1
|
Wu W, Ma F, Zhang X, Tan Y, Han T, Ding J, Wu J, Xing W, Wu B, Huang D, Zhang S, Xu Y, Song S. Research Progress on Viruses of Passiflora edulis. BIOLOGY 2024; 13:839. [PMID: 39452147 PMCID: PMC11506102 DOI: 10.3390/biology13100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Passiflora edulis, also known as passion fruit, is celebrated for its rich nutritional content, distinctive flavour, and significant medicinal benefits. At present, viral diseases pose a major challenge to the passion fruit industry, affecting both the production and quality of the fruit. These diseases impede the sustainable and healthy growth of the passion fruit sector. In recent years, with the expansion of P. edulis cultivation areas, virus mutations, and advances in virus detection technology, an increasing number of virus species infecting P. edulis have been discovered. To date, more than 40 different virus species have been identified; however, there are different strains within the same virus. This poses a challenge for the control and prevention of P. edulis virus disease. Therefore, this review discusses the different types of viruses and their characteristics, modes of transmission, and effects on the growth of the passion fruit plant, as well as the mechanisms of virus generation and preventive measures, with the hope that these discussions will provide a comprehensive understanding of and countermeasures for viruses in passion fruit.
Collapse
Affiliation(s)
- Wenhua Wu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Funing Ma
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Xiaoyan Zhang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
| | - Yuxin Tan
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Te Han
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Jing Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Juyou Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Wenting Xing
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Bin Wu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Dongmei Huang
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
| | - Yi Xu
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.D.); (J.W.); (S.Z.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572024, China
| | - Shun Song
- Tropical Crops Genetic Resources Institute, CATAS, National Key Laboratory for Tropical Crop Breeding/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Germplasm Repository of Passiflora, CATAS, Sanya 571101, China; (W.W.); (F.M.); (X.Z.); (Y.T.); (T.H.); (W.X.); (B.W.); (D.H.)
- Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
- Hainan Seed Industry Laboratory, Sanya 572024, China
| |
Collapse
|
2
|
Jyotika RK, Harish S, Karthikeyan G, Kumar KK, Murugan M, Jayakanthan M, Chen TC. Molecular approaches for the management of papaya ringspot virus infecting papaya: a comprehensive review. Mol Biol Rep 2024; 51:981. [PMID: 39269576 DOI: 10.1007/s11033-024-09920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Papaya ringspot virus (PRSV) is a catastrophic disease that causes huge yield losses in papaya cultivation around the world. Yield losses in severely infected plants can be upto 100%. Because of this disease, papaya cultivation has been shifted to other crops in some areas of the world. Many conventional methods and breeding approaches are used against this disease, which turns out to be less effective. Considering the yield loss caused by PRSV in papaya, it is high time to focus on alternative control methods. To implement effective management strategies, molecular approaches such as Marker Assisted Breeding (MAS) or transgenic methods involving post-transcriptional gene silencing targeting the genome viz., coat protein, replicase gene, or HC Pro can be pursued. However, the public's reluctance to widely accept the transgenic approach due to health and environmental concerns necessitates a consideration of non-transgenic alternatives. Prioritizing safety and ensuring efficient virus control, non-transgenic approaches which encompass cross-protection, genome editing, and topical applications of dsRNA to induce gene silencing within the host, can be adopted. This review aims to provide comprehensive insights of various molecular tools used in managing PRSV which in turn will help in sustainable agriculture.
Collapse
Affiliation(s)
- R K Jyotika
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - S Harish
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - G Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - K K Kumar
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - M Jayakanthan
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Tsung-Chi Chen
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung, Taiwan, 41354
| |
Collapse
|
3
|
Young VL, McSweeney AM, Edwards MJ, Ward VK. The Disorderly Nature of Caliciviruses. Viruses 2024; 16:1324. [PMID: 39205298 PMCID: PMC11360831 DOI: 10.3390/v16081324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA viruses, containing a relatively small genome of 7.6-8.6 kb and have a broad host range. Many viral proteins are known to contain IDRs, which benefit smaller viral genomes by expanding the functional proteome through the multifunctional nature of the IDR. The percentage of intrinsically disordered residues within the total proteome for each calicivirus type species can range between 8 and 23%, and IDRs have been experimentally identified in NS1-2, VPg and RdRP proteins. The IDRs within a protein are not well conserved across the genera, and whether this correlates to different activities or increased tolerance to mutations, driving virus adaptation to new selection pressures, is unknown. The function of norovirus NS1-2 has not yet been fully elucidated but includes involvement in host cell tropism, the promotion of viral spread and the suppression of host interferon-λ responses. These functions and the presence of host cell-like linear motifs that interact with host cell caspases and VAPA/B are all found or affected by the disordered region of norovirus NS1-2. The IDRs of calicivirus VPg are involved in viral transcription and translation, RNA binding, nucleotidylylation and cell cycle arrest, and the N-terminal IDR within the human norovirus RdRP could potentially drive liquid-liquid phase separation. This review identifies and summarises the IDRs of proteins within the Caliciviridae family and their importance during viral replication and subsequent host interactions.
Collapse
Affiliation(s)
| | | | | | - Vernon K. Ward
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Rollwage L, Van Houtte H, Hossain R, Wynant N, Willems G, Varrelmann M. Recessive resistance against beet chlorosis virus is conferred by the eukaryotic translation initiation factor (iso)4E in Beta vulgaris. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2129-2141. [PMID: 38488845 PMCID: PMC11258979 DOI: 10.1111/pbi.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 07/21/2024]
Abstract
Eukaryotic translation initiation factors (eIFs) are important for mRNA translation but also pivotal for plant-virus interaction. Most of these plant-virus interactions were found between plant eIFs and the viral protein genome-linked (VPg) of potyviruses. In case of lost interaction due to mutation or deletion of eIFs, the viral translation and subsequent replication within its host is negatively affected, resulting in a recessive resistance. Here we report the identification of the Beta vulgaris Bv-eIF(iso)4E as a susceptibility factor towards the VPg-carrying beet chlorosis virus (genus Polerovirus). Using yeast two-hybrid and bimolecular fluorescence complementation assays, the physical interaction between Bv-eIF(iso)4E and the putative BChV-VPg was detected, while the VPg of the closely related beet mild yellowing virus (BMYV) was found to interact with the two isoforms Bv-eIF4E and Bv-eIF(iso)4E. These VPg-eIF interactions within the polerovirus-beet pathosystem were demonstrated to be highly specific, as single mutations within the predicted cap-binding pocket of Bv-eIF(iso)4E resulted in a loss of interaction. To investigate the suitability of eIFs as a resistance resource against beet infecting poleroviruses, B. vulgaris plants were genome edited by CRISPR/Cas9 resulting in knockouts of different eIFs. A simultaneous knockout of the identified BMYV-interaction partners Bv-eIF4E and Bv-eIF(iso)4E was not achieved, but Bv-eIF(iso)4EKO plants showed a significantly lowered BChV accumulation and decrease in infection rate from 100% to 28.86%, while no influence on BMYV accumulation was observed. Still, these observations support that eIFs are promising candidate genes for polerovirus resistance breeding in sugar beet.
Collapse
|
5
|
Zhu H, Okiyama T, Mishina K, Kikuchi S, Sassa H, Komatsuda T, Kato T, Oono Y. Identification of Barley yellow mosaic virus Isolates Breaking rym3 Resistance in Japan. Genes (Basel) 2024; 15:697. [PMID: 38927633 PMCID: PMC11203024 DOI: 10.3390/genes15060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
In early spring 2018, significant mosaic disease symptoms were observed for the first time on barley leaves (Hordeum vulgare L., cv. New Sachiho Golden) in Takanezawa, Tochigi Prefecture, Japan. This cultivar carries the resistance gene rym3 (rym; resistance to yellow mosaic). Through RNA-seq analysis, Barley yellow mosaic virus (BaYMV-Takanezawa) was identified in the roots of all five plants (T01-T05) in the field. Phylogenetic analysis of RNA1, encompassing known BaYMV pathotypes I through V, revealed that it shares the same origin as isolate pathotype IV (BaYMV-Ohtawara pathotype). However, RNA2 analysis of isolates revealed the simultaneous presence of two distinct BaYMV isolates, BaYMV-Takanezawa-T01 (DRR552862, closely related to pathotype IV) and BaYMV-Takanezawa-T02 (DRR552863, closely related to pathotype III). The amino acid sequences of the BaYMV-Takanezawa isolates displayed variations, particularly in the VPg and N-terminal region of CP, containing mutations not found in other domains of the virus genome. Changes in the CI (RNA1 amino acid residue 459) and CP (RNA1 amino acid residue 2138) proteins correlated with pathogenicity. These findings underscore the importance of monitoring and understanding the genetic diversity of BaYMV for effective disease management strategies in crop breeding.
Collapse
Affiliation(s)
- Hongjing Zhu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan; (H.Z.); (K.M.)
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| | - Takeshi Okiyama
- Tochigi Prefectural Agricultural Experiment Station, Kawaraya-cho 1080, Utsunomiya 320-0002, Japan; (T.O.); (T.K.)
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan; (H.Z.); (K.M.)
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| | - Takao Komatsuda
- Shandong Academy of Agricultural Sciences (SAAS), Crop Research Institute, 202 Gongyebei Road, Licheng District, Jinan 250100, China;
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station, Kawaraya-cho 1080, Utsunomiya 320-0002, Japan; (T.O.); (T.K.)
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan; (H.Z.); (K.M.)
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan; (S.K.); (H.S.)
| |
Collapse
|
6
|
Lakshminarayana Reddy CN, Venkataravanappa V, Chowdappa A, Shridhar H, Mantesh M, Vinaykumar HD, Krishna Reddy M. Complete genome characterization of chilli veinal mottle virus associated with mosaic and mottling disease of tomato and development of LAMP assay for quick detection. 3 Biotech 2024; 14:139. [PMID: 38682094 PMCID: PMC11052978 DOI: 10.1007/s13205-024-03984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Chilli veinal mottle virus (ChiVMV) is a potyvirus known to cause havoc in many solanaceous crops. Samples from tomato plants exhibiting typical mosaic and mottling symptoms in two locations from farmers' fields were collected and tested using DAC ELISA for the presence of ChiVMV and other viruses known to infect tomato. ChiVMV Gauribidanur isolate from infected tomato was mechanically inoculated to Datura metel, Nicotiana tabacum, Nicotiana benthamiana, Nicotiana glutinosa, chilli, and tomato plants which exhibited systemic mosaic and mottling symptoms 10 days post-inoculation. This results were further confirmed by RT-PCR and DAC ELISA using CP gene-specific primers and ChiVMV antisera, respectively. Transmission electron microscopy revealed the presence of long filamentous particles (800 × 11 nm) resembling viruses in the Potyviridae family. The complete genome of ChiVMV comprised 9716 nucleotides except for poly A tail, with a predicted open reading frame spanning 9270 nucleotides encoding polyproteins of 3089 amino acids. Comparative analysis revealed that ChiVMV-tomato isolates reported across the world shared maximum nucleotide identity (93-96.7%) with chilli isolates from India and Pakistan. These results were well supported by sequence demarcation analysis. Further, the Neibhor-Net network analysis of the complete genome of ChiVMV-tomato, along with other host isolates, formed a reticular network phylogenetic tree suggesting recombination events. Subsequently, RDP5 detected intra-specific recombination breakpoints at the positions 1656-5666 nucleotides with major parent ChiVMV (MN508960) Uravakonda and minor parent ChiVMV (MN508956) with a significant average p value of 1.905 × 10-22. The LAMP assay using ChiVMV-specific primers resulted in ladder-like amplified products on electrophoresed gel and a distinct red colour pattern with hydroxy naphthalene blue, indicating a positive reaction for the presence of ChiVMV in infected tomato samples. To validate LAMP-designed primers, RNA extracted from ChiVMV-infected tomato, chilli, datura, and tobacco samples were subjected to LAMP assay and it accurately detected the presence of ChiVMV in infected plant samples. Overall, this study provides holistic information of ChiVMV infecting tomato, spanning diagnosis, transmission, genetic characterization, and detection of recombination events, which collectively contribute to effective disease management, crop protection, and informed decision-making in agricultural practices.
Collapse
Affiliation(s)
- C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - V. Venkataravanappa
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - A. Chowdappa
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - H. Shridhar
- CSIR- North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - M. Mantesh
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - H. D. Vinaykumar
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - M. Krishna Reddy
- Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| |
Collapse
|
7
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Sonia J, Kanodia P, Lozier Z, Miller WA. Ribosome Profiling of Plants. Methods Mol Biol 2024; 2724:139-163. [PMID: 37987904 PMCID: PMC11158114 DOI: 10.1007/978-1-0716-3485-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Translation is a key step in control of gene expression, yet most analyses of global responses to a stimulus focus on transcription and the transcriptome. For RNA viruses in particular, which have no DNA-templated transcriptional control, control of viral and host translation is crucial. Here, we describe the method of ribosome profiling (ribo-seq) in plants, applied to virus infection. Ribo-seq is a deep sequencing technique that reveals the translatome by presenting a snapshot of the positions and relative amounts of translating ribosomes on all mRNAs in the cell. In contrast to RNA-seq, a crude cell extract is first digested with ribonuclease to degrade all mRNA not protected by a translating 80S ribosome. The resulting ribosome-protected fragments (RPFs) are deep sequenced. The number of reads mapping to a specific mRNA compared to the standard RNA-seq reads reveals the translational efficiency of that mRNA. Moreover, the precise positions of ribosome pause sites, previously unknown translatable open reading frames, and noncanonical translation events can be characterized quantitatively using ribo-seq. As this technique requires meticulous technique, here we present detailed step-by-step instructions for cell lysate preparation by flash freezing of samples, nuclease digestion of cell lysate, monosome collection by sucrose cushion ultracentrifugation, size-selective RNA extraction and rRNA depletion, library preparation for sequencing and finally quality control of sequenced data. These experimental methods apply to many plant systems, with minor nuclease digestion modifications depending on the plant tissue and species. This protocol should be valuable for studies of plant virus gene expression, and the global translational response to virus infection, or any other biotic or abiotic stress, by the host plant.
Collapse
Affiliation(s)
- Jahanara Sonia
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA
- Molecular, Cellular & Developmental Biology, Iowa State University, Ames, IA, USA
| | - Pulkit Kanodia
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA, USA
- , Santa Clara, CA, USA
| | - Zachary Lozier
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA
| | - W Allen Miller
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA.
- Molecular, Cellular & Developmental Biology, Iowa State University, Ames, IA, USA.
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA, USA.
- Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA.
- Biochemistry, Biophysics & Molecular Biology Department, Iowa State University, Ames, IA, USA.
| |
Collapse
|
9
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
10
|
A binary interaction map between turnip mosaic virus and Arabidopsis thaliana proteomes. Commun Biol 2023; 6:28. [PMID: 36631662 PMCID: PMC9834402 DOI: 10.1038/s42003-023-04427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein-protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein-protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.
Collapse
|
11
|
Warsaba R, Salcedo-Porras N, Flibotte S, Jan E. Expansion of viral genomes with viral protein genome linked copies. Virology 2022; 577:174-184. [PMID: 36395539 DOI: 10.1016/j.virol.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Virus protein-linked genome (VPg) proteins are required for replication. VPgs are duplicated in a subset of RNA viruses however their roles are not fully understood and the extent of viral genomes containing VPg copies has not been investigated in detail. Here, we generated a novel bioinformatics approach to identify VPg sequences in viral genomes using hidden Markov models (HMM) based on alignments of dicistrovirus VPg sequences. From metagenomic datasets of dicistrovirus genomes, we identified 717 dicistrovirus genomes containing VPgs ranging from a single copy to 8 tandem copies. The VPgs are classified into nine distinct types based on their sequence and length. The VPg types but not VPg numbers per viral genome followed specific virus clades, thus suggesting VPgs co-evolved with viral genomes. We also identified VPg duplications in aquamavirus and mosavirus genomes. This study greatly expands the number of viral genomes that contain VPg copies and indicates that duplicated viral sequences are more widespread than anticipated.
Collapse
Affiliation(s)
- Reid Warsaba
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Nicolas Salcedo-Porras
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
12
|
Miras M, Aranda MA, Truniger V. Different RNA Elements Control Viral Protein Synthesis in Polerovirus Isolates Evolved in Separate Geographical Regions. Int J Mol Sci 2022; 23:ijms232012503. [PMID: 36293360 PMCID: PMC9603980 DOI: 10.3390/ijms232012503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 12/05/2022] Open
Abstract
Most plant viruses lack the 5′-cap and 3′-poly(A) structures, which are common in their host mRNAs, and are crucial for translation initiation. Thus, alternative translation initiation mechanisms were identified for viral mRNAs, one of these being controlled by an RNA element in their 3′-ends that is able to enhance mRNA cap-independent translation (3′-CITE). The 3′-CITEs are modular and transferable RNA elements. In the case of poleroviruses, the mechanism of translation initiation of their RNAs in the host cell is still unclear; thus, it was studied for one of its members, cucurbit aphid-borne yellows virus (CABYV). We determined that efficient CABYV RNA translation requires the presence of a 3′-CITE in its 3′-UTR. We showed that this 3′-CITE requires the presence of the 5′-UTR in cis for its eIF4E-independent activity. Efficient virus multiplication depended on 3′-CITE activity. In CABYV isolates belonging to the three phylogenetic groups identified so far, the 3′-CITEs differ, and recombination prediction analyses suggest that these 3′-CITEs have been acquired through recombination with an unknown donor. Since these isolates have evolved in different geographical regions, this may suggest that their respective 3′-CITEs are possibly better adapted to each region. We propose that translation of other polerovirus genomes may also be 3′-CITE-dependent.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), 30100 Murcia, Spain
- Correspondence:
| |
Collapse
|
13
|
Multiple Viral Protein Genome-Linked Proteins Compensate for Viral Translation in a Positive-Sense Single-Stranded RNA Virus Infection. J Virol 2022; 96:e0069922. [PMID: 35993738 PMCID: PMC9472611 DOI: 10.1128/jvi.00699-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral protein genome-linked (VPg) protein plays an essential role in protein-primed replication of plus-stranded RNA viruses. VPg is covalently linked to the 5' end of the viral RNA genome via a phosphodiester bond typically at a conserved amino acid. Whereas most viruses have a single VPg, some viruses have multiple VPgs that are proposed to have redundant yet undefined roles in viral replication. Here, we use cricket paralysis virus (CrPV), a dicistrovirus that has four nonidentical copies of VPg, as a model to characterize the role of VPg copies in infection. Dicistroviruses contain two main open reading frames (ORFs) that are driven by distinct internal ribosome entry sites (IRESs). We systematically generated single and combinatorial deletions and mutations of VPg1 to VPg4 within the CrPV infectious clone and monitored viral yield in Drosophila S2 cells. Deletion of one to three VPg copies progressively decreased viral yield and delayed viral replication, suggesting a threshold number of VPgs for productive infection. Mass spectrometry analysis of CrPV VPg-linked RNAs revealed viral RNA linkage to either a serine or threonine in VPg, mutations of which in all VPgs attenuated infection. Mutating serine 4 in a single VPg abolished viral infection, indicating a dominant negative effect. Using viral minigenome reporters that monitor dicistrovirus 5' untranslated (UTR) and IRES translation revealed a relationship between VPg copy number and the ratio of distinct IRES translation activities. We uncovered a novel viral strategy whereby VPg copies in dicistrovirus genomes compensate for the relative IRES translation efficiencies to promote infection. IMPORTANCE Genetic duplication is exceedingly rare in small RNA viral genomes, as there is selective pressure to prevent RNA genomes from expanding. However, some small RNA viruses encode multiple copies of a viral protein, most notably an unusual viral protein that is linked to the viral RNA genome. Here, we investigate a family of viruses that contains multiple viral protein genome-linked proteins and reveal a novel viral strategy whereby viral protein copy number counterbalances differences in viral protein synthesis mechanisms.
Collapse
|
14
|
Adaptation of a Potyvirus Chimera Increases Its Virulence in a Compatible Host through Changes in HCPro. PLANTS 2022; 11:plants11172262. [PMID: 36079643 PMCID: PMC9460054 DOI: 10.3390/plants11172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
A viral chimera in which the P1-HCPro bi-cistron of a plum pox virus construct (PPV-GFP) was replaced by that of potato virus Y (PVY) spread slowly systemically in Nicotiana benthamiana plants and accumulated to levels that were 5−10% those of parental PPV-GFP. We tested whether consecutive mechanical passages could increase its virulence, and found that after several passages, chimera titers rose and symptoms increased. We sequenced over half the genome of passaged chimera lineages infecting two plants. The regions sequenced were 5′NCR-P1-HCPro-P3; Vpg/NIa; GFP-CP, because of being potential sites for mutations/deletions leading to adaptation. We found few substitutions, all non-synonymous: two in one chimera (nt 2053 HCPro, and 5733 Vpg/NIa), and three in the other (2359 HCPro, 5729 Vpg/NIa, 9466 CP). HCPro substitutions 2053 AUU(Ile)→ACU(Thr), and 2359 CUG(Leu)→CGG(Arg) occurred at positions where single nucleotide polymorphisms were observed in NGS libraries of sRNA reads from agroinfiltrated plants (generation 1). Remarkably, position 2053 was the only one in the sequenced protein-encoding genome in which polymorphisms were common to the four libraries, suggesting that selective pressure existed to alter that specific nucleotide, previous to any passage. Mutations 5729 and 5733 in the Vpg by contrast did not correlate with polymorphisms in generation 1 libraries. Reverse genetics showed that substitution 2053 alone increased several-fold viral local accumulation, speed of systemic spread, and systemic titers.
Collapse
|
15
|
Zhang R, Zhang C, Lyu S, Wu H, Yuan M, Fang Z, Li F, Hou X. BcTFIIIA Negatively Regulates Turnip Mosaic Virus Infection through Interaction with Viral CP and VPg Proteins in Pak Choi (Brassica campestris ssp. chinensis). Genes (Basel) 2022; 13:genes13071209. [PMID: 35885992 PMCID: PMC9317785 DOI: 10.3390/genes13071209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
TFIIIA is a zinc-finger transcription factor that is involved in post-transcriptional regulation during development. Here, the BcTFIIIA gene was isolated from pak choi. Sequence analysis showed that BcTFIIIA encodes 383 amino acids (aa) with an open reading frame (ORF) of 1152 base pairs (bp). We investigated the subcellular location of BcTFIIIA and found the localized protein in the nucleus. BcTFIIIA was suppressed when the pak choi was infected by the turnip mosaic virus (TuMV). The BcTFIIIA mRNA expression level in a resistant variety was higher than that in a sensitive variety, as determined by qRT-PCR analysis. Yeast two hybrid (Y2H) assay and bimolecular fluorescence complementation (BiFC) suggested that BcTFIIIA interacts with TuMV CP and VPg in vivo, respectively, and in vitro. A virus-induced gene silencing (VIGS) experiment showed that the silencing of BcTFIIIA gene expression in pak choi promoted the accumulation of TuMV. These results suggest that BcTFIIIA negatively regulates viral infection through the interaction with TuMV CP and VPg.
Collapse
Affiliation(s)
- Rujia Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanwu Lyu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiyuan Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengguo Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
16
|
Desbiez C, Domingo-Calap ML, Pitrat M, Wipf-Scheibel C, Girardot G, Ferriol I, Lopez-Moya JJ, Lecoq H. Specificity of Resistance and Tolerance to Cucumber Vein Yellowing Virus in Melon Accessions and Resistance Breaking with a Single Mutation in VPg. PHYTOPATHOLOGY 2022; 112:1185-1191. [PMID: 34752138 DOI: 10.1094/phyto-06-21-0263-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cucumber vein yellowing virus (CVYV) is an emerging virus on cucurbits in the Mediterranean Basin, against which few resistance sources are available, particularly in melon. The melon accession PI 164323 displays complete resistance to isolate CVYV-Esp, and accession HSD 2458 presents a tolerance, i.e., very mild symptoms despite virus accumulation in inoculated plants. The resistance is controlled by a dominant allele Cvy-11, while the tolerance is controlled by a recessive allele cvy-2, independent from Cvy-11. Before introducing the resistance or tolerance in commercial cultivars through a long breeding process, it is important to estimate their specificity and durability. Upon inoculation with eight molecularly diverse CVYV isolates, the resistance was found to be isolate-specific because many CVYV isolates induced necrosis on PI 164323, whereas the tolerance presented a broader range. A resistance-breaking isolate inducing severe mosaic on PI 164323 was obtained. This isolate differed from the parental strain by a single amino acid change in the VPg coding region. An infectious CVYV cDNA clone was obtained, and the effect of the mutation in the VPg cistron on resistance to PI 164323 was confirmed by reverse genetics. This represents the first determinant for resistance-breaking in an ipomovirus. Our results indicate that the use of the Cvy-11 allele alone will not provide durable resistance to CVYV and that, if used in the field, it should be combined with other control methods such as cultural practices and pyramiding of resistance genes to achieve long-lasting resistance against CVYV.
Collapse
Affiliation(s)
| | - Maria Luisa Domingo-Calap
- Center for Research in Agricultural Genomics, Spanish National Research Council, Institute of Agrifood Research and Technology, Autonomous University of Barcelona, University of Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Michel Pitrat
- INRAE, Génétique et Amélioration des Fruits et Légumes, F-84140, Montfavet, France
| | | | | | - Inmaculada Ferriol
- Center for Research in Agricultural Genomics, Spanish National Research Council, Institute of Agrifood Research and Technology, Autonomous University of Barcelona, University of Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José Lopez-Moya
- Center for Research in Agricultural Genomics, Spanish National Research Council, Institute of Agrifood Research and Technology, Autonomous University of Barcelona, University of Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Hervé Lecoq
- INRAE, Pathologie Végétale, F-84140, Montfavet, France
| |
Collapse
|
17
|
Khan ZA, Kumar R, Dasgupta I. CRISPR/Cas-Mediated Resistance against Viruses in Plants. Int J Mol Sci 2022; 23:ijms23042303. [PMID: 35216418 PMCID: PMC8879314 DOI: 10.3390/ijms23042303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas9 provides a robust and widely adaptable system with enormous potential for genome editing directed towards generating useful products. It has been used extensively to generate resistance against viruses infecting plants with more effective and prolonged efficiency as compared with previous antiviral approaches, thus holding promise to alleviate crop losses. In this review, we have discussed the reports of CRISPR/Cas-based virus resistance strategies against plant viruses. These strategies include approaches targeting single or multiple genes (or non-coding region) in the viral genome and targeting host factors essential for virus propagation. In addition, the utilization of base editing has been discussed to generate transgene-free plants resistant to viruses. This review also compares the efficiencies of these approaches. Finally, we discuss combinatorial approaches, including multiplexing, to increase editing efficiency and bypass the generation of escape mutants.
Collapse
|
18
|
LaTourrette K, Holste NM, Garcia-Ruiz H. Polerovirus genomic variation. Virus Evol 2021; 7:veab102. [PMID: 35299789 PMCID: PMC8923251 DOI: 10.1093/ve/veab102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Abstract
The polerovirus (family Solemoviridae, genus Polerovirus) genome consists of single-, positive-strand RNA organized in overlapping open reading frames (ORFs) that, in addition to others, code for protein 0 (P0, a gene silencing suppressor), a coat protein (CP, ORF3), and a read-through domain (ORF5) that is fused to the CP to form a CP-read-through (RT) protein. The genus Polerovirus contains twenty-six virus species that infect a wide variety of plants from cereals to cucurbits, to peppers. Poleroviruses are transmitted by a wide range of aphid species in the genera Rhopalosiphum, Stiobion, Aphis, and Myzus. Aphid transmission is mediated both by the CP and by the CP-RT. In viruses, mutational robustness and structural flexibility are necessary for maintaining functionality in genetically diverse sets of host plants and vectors. Under this scenario, within a virus genome, mutations preferentially accumulate in areas that are determinants of host adaptation or vector transmission. In this study, we profiled genomic variation in poleroviruses. Consistent with their multifunctional nature, single-nucleotide variation and selection analyses showed that ORFs coding for P0 and the read-through domain within the CP-RT are the most variable and contain the highest frequency of sites under positive selection. An order/disorder analysis showed that protein P0 is not disordered. In contrast, proteins CP-RT and virus protein genome-linked (VPg) contain areas of disorder. Disorder is a property of multifunctional proteins with multiple interaction partners. The results described here suggest that using contrasting mechanisms, P0, VPg, and CP-RT mediate adaptation to host plants and to vectors and are contributors to the broad host and vector range of poleroviruses. Profiling genetic variation across the polerovirus genome has practical applications in diagnostics, breeding for resistance, and identification of susceptibility genes and contributes to our understanding of virus interactions with their host, vectors, and environment.
Collapse
Affiliation(s)
- Katherine LaTourrette
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
- Complex Biosystems Interdisciplinary Life Sciences Program, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, 2200 Vine Street, Lincoln, NE 68583, USA
| | - Natalie M Holste
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
| | - Hernan Garcia-Ruiz
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
| |
Collapse
|
19
|
Zhang H, Zhang X, Zhao J, Sun L, Wang H, Zhu Y, Xiao J, Wang X. Genome-Wide Identification of GDSL-Type Esterase/Lipase Gene Family in Dasypyrum villosum L. Reveals That DvGELP53 Is Related to BSMV Infection. Int J Mol Sci 2021; 22:ijms222212317. [PMID: 34830200 PMCID: PMC8624868 DOI: 10.3390/ijms222212317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
GDSL-type esterase/lipase proteins (GELPs) characterized by a conserved GDSL motif at their N-terminus belong to the lipid hydrolysis enzyme superfamily. In plants, GELPs play an important role in plant growth, development and stress response. The studies of the identification and characterization of the GELP gene family in Triticeae have not been reported. In this study, 193 DvGELPs were identified in Dasypyrum villosum and classified into 11 groups (clade A–K) by means of phylogenetic analysis. Most DvGELPs contain only one GDSL domain, only four DvGELPs contain other domains besides the GDSL domain. Gene structure analysis indicated 35.2% DvGELP genes have four introns and five exons. In the promoter regions of the identified DvGELPs, we detected 4502 putative cis-elements, which were associated with plant hormones, plant growth, environmental stress and light responsiveness. Expression profiling revealed 36, 44 and 17 DvGELPs were highly expressed in the spike, the root and the grain, respectively. Further investigation of a root-specific expressing GELP, DvGELP53, indicated it was induced by a variety of biotic and abiotic stresses. The knockdown of DvGELP53 inhibited long-distance movement of BSMV in the tissue of D. villosum. This research provides a genome-wide glimpse of the D. villosum GELP genes and hints at the participation of DvGELP53 in the interaction between virus and plants.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Jia Zhao
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China;
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to The Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.Z.); (Y.Z.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (X.Z.); (L.S.); (H.W.); (J.X.)
- Correspondence: ; Tel.: +86-25-84395308
| |
Collapse
|
20
|
Abstract
The NIa protease of potyviruses is a chymotrypsin-like cysteine protease related to the picornavirus 3C protease. It is also a multifunctional protein known to play multiple roles during virus infection. Picornavirus 3C proteases cleave hundreds of host proteins to facilitate virus infection. However, whether or not potyvirus NIa proteases cleave plant proteins has so far not been tested. Regular expression search using the cleavage site consensus sequence [EQN]xVxH[QE]/[SGTA] for the plum pox virus (PPV) protease identified 90 to 94 putative cleavage events in the proteomes of Prunus persica (a crop severely affected by PPV), Arabidopsis thaliana, and Nicotiana benthamiana (two experimental hosts). In vitro processing assays confirmed cleavage of six A. thaliana and five P. persica proteins by the PPV protease. These proteins were also cleaved in vitro by the protease of turnip mosaic virus (TuMV), which has a similar specificity. We confirmed in vivo cleavage of a transiently expressed tagged version of AtEML2, an EMSY-like protein belonging to a family of nuclear histone readers known to be involved in pathogen resistance. Cleavage of AtEML2 was efficient and was observed in plants that coexpressed the PPV or TuMV NIa proteases or in plants that were infected with TuMV. We also showed partial in vivo cleavage of AtDUF707, a membrane protein annotated as lysine ketoglutarate reductase trans-splicing protein. Although cleavage of the corresponding endogenous plant proteins remains to be confirmed, the results show that a plant virus protease can cleave host proteins during virus infection and highlight a new layer of plant-virus interactions. IMPORTANCE Viruses are highly adaptive and use multiple molecular mechanisms to highjack or modify the cellular resources to their advantage. They must also counteract or evade host defense responses. One well-characterized mechanism used by vertebrate viruses is the proteolytic cleavage of host proteins to inhibit the activities of these proteins and/or to produce cleaved protein fragments that are beneficial to the virus infection cycle. Even though almost half of the known plant viruses encode at least one protease, it was not known whether plant viruses employ this strategy. Using an in silico prediction approach and the well-characterized specificity of potyvirus NIa proteases, we were able to identify hundreds of putative cleavage sites in plant proteins, several of which were validated by downstream experiments. It can be anticipated that many other plant virus proteases also cleave host proteins and that the identification of these cleavage events will lead to novel antiviral strategies.
Collapse
|
21
|
Pepper Mottle Virus and Its Host Interactions: Current State of Knowledge. Viruses 2021; 13:v13101930. [PMID: 34696360 PMCID: PMC8539092 DOI: 10.3390/v13101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.
Collapse
|
22
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
23
|
Eruera AR, McSweeney AM, McKenzie-Goldsmith GM, Ward VK. Protein Nucleotidylylation in +ssRNA Viruses. Viruses 2021; 13:1549. [PMID: 34452414 PMCID: PMC8402628 DOI: 10.3390/v13081549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotidylylation is a post-transcriptional modification important for replication in the picornavirus supergroup of RNA viruses, including members of the Caliciviridae, Coronaviridae, Picornaviridae and Potyviridae virus families. This modification occurs when the RNA-dependent RNA polymerase (RdRp) attaches one or more nucleotides to a target protein through a nucleotidyl-transferase reaction. The most characterized nucleotidylylation target is VPg (viral protein genome-linked), a protein linked to the 5' end of the genome in Caliciviridae, Picornaviridae and Potyviridae. The nucleotidylylation of VPg by RdRp is a critical step for the VPg protein to act as a primer for genome replication and, in Caliciviridae and Potyviridae, for the initiation of translation. In contrast, Coronaviridae do not express a VPg protein, but the nucleotidylylation of proteins involved in replication initiation is critical for genome replication. Furthermore, the RdRp proteins of the viruses that perform nucleotidylylation are themselves nucleotidylylated, and in the case of coronavirus, this has been shown to be essential for viral replication. This review focuses on nucleotidylylation within the picornavirus supergroup of viruses, including the proteins that are modified, what is known about the nucleotidylylation process and the roles that these modifications have in the viral life cycle.
Collapse
Affiliation(s)
| | | | | | - Vernon K. Ward
- Department of Microbiology & Immunology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.)
| |
Collapse
|
24
|
Toribio R, Muñoz A, Sánchez F, Ponz F, Castellano MM. High overexpression of CERES, a plant regulator of translation, induces different phenotypical defence responses during TuMV infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:256-267. [PMID: 33899980 DOI: 10.1111/tpj.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Mutations in the eukaryotic translation initiation factors eIF4E and eIF(iso)4E confer potyvirus resistance in a range of plant hosts. This supports the notion that, in addition to their role in translation of cellular mRNAs, eIF4E isoforms are also essential for the potyvirus cycle. CERES is a plant eIF4E- and eIF(iso)4E-binding protein that, through its binding to the eIF4Es, modulates translation initiation; however, its possible role in potyvirus resistance is unknown. In this article, we analyse if the ectopic expression of AtCERES is able to interfere with turnip mosaic virus replication in plants. Our results demonstrate that, during infection, the ectopic expression of CERES in Nicotiana benthamiana promotes the development of a mosaic phenotype when it is accumulated to moderate levels, but induces veinal necrosis when it is accumulated to higher levels. This necrotic process resembles a hypersensitive response (HR)-like response that occurs with different HR hallmarks. Remarkably, Arabidopsis plants inoculated with a virus clone that promotes high expression of CERES do not show signs of infection. These final phenotypical outcomes are independent of the capacity of CERES to bind to eIF4E. All these data suggest that CERES, most likely due to its leucine-rich repeat nature, could act as a resistance protein, able to promote a range of different defence responses when it is highly overexpressed from viral constructs.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
25
|
McSweeney AM, Young VL, Ward VK. Norovirus VPg Binds RNA through a Conserved N-Terminal K/R Basic Patch. Viruses 2021; 13:v13071282. [PMID: 34209211 PMCID: PMC8310136 DOI: 10.3390/v13071282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
The viral protein genome-linked (VPg) of noroviruses is a multi-functional protein that participates in essential roles during the viral replication cycle. Predictive analyses indicate that murine norovirus (MNV) VPg contains a disordered N-terminal region with RNA binding potential. VPg proteins were expressed with an N-terminal spidroin fusion protein in insect cells and the interaction with RNA investigated by electrophoretic mobility shift assays (EMSA) against a series of RNA probes (pentaprobes) representing all possible five nucleotide combinations. MNV VPg and human norovirus (HuNV) VPg proteins were directly bound to RNA in a non-specific manner. To identify amino acids involved in binding to RNA, all basic (K/R) residues in the first 12 amino acids of MNV VPg were mutated to alanine. Removal of the K/R amino acids eliminated RNA binding and is consistent with a K/R basic patch RNA binding motif within the disordered N-terminal region of norovirus VPgs. Finally, we show that mutation of the K/R basic patch required for RNA binding eliminates the ability of MNV VPg to induce a G0/G1 cell cycle arrest.
Collapse
|
26
|
Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proc Natl Acad Sci U S A 2021; 118:2020990118. [PMID: 33526695 DOI: 10.1073/pnas.2020990118] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental conditions are an important factor driving pathogens' evolution. Here, we explore the effects of drought stress in plant virus evolution. We evolved turnip mosaic potyvirus in well-watered and drought conditions in Arabidopsis thaliana accessions that differ in their response to virus infection. Virus adaptation occurred in all accessions independently of watering status. Drought-evolved viruses conferred a significantly higher drought tolerance to infected plants. By contrast, nonsignificant increases in tolerance were observed in plants infected with viruses evolved under standard watering. The magnitude of this effect was dependent on the plant accessions. Differences in tolerance were correlated to alterations in the expression of host genes, some involved in regulation of the circadian clock, as well as in deep changes in the balance of phytohormones regulating defense and growth signaling pathways. Our results show that viruses can promote host survival in situations of abiotic stress, with the magnitude of such benefit being a selectable trait.
Collapse
|
27
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021; 48:4677-4686. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
28
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
29
|
Virus Host Jumping Can Be Boosted by Adaptation to a Bridge Plant Species. Microorganisms 2021; 9:microorganisms9040805. [PMID: 33920394 PMCID: PMC8070427 DOI: 10.3390/microorganisms9040805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding biological mechanisms that regulate emergence of viral diseases, in particular those events engaging cross-species pathogens spillover, is becoming increasingly important in virology. Species barrier jumping has been extensively studied in animal viruses, and the critical role of a suitable intermediate host in animal viruses-generated human pandemics is highly topical. However, studies on host jumping involving plant viruses have been focused on shifting intra-species, leaving aside the putative role of “bridge hosts” in facilitating interspecies crossing. Here, we take advantage of several VPg mutants, derived from a chimeric construct of the potyvirus Plum pox virus (PPV), analyzing its differential behaviour in three herbaceous species. Our results showed that two VPg mutations in a Nicotiana clevelandii-adapted virus, emerged during adaptation to the bridge-host Arabidopsis thaliana, drastically prompted partial adaptation to Chenopodium foetidum. Although both changes are expected to facilitate productive interactions with eIF(iso)4E, polymorphims detected in PPV VPg and the three eIF(iso)4E studied, extrapolated to a recent VPg:eIF4E structural model, suggested that two adaptation ways can be operating. Remarkably, we found that VPg mutations driving host-range expansion in two non-related species, not only are not associated with cost trade-off constraints in the original host, but also improve fitness on it.
Collapse
|
30
|
Paudel DB, Sanfaçon H. Mapping of sequences in the 5' region and 3' UTR of tomato ringspot virus RNA2 that facilitate cap-independent translation of reporter transcripts in vitro. PLoS One 2021; 16:e0249928. [PMID: 33836032 PMCID: PMC8034749 DOI: 10.1371/journal.pone.0249928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Tomato ringspot virus (ToRSV, genus Nepovirus, family Secoviridae, order Picornavirales) is a bipartite positive-strand RNA virus, with each RNA encoding one large polyprotein. ToRSV RNAs are linked to a 5'-viral genome-linked protein (VPg) and have a 3' polyA tail, suggesting a non-canonical cap-independent translation initiation mechanism. The 3' untranslated regions (UTRs) of RNA1 and RNA2 are unusually long (~1.5 kb) and share several large stretches of sequence identities. Several putative in-frame start codons are present in the 5' regions of the viral RNAs, which are also highly conserved between the two RNAs. Using reporter transcripts containing the 5' region and 3' UTR of the RNA2 of ToRSV Rasp1 isolate (ToRSV-Rasp1) and in vitro wheat germ extract translation assays, we provide evidence that translation initiates exclusively at the first AUG, in spite of a poor codon context. We also show that both the 5' region and 3' UTR of RNA2 are required for efficient cap-independent translation of these transcripts. We identify translation-enhancing elements in the 5' proximal coding region of the RNA2 polyprotein and in the RNA2 3' UTR. Cap-dependent translation of control reporter transcripts was inhibited when RNAs consisting of the RNA2 3' UTR were supplied in trans. Taken together, our results suggest the presence of a CITE in the ToRSV-Rasp1 RNA2 3' UTR that recruits one or several translation factors and facilitates efficient cap-independent translation together with the 5' region of the RNA. Non-overlapping deletion mutagenesis delineated the putative CITE to a 200 nts segment (nts 773-972) of the 1547 nt long 3' UTR. We conclude that the general mechanism of ToRSV RNA2 translation initiation is similar to that previously reported for the RNAs of blackcurrant reversion virus, another nepovirus. However, the position, sequence and predicted structures of the translation-enhancing elements differed between the two viruses.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
- * E-mail:
| |
Collapse
|
31
|
Dixit K, Karanth NM, Nair S, Kumari K, Chakrabarti KS, Savithri HS, Sarma SP. Aromatic Interactions Drive the Coupled Folding and Binding of the Intrinsically Disordered Sesbania mosaic Virus VPg Protein. Biochemistry 2020; 59:4663-4680. [PMID: 33269926 DOI: 10.1021/acs.biochem.0c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plant Sesbania mosaic virus [a (+)-ssRNA sobemovirus] VPg protein is intrinsically disordered in solution. For the virus life cycle, the VPg protein is essential for replication and for polyprotein processing that is carried out by a virus-encoded protease. The nuclear magnetic resonance (NMR)-derived tertiary structure of the protease-bound VPg shows it to have a novel tertiary structure with an α-β-β-β topology. The quaternary structure of the high-affinity protease-VPg complex (≈27 kDa) has been determined using HADDOCK protocols with NMR (residual dipolar coupling, dihedral angle, and nuclear Overhauser enhancement) restraints and mutagenesis data as inputs. The geometry of the complex is in excellent agreement with long-range orientational restraints such as residual dipolar couplings and ring-current shifts. A "vein" of aromatic residues on the protease surface is pivotal for the folding of VPg via intermolecular edge-to-face π···π stacking between Trp271 and Trp368 of the protease and VPg, respectively, and for the CH···π interactions between Leu361 of VPg and Trp271 of the protease. The structure of the protease-VPg complex provides a molecular framework for predicting sites of important posttranslational modifications such as RNA linkage and phosphorylation and a better understanding of the coupled folding upon binding of intrinsically disordered proteins. The structural data presented here augment the limited structural data available on viral proteins, given their propensity for structural disorder.
Collapse
Affiliation(s)
- Karuna Dixit
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - N Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Smita Nair
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Khushboo Kumari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Handanahal S Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
32
|
Freire MÁ. Viral silencing suppressors and cellular proteins partner with plant RRP6-like exoribonucleases. Virus Genes 2020; 56:621-631. [PMID: 32519287 DOI: 10.1007/s11262-020-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
RNA silencing and RNA decay are functionally interlaced, regulate gene expression and play a pivotal role in antiviral responses. As a counter-defensive strategy, many plant and mammalian viruses encode suppressors which interfere with both mechanisms. However, the protein interactions that connect these pathways remain elusive. Previous work reported that RNA silencing suppressors from different potyviruses, together with translation initiation factors EIF(iso)4E, interacted with the C-terminal region of the tobacco exoribonuclease RRP6-like 2, a component of the RNA decay exosome complex. Here, we investigate whether other viral silencing suppressors and cellular proteins might also bind RRP6-like exoribonucleases. A candidate search approach based on yeast two-hybrid protein interaction assays showed that three other unrelated viral suppressors, two from plant viruses and one from a mammalian virus, bound the C-terminus of the tobacco RRP6-like 2, the full-length of the Arabidopsis RRP6L1 protein and its C-terminal region. In addition, RRP6-like proteins were found to interact with members of the cellular double-stranded RNA-binding protein (DRB) family involved in RNA silencing. The C-terminal regions of RRP6L proteins are engaged in homotypic and heterotypic interactions and were predicted to be disordered. Collectively, these results suggest a protein interaction network that connects components of RNA decay and RNA silencing that is targeted by viral silencing suppressors.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
33
|
Sabharwal P, Savithri HS. Functional Characterization of Pepper Vein Banding Virus-Encoded Proteins and Their Interactions: Implications in Potyvirus Infection. Viruses 2020; 12:v12091037. [PMID: 32957699 PMCID: PMC7551749 DOI: 10.3390/v12091037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Pepper vein banding virus (PVBV) is a distinct species in the Potyvirus genus which infects economically important plants in several parts of India. Like other potyviruses, PVBV encodes multifunctional proteins, with several interaction partners, having implications at different stages of the potyviral infection. In this review, we summarize the functional characterization of different PVBV-encoded proteins with an emphasis on their interaction partners governing the multifunctionality of potyviral proteins. Intrinsically disordered domains/regions of these proteins play an important role in their interactions with other proteins. Deciphering the function of PVBV-encoded proteins and their interactions with cognitive partners will help in understanding the putative mechanisms by which the potyviral proteins are regulated at different stages of the viral life-cycle. This review also discusses PVBV virus-like particles (VLPs) and their potential applications in nanotechnology. Further, virus-like nanoparticle-cell interactions and intracellular fate of PVBV VLPs are also discussed.
Collapse
|
34
|
Walter J, Barra A, Charon J, Tavert-Roudet G, Michon T. Spectroscopic Investigation of the Kinetic Mechanism Involved in the Association of Potyviral VPg with the Host Plant Translation Initiation Factor eIF4E. Int J Mol Sci 2020; 21:ijms21165618. [PMID: 32764527 PMCID: PMC7460627 DOI: 10.3390/ijms21165618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
The infectious cycle of potyviruses requires the formation of a complex between the viral genome-linked protein VPg and the host eukaryotic translation initiation factor 4E, eIF4E. Mutations associated with plant resistance to potyviruses were previously mapped at the eIF4E surface, while on the virus side, mutations leading to plant resistance breaking were identified within the VPg. In the present study, fluorescence spectroscopy was used to probe the contribution of the VPg intrinsically disordered region bearing amino acids determinant of the resistance breaking, to the VPg–eIF4E binding mechanism. Synthetic peptides encompassing the VPg88–120 central region were found to tightly bind to eIF4E. Fluorescence energy transfer experiments show that, upon binding to eIF4E, the N and C termini of the VPg88–111 fragment move closer to one another, at a distance compatible with a α-helix folding. When the VPg112–120 region, which contains amino acids associated with resistance breakdown, is appended to VPg88–111, the complex formation with eIF4E switches from a single-step to a two-step kinetic model. This study revisits a recent investigation of the VPg–eIF4E complex by specifying the contribution of the VPg central helix and its appended disordered region to VPg association with eIF4E.
Collapse
Affiliation(s)
- Jocelyne Walter
- INRAE, Biologie du Fruit et Pathologie, University of Bordeaux, UMR 1332, F-33140 Villenave d’Ornon, France; (J.W.); (A.B.); (G.T.-R.)
| | - Amandine Barra
- INRAE, Biologie du Fruit et Pathologie, University of Bordeaux, UMR 1332, F-33140 Villenave d’Ornon, France; (J.W.); (A.B.); (G.T.-R.)
| | - Justine Charon
- Faculty of Sciences, University of Sydney, Charles Perkins Center D17, Camperdown Campus, Sydney, NSW 2006, Australia;
| | - Geneviève Tavert-Roudet
- INRAE, Biologie du Fruit et Pathologie, University of Bordeaux, UMR 1332, F-33140 Villenave d’Ornon, France; (J.W.); (A.B.); (G.T.-R.)
| | - Thierry Michon
- INRAE, Biologie du Fruit et Pathologie, University of Bordeaux, UMR 1332, F-33140 Villenave d’Ornon, France; (J.W.); (A.B.); (G.T.-R.)
- Correspondence: ; Tel.: +33-(0)-557-12-23-91
| |
Collapse
|
35
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
36
|
Jiang C, Kan J, Ordon F, Perovic D, Yang P. Bymovirus-induced yellow mosaic diseases in barley and wheat: viruses, genetic resistances and functional aspects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1623-1640. [PMID: 32008056 DOI: 10.1007/s00122-020-03555-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/24/2020] [Indexed: 05/20/2023]
Abstract
Bymovirus-induced yellow mosaic diseases seriously threaten global production of autumn-sown barley and wheat, which are two of the presently most important crops around the world. Under natural field conditions, the diseases are caused by infection of soil-borne plasmodiophorid Polymyxa graminis-transmitted bymoviruses of the genus Bymovirus of the family Potyviridae. Focusing on barley and wheat, this article summarizes the achievements on taxonomy, geography and host specificity of these disease-conferring viruses, as well as the genetics of resistance in barley, wheat and wild relatives. Moreover, based on recent progress of barley and wheat genomics, germplasm resources and large-scale sequencing, the exploration and isolation of corresponding resistant genes from wheat and barley as well as relatives, no matter what a large and complicated genome is present, are becoming feasible and are discussed. Furthermore, the foreseen advances on cloning of the resistance or susceptibility-encoding genes, which will provide the possibility to explore the functional interaction between host plants and soil-borne viral pathogens, are discussed as well as the benefits for marker-assisted resistance breeding in barley and wheat.
Collapse
Affiliation(s)
- Congcong Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, People's Republic of China
| | - Jinhong Kan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, People's Republic of China
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, People's Republic of China.
| |
Collapse
|
37
|
Geng G, Yu C, Li X, Yuan X. A unique internal ribosome entry site representing a dynamic equilibrium state of RNA tertiary structure in the 5'-UTR of Wheat yellow mosaic virus RNA1. Nucleic Acids Res 2020; 48:390-404. [PMID: 31713626 PMCID: PMC7145537 DOI: 10.1093/nar/gkz1073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 02/02/2023] Open
Abstract
Internal ribosome entry sites (IRESes) were first reported in RNA viruses and subsequently identified in cellular mRNAs. In this study, IRES activity of the 5'-UTR in Wheat yellow mosaic virus (WYMV) RNA1 was identified, and the 3'-UTR synergistically enhanced this IRES activity via long-distance RNA-RNA interaction between C80U81and A7574G7575. Within the 5'-UTR, the hairpin 1(H1), flexible hairpin 2 (H2) and linker region (LR1) between H1 and H2 played an essential role in cap-independent translation, which is associated with the structural stability of H1, length of discontinuous stems and nucleotide specificity of the H2 upper loop and the long-distance RNA-RNA interaction sites in LR1. The H2 upper loop is a target region of the eIF4E. Cytosines (C55, C66, C105 and C108) in H1 and H2 and guanines (G73, G79 and G85) in LR1 form discontinuous and alternative base pairing to maintain the dynamic equilibrium state, which is used to elaborately regulate translation at a suitable level. The WYMV RNA1 5'-UTR contains a novel IRES, which is different from reported IRESes because of the dynamic equilibrium state. It is also suggested that robustness not at the maximum level of translation is the selection target during evolution of WYMV RNA1.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xiangdong Li
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| |
Collapse
|
38
|
The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses 2020; 12:v12010077. [PMID: 31936267 PMCID: PMC7019339 DOI: 10.3390/v12010077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Potyviruses represent the largest group of known plant RNA viruses and include many agriculturally important viruses, such as Plum pox virus, Soybean mosaic virus, Turnip mosaic virus, and Potato virus Y. Potyviruses adopt polyprotein processing as their genome expression strategy. Among the 11 known viral proteins, the nuclear inclusion protein b (NIb) is the RNA-dependent RNA polymerase responsible for viral genome replication. Beyond its principal role as an RNA replicase, NIb has been shown to play key roles in diverse virus–host interactions. NIb recruits several host proteins into the viral replication complexes (VRCs), which are essential for the formation of functional VRCs for virus multiplication, and interacts with the sumoylation pathway proteins to suppress NPR1-mediated immunity response. On the other hand, NIb serves as a target of selective autophagy as well as an elicitor of effector-triggered immunity, resulting in attenuated virus infection. These contrasting roles of NIb provide an excellent example of the complex co-evolutionary arms race between plant hosts and potyviruses. This review highlights the current knowledge about the multifunctional roles of NIb in potyvirus infection, and discusses future research directions.
Collapse
|
39
|
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses, encompassing over 30% of known plant viruses. The family is closely related to animal picornaviruses such as enteroviruses and belongs to the picorna-like supergroup. Like all other picorna-like viruses, potyvirids employ polyprotein processing as a gene expression strategy and have single-stranded, positive-sense RNA genomes, most of which are monopartite with a long open reading frame. The potyvirid polyproteins are highly conserved in the central and carboxy-terminal regions. In contrast, the N-terminal region is hypervariable and contains position-specific mutations resulting from transcriptional slippage during viral replication, leading to translational frameshift to produce additional viral proteins essential for viral infection. Some potyvirids even lack one of the N-terminal proteins P1 or helper component-protease and have a genus-specific or species-specific protein instead. This review summarizes current knowledge about the conserved and divergent features of potyvirid genomes and biological relevance and discusses future research directions.
Collapse
Affiliation(s)
- Hongguang Cui
- College of Plant Protection, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Haikou, Hainan 570228, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| |
Collapse
|
40
|
Walter J, Barra A, Doublet B, Céré N, Charon J, Michon T. Hydrodynamic Behavior of the Intrinsically Disordered Potyvirus Protein VPg, of the Translation Initiation Factor eIF4E and of their Binary Complex. Int J Mol Sci 2019; 20:E1794. [PMID: 30978975 PMCID: PMC6479716 DOI: 10.3390/ijms20071794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/12/2023] Open
Abstract
Protein intrinsic disorder is involved in many biological processes and good experimental models are valuable to investigate its functions. The potyvirus genome-linked protein, VPg, displays many features of an intrinsically disordered protein. The virus cycle requires the formation of a complex between VPg and eIF4E, one of the host translation initiation factors. An in-depth characterization of the hydrodynamic properties of VPg, eIF4E, and of their binary complex VPg-eIF4E was carried out. Two complementary experimental approaches, size-exclusion chromatography and fluorescence anisotropy, which is more resolving and revealed especially suitable when protein concentration is the limiting factor, allowed to estimate monomers compaction upon complex formation. VPg possesses a high degree of hydration which is in agreement with its classification as a partially folded protein in between a molten and pre-molten globule. The natively disordered first 46 amino acids of eIF4E contribute to modulate the protein hydrodynamic properties. The addition of an N-ter His tag decreased the conformational entropy of this intrinsically disordered region. A comparative study between the two tagged and untagged proteins revealed the His tag contribution to proteins hydrodynamic behavior.
Collapse
Affiliation(s)
- Jocelyne Walter
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Amandine Barra
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Bénédicte Doublet
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Nicolas Céré
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Justine Charon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| |
Collapse
|
41
|
Charon J, Barra A, Walter J, Millot P, Hébrard E, Moury B, Michon T. First Experimental Assessment of Protein Intrinsic Disorder Involvement in an RNA Virus Natural Adaptive Process. Mol Biol Evol 2019; 35:38-49. [PMID: 29029259 PMCID: PMC5850501 DOI: 10.1093/molbev/msx249] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intrinsic disorder (ID) in proteins is defined as a lack of stable structure in physiological conditions. Intrinsically disordered regions (IDRs) are highly abundant in some RNA virus proteomes. Low topological constraints exerted on IDRs are expected to buffer the effect of numerous deleterious mutations and could be related to the remarkable adaptive potential of RNA viruses to overcome resistance of their host. To experimentally test this hypothesis in a natural pathosystem, a set of four variants of Potato virus Y (PVY; Potyvirus genus) containing various ID degrees in the Viral genome-linked (VPg) protein, a key determinant of potyvirus adaptation, was designed. To estimate the ID contribution to the VPg-based PVY adaptation, the adaptive ability of the four PVY variants was monitored in the pepper host (Capsicum annuum) carrying a recessive resistance gene. Intriguingly, the two mutants with the highest ID content displayed a significantly higher ability to restore infection in the resistant host, whereas the less intrinsically disordered mutant was unable to restore infection. The role of ID on virus adaptation may be due either to a larger exploration of evolutionary pathways or the minimization of fitness penalty caused by resistance-breaking mutations. This pioneering study strongly suggests the positive impact of ID in an RNA virus adaptive capacity.
Collapse
Affiliation(s)
- Justine Charon
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Villenave d'Ornon, France.,CNRS 5320, INSERM U1212, Pessac, France
| | - Amandine Barra
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Jocelyne Walter
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Villenave d'Ornon, France
| | | | - Eugénie Hébrard
- UMR Interactions Plantes-Microorganismes-Environnement, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | | | - Thierry Michon
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
42
|
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:421-434. [PMID: 30019807 PMCID: PMC6335076 DOI: 10.1111/pbi.12987] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/27/2018] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-binding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9-mediated genome editing was employed to generate ncbp-1, ncbp-2, and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild-type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.
Collapse
Affiliation(s)
- Michael A. Gomez
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke Hayden
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | - Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Brian J. Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
43
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
44
|
Nigam D, LaTourrette K, Souza PFN, Garcia-Ruiz H. Genome-Wide Variation in Potyviruses. FRONTIERS IN PLANT SCIENCE 2019; 10:1439. [PMID: 31798606 PMCID: PMC6863122 DOI: 10.3389/fpls.2019.01439] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/16/2019] [Indexed: 05/07/2023]
Abstract
Potyviruses (family Potyviridae, genus Potyvirus) are the result of an initial radiation event that occurred 6,600 years ago. The genus currently consists of 167 species that infect monocots or dicots, including domesticated and wild plants. Potyviruses are transmitted in a non-persistent way by more than 200 species of aphids. As indicated by their wide host range, worldwide distribution, and diversity of their vectors, potyviruses have an outstanding capacity to adapt to new hosts and environments. However, factors that confer adaptability are poorly understood. Viral RNA-dependent RNA polymerases introduce nucleotide substitutions that generate genetic diversity. We hypothesized that selection imposed by hosts and vectors creates a footprint in areas of the genome involved in host adaptation. Here, we profiled genomic and polyprotein variation in all species in the genus Potyvirus. Results showed that the potyviral genome is under strong negative selection. Accordingly, the genome and polyprotein sequence are remarkably stable. However, nucleotide and amino acid substitutions across the potyviral genome are not randomly distributed and are not determined by codon usage. Instead, substitutions preferentially accumulate in hypervariable areas at homologous locations across potyviruses. At a frequency that is higher than that of the rest of the genome, hypervariable areas accumulate non-synonymous nucleotide substitutions and sites under positive selection. Our results show, for the first time, that there is correlation between host range and the frequency of sites under positive selection. Hypervariable areas map to the N terminal part of protein P1, N and C terminal parts of helper component proteinase (HC-Pro), the C terminal part of protein P3, VPg, the C terminal part of NIb (RNA-dependent RNA polymerase), and the N terminal part of the coat protein (CP). Additionally, a hypervariable area at the NIb-CP junction showed that there is variability in the sequence of the NIa protease cleavage sites. Structural alignment showed that the hypervariable area in the CP maps to the N terminal flexible loop and includes the motif required for aphid transmission. Collectively, results described here show that potyviruses contain fixed hypervariable areas in key parts of the genome which provide mutational robustness and are potentially involved in host adaptation.
Collapse
|
45
|
Mapping the domain of interaction of PVBV VPg with NIa-Pro: Role of N-terminal disordered region of VPg in the modulation of structure and function. Virology 2018; 524:18-31. [PMID: 30138835 DOI: 10.1016/j.virol.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 01/26/2023]
Abstract
VPg-Pro is involved in polyprotein processing, therefore its regulation is important for a successful potyviral infection. We report here that the N-terminal disordered region of VPg forms the domain of interaction with NIa-Pro. This region is also demonstrated to be responsible for modulating the protease activity of VPg-Pro, both in cis and trans. The disordered nature of VPg is elicited by the N-terminal 22 residues as removal of these residues (∆N22 VPg) brought about gross structural and conformational changes in the protein. Interestingly, ∆N22 VPg gained ATPase activity which suggested the presence of autoinhibitory motif within the N-terminal region of VPg. The autoinhibition gets relieved upon interaction of VPg with NIa-Pro or removal of the inhibitory motif. Thus, the N-terminal 22 residues of VPg qualify as molecular recognition feature (MoRF), regulating both protease and ATPase activity of VPg-Pro as well as forming the domain of interaction with other viral/host proteins.
Collapse
|
46
|
Lee JH, Park BS, Han KR, Biering SB, Kim SJ, Choi J, Seok JH, Alam I, Chung MS, Kim HM, Hwang S, Kim KH. Insight Into the Interaction Between RNA Polymerase and VPg for Murine Norovirus Replication. Front Microbiol 2018; 9:1466. [PMID: 30038601 PMCID: PMC6046605 DOI: 10.3389/fmicb.2018.01466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023] Open
Abstract
Norovirus (NoV) is a leading cause of epidemic acute non-bacterial gastroenteritis, and replicates through virion protein genome-linked (VPg)-primed or de novo RNA synthesis by RNA-dependent RNA polymerase (RdRp). VPg is a multifunctional protein that plays crucial roles in viral protein translation and genome replication. However, the interaction between the RdRp and this multifunctional VPg in NoV replication has been unknown. In this study, VPg derived from murine NoV (MNV) was found to mediate the formation of higher-order multimers or tubular fibrils of MNV RdRp, which led to significantly enhanced polymerase activity in vitro. The replication of MNV mutants containing a VPg-binding defective RdRp, based on the crystal structure of an RdRp-VPg(1-73) complex, was completely blocked in a cell culture system. Our data suggest that the interaction between RdRp and VPg plays a crucial role in the multimerization-mediated RdRp activity in vivo and consequently in MNV replication, which can provide a new target of therapeutic intervention for NoV outbreaks.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, South Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Daejeon, South Korea
| | - Kang R Han
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, South Korea
| | - Scott B Biering
- Committee on Microbiology, The University of Chicago, Chicago, IL, United States
| | - Soo J Kim
- Graduate School of Medical Science and Engineering, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jayoung Choi
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Jong H Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, South Korea
| | - Intekhab Alam
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, South Korea
| | - Mi S Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul, South Korea
| | - Ho M Kim
- Graduate School of Medical Science and Engineering, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungmin Hwang
- Committee on Microbiology, The University of Chicago, Chicago, IL, United States.,Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Kyung H Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong, South Korea
| |
Collapse
|
47
|
Bastet A, Lederer B, Giovinazzo N, Arnoux X, German‐Retana S, Reinbold C, Brault V, Garcia D, Djennane S, Gersch S, Lemaire O, Robaglia C, Gallois J. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1569-1581. [PMID: 29504210 PMCID: PMC6097130 DOI: 10.1111/pbi.12896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 05/19/2023]
Abstract
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance-breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof-of-concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans-species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad-spectrum and high durability resistance using recent genome editing techniques.
Collapse
Affiliation(s)
- Anna Bastet
- GAFLINRAMontfavetFrance
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | | | | - Xavier Arnoux
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Sylvie German‐Retana
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Catherine Reinbold
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Véronique Brault
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Damien Garcia
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des Plantes (IBMP)UPR 2357StrasbourgFrance
| | - Samia Djennane
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Sophie Gersch
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Olivier Lemaire
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Christophe Robaglia
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | |
Collapse
|
48
|
Chirkov S, Sheveleva A, Ivanov P, Zakubanskiy A. Analysis of Genetic Diversity of Russian Sour Cherry Plum pox virus Isolates Provides Evidence of a New Strain. PLANT DISEASE 2018; 102:569-575. [PMID: 30673474 DOI: 10.1094/pdis-07-17-1104-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plum pox virus (PPV) exists as a complex of nine strains adapted to different Prunus hosts. Unusual PPV isolates that do not belong to the known cherry-adapted strains were discovered on sour cherry in Russia. Here, two complete genomes of isolates Tat-2 and Tat-4 were determined by sequencing on the Illumina HiSeq 2500 platform. Both were composed of 9,792 nucleotides, excluding the poly(A) tail, with the organization typical of PPV and had 99.4 and 99.7% identity between each other at the nucleotide and amino acid levels. The sequence identities between Tat-2/Tat-4 and known PPV strains ranged from 77.6 to 83.3% for genomic RNA and from 80.0 to 93.8% for polyprotein. Phylogenetic analysis placed Tat-2 and Tat-4 in a separate clade, distinct from the C and CR strains. Three more Tat-2/Tat-4-like isolates were detected in local cherry plantings using the newly developed, specific RT-PCR assay. Based on the phylogenetic analysis, sequence identities, and environmental distribution, Tat-2, Tat-4, and related isolates represent a new cherry-adapted PPV strain for which the name PPV-CV (Cherry Volga) is proposed.
Collapse
Affiliation(s)
- Sergei Chirkov
- Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna Sheveleva
- Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Peter Ivanov
- Lomonosov Moscow State University, 119234 Moscow, Russia
| | | |
Collapse
|
49
|
Fuchs M. Pyramiding resistance-conferring gene sequences in crops. Curr Opin Virol 2017; 26:36-42. [DOI: 10.1016/j.coviro.2017.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022]
|
50
|
Gal-On A, Fuchs M, Gray S. Generation of novel resistance genes using mutation and targeted gene editing. Curr Opin Virol 2017; 26:98-103. [DOI: 10.1016/j.coviro.2017.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|