1
|
Ma J, Gong T, Luo T, Li S, Zhong L, Zhao X, Mei C, Bu H, Jia Z, Kuang X, Wang X, Fu Z, Tian D. Exacerbated lung inflammation in offspring with high maternal antibody levels following secondary RSV exposure. Front Immunol 2024; 15:1377374. [PMID: 38745662 PMCID: PMC11091276 DOI: 10.3389/fimmu.2024.1377374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis-related hospitalizations among children under 5 years of age, with reinfection being common throughout life. Maternal vaccination has emerged as a promising strategy, delivering elevated antibody levels to newborns for immediate protection. However, limited research has explored the protective efficacy of maternal antibodies (matAbs) against secondary RSV infections in offspring. To address this gap, we employed a mouse model of maternal RSV vaccination and secondary infection of offspring to evaluate lung pathology following RSV reinfection in mice with varying levels of maternal antibody (matAb). Additionally, we aimed to investigate the potential causes of exacerbated lung inflammation in offspring with high matAb levels following secondary RSV exposure. Our findings revealed that offspring with elevated levels of maternal pre-F antibody demonstrated effective protection against lung pathology following the initial RSV infection. However, this protection was compromised upon reinfection, manifesting as heightened weight loss, exacerbated lung pathology, increased expression of RSV-A N genes, eosinophilia, enhanced IL-5, IL-13, MUC5AC, and eosinophils Major Basic Protein (MBP) production in lung tissue compared to offspring lacking matAbs. Importantly, these unexpected outcomes were not attributed to antibody-dependent enhancement (ADE) resulting from declining matAb levels over time. Notably, our findings showed a decline in secretory IgA (sIgA), mucosal IgA, and mucosal IgG levels in offspring with high matAb levels post-primary RSV challenge. We propose that this decline may be a critical factor contributing to the ineffective protection observed during secondary RSV exposure. Overall, these findings offer valuable insights into maternal vaccination against RSV, contributing to a comprehensive understanding and mitigation of potential risks associated with maternal RSV vaccination.
Collapse
Affiliation(s)
- Jinhua Ma
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ting Gong
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Tingting Luo
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Shuanglian Li
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Li Zhong
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xin Zhao
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Chenghao Mei
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Huaqin Bu
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Zhenxing Jia
- Department of mAbs Discovery, Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, China
| | - Xiaohu Kuang
- Department of mAbs Discovery, Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, China
| | - Xiaoli Wang
- Department of mAbs Discovery, Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, China
| | - Zhou Fu
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Daiyin Tian
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Department of Respiratory Medicine, Yibin Hospital Affiliated to Children’s Hospital of Chongqing Medical University, Yibin, China
| |
Collapse
|
2
|
Kaur J, Sharma A, Passi G, Dey P, Khajuria A, Alajangi HK, Jaiswal PK, Barnwal RP, Singh G. Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment. Immunol Invest 2024; 53:295-347. [PMID: 38206610 DOI: 10.1080/08820139.2023.2298398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.
Collapse
Affiliation(s)
- Jatinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Gautam Passi
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, USA
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS NANO 2023; 17:24514-24538. [PMID: 38055649 DOI: 10.1021/acsnano.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.
Collapse
Affiliation(s)
- Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | | | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
4
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
5
|
Sun YP, Qiang HS, Lei SY, Zheng XY, Zhang HX, Su YY, Zheng ZZ, Zhang J, Lin XZ, Zhou YL. Epidemiological features, risk factors and disease burden of respiratory viruses among hospitalized children with acute respiratory tract infections in Xiamen, China. Jpn J Infect Dis 2022; 75:537-542. [PMID: 35768274 DOI: 10.7883/yoken.jjid.2022.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Well-established surveillance and monitoring system for respiratory viruses need be improved and epidemiological data about respiratory viruses is scarce in China. This study aimed to investigate epidemiological characteristics of respiratory viruses among hospitalized children ≤ 2 years old with acute respiratory tract infections (ARTIs) in Xiamen, China from October 2014 to September 2017. The clinical records of 7248 children hospitalized for ARTIs were analyzed retrospectively. Respiratory syncytial virus (RSV) (22.3%) was the most common virus among hospitalized children ≤ 2 years old, followed by parainfluenza (5.0%), adenovirus (3.5%) and influenza (1.7%). RSV-infected children possessed a higher disease burden including higher ICU admission rate (12.7%) and hospital charges ($635.36). Especially, infants < 6 months of age had the highest risk of RSV infection (OR= 2.4, 95% CI: 1.9-2.9) and higher ICU admission rate (12.1% vs. 4.5%, 4.6%) and hospital costs ($923.3 vs. $785.5, $811.7) than other age groups. Therefore, infants aged 0-6 months, especially premature infants and children with congenital diseases, should receive more concern. There is an urgent need to develop effective immunization strategies to protect these infants through the first 6 months of life or RSV season.
Collapse
Affiliation(s)
- Yong-Peng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Hong-Sheng Qiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Si-Yu Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Xin-Yi Zheng
- Department of Endemic Diseases Prevention and Control, Fujian Provincial Center for Disease Control and Prevention, China
| | - Hai-Xia Zhang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Xin-Zhu Lin
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, China
| | - Yu-Lin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, China
| |
Collapse
|
6
|
Sun YP, Lei SY, Wang YB, Wang YZ, Qiang HS, Yin YF, Jiang ZM, Zhu M, Chen XL, Ye HM, Zheng ZZ, Xia NS. Molecular Evolution of Attachment Glycoprotein (G) and Fusion Protein (F) Genes of Respiratory Syncytial Virus ON1 and BA9 Strains in Xiamen, China. Microbiol Spectr 2022; 10:e0208321. [PMID: 35311585 PMCID: PMC9045328 DOI: 10.1128/spectrum.02083-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Monitoring viral transmission and analyzing the genetic diversity of a virus are imperative to better understand its evolutionary history and the mechanism driving its evolution and spread. Especially, effective monitoring of key antigenic mutations and immune escape variants caused by these mutations has great scientific importance. Thus, to further understand the molecular evolutionary dynamics of respiratory syncytial virus (RSV) circulating in China, we analyzed nasopharyngeal swab specimens derived from hospitalized children ≤5 years old with acute respiratory tract infections (ARIs) in Xiamen during 2016 to 2019. We found that infants under 6 months of age (52.0%) were the main population with RSV infection. The prevalent pattern "BBAA" of RSV was observed during the epidemic seasons. RSV ON1 and BA9 genotypes were the dominant circulating strains in Xiamen. Interestingly, we observed four Xiamen-specific amino acid substitution combinations in the G protein and several amino acid mutations primarily occurring at antigenic sites Ø and V in the F protein. Our analyses suggest that introduction of new viruses and local evolution are shaping the diversification of RSV strains in Xiamen. This study provides new insights on the evolution and spread of the ON1 and BA9 genotypes at local and global scales. IMPORTANCE Monitoring the amino acid diversity of the RSV G and F genes helps us to find the novel genotypes, key antigenic mutations affecting antigenicity, or neutralizing antibody-resistant variants produced by natural evolution. In this study, we analyzed the molecular evolution of G and F genes from RSV strains circulating in Xiamen, China. These data provide new insights on local and global transmission and could inform the development of control measures for RSV infections.
Collapse
Affiliation(s)
- Yong-Peng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Si-Yu Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Ying-Bin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Yi-Zhen Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Hong-Sheng Qiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Yi-Fan Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Ze-Min Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Min Zhu
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiao-Li Chen
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Hui-Ming Ye
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, People’s Republic of China
| |
Collapse
|
7
|
Havdal LB, Bøås H, Bekkevold T, Kran AMB, Rojahn AE, Størdal K, Debes S, Døllner H, Nordbø SA, Barstad B, Haarr E, Fernández LV, Nakstad B, Inchley C, Flem E. The burden of respiratory syncytial virus in children under 5 years of age in Norway. J Infect 2021; 84:205-215. [PMID: 34906596 DOI: 10.1016/j.jinf.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To estimate age-specific incidence of medically attended respiratory syncytial virus (RSV) infections in hospitalised Norwegian children and describe disease epidemiology. METHODS Active prospective hospital surveillance for RSV in children <59 months of age was conducted during 2015-2018. All febrile children 12-59 months of age were enrolled, whereas children <12 months were enrolled based on respiratory symptoms regardless of fever. Surveillance data were linked to national registry data to estimate the clinical burden of RSV. RESULTS Of the children enrolled, 1096 (40%) were infected with RSV. The highest incidence rates were found in children 1 month of age, with a peak incidence of 43 per 1000 during the 2016-2017 season. In comparison, children 24-59 months of age had an infection rate of 1.4 per 1000 during the same winter season. The peak season was during the 2016-2017 winter, with an incidence rate of 6.0 per 1000 children 0-59 months of age. In the study population a total of 168 (15%) of the infected children had pre-existing medical conditions predisposing for more severe disease. High infection rates were found in this population. CONCLUSIONS Children with comorbidities showed high hospital contact rates, but the majority of children in need of medical attention associated with RSV infection were previously healthy.
Collapse
Affiliation(s)
- Lise Beier Havdal
- Department of Paediatric and Adolescent Medicine, Akershus University Hospital, Postboks 1000, 1478 Lørenskog, Norway; Norwegian Institute of Public Health, PO BOX 222 Skøyen, 0213, Oslo, Norway.
| | - Håkon Bøås
- Norwegian Institute of Public Health, PO BOX 222 Skøyen, 0213, Oslo, Norway
| | - Terese Bekkevold
- Norwegian Institute of Public Health, PO BOX 222 Skøyen, 0213, Oslo, Norway
| | - Anne-Marte Bakken Kran
- Norwegian Institute of Public Health, PO BOX 222 Skøyen, 0213, Oslo, Norway; Department of Microbiology, Oslo University Hospital, Ullevål, Postboks 4950 Nydalen, 0424 Oslo, Norway
| | - Astrid Elisabeth Rojahn
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Ullevål, Postboks, 4950 Nydalen, 0424 Oslo, Norway
| | - Ketil Størdal
- Department of Paediatrics, Østfold Hospital, Kalnes, Postboks 300, 1714 Grålum, Norway; Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sara Debes
- Department of Medical Microbiology, Østfold Hospital, Kalnes, Postboks 300, 1714 Grålum, Norway
| | - Henrik Døllner
- Department of Paediatrics, St. Olavs University Hospital, Postboks 3250 Torgarden, 7006 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Norway
| | - Svein Arne Nordbø
- Department of Medical Microbiology, St. Olavs University Hospital, Postboks 3250 Torgarden, 7006 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Norway
| | - Bjørn Barstad
- Department of Paediatric and adolescent Medicine, Stavanger University Hospital, Postboks 8100, 4068 Stavanger, Norway
| | - Elisebet Haarr
- Department of Medical Microbiology, Stavanger University Hospital, Postboks 8100, 4068 Stavanger, Norway
| | | | - Britt Nakstad
- Department of Paediatric and Adolescent Medicine, Akershus University Hospital, Postboks 1000, 1478 Lørenskog, Norway; Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christopher Inchley
- Department of Paediatric and Adolescent Medicine, Akershus University Hospital, Postboks 1000, 1478 Lørenskog, Norway
| | - Elmira Flem
- Norwegian Institute of Public Health, PO BOX 222 Skøyen, 0213, Oslo, Norway
| |
Collapse
|
8
|
Sun YP, Zheng XY, Zhang HX, Zhou XM, Lin XZ, Zheng ZZ, Zhang J, Su YY, Zhou YL. Epidemiology of Respiratory Pathogens Among Children Hospitalized for Pneumonia in Xiamen: A Retrospective Study. Infect Dis Ther 2021; 10:1567-1578. [PMID: 34146254 PMCID: PMC8214060 DOI: 10.1007/s40121-021-00472-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To investigate the etiology of common respiratory pathogens in children < 2 years of age hospitalized with pneumonia in Xiamen from 2014 to 2017. METHODS The medical records of 5581 children with pneumonia were retrospectively reviewed. Direct immunofluorescent test was used for respiratory virus testing. Bacteria were detected by conventional culture method. The results of pathogen detection at admission were analyzed as well as the clinical outcomes of children. RESULTS The burden of hospitalized children with pneumonia was highest among infants < 6 months old (58.2%). Respiratory syncytial virus (RSV) was the most common respiratory virus (26.0%) followed by parainfluenza (4.8%) and adenovirus (3.2%). Haemophilus influenzae was the most common bacteria detected (16.6%) followed by Moraxella catarrhalis (13.4%), Staphylococcus aureus (13.0%), Streptococcus pneumoniae (12.3%), Escherichia coli (5.1%) and Klebsiella pneumoniae (4.8%). Notably, RSV and K. pneumoniae were detected more frequently in severe pneumonia (35.0% and 10.9%) versus mild pneumonia (25.6% and 4.6%), with higher rates of ICU admissions, longer hospital stays and higher hospital costs compared to those infected with other respiratory pathogens. CONCLUSIONS Among children < 2 years of age hospitalized with pneumonia in Xiamen, RSV was the most common respiratory virus, while H. influenzae and S. pneumoniae remained the predominant bacterial pathogens detected. Considering the low implementation rate of vaccines against pneumococcal and Hib pneumonia in China, there is an urgent need to increase both vaccination rates to reduce pneumococcal and Hib disease burden.
Collapse
Affiliation(s)
- Yong-Peng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Xin-Yi Zheng
- Department of Endemic Diseases Prevention and Control, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350001 Fujian China
| | - Hai-Xia Zhang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| | - Xiao-Man Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| | - Xin-Zhu Lin
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Yu-Lin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| |
Collapse
|
9
|
Reeves RM, van Wijhe M, Tong S, Lehtonen T, Stona L, Teirlinck AC, Fernandez LV, Li Y, Giaquinto C, Fischer TK, Demont C, Heikkinen T, Speltra I, van Boven M, Bøås H, Campbell H. Respiratory Syncytial Virus-Associated Hospital Admissions in Children Younger Than 5 Years in 7 European Countries Using Routinely Collected Datasets. J Infect Dis 2021; 222:S599-S605. [PMID: 32815542 DOI: 10.1093/infdis/jiaa360] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infection (RTI) in young children. Registries provide opportunities to explore RSV epidemiology and burden. METHODS We explored routinely collected hospital data on RSV in children aged < 5 years in 7 European countries. We compare RSV-associated admission rates, age, seasonality, and time trends between countries. RESULTS We found similar age distributions of RSV-associated hospital admissions in each country, with the highest burden in children < 1 years old and peak at age 1 month. Average annual rates of RTI admission were 41.3-112.0 per 1000 children aged < 1 year and 8.6-22.3 per 1000 children aged < 1 year. In children aged < 5 years, 57%-72% of RTI admissions with specified causal pathogen were coded as RSV, with 62%-87% of pathogen-coded admissions in children < 1 year coded as RSV. CONCLUSIONS Our results demonstrate the benefits and limitations of using linked routinely collected data to explore epidemiology and burden of RSV. Our future work will use these data to generate estimates of RSV burden using time-series modelling methodology, to inform policymaking and regulatory decisions regarding RSV immunization strategy and monitor the impact of future vaccines.
Collapse
Affiliation(s)
- Rachel M Reeves
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Maarten van Wijhe
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Toni Lehtonen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Turku University Hospital, Turku, Finland
| | | | - Anne C Teirlinck
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Liliana Vazquez Fernandez
- Department of Infectious Diseases, Epidemiology, and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - You Li
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Thea Kølsen Fischer
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Research, Nordsjælland Hospital Hilleroed and University of Southern Denmark, Odense, Denmark
| | - Clarisse Demont
- Global Vaccine Epidemiology and Modelling Department, Sanofi Pasteur, Lyon, France
| | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Håkon Bøås
- Department of Infectious Diseases, Epidemiology, and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Harry Campbell
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Chimeric Measles Virus (MV/RSV), Having Ectodomains of Respiratory Syncytial Virus (RSV) F and G Proteins Instead of Measles Envelope Proteins, Induced Protective Antibodies against RSV. Vaccines (Basel) 2021; 9:vaccines9020156. [PMID: 33669275 PMCID: PMC7920054 DOI: 10.3390/vaccines9020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
In our previous study, fusion (F) or glyco (G) protein coding sequence of respiratory syncytial virus (RSV) was inserted at the P/M junction of the measles AIK-C vector (MVAIK), and the recombinant measles virus induced protective immune responses. In the present study, the ectodomains of measles fusion (F) and hemagglutinin (HA) proteins were replaced with those of RSV F and G proteins, and a chimeric MV/RSV vaccine was developed. It expressed F and G proteins of RSV and induced cytopathic effect (CPE) in epithelial cell lines (Vero, A549, and HEp-2 cells), but not in lymphoid cell lines (B95a, Jurkat, and U937 cells). A chimeric MV/RSV grew similarly to AIK-C with no virus growth at 39 °C. It induced NT antibodies against RSV in cotton rats three weeks after immunization through intramuscular route and enhanced response was observed after the second dose at eight weeks. After the RSV challenge with 106 PFU, significantly lower virus (101.4±0.1 PFU of RSV) was recovered from lung tissue in the chimeric MV/RSV vaccine group than in the MVAIK control group with 104.6±0.2 PFU (p < 0.001) and no obvious inflammatory pathological finding was noted. The strategy of ectodomain replacement in the measles virus vector is expected to lead to the development of safe and effective vaccines for other enveloped viruses.
Collapse
|
11
|
Harshbarger W, Tian S, Wahome N, Balsaraf A, Bhattacharya D, Jiang D, Pandey R, Tungare K, Friedrich K, Mehzabeen N, Biancucci M, Chinchilla-Olszar D, Mallett CP, Huang Y, Wang Z, Bottomley MJ, Malito E, Chandramouli S. Convergent structural features of respiratory syncytial virus neutralizing antibodies and plasticity of the site V epitope on prefusion F. PLoS Pathog 2020; 16:e1008943. [PMID: 33137810 PMCID: PMC7660905 DOI: 10.1371/journal.ppat.1008943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/12/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts. Respiratory syncytial virus (RSV) is a persistent, contagious seasonal pathogen and a serious public health threat. While infants are the most at-risk population, with infections potentially leading to bronchiolitis, adults, especially the elderly, are also burdened by RSV-induced respiratory infections. The only treatment currently available for RSV is passive immunization for high-risk infants. Thus, there is a critical need to develop a vaccine for the vast majority of the vulnerable population for which there is no preventative treatment. The RSV fusion protein in its prefusion form (PreF) is the target of the majority of naturally-induced neutralizing antibodies, and several clinical trials are currently evaluating PreF as a promising vaccine candidate. In this study, we solved the X-ray structure of PreF bound to the Fab fragment of a human neutralizing antibody. The structure reveals plasticity of the epitope, as well as a unique molecular signature for antibodies elicited towards this region of PreF. We also find that similar antibodies are induced upon immunization of naturally-primed cattle with a PreF vaccine antigen, suggesting that this epitope is highly immunogenic. These results will help us better understand the human immune response to RSV infection and vaccination, and guide future vaccine-design efforts.
Collapse
Affiliation(s)
| | - Sai Tian
- GSK, Rockville, MD, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | - Ying Huang
- GSK, Rockville, MD, United States of America
| | - Zihao Wang
- GSK, Rockville, MD, United States of America
| | | | - Enrico Malito
- GSK, Rockville, MD, United States of America
- * E-mail: (EM); (SC)
| | | |
Collapse
|
12
|
Zheng Y, Bian L, Zhao H, Liu Y, Lu J, Liu D, Zhang K, Song Y, Luo Y, Jiang C, Chen Y, Zhang Y, Kong W. Respiratory Syncytial Virus F Subunit Vaccine With AS02 Adjuvant Elicits Balanced, Robust Humoral and Cellular Immunity in BALB/c Mice. Front Immunol 2020; 11:526965. [PMID: 33013922 PMCID: PMC7516270 DOI: 10.3389/fimmu.2020.526965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory illness, particularly in infants, the elderly, and immunocompromised adults. There is no licensed commercial vaccine against RSV. Importantly, formalin-inactivated RSV vaccines mediate enhanced respiratory disease. RSV fusion (F) protein with pre-fusion conformation is a promising candidate subunit vaccine. However, some problems remain to be solved, such as low immunogenicity and humoral immunity bias. Adjuvants can effectively enhance and adjust vaccine immune responses. In this study, we formulated pre-fusion RSV-F protein with the adjuvants, Alhydrogel, MF59, AS03, AS02, and glycol chitosan (GCS). We then conducted head-to-head comparisons of vaccine-induced immune responses in BALB/c mice. All adjuvanted vaccines enhanced antigen-specific and neutralizing antibody titers and viral clearance and gave an order of adjuvant activity: AS02 > AS03, MF59 > GCS, and Alhydrogel. Among them, AS02 elicited the highest antibody expression, which persisted until week 18. Moreover, AS02 significantly enhanced Th1 type immune response in immunized mice. Mice in the AS02 group also showed faster recovery from viral attacks in challenge tests. Further transcriptome analysis revealed that AS02 regulates immune balance by activating TLR-4 and promotes Th1-type immune responses. These results suggest that AS02 may be an excellent candidate adjuvant for RSV-F subunit vaccines. This study also provides valuable information regarding the effect of other adjuvants on immune responses of RSV-F subunit vaccines.
Collapse
Affiliation(s)
- Yu Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Huiting Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yulan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Dawei Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Department of Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yueshuang Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Yusi Luo
- Intensive Care Unit, Department of Emergency, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
A gammaherpesvirus licenses CD8 T cells to protect the host from pneumovirus-induced immunopathologies. Mucosal Immunol 2020; 13:799-813. [PMID: 32424182 PMCID: PMC7116076 DOI: 10.1038/s41385-020-0293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
Human respiratory syncytial virus (RSV) is a pneumovirus that causes severe infections in infants worldwide. Despite intensive research, safe and effective vaccines against RSV have remained elusive. The main reason is that RSV infection of children previously immunized with formalin-inactivated-RSV vaccines has been associated with exacerbated pathology, a phenomenon called RSV vaccine-enhanced respiratory disease. In parallel, despite the high RSV prevalence, only a minor proportion of children develop severe diseases. Interestingly, variation in the immune responses against RSV or following RSV vaccination could be linked with differences of exposure to microbes during childhood. Gammaherpesviruses (γHVs), such as the Epstein-Barr virus, are persistent viruses that deeply influence the immune system of their host and could therefore affect the development of pneumovirus-induced immunopathologies for the long term. Here, we showed that a previous ɣHV infection protects against both pneumovirus vaccine-enhanced disease and pneumovirus primary infection and that CD8 T cells are essential for this protection. These observations shed a new light on the understanding of pneumovirus-induced diseases and open new perspectives for the development of vaccine strategies.
Collapse
|
14
|
Schneider-Ohrum K, Snell Bennett A, Rajani GM, Hostetler L, Maynard SK, Lazzaro M, Cheng LI, O'Day T, Cayatte C. CD4 + T Cells Drive Lung Disease Enhancement Induced by Immunization with Suboptimal Doses of Respiratory Syncytial Virus Fusion Protein in the Mouse Model. J Virol 2019; 93:e00695-19. [PMID: 31092578 PMCID: PMC6639276 DOI: 10.1128/jvi.00695-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection of seronegative children previously immunized with formalin-inactivated (FI) RSV has been associated with serious enhanced respiratory disease (ERD). The phenomenon was reproduced in the cotton rat and the mouse, and both preclinical models have been routinely used to evaluate the safety of new RSV vaccine candidates. More recently, we demonstrated that immunizations with suboptimal doses of the RSV fusion (F) antigen, in its post- or prefusion conformation, and in the presence of a Th1-biasing adjuvant, unexpectedly led to ERD in the cotton rat model. To assess if those observations are specific to the cotton rat and to elucidate the mechanism by which vaccination with low antigen doses can drive ERD post-RSV challenge, we evaluated RSV post-F antigen dose de-escalation in BALB/c mice in the presence of a Th1-biasing adjuvant. While decreasing antigen doses, we observed an increase in lung inflammation associated with an upregulation of proinflammatory cytokines. The amplitude of the lung histopathology was comparable to that of FI-RSV-induced ERD, confirming the observations made in the cotton rat. Importantly, depletion of CD4+ T cells prior to viral challenge completely abrogated ERD, preventing proinflammatory cytokine upregulation and the infiltration of T cells, neutrophils, eosinophils, and macrophages into the lung. Overall, low-antigen-dose-induced ERD resembles FI-RSV-induced ERD, except that the former appears in the absence of detectable levels of viral replication and in the context of a Th1-biased immune response. Taken together, our observations reinforce the recent concept that vaccines developed for RSV-naïve individuals should be systematically tested under suboptimal dosing conditions.IMPORTANCE RSV poses a significant health care burden and is the leading cause of serious lower-respiratory-tract infections in young children. A formalin-inactivated RSV vaccine developed in the 1960s not only showed a complete lack of efficacy against RSV infection but also induced severe lung disease enhancement in vaccinated children. Since then, establishing safety in preclinical models has been one of the major challenges to RSV vaccine development. We recently observed in the cotton rat model that suboptimal immunizations with RSV fusion protein could induce lung disease enhancement. In the present study, we extended suboptimal dosing evaluation to the mouse model. We confirmed the induction of lung disease enhancement by vaccinations with low antigen doses and dissected the associated immune mechanisms. Our results stress the need to evaluate suboptimal dosing for any new RSV vaccine candidate developed for seronegative infants.
Collapse
Affiliation(s)
| | - Angie Snell Bennett
- Department of Infectious Disease/Vaccines, MedImmune, Gaithersburg, Maryland, USA
| | | | - Leigh Hostetler
- Laboratory Animal Resources, MedImmune, Gaithersburg, Maryland, USA
| | - Sean K Maynard
- Department of Infectious Disease/Vaccines, MedImmune, Gaithersburg, Maryland, USA
| | - Michelle Lazzaro
- Department of Infectious Disease/Vaccines, MedImmune, Gaithersburg, Maryland, USA
| | - Lily I Cheng
- Pathology Department, MedImmune, Gaithersburg, Maryland, USA
| | - Terrence O'Day
- Statistical Sciences, MedImmune, Gaithersburg, Maryland, USA
| | - Corinne Cayatte
- Department of Infectious Disease/Vaccines, MedImmune, Gaithersburg, Maryland, USA
| |
Collapse
|
15
|
Zhang Y, Zhou Z, Zhu SL, Zu X, Wang Z, Zhang LK, Wang W, Xiao G. A novel RSV F-Fc fusion protein vaccine reduces lung injury induced by respiratory syncytial virus infection. Antiviral Res 2019; 165:11-22. [DOI: 10.1016/j.antiviral.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
|
16
|
Sawada A, Yunomae K, Nakayama T. Immunogenicity of recombinant measles vaccine expressing fusion protein of respiratory syncytial virus in cynomolgus monkeys. Microbiol Immunol 2018; 62:132-136. [DOI: 10.1111/1348-0421.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Akihito Sawada
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Shirokane 5-9-1, Minato-ku Tokyo 108-8641 Japan
| | - Kiyokazu Yunomae
- Shin Nippon Biomedical Laboratories; Drug Safety Research Laboratories; Miyanoura-cho 2438 Kagoshima City Kagoshima Prefecture 891-1394 Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Shirokane 5-9-1, Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
17
|
Weinberg GA. Respiratory syncytial virus mortality among young children. LANCET GLOBAL HEALTH 2017; 5:e951-e952. [DOI: 10.1016/s2214-109x(17)30348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022]
|
18
|
Immunization with Low Doses of Recombinant Postfusion or Prefusion Respiratory Syncytial Virus F Primes for Vaccine-Enhanced Disease in the Cotton Rat Model Independently of the Presence of a Th1-Biasing (GLA-SE) or Th2-Biasing (Alum) Adjuvant. J Virol 2017; 91:JVI.02180-16. [PMID: 28148790 DOI: 10.1128/jvi.02180-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection of children previously immunized with a nonlive, formalin-inactivated (FI)-RSV vaccine has been associated with serious enhanced respiratory disease (ERD). Consequently, detailed studies of potential ERD are a critical step in the development of nonlive RSV vaccines targeting RSV-naive children and infants. The fusion glycoprotein (F) of RSV in either its postfusion (post-F) or prefusion (pre-F) conformation is a target for neutralizing antibodies and therefore an attractive antigen candidate for a pediatric RSV subunit vaccine. Here, we report the evaluation of RSV post-F and pre-F in combination with glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE) (GLA-SE) and alum adjuvants in the cotton rat model. Immunization with optimal doses of RSV F antigens in the presence of GLA-SE induced high titers of virus-neutralizing antibodies and conferred complete lung protection from virus challenge, with no ERD signs in the form of alveolitis. To mimic a waning immune response, and to assess priming for ERD under suboptimal conditions, an antigen dose de-escalation study was performed in the presence of either GLA-SE or alum. At low RSV F doses, alveolitis-associated histopathology was unexpectedly observed with either adjuvant at levels comparable to FI-RSV-immunized controls. This occurred despite neutralizing-antibody titers above the minimum levels required for protection and with no/low virus replication in the lungs. These results emphasize the need to investigate a pediatric RSV vaccine candidate carefully for priming of ERD over a wide dose range, even in the presence of strong neutralizing activity, Th1 bias-inducing adjuvant, and protection from virus replication in the lower respiratory tract.IMPORTANCE RSV disease is of great importance worldwide, with the highest burden of serious disease occurring upon primary infection in infants and children. FI-RSV-induced enhanced disease, observed in the 1960s, presented a major and ongoing obstacle for the development of nonlive RSV vaccine candidates. The findings presented here underscore the need to evaluate a nonlive RSV vaccine candidate during preclinical development over a wide dose range in the cotton rat RSV enhanced-disease model, as suboptimal dosing of several RSV F subunit vaccine candidates led to the priming for ERD. These observations are relevant to the validity of the cotton rat model itself and to safe development of nonlive RSV vaccines for seronegative infants and children.
Collapse
|
19
|
Site-specific glycosylation of the Newcastle disease virus haemagglutinin-neuraminidase. Glycoconj J 2016; 34:181-197. [DOI: 10.1007/s10719-016-9750-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
|
20
|
Martinez EC, Garg R, Shrivastava P, Gomis S, van Drunen Littel-van den Hurk S. Intranasal treatment with a novel immunomodulator mediates innate immune protection against lethal pneumonia virus of mice. Antiviral Res 2016; 135:108-119. [PMID: 27771388 PMCID: PMC7126411 DOI: 10.1016/j.antiviral.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in infants and young children. There are no licensed RSV vaccines available, and the few treatment options for high-risk individuals are either extremely costly or cause severe side effects and toxicity. Immunomodulation mediated by a novel formulation consisting of the toll-like receptor 3 agonist poly(I:C), an innate defense regulator peptide and a polyphosphazene (P-I-P) was evaluated in the context of lethal infection with pneumonia virus of mice (PVM). Intranasal delivery of a single dose of P-I-P protected adult mice against PVM when given 24 h prior to challenge. These animals experienced minimal weight loss, no clinical disease, 100% survival, and reduced lung pathology. Similar clinical outcomes were observed in mice treated up to 3 days prior to infection. P-I-P pre-treatment induced early mRNA and protein expression of key chemokine and cytokine genes, reduced the recruitment of neutrophils and eosinophils, decreased virus titers in the lungs, and modulated the delayed exacerbated nature of PVM disease without any short-term side effects. On day 14 post-infection, P-I-P-treated mice were confirmed to be PVM-free. These results demonstrate the capacity of this formulation to prevent PVM and possibly other viral respiratory infections. P-I-P pre-treatment, consisting of poly(I:C), IDR peptide and PCEP, was tested in the context of PVM infection in mice. P-I-P confers complete protection against lethal PVM infection by reducing clinical signs and immunopathology. P-I-P minimizes viral titers in the lungs reduces the influx of neutrophils and eosinophils into the tissue. P-I-P induces early upregulation of genes involved in host defense without any observable adverse effects. Survivor mice were PVM negative, suggesting that P-I-P mediates the successfully clearance of the virus in vivo.
Collapse
Affiliation(s)
- Elisa C Martinez
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, 107 Wiggins Road, S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Ravendra Garg
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Pratima Shrivastava
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine (WCVM), University of Saskatchewan, Saskatoon, Saskatchewan, 52 Campus Drive, S7N 5B4, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, 107 Wiggins Road, S7N 5E5, Canada; Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, 120 Veterinary Road, S7N 5E3, Canada.
| |
Collapse
|
21
|
Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, Larbi A, Weinberger B, Cossarizza A. Aging of the immune system: Focus on inflammation and vaccination. Eur J Immunol 2016; 46:2286-2301. [PMID: 27595500 PMCID: PMC5156481 DOI: 10.1002/eji.201546178] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Major advances in preventing, delaying, or curing individual pathologies are responsible for an increasingly long life span in the developed parts of our planet, and indeed reaching eight to nine decades of life is nowadays extremely frequent. However, medical and sanitary advances have not prevented or delayed the underlying cause of the disparate pathologies occurring in the elderly: aging itself. The identification of the basis of the aging processes that drives the multiple pathologies and loss of function typical of older individuals is a major challenge in current aging research. Among the possible causes, an impairment of the immune system plays a major role, and indeed numerous studies have described immunological changes which occur with age. Far from the intention of being exhaustive, this review will focus on recent advances and views on the role that modifications of cell signalling and remodelling of the immune response play during human aging and longevity, paying particular attention to phenomena which are linked to the so called inflammaging process, such as dysregulation of innate immunity, altered T-cell or B-cell maturation and differentiation, as well as to the implications of immune aging for vaccination strategies in the elderly.
Collapse
Affiliation(s)
- Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Victor Appay
- Sorbonne Universités, UPMC Univ. Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Judith Campisi
- USA and Lawrence Berkeley National Laboratory, Buck Institute for Research on Aging, Berkeley, CA, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tamas Fülöp
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Canada
| | - Delphine Sauce
- Sorbonne Universités, UPMC Univ. Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, A*STAR, Singapore
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
| |
Collapse
|
22
|
Saso A, Kampmann B. Vaccination against respiratory syncytial virus in pregnancy: a suitable tool to combat global infant morbidity and mortality? THE LANCET. INFECTIOUS DISEASES 2016; 16:e153-63. [DOI: 10.1016/s1473-3099(16)00119-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 01/31/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023]
|
23
|
Esposito S, Scarselli E, Lelii M, Scala A, Vitelli A, Capone S, Fornili M, Biganzoli E, Orenti A, Nicosia A, Cortese R, Principi N. Antibody response to respiratory syncytial virus infection in children <18 months old. Hum Vaccin Immunother 2016; 12:1700-6. [PMID: 26901128 DOI: 10.1080/21645515.2016.1145847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The development of a safe and effective respiratory syncytial virus (RSV) vaccine might be facilitated by knowledge of the natural immune response to this virus. The aims of this study were to evaluate the neutralizing antibody response of a cohort of healthy children <18 months old to RSV infection. During the RSV season, 89 healthy children <18 months old were enrolled and followed up weekly for 12 weeks. At each visit, a nasopharyngeal swab was obtained for RSV detection by real-time polymerase chain reaction (PCR). During the study period, 2 blood samples were drawn and they were used to determine RSV geometric mean neutralizing antibody titres (GMT) against RSV. A total of 35 (39.3%) children had RSV detected during the study period. Among RSV-positive patients, children ≥7 months showed a significantly higher increase in antibody response (p<0.001). A significantly higher number of patients with a ≥4 -fold increase in GMT were ≥7 months old (p = 0.02) and presented lower respiratory tract infections (LRTIs) during the study period (p = 0.01). Viral shedding was longer among children aged ≥7 months (p = 0.06), those with viral load ≥10(6) copies/mL (p = 0.03), and those with LRTIs during the study period (p = 0.03), but it was not associated with the immune response (p = 0.41). In conclusion, natural RSV infection seems to evoke a low immune response in younger children. To be effective in this infant population, which is at highest risk of developing severe LRTIs, vaccines must be able to induce in the first months of life a stronger immune response than that produced by the natural infection.
Collapse
Affiliation(s)
- Susanna Esposito
- a Paediatric Highly Intensive Care Unit , Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Elisa Scarselli
- b ReiThera Srl (formerly Okairos) , Viale Città d'Europa 679, Rome , Italy
| | - Mara Lelii
- a Paediatric Highly Intensive Care Unit , Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Alessia Scala
- a Paediatric Highly Intensive Care Unit , Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Alessandra Vitelli
- b ReiThera Srl (formerly Okairos) , Viale Città d'Europa 679, Rome , Italy
| | - Stefania Capone
- b ReiThera Srl (formerly Okairos) , Viale Città d'Europa 679, Rome , Italy
| | - Marco Fornili
- c Unit of Medical Statistics, Biometry and Bioinformatics "G.A. Maccacaro"; Università degli Studi di Milano, Fondazione IRCCS Istituto Nazionale Tumori , Milan , Italy
| | - Elia Biganzoli
- c Unit of Medical Statistics, Biometry and Bioinformatics "G.A. Maccacaro"; Università degli Studi di Milano, Fondazione IRCCS Istituto Nazionale Tumori , Milan , Italy
| | - Annalisa Orenti
- c Unit of Medical Statistics, Biometry and Bioinformatics "G.A. Maccacaro"; Università degli Studi di Milano, Fondazione IRCCS Istituto Nazionale Tumori , Milan , Italy
| | - Alfredo Nicosia
- b ReiThera Srl (formerly Okairos) , Viale Città d'Europa 679, Rome , Italy
| | | | - Nicola Principi
- a Paediatric Highly Intensive Care Unit , Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
24
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
25
|
Russell CJ, Hurwitz JL. Sendai virus as a backbone for vaccines against RSV and other human paramyxoviruses. Expert Rev Vaccines 2015; 15:189-200. [PMID: 26648515 DOI: 10.1586/14760584.2016.1114418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human paramyxoviruses are the etiological agents for life-threatening respiratory virus infections of infants and young children. These viruses, including respiratory syncytial virus (RSV), the human parainfluenza viruses (hPIV1-4) and human metapneumovirus (hMPV), are responsible for millions of serious lower respiratory tract infections each year worldwide. There are currently no standard treatments and no licensed vaccines for any of these pathogens. Here we review research with which Sendai virus, a mouse parainfluenza virus type 1, is being advanced as a Jennerian vaccine for hPIV1 and as a backbone for RSV, hMPV and other hPIV vaccines for children.
Collapse
Affiliation(s)
- Charles J Russell
- a Department of Infectious Diseases , St. Jude Children's Research Hospital , Memphis , TN , USA.,b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Julia L Hurwitz
- a Department of Infectious Diseases , St. Jude Children's Research Hospital , Memphis , TN , USA.,b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
26
|
Modjarrad K, Giersing B, Kaslow DC, Smith PG, Moorthy VS. WHO consultation on Respiratory Syncytial Virus Vaccine Development Report from a World Health Organization Meeting held on 23-24 March 2015. Vaccine 2015; 34:190-197. [PMID: 26100926 PMCID: PMC6858870 DOI: 10.1016/j.vaccine.2015.05.093] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023]
Abstract
Respiratory syncytial virus (RSV) is a globally prevalent cause of lower respiratory infection in neonates and infants. Despite its disease burden, a safe and effective RSV vaccine has remained elusive. In recent years, improved understanding of RSV biology and innovations in immunogen design has resulted in the advancement of multiple vaccine candidates into the clinical development pipeline. Given the growing number of vaccines in clinical trials, the rapid pace at which they are being tested, and the likelihood that an RSV vaccine will reach the commercial market in the next 5–10 years, consensus and guidance on clinical development pathways and licensure routes are needed now, before large-scale efficacy trials commence. In pursuit of this aim, the World Health Organization convened the first RSV vaccine consultation in 15 years on the 23rd and 24th of March, 2015 in Geneva, Switzerland. The meeting’s primary objective was to provide guidance on clinical endpoints and development pathways for vaccine trials with a focus on considerations of low- and middle-income countries. Meeting participants reached consensus on candidate case definitions for RSV disease, considerations for clinical efficacy endpoints, and the clinical development pathway for active and passive immunization trials in maternal and pediatric populations. The strategic focus of this meeting was on the development of high quality, safe and efficacious RSV preventive interventions for global use and included: (1) maternal/passive immunization to prevent RSV disease in infants less than 6 months; (2) pediatric immunization to prevent RSV disease in infants and young children once protection afforded by maternal immunization wanes.
Collapse
Affiliation(s)
- Kayvon Modjarrad
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland; U.S Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Birgitte Giersing
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland
| | | | - Peter G Smith
- London School of Hygiene and Tropical Medicine, London WC1E7HT, UK
| | - Vasee S Moorthy
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland.
| | | |
Collapse
|
27
|
Vaughan K, Ponomarenko J, Peters B, Sette A. Analysis of Human RSV Immunity at the Molecular Level: Learning from the Past and Present. PLoS One 2015; 10:e0127108. [PMID: 26001197 PMCID: PMC4441423 DOI: 10.1371/journal.pone.0127108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/10/2015] [Indexed: 11/18/2022] Open
Abstract
Human RSV is one of the most prevalent viral pathogens of early childhood for which no vaccine is available. Herein we provide an analysis of RSV epitope data to examine its application to vaccine design and development. Our objective was to provide an overview of antigenic coverage, identify critical antibody and T cell determinants, and then analyze the cumulative RSV epitope data from the standpoint of functional responses using a combinational approach to characterize antigenic structure and epitope location. A review of the cumulative data revealed, not surprisingly, that the vast majority of epitopes have been defined for the two major surface antigens, F and G. Antibody and T cell determinants have been reported from multiple hosts, including those from human subjects following natural infection, however human data represent a minority of the data. A structural analysis of the major surface antigen, F, showed that the majority of epitopes defined for functional antibodies (neutralizing and/or protective) were either shown to bind pre-F or to be accessible in both pre- and post-F forms. This finding may have has implications for on-going vaccine design and development. These interpretations are in agreement with previous work and can be applied in the larger context of functional epitopes on the F protein. It is our hope that this work will provide the basis for further RSV-specific epitope discovery and investigation into the nature of antigen conformation in immunogenicity.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| | - Julia Ponomarenko
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| |
Collapse
|
28
|
Centlivre M, Combadière B. New challenges in modern vaccinology. BMC Immunol 2015; 16:18. [PMID: 25879661 PMCID: PMC4374378 DOI: 10.1186/s12865-015-0075-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Vaccination has been a major advance for health care, allowing eradication or reduction of incidence and mortality of various infectious diseases. However, there are major pathogens, such as Human Immunodeficiency Virus (HIV) or the causative agent of malaria, for which classical vaccination approaches have failed, therefore requiring new vaccination strategies. The development of new vaccine strategies relies on the ability to identify the challenges posed by these pathogens. Understanding the pathogenesis and correlates of protection for these diseases, our ability to accurately direct immune responses and to vaccinate specific populations are such examples of these roadblocks. In this respect, the use of a robust, cost-effective and predictive animal model that recapitulates features of both human infection and vaccination is currently a much-needed tool. We discuss here the major limitations faced by modern vaccinology and notably, the development of humanized mice for assessing the immune system, along with their potential as vaccine models.
Collapse
Affiliation(s)
- Mireille Centlivre
- Sorbonne Universités, UPMC University Paris 06, UMR_S CR7, Centre d'Immunologie et des Maladies Infectieuses- Paris, F-75013, Paris, France. .,Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Béhazine Combadière
- Sorbonne Universités, UPMC University Paris 06, UMR_S CR7, Centre d'Immunologie et des Maladies Infectieuses- Paris, F-75013, Paris, France. .,Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
29
|
Ginsburg AS, Meulen AST, Klugman KP. Prevention of neonatal pneumonia and sepsis via maternal immunisation. THE LANCET GLOBAL HEALTH 2014; 2:e679-80. [DOI: 10.1016/s2214-109x(14)70317-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Del Giudice G, Weinberger B, Grubeck-Loebenstein B. Vaccines for the elderly. Gerontology 2014; 61:203-10. [PMID: 25402229 DOI: 10.1159/000366162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
The aging of the human population is posing serious challenges to research and to public health authorities in order to prevent diseases that more frequently affect the elderly, a portion of the population that will increase more and more in the coming years. While some vaccines exist and are used in the elderly to effectively fight against some infections (e.g. influenza, pneumococci, varicella-zoster virus, diphtheria, and tetanus), still a lot of work remains to be done to better adapt these vaccines and to develop new ones for this age group. The prevention of infectious diseases affecting the elderly can be successful only through a holistic approach. This approach will aim at the following: (1) a deeper understanding of the mechanisms leading to the senescence of the immune system, (2) a better and broader use of vaccines recommended for the elderly, (3) the use of vaccines currently considered only for other age groups and (4) actively priming the population when they are immunological competent, before the physiological waning of immune responsiveness may affect the beneficial effects of vaccination.
Collapse
|
31
|
Lambert L, Sagfors AM, Openshaw PJM, Culley FJ. Immunity to RSV in Early-Life. Front Immunol 2014; 5:466. [PMID: 25324843 PMCID: PMC4179512 DOI: 10.3389/fimmu.2014.00466] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/12/2014] [Indexed: 02/01/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is the commonest cause of severe respiratory infection in infants, leading to over 3 million hospitalizations and around 66,000 deaths worldwide each year. RSV bronchiolitis predominantly strikes apparently healthy infants, with age as the principal risk factor for severe disease. The differences in the immune response to RSV in the very young are likely to be key to determining the clinical outcome of this common infection. Remarkable age-related differences in innate cytokine responses follow recognition of RSV by numerous pattern recognition receptors, and the importance of this early response is supported by polymorphisms in many early innate genes, which associate with bronchiolitis. In the absence of strong, Th1 polarizing signals, infants develop T cell responses that can be biased away from protective Th1 and cytotoxic T cell immunity toward dysregulated, Th2 and Th17 polarization. This may contribute not only to the initial inflammation in bronchiolitis, but also to the long-term increased risk of developing wheeze and asthma later in life. An early-life vaccine for RSV will need to overcome the difficulties of generating a protective response in infants, and the proven risks associated with generating an inappropriate response. Infantile T follicular helper and B cell responses are immature, but maternal antibodies can afford some protection. Thus, maternal vaccination is a promising alternative approach. However, even in adults adaptive immunity following natural infection is poorly protective, allowing re-infection even with the same strain of RSV. This gives us few clues as to how effective vaccination could be achieved. Challenges remain in understanding how respiratory immunity matures with age, and the external factors influencing its development. Determining why some infants develop bronchiolitis should lead to new therapies to lessen the clinical impact of RSV and aid the rational design of protective vaccines.
Collapse
Affiliation(s)
- Laura Lambert
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Agnes M. Sagfors
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Fiona J. Culley
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
32
|
Sharma A, Wendland R, Sung B, Wu W, Grunwald T, Worgall S. Maternal immunization with chimpanzee adenovirus expressing RSV fusion protein protects against neonatal RSV pulmonary infection. Vaccine 2014; 32:5761-8. [PMID: 25171847 PMCID: PMC4713013 DOI: 10.1016/j.vaccine.2014.08.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 12/31/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease with high morbidity and mortality in young infants and children. Despite numerous efforts, a licensed vaccine against RSV remains elusive. Since young infants form the primary target group of RSV disease, maternal immunization to boost the protection in neonates is an attractive strategy. In this study we tested the efficacy of maternal immunization with a chimpanzee adenovirus expressing codon-optimized RSV fusion protein (AdC7-Fsyn) to protect infants against RSV infection. Single intranasal immunization of mice by AdC7-Fsyn induced robust anti-RSV systemic and mucosal immunity that protected against RSV without causing vaccine-enhanced RSV disease. RSV humoral immunity was transferred to pups born to immunized mothers that provided protection against RSV. Immunization with AdC7-Fsyn was effective even in the presence of Ad5 preimmunity. The maternally derived immunity was durable with the half-life of 14.63 days that reduced the viral replication up to 15 weeks of age. Notably, the passively immunized mice could be actively re-immunized with AdC7-Fsyn to boost and extend the protection. This substantiates maternal immunization with an AdC7-based vaccine expressing RSV F as feasible approach to protect against RSV early in life.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Rebecca Wendland
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wenzhu Wu
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Worgall
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States; Department of Pediatrics, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
33
|
Kim YJ, Kim DW, Lee WJ, Yun MR, Lee HY, Lee HS, Jung HD, Kim K. Rapid replacement of human respiratory syncytial virus A with the ON1 genotype having 72 nucleotide duplication in G gene. INFECTION GENETICS AND EVOLUTION 2014; 26:103-12. [PMID: 24820343 PMCID: PMC7106136 DOI: 10.1016/j.meegid.2014.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 02/01/2023]
Abstract
We investigated the prevalence of HRSV during 2008–2013. Novel HRSV-A ON1 genotype was emerged in August 2011. After 1 year of emergence in 2012–2013, 94.6% was replaced with novel ON1 genotype. Evolutionary dynamics also drastically increased in 2011. The result of epitope prediction shows the possibilities of antigenic variation.
Human respiratory syncytial virus (HRSV) is the main cause of severe respiratory illness in young children and elderly people. We investigated the genetic characteristics of the circulating HRSV subgroup A (HRSV-A) to determine the distribution of genotype ON1, which has a 72-nucleotide duplication in attachment G gene. We obtained 456 HRSV-A positive samples between October 2008 and February 2013, which were subjected to sequence analysis. The first ON1 genotype was discovered in August 2011 and 273 samples were identified as ON1 up to February 2013. The prevalence of the ON1 genotype increased rapidly from 17.4% in 2011–2012 to 94.6% in 2012–2013. The mean evolutionary rate of G protein was calculated as 3.275 × 10−3 nucleotide substitution/site/year and several positively selected sites for amino acid substitutions were located in the predicted epitope region. This basic and important information may facilitate a better understanding of HRSV epidemiology and evolution.
Collapse
Affiliation(s)
- You-Jin Kim
- Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea
| | - Dae-Won Kim
- Systems Biology Team, Center for Immunity and Pathology, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea
| | - Wan-Ji Lee
- Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea
| | - Mi-Ran Yun
- Systems Biology Team, Center for Immunity and Pathology, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea
| | - Ho Yeon Lee
- Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea
| | - Han Saem Lee
- Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea
| | - Hee-Dong Jung
- Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea
| | - Kisoon Kim
- Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, Cheongwon-gun, Chungbuk-do 363-951, Republic of Korea.
| |
Collapse
|
34
|
Jones BG, Sealy RE, Surman SL, Portner A, Russell CJ, Slobod KS, Dormitzer PR, DeVincenzo J, Hurwitz JL. Sendai virus-based RSV vaccine protects against RSV challenge in an in vivo maternal antibody model. Vaccine 2014; 32:3264-73. [PMID: 24721531 DOI: 10.1016/j.vaccine.2014.03.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
Abstract
Respiratory syncytial virus (RSV) is the cause of significant morbidity and mortality among infants, and despite decades of research there remains no licensed vaccine. SeVRSV is a Sendai virus (SeV)-based live intranasal vaccine that expresses the full length RSV fusion (F) gene. SeV is the murine counterpart of human parainfluenza virus type 1. Given that the target population of SeVRSV is young infants, we questioned whether maternal antibodies typical of this age group would inhibit SeVRSV vaccine efficacy. After measuring SeV- and RSV-specific serum neutralizing antibody titers in human infants, we matched these defined titers in cotton rats by the passive transfer of polyclonal or monoclonal antibody products. Animals were then vaccinated with SeVRSV followed by a 3 month rest period to allow passively transferred antibodies to wane. Animals were finally challenged with RSV to measure the de novo vaccine-induced immune responses. Despite the presence of passively-transferred serum neutralizing antibodies at the time of vaccination, SeVRSV induced immune responses that were protective against RSV challenge. The data encourage advancement of SeVRSV as a candidate vaccine for the protection of children from morbidity and mortality caused by RSV.
Collapse
Affiliation(s)
- Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Allen Portner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | - John DeVincenzo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
35
|
Chang C. Unmet needs in respiratory diseases : "You can't know where you are going until you know where you have been"--Anonymous. Clin Rev Allergy Immunol 2013; 45:303-13. [PMID: 24293395 PMCID: PMC7090922 DOI: 10.1007/s12016-013-8399-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The care of patients with respiratory diseases has improved vastly in the past 50 years. In spite of that, there are still massive challenges that have not been resolved. Although the incidence of tuberculosis has decreased in the developed world, it is still a significant public health problem in the rest of the world. There are still over 2 million deaths annually from tuberculosis, with most of these occurring in the developing world. Even with the development of new pharmaceuticals to treat tuberculosis, there is no indication that the disease will be eradicated. Respiratory syncytial virus, severe acute respiratory syndrome, and pertussis are other respiratory infectious diseases with special problems of their own, from vaccine development to vaccine coverage. Asthma, one of the most common chronic diseases in children, still accounts for significant mortality and morbidity, as well as high health care costs worldwide. Even in developed countries such as the USA, there are over 4,000 deaths per year. Severe asthma presents a special problem, but the question is whether there can be one treatment pathway for all patients with severe asthma. Severe asthma is a heterogeneous disease with many phenotypes and endotypes. The gene for cystic fibrosis was discovered over 24 years ago. The promise of gene therapy as a cure for the disease has fizzled out, and while new antimicrobials and other pharmaceuticals promise improved longevity and better quality of life, the average life span of a patient with cystic fibrosis is still at about 35 years. What are the prospects for gene therapy in the twenty-first century? Autoimmune diseases of the lung pose a different set of challenges, including the development of biomarkers to diagnose and monitor the disease and biological modulators to treat the disease.
Collapse
Affiliation(s)
- Christopher Chang
- Division of Allergy and Immunology, Thomas Jefferson University, 1600 Rockland Road, Wilmington, DE, 19803, USA,
| |
Collapse
|
36
|
Rudan I, O'Brien KL, Nair H, Liu L, Theodoratou E, Qazi S, Lukšić I, Fischer Walker CL, Black RE, Campbell H. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health 2013; 3:010401. [PMID: 23826505 PMCID: PMC3700032 DOI: 10.7189/jogh.03.010401] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The recent series of reviews conducted within the Global Action Plan for Pneumonia and Diarrhoea (GAPPD) addressed epidemiology of the two deadly diseases at the global and regional level; it also estimated the effectiveness of interventions, barriers to achieving high coverage and the main implications for health policy. The aim of this paper is to provide the estimates of childhood pneumonia at the country level. This should allow national policy–makers and stakeholders to implement proposed policies in the World Health Organization (WHO) and UNICEF member countries. Methods We conducted a series of systematic reviews to update previous estimates of the global, regional and national burden of childhood pneumonia incidence, severe morbidity, mortality, risk factors and specific contributions of the most common pathogens: Streptococcus pneumoniae (SP), Haemophilus influenzae type B (Hib), respiratory syncytial virus (RSV) and influenza virus (flu). We distributed the global and regional–level estimates of the number of cases, severe cases and deaths from childhood pneumonia in 2010–2011 by specific countries using an epidemiological model. The model was based on the prevalence of the five main risk factors for childhood pneumonia within countries (malnutrition, low birth weight, non–exclusive breastfeeding in the first four months, solid fuel use and crowding) and risk effect sizes estimated using meta–analysis. Findings The incidence of community–acquired childhood pneumonia in low– and middle–income countries (LMIC) in the year 2010, using World Health Organization's definition, was about 0.22 (interquartile range (IQR) 0.11–0.51) episodes per child–year (e/cy), with 11.5% (IQR 8.0–33.0%) of cases progressing to severe episodes. This is a reduction of nearly 25% over the past decade, which is consistent with observed reductions in the prevalence of risk factors for pneumonia throughout LMIC. At the level of pneumonia incidence, RSV is the most common pathogen, present in about 29% of all episodes, followed by influenza (17%). The contribution of different pathogens varies by pneumonia severity strata, with viral etiologies becoming relatively less important and most deaths in 2010 caused by the main bacterial agents – SP (33%) and Hib (16%), accounting for vaccine use against these two pathogens. Conclusions In comparison to 2000, the primary epidemiological evidence contributing to the models of childhood pneumonia burden has improved only slightly; all estimates have wide uncertainty bounds. Still, there is evidence of a decreasing trend for all measures of the burden over the period 2000–2010. The estimates of pneumonia incidence, severe morbidity, mortality and etiology, although each derived from different and independent data, are internally consistent – lending credibility to the new set of estimates. Pneumonia continues to be the leading cause of both morbidity and mortality for young children beyond the neonatal period and requires ongoing strategies and progress to reduce the burden further.
Collapse
Affiliation(s)
- Igor Rudan
- Centre for Population Health Sciences and Global Health Academy, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|