1
|
da Silva Oliveira JP, Garrett R, Koblitz MGB, Macedo AF. Integrated targeted and untargeted metabolomics profiling of Vanilla species from the Atlantic Forest: Unveiling the bioeconomic potential of Vanilla cribbiana. Food Chem 2024; 464:141650. [PMID: 39432966 DOI: 10.1016/j.foodchem.2024.141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
In this study, we employ both targeted and untargeted approaches to explore the metabolomic profiles of Vanilla spp., with a particular focus on V. cribbiana (VCR) and its comparison with V. planifolia (VP). We also examine V. bahiana and V. chamissonis using targeted approaches. Through advanced analytical techniques, our untargeted LC-HRMS approach led to the annotation of 60 metabolites, revealing a complex chemical composition with 34 novel compounds in the Vanilla genus in VCR and VP. These findings highlight significant flavoring compounds and lay the foundation for a subsequent quantitative estimation approach. Our targeted analysis, which measured key molecules, underscores VCR's potential in producing vanillin and acetovanillone at levels comparable to the commercially valuable VP and even higher levels of vanillic acid. This research enriches our understanding of flavor composition in vanilla species and emphasizes the importance of exploring wild relatives of vanilla crop for sustainable production and biodiversity conservation.
Collapse
Affiliation(s)
- Joana Paula da Silva Oliveira
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Federal University of the State of Rio de Janeiro - UNIRIO. Av. Pasteur, 458 Urca, Rio de Janeiro, RJ, Brazil.
| | - Rafael Garrett
- Metabolomics Laboratory (LabMeta), Institute of Chemistry, Federal University of Rio de Janeiro - UFRJ. Av. Horacio Macedo, 1281 - Polo de Química - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Maria Gabriela Bello Koblitz
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro - UNIRIO. Av. Pasteur, 296 Urca, Rio de Janeiro, RJ, Brazil.
| | - Andrea Furtado Macedo
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Federal University of the State of Rio de Janeiro - UNIRIO. Av. Pasteur, 458 Urca, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Dubreil E, Darney K, Delignette-Muller ML, Barranger A, Huet S, Hogeveen K, Léger T, Fessard V, Hégarat LL. Modeling HepaRG metabolome responses to pyrrolizidine alkaloid exposure for insight into points of departure and modes of action. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134721. [PMID: 38843629 DOI: 10.1016/j.jhazmat.2024.134721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The new challenges in toxicology demand novel and innovative in vitro approaches for deriving points of departure (PODs) and determining the mode of action (MOA) of chemicals. Therefore, the aim of this original study was to couple in vitro studies with untargeted metabolomics to model the concentration-response of extra- and intracellular metabolome data on human HepaRG cells treated for 48 h with three pyrrolizidine alkaloids (PAs): heliotrine, retrorsine and lasiocarpine. Modeling revealed that the three PAs induced various monotonic and, importantly, biphasic curves of metabolite content. Based on unannotated metabolites, the endometabolome was more sensitive than the exometabolome in terms of metabolomic effects, and benchmark concentrations (BMCs) confirmed that lasiocarpine was the most hepatotoxic PA. Regarding its MOA, impairment of lipid metabolism was highlighted at a very low BMC (first quartile, 0.003 µM). Moreover, results confirmed that lasiocarpine targets bile acids, as well as amino acid and steroid metabolisms. Analysis of the endometabolome, based on coupling concentration-response and PODs, gave encouraging results for ranking toxins according to their hepatotoxic effects. Therefore, this novel approach is a promising tool for next-generation risk assessment, readily applicable to a broad range of compounds and toxic endpoints.
Collapse
Affiliation(s)
- Estelle Dubreil
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France.
| | - Keyvin Darney
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Marie-Laure Delignette-Muller
- University of Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Audrey Barranger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
3
|
Zeng Z, Huo J, Zhang Y, Shi Y, Wu Z, Yang Q, Zhang X. Study on the correlation and difference of qualitative information among three types of UPLC-HRMS and potential generalization in metabolites annotation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124219. [PMID: 38943690 DOI: 10.1016/j.jchromb.2024.124219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The variation of qualitative information among different types of mainstream hyphenated instruments of ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) makes data sharing and standardization, and further comparison of results consistency in metabolite annotation not easy to attain. In this work, a quantitative study of correlation and difference was first achieved to systematically investigate the variation of retention time (tR), precursor ion (MS1), and product fragment ions (MS2) generated by three typical UPLC-HRMS instruments commonly used in metabolomics area. In terms of the findings of systematic and correlated variation of tR, MS1, and MS2 between different instruments, a computational strategy for integrated metabolite annotation was proposed to reduce the influence of differential ions, which made full use of the characteristic (common) and non-common fragments for scoring assessment. The regular variations of MS2 among three instruments under four collision energy voltages of high, medium, low, and hybrid levels were respectively inspected with three technical replicates at each level. These discoveries could improve general metabolite annotation with a known database and similarity comparison. It should provide the potential for metabolite annotation to generalize qualitative information obtained under different experimental conditions or using instruments from various manufacturers, which is still a big headache in untargeted metabolomics. The mixture of standard compounds and serum samples with the addition of standards were applied to demonstrate the principle and performance of the proposed method. The results showed that it could be an optional strategy for general use in HRMS-based metabolomics to offset the difference in metabolite annotation. It has some potential in untargeted metabolomics.
Collapse
Affiliation(s)
- Zhongda Zeng
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Jinfeng Huo
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Yuxi Zhang
- Dalian ChemDataSolution Information Technology Co. Ltd., Dalian 116023, China
| | - Yingjiao Shi
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Zeying Wu
- School of Chemical Engineering and Material Sciences, Changzhou Institute of Technology, Changzhou 213032, China.
| | - Qianxu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650231, China.
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Sostare E, Bowen TJ, Lawson TN, Freier A, Li X, Lloyd GR, Najdekr L, Jankevics A, Smith T, Varshavi D, Ludwig C, Colbourne JK, Weber RJM, Crizer DM, Auerbach SS, Bucher JR, Viant MR. Metabolomics Simultaneously Derives Benchmark Dose Estimates and Discovers Metabolic Biotransformations in a Rat Bioassay. Chem Res Toxicol 2024; 37:923-934. [PMID: 38842447 PMCID: PMC11187623 DOI: 10.1021/acs.chemrestox.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Benchmark dose (BMD) modeling estimates the dose of a chemical that causes a perturbation from baseline. Transcriptional BMDs have been shown to be relatively consistent with apical end point BMDs, opening the door to using molecular BMDs to derive human health-based guidance values for chemical exposure. Metabolomics measures the responses of small-molecule endogenous metabolites to chemical exposure, complementing transcriptomics by characterizing downstream molecular phenotypes that are more closely associated with apical end points. The aim of this study was to apply BMD modeling to in vivo metabolomics data, to compare metabolic BMDs to both transcriptional and apical end point BMDs. This builds upon our previous application of transcriptomics and BMD modeling to a 5-day rat study of triphenyl phosphate (TPhP), applying metabolomics to the same archived tissues. Specifically, liver from rats exposed to five doses of TPhP was investigated using liquid chromatography-mass spectrometry and 1H nuclear magnetic resonance spectroscopy-based metabolomics. Following the application of BMDExpress2 software, 2903 endogenous metabolic features yielded viable dose-response models, confirming a perturbation to the liver metabolome. Metabolic BMD estimates were similarly sensitive to transcriptional BMDs, and more sensitive than both clinical chemistry and apical end point BMDs. Pathway analysis of the multiomics data sets revealed a major effect of TPhP exposure on cholesterol (and downstream) pathways, consistent with clinical chemistry measurements. Additionally, the transcriptomics data indicated that TPhP activated xenobiotic metabolism pathways, which was confirmed by using the underexploited capability of metabolomics to detect xenobiotic-related compounds. Eleven biotransformation products of TPhP were discovered, and their levels were highly correlated with multiple xenobiotic metabolism genes. This work provides a case study showing how metabolomics and transcriptomics can estimate mechanistically anchored points-of-departure. Furthermore, the study demonstrates how metabolomics can also discover biotransformation products, which could be of value within a regulatory setting, for example, as an enhancement of OECD Test Guideline 417 (toxicokinetics).
Collapse
Affiliation(s)
- Elena Sostare
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
| | - Tara J. Bowen
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Thomas N. Lawson
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
| | - Anne Freier
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Xiaojing Li
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Gavin R. Lloyd
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Lukáš Najdekr
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Andris Jankevics
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Thomas Smith
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Dorsa Varshavi
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Christian Ludwig
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - John K. Colbourne
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Ralf J. M. Weber
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| | - David M. Crizer
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park NC 27709, North Carolina, United
States
| | - Scott S. Auerbach
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park NC 27709, North Carolina, United
States
| | - John R. Bucher
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park NC 27709, North Carolina, United
States
| | - Mark R. Viant
- Michabo
Health Science Ltd., Union House, 111 New Union Street, Coventry CV1 2NT, U.K.
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K.
- Phenome
Centre Birmingham, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
5
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
6
|
Lettoof DC, Nguyen TV, Richmond WR, Nice HE, Gagnon MM, Beale DJ. Bioaccumulation and metabolic impact of environmental PFAS residue on wild-caught urban wetland tiger snakes (Notechis scutatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165260. [PMID: 37400030 DOI: 10.1016/j.scitotenv.2023.165260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
PFAS contamination of urban waters is widespread but understanding the biological impact of its accumulation is limited to humans and common ecotoxicological model organisms. Here, we combine PFAS exposure and bioaccumulation patterns with whole organism responses and omics-based ecosurveillance methods to investigate the potential impacts of PFAS on a top predator of wetlands, the tiger snake (Notechis scutatus). Tiger snakes (18 male and 17 female) were collected from four wetlands with varying PFAS chemical profiles and concentrations in Perth, Western Australia. Tiger snake livers were tested for 28 known PFAS compounds, and Σ28PFAS in liver tissues ranged between 322 ± 193 μg/kg at the most contaminated site to 1.31 ± 0.86 μg/kg at the least contaminated site. The dominant PFAS compound detected in liver tissues was PFOS. Lower body condition was associated with higher liver PFAS, and male snakes showed signs of high bioaccumulation whereas females showed signs of maternal offloading. Biochemical profiles of snake muscle, fat (adipose tissue), and gonads were analysed using a combination of liquid chromatography triple quadrupole (QqQ) and quadrupole time-of-flight (QToF) mass spectrometry methodologies. Elevated PFAS was associated with enriched energy production and maintenance pathways in the muscle, and had weak associations with energy-related lipids in the fat tissue, and lipids associated with cellular genesis and spermatogenesis in the gonads. These findings demonstrate the bioavailability of urban wetland PFAS in higher-order reptilian predators and suggest a negative impact on snake health and metabolic processes. This research expands on omics-based ecosurveillance tools for informing mechanistic toxicology and contributes to our understanding of the impact of PFAS residue on wildlife health to improve risk management and regulation.
Collapse
Affiliation(s)
- D C Lettoof
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA 6102, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Centre for Environment and Life Sciences, Floreat, WA 6014, Australia.
| | - T V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 700000, Viet Nam
| | - W R Richmond
- Department of Water and Environmental Regulation, Government of Western Australia, Joondalup, WA 6027, Australia
| | - H E Nice
- Department of Water and Environmental Regulation, Government of Western Australia, Joondalup, WA 6027, Australia
| | - M M Gagnon
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA 6102, Australia
| | - D J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, Qld 4102, Australia
| |
Collapse
|
7
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
8
|
Bini AP, Rossi GD, Poeschl Y, Serra MCD, Camargo LEA, Monteiro-Vitorello CB, van Sluys MA, van Dam NM, Uthe H, Creste S. Molecular, biochemical and metabolomics analyses reveal constitutive and pathogen-induced defense responses of two sugarcane contrasting genotypes against leaf scald disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108033. [PMID: 37757720 DOI: 10.1016/j.plaphy.2023.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Leaf scald caused by the bacteria Xanthomonas albilineans is one of the major concerns to sugarcane production. To breed for resistance, mechanisms underlying plant-pathogen interaction need deeper investigations. Herein, we evaluated sugarcane defense responses against X. albilineans using molecular and biochemical approaches to assess pathogen-triggered ROS, phytohormones and metabolomics in two contrasting sugarcane genotypes from 0.5 to 144 h post-inoculation (hpi). In addition, the infection process was monitored using TaqMan-based quantification of X. albilineans and the disease symptoms were evaluated in both genotypes after 15 d post-inoculation (dpi). The susceptible genotype presented a response to the infection at 0.5 hpi, accumulating defense-related metabolites such as phenolics and flavonoids with no significant defense responses thereafter, resulting in typical symptoms of leaf scald at 15 dpi. The resistant genotype did not respond to the infection at 0.5 hpi but constitutively presented higher levels of salicylic acid and of the same metabolites induced by the infection in the susceptible genotype. Moreover, two subsequent pathogen-induced metabolic responses at 12 and 144 hpi were observed only in the resistant genotype in terms of amino acids, quinic acids, coumarins, polyamines, flavonoids, phenolics and phenylpropanoids together with an increase of hydrogen peroxide, ROS-related genes expression, indole-3-acetic-acid and salicylic acid. Multilevel approaches revealed that constitutive chemical composition and metabolic reprogramming hampers the development of leaf scald at 48 and 72 hpi, reducing the disease symptoms in the resistant genotype at 15 dpi. Phenylpropanoid pathway is suggested as a strong candidate marker for breeding sugarcane resistant to leaf scald.
Collapse
Affiliation(s)
- Andressa Peres Bini
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil
| | - Guilherme Duarte Rossi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Via de Acesso Professor Paulo Donato Castellane S/N, 14884-900, Jaboticabal, SP, Brazil
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Marina Carnaz Duarte Serra
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Av. Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil
| | | | - Marie-Anne van Sluys
- Universidade de São Paulo, Departamento de Botânica - Instituto de Biociências, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
| | - Silvana Creste
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Mendes MPR, Paiva MJN, Costa-Amaral IC, Carvalho LVB, Figueiredo VO, Gonçalves ES, Larentis AL, André LC. Metabolomic Study of Urine from Workers Exposed to Low Concentrations of Benzene by UHPLC-ESI-QToF-MS Reveals Potential Biomarkers Associated with Oxidative Stress and Genotoxicity. Metabolites 2022; 12:metabo12100978. [PMID: 36295880 PMCID: PMC9611274 DOI: 10.3390/metabo12100978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Benzene is a human carcinogen whose exposure to concentrations below 1 ppm (3.19 mg·m-3) is associated with myelotoxic effects. The determination of biomarkers such as trans-trans muconic acid (AttM) and S-phenylmercapturic acid (SPMA) show exposure without reflecting the toxic effects of benzene. For this reason, in this study, the urinary metabolome of individuals exposed to low concentrations of benzene was investigated, with the aim of understanding the biological response to exposure to this xenobiotic and identifying metabolites correlated with the toxic effects induced by it. Ultra-efficient liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer (UHPLC-ESI-Q-ToF-MS) was used to identify metabolites in the urine of environmentally (n = 28) and occupationally exposed (n = 32) to benzene (mean of 22.1 μg·m-3 and 31.8 μg·m-3, respectively). Non-targeted metabolomics analysis by PLS-DA revealed nine urinary metabolites discriminating between groups and statistically correlated with oxidative damage (MDA, thiol) and genetic material (chromosomal aberrations) induced by the hydrocarbon. The analysis of metabolic pathways revealed important alterations in lipid metabolism. These results point to the involvement of alterations in lipid metabolism in the mechanisms of cytotoxic and genotoxic action of benzene. Furthermore, this study proves the potential of metabolomics to provide relevant information to understand the biological response to exposure to xenobiotics and identify early effect biomarkers.
Collapse
Affiliation(s)
- Michele P. R. Mendes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Maria José N. Paiva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Isabele C. Costa-Amaral
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Leandro V. B. Carvalho
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Victor O. Figueiredo
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Eline S. Gonçalves
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Ariane L. Larentis
- Center for the Study of Occupational Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation (Fiocruz), Rua Leopoldo Bulhões 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil
| | - Leiliane C. André
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-9238-3636
| |
Collapse
|
10
|
Paulhe N, Canlet C, Damont A, Peyriga L, Durand S, Deborde C, Alves S, Bernillon S, Berton T, Bir R, Bouville A, Cahoreau E, Centeno D, Costantino R, Debrauwer L, Delabrière A, Duperier C, Emery S, Flandin A, Hohenester U, Jacob D, Joly C, Jousse C, Lagree M, Lamari N, Lefebvre M, Lopez-Piffet C, Lyan B, Maucourt M, Migne C, Olivier MF, Rathahao-Paris E, Petriacq P, Pinelli J, Roch L, Roger P, Roques S, Tabet JC, Tremblay-Franco M, Traïkia M, Warnet A, Zhendre V, Rolin D, Jourdan F, Thévenot E, Moing A, Jamin E, Fenaille F, Junot C, Pujos-Guillot E, Giacomoni F. PeakForest: a multi-platform digital infrastructure for interoperable metabolite spectral data and metadata management. Metabolomics 2022; 18:40. [PMID: 35699774 PMCID: PMC9197906 DOI: 10.1007/s11306-022-01899-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/22/2022] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories. OBJECTIVES To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management. METHODS We developed the PeakForest infrastructure, an open-source Java tool with automatic programming interfaces that can be deployed locally to organize spectral data for metabolome annotation in laboratories. Standardized operating procedures and formats were included to ensure data quality and interoperability, in line with international recommendations and FAIR principles. RESULTS PeakForest is able to capture and store experimental spectral MS and NMR metadata as well as collect and display signal annotations. This modular system provides a structured database with inbuilt tools to curate information, browse and reuse spectral information in data treatment. PeakForest offers data formalization and centralization at the laboratory level, facilitating shared spectral data across laboratories and integration into public databases. CONCLUSION PeakForest is a comprehensive resource which addresses a technical bottleneck, namely large-scale spectral data annotation and metabolite identification for metabolomics laboratories with multiple instruments. PeakForest databases can be used in conjunction with bespoke data analysis pipelines in the Galaxy environment, offering the opportunity to meet the evolving needs of metabolomics research. Developed and tested by the French metabolomics community, PeakForest is freely-available at https://github.com/peakforest .
Collapse
Affiliation(s)
- Nils Paulhe
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, MetaboHUB, 31300, Toulouse, France
| | - Annelaure Damont
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Lindsay Peyriga
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics (ANR-11-INBS-0010), 31077, Toulouse, France
| | - Stéphanie Durand
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Catherine Deborde
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Sandra Alves
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Stephane Bernillon
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Thierry Berton
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Raphael Bir
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Alyssa Bouville
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, MetaboHUB, 31300, Toulouse, France
| | - Edern Cahoreau
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics & Fluxomics (ANR-11-INBS-0010), 31077, Toulouse, France
| | - Delphine Centeno
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Robin Costantino
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, MetaboHUB, 31300, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, MetaboHUB, 31300, Toulouse, France
| | - Alexis Delabrière
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Christophe Duperier
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Sylvain Emery
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Amelie Flandin
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Ulli Hohenester
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Daniel Jacob
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Charlotte Joly
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Cyril Jousse
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Marie Lagree
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Nadia Lamari
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Marie Lefebvre
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Claire Lopez-Piffet
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Bernard Lyan
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Mickael Maucourt
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Carole Migne
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Marie-Francoise Olivier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Estelle Rathahao-Paris
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Pierre Petriacq
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Julie Pinelli
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Léa Roch
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Pierrick Roger
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Simon Roques
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Jean-Claude Tabet
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Marie Tremblay-Franco
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, MetaboHUB, 31300, Toulouse, France
| | - Mounir Traïkia
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Anna Warnet
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Vanessa Zhendre
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Dominique Rolin
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Fabien Jourdan
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, MetaboHUB, 31300, Toulouse, France
| | - Etienne Thévenot
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Annick Moing
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 71 av E. Bourlaux, 33140, Villenave d'Ornon, France
| | - Emilien Jamin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, MetaboHUB, 31300, Toulouse, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, 91191, Gif sur Yvette, France
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Franck Giacomoni
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France.
| |
Collapse
|
11
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
12
|
Papantoniou D, Vergara F, Weinhold A, Quijano T, Khakimov B, Pattison DI, Bak S, van Dam NM, Martínez-Medina A. Cascading Effects of Root Microbial Symbiosis on the Development and Metabolome of the Insect Herbivore Manduca sexta L. Metabolites 2021; 11:731. [PMID: 34822389 PMCID: PMC8622251 DOI: 10.3390/metabo11110731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Root mutualistic microbes can modulate the production of plant secondary metabolites affecting plant-herbivore interactions. Still, the main mechanisms underlying the impact of root mutualists on herbivore performance remain ambiguous. In particular, little is known about how changes in the plant metabolome induced by root mutualists affect the insect metabolome and post-larval development. By using bioassays with tomato plants (Solanum lycopersicum), we analyzed the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the growth-promoting fungus Trichoderma harzianum on the plant interaction with the specialist insect herbivore Manduca sexta. We found that root colonization by the mutualistic microbes impaired insect development, including metamorphosis. By using untargeted metabolomics, we found that root colonization by the mutualistic microbes altered the secondary metabolism of tomato shoots, leading to enhanced levels of steroidal glycoalkaloids. Untargeted metabolomics further revealed that root colonization by the mutualists affected the metabolome of the herbivore, leading to an enhanced accumulation of steroidal glycoalkaloids and altered patterns of fatty acid amides and carnitine-derived metabolites. Our results indicate that the changes in the shoot metabolome triggered by root mutualistic microbes can cascade up altering the metabolome of the insects feeding on the colonized plants, thus affecting the insect development.
Collapse
Affiliation(s)
- Dimitra Papantoniou
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Teresa Quijano
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná 97000, Mexico;
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark;
| | - David I. Pattison
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Søren Bak
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; (D.I.P.); (S.B.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; (D.P.); (F.V.); (A.W.)
- Institute of Biodiversity, Friedrich-Schiller Universität Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
13
|
Birk B, Haake V, Sperber S, Herold M, Wallisch SK, Huener HA, Verlohner A, Amma MM, Walk T, Hernandez TR, Hewitt NJ, Kamp H, van Ravenzwaay B. Use of in vitro metabolomics in NRK cells to help predicting nephrotoxicity and differentiating the MoA of nephrotoxicants. Toxicol Lett 2021; 353:43-59. [PMID: 34626816 DOI: 10.1016/j.toxlet.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
We describe a strategy using an in vitro metabolomics assay with tubular rat NRK-52E cells to investigate the Modes of Action (MoAs) of nephrotoxic compounds. Chemicals were selected according to their MoAs based on literature information: acetaminophen, 4-aminophenol and S-(trichlorovinyl-)L-cysteine (TCVC), (covalent protein binding); gentamycin, vancomycin, polymycin B and CdCl2 (lysosomal overload) and tenofovir and cidofovir (mitochondrial DNA-interaction). After treatment and harvesting of the cells, intracellular endogenous metabolites were quantified relative to vehicle control. Metabolite patterns were evaluated in a purely data-driven pattern generation process excluding published information. This strategy confirmed the assignment of the chemicals to the respective MoA except for TCVC and CdCl2. Finally, TCVC was defined as unidentified and CdCl2 was reclassified to the MoA "covalent protein binding". Hierarchical cluster analysis of 58 distinct metabolites from the patterns enabled a clear visual separation of chemicals in each MoA. The assay reproducibility was very good and metabolic responses were consistent. These results support the use of metabolome analysis in NRK-52E cells as a suitable tool for understanding and investigating the MoA of nephrotoxicants. This assay could enable the early identification of nephrotoxic compounds and finally reduce animal testing.
Collapse
Affiliation(s)
- Barbara Birk
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany.
| | | | - Saskia Sperber
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | | | - Meike M Amma
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | - Hennicke Kamp
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany; BASF Metabolome Solutions GmbH, Berlin, Germany
| | | |
Collapse
|
14
|
New Advances in Tissue Metabolomics: A Review. Metabolites 2021; 11:metabo11100672. [PMID: 34677387 PMCID: PMC8541552 DOI: 10.3390/metabo11100672] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolomics offers a hypothesis-generating approach for biomarker discovery in clinical medicine while also providing better understanding of the underlying mechanisms of chronic diseases. Clinical metabolomic studies largely rely on human biofluids (e.g., plasma, urine) as a more convenient specimen type for investigation. However, biofluids are non-organ specific reflecting complex biochemical processes throughout the body, which may complicate biochemical interpretations. For these reasons, tissue metabolomic studies enable deeper insights into aberrant metabolism occurring at the direct site of disease pathogenesis. This review highlights new advances in metabolomics for ex vivo analysis, as well as in situ imaging of tissue specimens, including diverse tissue types from animal models and human participants. Moreover, we discuss key pre-analytical and post-analytical challenges in tissue metabolomics for robust biomarker discovery with a focus on new methodological advances introduced over the past six years, including innovative clinical applications for improved screening, diagnostic testing, and therapeutic interventions for cancer.
Collapse
|
15
|
da Silva KM, Iturrospe E, Bars C, Knapen D, Van Cruchten S, Covaci A, van Nuijs ALN. Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. Metabolites 2021; 11:metabo11090635. [PMID: 34564451 PMCID: PMC8467701 DOI: 10.3390/metabo11090635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.
Collapse
Affiliation(s)
- Katyeny Manuela da Silva
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| | - Elias Iturrospe
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Campus Jette, Free University of Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Chloe Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Alexander L. N. van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| |
Collapse
|
16
|
Rocchetti G, O’Callaghan TF. Application of metabolomics to assess milk quality and traceability. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Fu Q, Scheidegger A, Laczko E, Hollender J. Metabolomic Profiling and Toxicokinetics Modeling to Assess the Effects of the Pharmaceutical Diclofenac in the Aquatic Invertebrate Hyalella azteca. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7920-7929. [PMID: 34086445 DOI: 10.1021/acs.est.0c07887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exposure of ecologically critical invertebrate species to biologically active pharmaceuticals poses a serious risk to the aquatic ecosystem. Yet, the fate and toxic effects of pharmaceuticals on these nontarget aquatic invertebrates and the underlying mechanisms are poorly studied. Herein, we investigated the toxicokinetic (TK) processes (i.e., uptake, biotransformation, and elimination) of the pharmaceutical diclofenac and its biotransformation in the freshwater invertebrate Hyalella azteca. We further employed mass spectrometry-based metabolomics to assess the toxic effects of diclofenac on the metabolic functions of H. azteca exposed to environmentally relevant concentrations (10 and 100 μg/L). The TK results showed a quick uptake of diclofenac by H. azteca (maximum internal concentration of 1.9 μmol/kg) and rapid formation of the conjugate diclofenac taurine (maximum internal concentration of 80.6 μmol/kg), indicating over 40 times higher accumulation of diclofenac taurine than that of diclofenac in H. azteca. Depuration kinetics demonstrated that the elimination of diclofenac taurine was 64 times slower than diclofenac in H. azteca. Metabolomics results suggested that diclofenac inhibited prostaglandin synthesis and affected the carnitine shuttle pathway at environmentally relevant concentrations. These findings shed light on the significance of the TK process of diclofenac, especially the formation of diclofenac taurine, as well as the sublethal effects of diclofenac on the bulk metabolome of H. azteca. Combining the TK processes and metabolomics provides complementary insights and thus a better mechanistic understanding of the effects of diclofenac in aquatic invertebrates.
Collapse
Affiliation(s)
- Qiuguo Fu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Andreas Scheidegger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Endre Laczko
- Functional Genomics Center Zurich, ETH, University of Zurich, 8057 Zurich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
18
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
19
|
Olesti E, González-Ruiz V, Wilks MF, Boccard J, Rudaz S. Approaches in metabolomics for regulatory toxicology applications. Analyst 2021; 146:1820-1834. [PMID: 33605958 DOI: 10.1039/d0an02212h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innovative methodological approaches are needed to conduct human health and environmental risk assessments on a growing number of marketed chemicals. Metabolomics is progressively proving its value as an efficient strategy to perform toxicological evaluations of new and existing substances, and it will likely become a key tool to accelerate chemical risk assessments. However, additional guidance with widely accepted and harmonized procedures is needed before metabolomics can be routinely incorporated in decision-making for regulatory purposes. The aim of this review is to provide an overview of metabolomic strategies that have been successfully employed in toxicity assessment as well as the most promising workflows in a regulatory context. First, we provide a general view of the different steps of regulatory toxicology-oriented metabolomics. Emphasis is put on three key elements: robustness of experimental design, choice of analytical platform, and use of adapted data treatment tools. Then, examples in which metabolomics supported regulatory toxicology outputs in different scenarios are reviewed, including chemical grouping, elucidation of mechanisms of toxicity, and determination of points of departure. The overall intention is to provide insights into why and how to plan and conduct metabolomic studies for regulatory toxicology purposes.
Collapse
Affiliation(s)
- Eulalia Olesti
- School of Pharmaceutical Sciences, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
20
|
Fotopoulou E, Lykogianni M, Papadimitriou E, Mavrikou S, Machera K, Kintzios S, Thomaidou D, Aliferis ΚΑ. Mining the effect of the neonicotinoids imidacloprid and clothianidin on the chemical homeostasis and energy equilibrium of primary mouse neural stem/progenitor cells using metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104617. [PMID: 32711778 DOI: 10.1016/j.pestbp.2020.104617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The projection of plant protection products' (PPPs) toxicity to non-target organisms at early stages of their development is challenging and demanding. Recent developments in bioanalytics, however, have facilitated the study of fluctuations in the metabolism of biological systems in response to treatments with bioactives and the discovery of corresponding toxicity biomarkers. Neonicotinoids are improved insecticides that target nicotinic acetylocholine receptors (nAChR) in insects which are similar to mammals. Nonetheless, they have sparked controversy due to effects on non-target organisms. Within this context, mammalian cell cultures represent ideal systems for the development of robust models for the dissection of PPPs' toxicity. Thus, we have investigated the toxicity of imidacloprid, clothianidin, and their mixture on primary mouse (Mus musculus) neural stem/progenitor (NSPCs) and mouse neuroblastoma-derived Neuro-2a (N2a) cells, and the undergoing metabolic changes applying metabolomics. Results revealed that NSPCs, which in vitro resemble those that reside in the postnatal and adult central nervous system, are five to seven-fold more sensitive than N2a to the applied insecticides. The energy equilibrium of NSPCs was substantially altered, as it is indicated by fluctuations of metabolites involved in energy production (e.g. glucose, lactate), Krebs cycle intermediates, and fatty acids, which are important components of cell membranes. Such evidence plausibly suggests a switch of cells' energy-producing mechanism to the direct metabolism of glucose to lactate in response to insecticides. The developed pipeline could be further exploited in the discovery of unintended effects of PPPs at early steps of development and for regulatory purposes.
Collapse
Affiliation(s)
- E Fotopoulou
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - M Lykogianni
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, St. Delta 8, 14561 Kifissia, Greece
| | - E Papadimitriou
- Neural Stem Cells and Neuroimaging Group, Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| | - S Mavrikou
- Laboratory of Cell Technology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - K Machera
- Laboratory of Toxicological Control of Pesticides, Benaki Phytopathological Institute, St. Delta 8, 14561 Kifissia, Greece
| | - S Kintzios
- Laboratory of Cell Technology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - D Thomaidou
- Neural Stem Cells and Neuroimaging Group, Neurobiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece.
| | - Κ Α Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Department of Plant Science, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9C, Canada.
| |
Collapse
|