-TMS alpha power reduced TMS-evoked hemodynamic activations throughout the bilateral cortico-subcortical motor system (including striatum and thalamus), suggesting shunted network connectivity. Concurrent TMS-EEG-fMRI opens an exciting noninvasive avenue of subject-tailored network research into dynamic cognitive circuits and their dysfunction.
Collapse
Affiliation(s)
- Judith C Peters
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Joel Reithler
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Tom A de Graaf
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Teresa Schuhmann
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Vision, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Alexander T Sack
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Maastricht Brain Imaging Center (M-BIC), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+(MUMC+), Maastricht, The Netherlands
| |
Collapse
|
39
|
Lafleur LP, Klees-Themens G, Chouinard-Leclaire C, Larochelle-Brunet F, Tremblay S, Lepage JF, Théoret H. Neurophysiological aftereffects of 10 Hz and 20 Hz transcranial alternating current stimulation over bilateral sensorimotor cortex. Brain Res 2020; 1727:146542. [PMID: 31712086 DOI: 10.1016/j.brainres.2019.146542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Alpha (8-12 Hz) and beta (13-30 Hz) oscillations are believed to be involved in motor control. Their modulation with transcranial alternating current stimulation (tACS) has been shown to alter motor behavior and cortical excitability. The aim of the present study was to determine whether tACS applied bilaterally over sensorimotor cortex at 10 Hz and 20 Hz modulates interhemispheric interactions and corticospinal excitability. Thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind protocol. Sham and active tACS (10 Hz, 20 Hz, 1 mA) were applied for 20 min over bilateral sensorimotor areas. The physiological effects of tACS on corticospinal excitability and interhemispheric inhibition were assessed with transcranial magnetic stimulation. Physiological mirror movements were assessed to measure the overflow of motor activity to the contralateral M1 during voluntary muscle contraction. Bilateral 10 Hz tACS reduced corticospinal excitability. There was no significant effect of tACS on physiological mirror movements and interhemispheric inhibition. Ten Hz tACS was associated with response patterns consistent with corticospinal inhibition in 57% of participants. The present results indicate that application of tACS at the alpha frequency can induce aftereffects in sensorimotor cortex of healthy individuals.
Collapse
Affiliation(s)
- Louis-Philippe Lafleur
- Department of psychologie, Université de Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | | | | | | | - Sara Tremblay
- Department of Psychology, Carleton University, Ottawa, Canada
| | - Jean-Francois Lepage
- Département de Pédiatrie, Médecine nucléaire et radiobiologie, Centre de recherche du CHU Sherbrooke, Sherbrooke, Canada
| | - Hugo Théoret
- Department of psychologie, Université de Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada.
| |
Collapse
|
40
|
Wischnewski M, Schutter DJ, Nitsche MA. Effects of beta-tACS on corticospinal excitability: A meta-analysis. Brain Stimul 2019; 12:1381-1389. [DOI: 10.1016/j.brs.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
|
41
|
State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System during Action Observation. Sci Rep 2019; 9:12858. [PMID: 31492895 PMCID: PMC6731229 DOI: 10.1038/s41598-019-49166-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index–thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.
Collapse
|
42
|
Benedetto A, Morrone MC, Tomassini A. The Common Rhythm of Action and Perception. J Cogn Neurosci 2019; 32:187-200. [PMID: 31210564 DOI: 10.1162/jocn_a_01436] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research in the last decade has undermined the idea of perception as a continuous process, providing strong empirical support for its rhythmic modulation. More recently, it has been revealed that the ongoing motor processes influence the rhythmic sampling of sensory information. In this review, we will focus on a growing body of evidence suggesting that oscillation-based mechanisms may structure the dynamic interplay between the motor and sensory system and provide a unified temporal frame for their effective coordination. We will describe neurophysiological data, primarily collected in animals, showing phase-locking of neuronal oscillations to the onset of (eye) movements. These data are complemented by novel evidence in humans, which demonstrate the behavioral relevance of these oscillatory modulations and their domain-general nature. Finally, we will discuss the possible implications of these modulations for action-perception coupling mechanisms.
Collapse
|
43
|
Meier J, Nolte G, Schneider TR, Engel AK, Leicht G, Mulert C. Intrinsic 40Hz-phase asymmetries predict tACS effects during conscious auditory perception. PLoS One 2019; 14:e0213996. [PMID: 30943251 PMCID: PMC6447177 DOI: 10.1371/journal.pone.0213996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Synchronized oscillatory gamma-band activity (30-100Hz) has been suggested to constitute a key mechanism to dynamically orchestrate sensory information integration across multiple spatio-temporal scales. We here tested whether interhemispheric functional connectivity and ensuing auditory perception can selectively be modulated by high-density transcranial alternating current stimulation (HD-tACS). For this purpose, we applied multi-site HD-tACS at 40Hz bilaterally with a phase lag of 180° and recorded a 64-channel EEG to study the oscillatory phase dynamics at the source-space level during a dichotic listening (DL) task in twenty-six healthy participants. In this study, we revealed an oscillatory phase signature at 40Hz which reflects different temporal profiles of the phase asymmetries during left and right ear percept. Here we report that 180°-tACS did not affect the right ear advantage during DL at group level. However, a follow-up analysis revealed that the intrinsic phase asymmetries during sham-tACS determined the directionality of the behavioral modulations: While a shift to left ear percept was associated with augmented interhemispheric asymmetry (closer to 180°), a shift to right ear processing was elicited in subjects with lower asymmetry (closer to 0°). Crucially, the modulation of the interhemispheric network dynamics depended on the deviation of the tACS-induced phase-lag from the intrinsic phase asymmetry. Our characterization of the oscillatory network trends is giving rise to the importance of phase-specific gamma-band coupling during ambiguous auditory perception, and emphasizes the necessity to address the inter-individual variability of phase asymmetries in future studies by tailored stimulation protocols.
Collapse
Affiliation(s)
- Jan Meier
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R. Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
44
|
Khademi F, Royter V, Gharabaghi A. State-dependent brain stimulation: Power or phase? Brain Stimul 2019; 12:296-299. [DOI: 10.1016/j.brs.2018.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
|
45
|
Cabral-Calderin Y, Wilke M. Probing the Link Between Perception and Oscillations: Lessons from Transcranial Alternating Current Stimulation. Neuroscientist 2019; 26:57-73. [PMID: 30730265 PMCID: PMC7003153 DOI: 10.1177/1073858419828646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain oscillations are regarded as important for perception as they open and close time windows for neural spiking to enable the effective communication within and across brain regions. In the past, studies on perception primarily relied on the use of electrophysiological techniques for probing a correlative link between brain oscillations and perception. The emergence of noninvasive brain stimulation techniques such as transcranial alternating current stimulation (tACS) provides the possibility to study the causal contribution of specific oscillatory frequencies to perception. Here, we review the studies on visual, auditory, and somatosensory perception that employed tACS to probe the causality of brain oscillations for perception. The current literature is consistent with a causal role of alpha and gamma oscillations in parieto-occipital regions for visual perception and theta and gamma oscillations in auditory cortices for auditory perception. In addition, the sensory gating by alpha oscillations applies not only to the visual but also to the somatosensory domain. We conclude that albeit more refined perceptual paradigms and individualized stimulation practices remain to be systematically adopted, tACS is a promising tool for establishing a causal link between neural oscillations and perception.
Collapse
Affiliation(s)
- Yuranny Cabral-Calderin
- MEG Unit, Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Resilience Center, University Medical Center Mainz, Mainz, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany.,German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
46
|
de Graaf TA, Sack AT. When and How to Interpret Null Results in NIBS: A Taxonomy Based on Prior Expectations and Experimental Design. Front Neurosci 2018; 12:915. [PMID: 30618550 PMCID: PMC6297282 DOI: 10.3389/fnins.2018.00915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/21/2018] [Indexed: 02/03/2023] Open
Abstract
Experiments often challenge the null hypothesis that an intervention, for instance application of non-invasive brain stimulation (NIBS), has no effect on an outcome measure. In conventional statistics, a positive result rejects that hypothesis, but a null result is meaningless. Informally, however, researchers often do find null results meaningful to a greater or lesser extent. We present a model to guide interpretation of null results in NIBS research. Along a "gradient of surprise," from Replication nulls through Exploration nulls to Hypothesized nulls, null results can be less or more surprising in the context of prior expectations, research, and theory. This influences to what extent we should credit a null result in this greater context. Orthogonal to this, experimental design choices create a "gradient of interpretability," along which null results of an experiment, considered in isolation, become more informative. This is determined by target localization procedure, neural efficacy checks, and power and effect size evaluations. Along the latter gradient, we concretely propose three "levels of null evidence." With caveats, these proposed levels C, B, and A, classify how informative an empirical null result is along concrete criteria. Lastly, to further inform, and help formalize, the inferences drawn from null results, Bayesian statistics can be employed. We discuss how this increasingly common alternative to traditional frequentist inference does allow quantification of the support for the null hypothesis, relative to support for the alternative hypothesis. It is our hope that these considerations can contribute to the ongoing effort to disseminate null findings alongside positive results to promote transparency and reduce publication bias.
Collapse
Affiliation(s)
- Tom A. de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre, Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre, Maastricht, Netherlands
| |
Collapse
|
47
|
Sasaki R, Tsuiki S, Miyaguchi S, Kojima S, Saito K, Inukai Y, Otsuru N, Onishi H. Repetitive Passive Finger Movement Modulates Primary Somatosensory Cortex Excitability. Front Hum Neurosci 2018; 12:332. [PMID: 30177877 PMCID: PMC6109762 DOI: 10.3389/fnhum.2018.00332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Somatosensory inputs induced by repetitive passive movement (RPM) modulate primary motor cortex (M1) excitability; however, it is unclear whether RPM affects primary somatosensory cortex (S1) excitability. In this study, we investigated whether RPM affects somatosensory evoked potentials (SEPs) and resting state brain oscillation, including alpha and beta bands, depend on RPM frequency. Nineteen healthy subjects participated in this study, and SEPs elicited by peripheral nerve electrical stimulation were recorded from the C3’ area in order to assess S1 excitability (Exp. 1: n = 15). We focused on prominent SEP components such as N20, P25 and P45-reflecting S1 activities. In addition, resting electroencephalograms (EEGs) were recorded from C3’ area to assess the internal state of the brain network at rest (Exp. 2: n = 15). Passive abduction/adduction of the right index finger was applied for 10 min at frequencies of 0.5, 1.0, 3.0, and 5.0 Hz in Exp. 1, and 1.0, 3.0, and 5.0 Hz in Exp. 2. No changes in N20 or P25 components were observed following RPM. The 3.0 Hz-RPM decreased the P45 component for 20 min (p < 0.05), but otherwise did not affect the P45 component. There was no difference in the alpha and beta bands before and after any RPM; however, a negative correlation was observed between the rate of change of beta power and P45 component at 3.0 Hz-RPM. Our findings indicated that the P45 component changes depending on the RPM frequency, suggesting that somatosensory inputs induced by RPM influences S1 excitability. Additionally, beta power enhancement appears to contribute to the P45 component depression in 3.0 Hz-RPM.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Tsuiki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|