1
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
2
|
Dong S, Lu X, Wang Y, An N, Liu M, Li Y, Li Q. Near-Full-Length Genome Analysis of a HIV-1 CRF01_AE/B Recombinant Strain Among Men Who Have Sex with Men in Chengde City, China. AIDS Res Hum Retroviruses 2024; 40:257-262. [PMID: 37981835 DOI: 10.1089/aid.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The unique recombinant form (URF) of HIV is formed by multiple subtypes which are cocirculating in some area, and the number of HIV recombinants is on the increase worldwide. In this study, we identified a URF named 2019638, composed of CRF01_AE and subtype B, in a man who has sex with men in Qinhuangdao, Hebei province, China. The near-full-length genome (NFLG) sequence was confirmed to be a novel URF. Within this NFLG, two CRF01_AE fragments were inserted into the pol and vif regions, respectively, using subtype B as the backbone. Moreover, the presence of the V106M and V179D point mutations in the reverse transcriptase (RT) region rendered the high-level resistance to efavirenz and nevirapine and intermediate resistance to doravirine. Our findings suggest that the HIV epidemic is evolving toward a high degree of recombination, and we need to continuously monitor HIV genetic diversity to control the further development of the AIDS epidemic.
Collapse
Affiliation(s)
- Shuofan Dong
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Lu
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yingying Wang
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Ning An
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Meng Liu
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yan Li
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Qi Li
- Hebei Key Laboratory of Pathogen and Epidemiology of Infectious Disease, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Kao HJ, Weng TH, Chen CH, Chen YC, Huang KY, Weng SL. iDVEIP: A computer-aided approach for the prediction of viral entry inhibitory peptides. Proteomics 2024; 24:e2300257. [PMID: 38263811 DOI: 10.1002/pmic.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
With the notable surge in therapeutic peptide development, various peptides have emerged as potential agents against virus-induced diseases. Viral entry inhibitory peptides (VEIPs), a subset of antiviral peptides (AVPs), offer a promising avenue as entry inhibitors (EIs) with distinct advantages over chemical counterparts. Despite this, a comprehensive analytical platform for characterizing these peptides and their effectiveness in blocking viral entry remains lacking. In this study, we introduce a groundbreaking in silico approach that leverages bioinformatics analysis and machine learning to characterize and identify novel VEIPs. Cross-validation results demonstrate the efficacy of a model combining sequence-based features in predicting VEIPs with high accuracy, validated through independent testing. Additionally, an EI type model has been developed to distinguish peptides specifically acting as Eis from AVPs with alternative activities. Notably, we present iDVEIP, a web-based tool accessible at http://mer.hc.mmh.org.tw/iDVEIP/, designed for automatic analysis and prediction of VEIPs. Emphasizing its capabilities, the tool facilitates comprehensive analyses of peptide characteristics, providing detailed amino acid composition data for each prediction. Furthermore, we showcase the tool's utility in identifying EIs against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Hui-Ju Kao
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Tzu-Hsiang Weng
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Yu-Chi Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei City, Taiwan
| |
Collapse
|
4
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
5
|
Ao Y, Grover JR, Gifford L, Han Y, Zhong G, Katte R, Li W, Bhattacharjee R, Zhang B, Sauve S, Qin W, Ghimire D, Haque MA, Arthos J, Moradi M, Mothes W, Lemke EA, Kwong PD, Melikyan GB, Lu M. Bioorthogonal click labeling of an amber-free HIV-1 provirus for in-virus single molecule imaging. Cell Chem Biol 2024; 31:487-501.e7. [PMID: 38232732 PMCID: PMC10960674 DOI: 10.1016/j.chembiol.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.
Collapse
Affiliation(s)
- Yuanyun Ao
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Levi Gifford
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Guohua Zhong
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Revansiddha Katte
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rajanya Bhattacharjee
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; International PhD Program of the Institute of Molecular Biology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Dibya Ghimire
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Md Anzarul Haque
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward A Lemke
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|
6
|
Polo-Megías D, Cano-Muñoz M, Berruezo AG, Laumond G, Moog C, Conejero-Lara F. Investigating vulnerability of the conserved SARS-CoV-2 spike's heptad repeat 2 as target for fusion inhibitors using chimeric miniproteins. Int J Biol Macromol 2024; 262:130132. [PMID: 38354919 DOI: 10.1016/j.ijbiomac.2024.130132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Inhibition of SARS-CoV-2 membrane fusion is a highly desired target to combat COVID-19. The interaction between the spike's heptad repeat (HR) regions 1 (HR1) and 2 (HR2) is a crucial step during the fusion process and these highly conserved HR regions constitute attractive targets for fusion inhibitors. However, the relative importance of each subregion of the long HR1-HR2 interface for viral inhibition remains unclear. Here, we designed, produced, and characterized a series of chimeric miniproteins that mimic two different half subdomains of HR1. The proteins were designed as single polypeptide chains that spontaneously fold into antiparallel trimeric helical bundles aimed at structurally imitate the molecular surface of each HR1 half subregion. All the miniproteins folded stably as helical structures and could bind complementary HR2 peptides with moderate affinity. However, only the miniproteins mimicking the N-terminal HR1 half subdomain, but not those imitating C-terminal one, could inhibit cell infection by SARS-COV-2 real viruses in cell cultures. Most interestingly, the inhibitory activity of the miniproteins correlated with their structural stability, but not with their relative binding affinity for HR2 peptides. These results are highly relevant for designing more focused and active fusion inhibitors targeting the highly conserved HR2 region of the Spike.
Collapse
Affiliation(s)
- Daniel Polo-Megías
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Alberto G Berruezo
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Géraldine Laumond
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France; Vaccine Research Institute (VRI), F-94000 Créteil, France
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
7
|
Huerta L, Gamboa-Meraz A, Estrada-Ochoa PS. Relevance of the Entry by Fusion at the Cytoplasmic Membrane vs. Fusion After Endocytosis in the HIV and SARS-Cov-2 Infections. Results Probl Cell Differ 2024; 71:329-344. [PMID: 37996685 DOI: 10.1007/978-3-031-37936-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
HIV-1 and SARS-Cov-2 fuse at the cell surface or at endosomal compartments for entry into target cells; entry at the cell surface associates to productive infection, whereas endocytosis of low pH-independent viruses may lead to virus inactivation, slow replication, or alternatively, to productive infection. Endocytosis and fusion at the cell surface are conditioned by cell type-specific restriction factors and the presence of enzymes required for activation of the viral fusogen. Whereas fusion with the plasma membrane is considered the main pathway to productive infection of low pH-independent entry viruses, endocytosis is also productive and may be the main route of the highly efficient cell-to-cell dissemination of viruses. Alternative receptors, membrane cofactors, and the presence of enzymes processing the fusion protein at the cell membrane, determine the balance between fusion and endocytosis in specific target cells. Characterization of the mode of entry in particular cell culture conditions is desirable to better assess the effect of neutralizing and blocking agents and their mechanism of action. Whatever the pathway of virus internalization, production of the viral proteins into the cells can lead to the expression of the viral fusion protein on the cell surface; if this protein is able to induce membrane fusion at physiological pH, it promotes the fusion of the infected cell with surrounding uninfected cells, leading to the formation of syncytia or heterokaryons. Importantly, particular membrane proteins and lipids act as cofactors to support fusion. Virus-induced cell-cell fusion leads to efficient virus replication into fused cells, cell death, inflammation, and severe disease.
Collapse
Affiliation(s)
- Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico.
| | - Alejandro Gamboa-Meraz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Pablo Samuel Estrada-Ochoa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Ciudad de México, México
| |
Collapse
|
8
|
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1364. [PMID: 37629654 PMCID: PMC10456745 DOI: 10.3390/medicina59081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Autoimmune heart disease is a non-random condition characterised by immune system-mediated aggression against cardiac tissue. Cardiac changes often exhibit nonspecific features and, if unrecognised, can result in fatal outcomes even among seemingly healthy young individuals. In the absence of reliable medical history, the primary challenge lies in differentiating between the various cardiopathies. Numerous immunohistochemical and genetic studies have endeavoured to characterise distinct types of cardiopathies, facilitating their differentiation during autopsy examinations. However, the presence of a standardised protocol that forensic pathologists can employ to guide their investigations would be beneficial. Hence, this summary aims to present the spectrum of autoimmune cardiopathies, including emerging insights such as SARS-CoV-2-induced cardiopathies, and proposes the utilisation of practical tools, such as blood markers, to aid forensic pathologists in their routine practice.
Collapse
Affiliation(s)
- Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Andrea Costantino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Matteo Leoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Rebecca Pieretti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| |
Collapse
|
9
|
Xu L, Wang C, Xu W, Xing L, Zhou J, Pu J, Fu M, Lu L, Jiang S, Wang Q. A dePEGylated Lipopeptide-Based Pan-Coronavirus Fusion Inhibitor Exhibits Potent and Broad-Spectrum Anti-HIV-1 Activity without Eliciting Anti-PEG Antibodies. Int J Mol Sci 2023; 24:ijms24119779. [PMID: 37298729 DOI: 10.3390/ijms24119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Adderley J, Grau GE. Host-directed therapies for malaria: possible applications and lessons from other indications. Curr Opin Microbiol 2023; 71:102228. [PMID: 36395572 DOI: 10.1016/j.mib.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022]
Abstract
Host-directed therapies (HDT) are rapidly advancing as a new and clinically relevant strategy to treat infectious disease. The application of HDT can be broadly used to (i) inhibit host factors essential for pathogen development, including host protein kinases, (ii) control detrimental immune signalling, resulting from excessive release of cytokines, chemokines and extracellular vesicles and (iii) strengthen host defence mechanisms, such as tight junctions in the endothelium. For malaria and other eukaryotic parasite-causing diseases, HDTs could provide a novel avenue to combat the growing resistance seen across all antimicrobials and provide protection against the severe forms of disease through modulation of the host immune response.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
11
|
Rokonujjaman M, Sahyouni A, Wolfe R, Jia L, Ghosh U, Weliky DP. A large HIV gp41 construct with trimer-of-hairpins structure exhibits V2E mutation-dominant attenuation of vesicle fusion and helicity very similar to V2E attenuation of HIV fusion and infection and supports: (1) hairpin stabilization of membrane apposition with larger distance for V2E; and (2) V2E dominance by an antiparallel β sheet with interleaved fusion peptide strands from two gp41 trimers. Biophys Chem 2023; 293:106933. [PMID: 36508984 PMCID: PMC9879285 DOI: 10.1016/j.bpc.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is complete attenuation of fusion and infection mediated by HIV gp160 with gp41 subunit with V2E mutation, and also V2E dominance with WT/V2E mixtures. V2E is at the N-terminus of the ∼25-residue fusion peptide (Fp) which likely binds the target membrane. In this study, large V2E attenuation and dominance were observed for vesicle fusion induced by FP_HM, a large gp41 ectodomain construct with Fp followed by hyperthermostable hairpin with N- and C-helices, and membrane-proximal external region (Mper). FP_HM is a trimer-of-hairpins, the final gp41 structure during fusion. Vesicle fusion and helicity were measured for FP_HM using trimers with different fractions (f's) of WT and V2E proteins. Reductions in FP_HM fusion and helicity vs. fV2E were quantitatively-similar to those for gp160-mediated fusion and infection. Global fitting of all V2E data supports 6 WT gp41 (2 trimers) required for fusion. These data are understood by a model in which the ∼25 kcal/mol free energy for initial membrane apposition is compensated by the thermostable hairpin between the Fp in target membrane and Mper/transmembrane domain in virus membrane. The data support a structural model for V2E dominance with a membrane-bound Fp with antiparallel β sheet and interleaved strands from the two trimers. Relative to fV2E = 0, a longer Fp sheet is stabilized with small fV2E because of salt-bridge and/or hydrogen bonds between E2 on one strand and C-terminal Fp residues on adjacent strands, like R22. A longer Fp sheet results in shorter N- and C-helices, and larger separation during membrane apposition which hinders fusion.
Collapse
Affiliation(s)
- Md Rokonujjaman
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abdulrazak Sahyouni
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Wolfe
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lihui Jia
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
He L, Zhou G, Sofiyev V, Garcia E, Nguyen N, Li KH, Gochin M. Targeting a Conserved Lysine in the Hydrophobic Pocket of HIV-1 gp41 Improves Small Molecule Antiviral Activity. Viruses 2022; 14:v14122703. [PMID: 36560708 PMCID: PMC9784957 DOI: 10.3390/v14122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Human Immunodeficiency virus (HIV-1) fusion is mediated by glycoprotein-41, a protein that has not been widely exploited as a drug target. Small molecules directed at the gp41 ectodomain have proved to be poorly drug-like, having moderate efficacy, high hydrophobicity and/or high molecular weight. We recently investigated conversion of a fairly potent hydrophobic inhibitor into a covalent binder, by modifying it to react with a lysine residue on the protein. We demonstrated a 10-fold improvement in antiviral efficacy. Here, we continue this study, utilizing instead molecules with better inherent drug-like properties. Molecules possessing low to no antiviral activity as equilibrium binders were converted into µM inhibitors upon addition of an electrophilic warhead in the form of a sulfotetrafluorophenyl (STP) activated ester. We confirmed specificity for gp41 and for entry. The small size of the inhibitors described here offers an opportunity to expand their reach into neighboring pockets while retaining drug-likeness. STP esterification of equilibrium binders is a promising avenue to explore for inhibiting HIV-1 entry. Many gp41 targeting molecules studied over the years possess carboxylic acid groups which can be easily converted into the corresponding STP ester. It may be worth the effort to evaluate a library of such inhibitors as a way forward to small molecule inhibition of fusion of HIV and possibly other enveloped viruses.
Collapse
Affiliation(s)
- Li He
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Guangyan Zhou
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Vladimir Sofiyev
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Eddie Garcia
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Newton Nguyen
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
- Correspondence: ; Tel.: +1-707-638-5463
| |
Collapse
|
13
|
Stam JC, de Maat S, de Jong D, Arens M, van Lint F, Gharu L, van Roosmalen MH, Roovers RC, Strokappe NM, Wagner R, Kliche A, de Haard HJ, van Bergen En Henegouwen PM, Nijhuis M, Verrips CT. Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies. Sci Rep 2022; 12:13413. [PMID: 35927444 PMCID: PMC9352707 DOI: 10.1038/s41598-022-15993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing.
Collapse
Affiliation(s)
- Jord C Stam
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| | - Steven de Maat
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dorien de Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathia Arens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Fenna van Lint
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark H van Roosmalen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.,Intervet, Wim de Körverstraat 35, 5831 AN, Boxmeer, The Netherlands
| | - Rob C Roovers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.,LAVA Therapeutics, Yalelaan 60, 3584CM, Utrecht, The Netherlands
| | - Nika M Strokappe
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Ralf Wagner
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Alexander Kliche
- Molecular Microbiology and Gene Therapy, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Hans J de Haard
- Argenx, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Paul M van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Theo Verrips
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CH, Utrecht, The Netherlands.,QVQ Holding BV, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
14
|
Le ND, Steinfort M, Grandgirard D, Maleska A, Leppert D, Kuhle J, Leib SL. The CCR5 antagonist maraviroc exerts limited neuroprotection without improving neurofunctional outcome in experimental pneumococcal meningitis. Sci Rep 2022; 12:12945. [PMID: 35902720 PMCID: PMC9334283 DOI: 10.1038/s41598-022-17282-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
One-third of pneumococcal meningitis (PM) survivors suffer from neurological sequelae including learning disabilities and hearing loss due to excessive neuroinflammation. There is a lack of efficacious compounds for adjuvant therapy to control this long-term consequence of PM. One hallmark is the recruitment of leukocytes to the brain to combat the bacterial spread. However, this process induces excessive inflammation, causing neuronal injury. Maraviroc (MVC)-a CCR5 antagonist-was demonstrated to inhibit leukocyte recruitment and attenuate neuroinflammation in several inflammatory diseases. Here, we show that in vitro, MVC decreased nitric oxide production in astroglial cells upon pneumococcal stimulation. In vivo, infant Wistar rats were infected with 1 × 104 CFU/ml S. pneumoniae and randomized for treatment with ceftriaxone plus MVC (100 mg/kg) or ceftriaxone monotherapy. During the acute phase, neuroinflammation in the CSF was measured and histopathological analyses were performed to determine neuronal injury. Long-term neurofunctional outcome (learning/memory and hearing capacity) after PM was assessed. MVC treatment reduced hippocampal cell apoptosis but did not affect CSF neuroinflammation and the neurofunctional outcome after PM. We conclude that MVC treatment only exerted limited effect on the pathophysiology of PM and is, therefore, not sufficiently beneficial in this experimental paradigm of PM.
Collapse
Affiliation(s)
- Ngoc Dung Le
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Marel Steinfort
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aleksandra Maleska
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Zhou M, Liu Y, Cao J, Dong S, Hou Y, Yu Y, Zhang Q, Zhang Y, Jia X, Zhang B, Xiao G, Li G, Wang W. Bergamottin, a bioactive component of bergamot, inhibits SARS-CoV-2 infection in golden Syrian hamsters. Antiviral Res 2022; 204:105365. [PMID: 35732228 PMCID: PMC9212731 DOI: 10.1016/j.antiviral.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused an ongoing pandemic, coronavirus disease-2019 (COVID-19), which has become a major global public health event. Antiviral compounds remain the predominant means of treating COVID-19. Here, we reported that bergamottin, a furanocoumarin originally found in bergamot, exhibited inhibitory activity against SARS-CoV-2 in vitro, ex vivo, and in vivo. Bergamottin interfered with multiple stages of virus life cycles, specifically blocking the SARS-CoV-2 spike-mediated membrane fusion and effectively reducing viral RNA synthesis. Oral delivery of bergamottin to golden Syrian hamsters at dosages of both 50 mg/kg and 75 mg/kg reduced the SARS-CoV-2 load in nasal turbinates and lung tissues. Pathological damage caused by viral infection was also ameliorated after bergamottin treatment. Overall, our study provides evidence of bergamottin as a promising natural compound, with broad-spectrum anti-coronavirus activity, that could be further developed in the fight against COVID-19 infection during the current pandemic.
Collapse
Affiliation(s)
- Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxia Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Engineering and Technology Research Centre of Organoid, Guangzhou, 510515, China
| | - Qiuyan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Li
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Liu X, Wei L, Xu F, Zhao F, Huang Y, Fan Z, Mei S, Hu Y, Zhai L, Guo J, Zheng A, Cen S, Liang C, Guo F. SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and the interferon response. Sci Signal 2022; 15:eabg8744. [PMID: 35412852 DOI: 10.1126/scisignal.abg8744] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the unprecedented coronavirus disease 2019 (COVID-19) pandemic. Critical cases of COVID-19 are characterized by the production of excessive amounts of cytokines and extensive lung damage, which is partially caused by the fusion of SARS-CoV-2-infected pneumocytes. Here, we found that cell fusion caused by the SARS-CoV-2 spike (S) protein induced a type I interferon (IFN) response. This function of the S protein required its cleavage by proteases at the S1/S2 and the S2' sites. We further showed that cell fusion damaged nuclei and resulted in the formation of micronuclei that were sensed by the cytosolic DNA sensor cGAS and led to the activation of its downstream effector STING. Phosphorylation of the transcriptional regulator IRF3 and the expression of IFNB, which encodes a type I IFN, were abrogated in cGAS-deficient fused cells. Moreover, infection with VSV-SARS-CoV-2 also induced cell fusion, DNA damage, and cGAS-STING-dependent expression of IFNB. Together, these results uncover a pathway underlying the IFN response to SARS-CoV-2 infection. Our data suggest a mechanism by which fused pneumocytes in the lungs of patients with COVID-19 may enhance the production of IFNs and other cytokines, thus exacerbating disease severity.
Collapse
Affiliation(s)
- Xiaoman Liu
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liang Wei
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fengwen Xu
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fei Zhao
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Huang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhangling Fan
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shan Mei
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yamei Hu
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Linxuan Zhai
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Guo
- International Division, High School Affiliated to Renmin University of China, Beijing 100080, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100730, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal H3T 1E2, Canada
| | - Fei Guo
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
18
|
Wan T, Huang Y, Gao X, Wu W, Guo W. Microglia Polarization: A Novel Target of Exosome for Stroke Treatment. Front Cell Dev Biol 2022; 10:842320. [PMID: 35356292 PMCID: PMC8959940 DOI: 10.3389/fcell.2022.842320] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The vast majority of cells in the human body are capable of secreting exosomes. Exosomes have become an important vehicle for signaling between cells. Exosomes secreted by different cells have some of the structural and functional properties of that cell and thus have different regulatory functions. A large number of recent experimental studies have shown that exosomes from different sources have different regulatory effects on stroke, and the mechanisms still need to be elucidated. Microglia are core members of central intrinsic immune regulatory cells, which play an important regulatory role in the pathogenesis and progression of stroke. M1 microglia cause neuroinflammation and induce neurotoxic effects, while M2 microglia inhibit neuroinflammation and promote neurogenesis, thus exerting a series of neuroprotective effects. It was found that there is a close link between exosomes and microglia polarization, and that exosome inclusions such as microRNAs play a regulatory role in the M1/M2 polarization of microglia. This research reviews the role of exosomes in the regulation of microglia polarization and reveals their potential value in stroke treatment.
Collapse
Affiliation(s)
- Teng Wan
- Hengyang Medical College, University of South China, Hengyang, China.,Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunling Huang
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Wanpeng Wu
- Shenzhen Futian District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
19
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
20
|
Reverted HIV-1 Mutants in CD4 + T-Cells Reveal Critical Residues in the Polar Region of Viral Envelope Glycoprotein. Microbiol Spectr 2021; 9:e0165321. [PMID: 34935422 PMCID: PMC8693918 DOI: 10.1128/spectrum.01653-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) interacts with cell surface receptors and induces membrane fusion to enter cells and initiate infection. HIV-1 Env on virions comprises trimers of the gp120 and gp41 subunits. The polar region (PR) in the N-terminus of gp41 is composed of 17 conserved residues, including seven polar amino acids. We have reported that the PR is crucial for Env trimer stability and fusogenicity. Mutations of three highly conserved residues (S534P, T536A, or T538A) in the PR of HIV-1NL4-3 significantly decrease or eliminate viral infectivity due to defective fusion and increased gp120 shedding. To identify compensatory Env mutations that restore viral infectivity, we infected a CD4+ T-cell line with PR mutants pseudotyped with wild-type (WT) HIV-1 Env or vesicular stomatitis virus envelope glycoprotein (VSV-G). We found that PR mutant-infected CD4+ T-cells produced infectious viruses at 7 days postinfection (dpi). Sequencing of the env cDNA from cells infected with the recovered HIV-1 revealed that the S534P mutant reverted to serine or threonine at residue 534. Interestingly, the combined PR-mutant HIV-1 (S534P/T536A or S534P/T536A/T538A) recovered its infectivity and reverted to S534, but maintained the T536A or T538A mutation, suggesting that HIV-1 replication in CD4+ T-cells can tolerate T536A and T538A Env mutations, but not S534P. Moreover, VSV-G-pseudotyped HIV-1 mutants with a fusion-defective Env also recovered infectivity in CD4+ T-cells through reverted Env mutations. These new observations help define the Env residues critical for HIV-1 infection and demonstrate that Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells. IMPORTANCE Our previous mutagenesis study revealed that serine at position 534 of HIV-1 Env is critical for viral infectivity. We found that HIV-1 Env containing serine to proline mutation at position 534 (S534P) are incapable of supporting virus-cell and cell-cell fusion. To investigate whether these mutant viruses can recover infectivity and what amino acid changes account for recovered infectivity, we infected CD4+ T-cells with Env-mutant HIV-1 pseudotyped with WT HIV-1 Env or VSV-G and monitored cultures for the production of infectious viruses. Our results showed that most of the pseudotyped viruses recovered their infectivity within 1-week postinfection, and all the recovered viruses mutated proline at position 534. These observations help define the Env residues critical for HIV-1 replication. Because Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells, it is important to carefully monitor viral mutations for biosafety consideration when using HIV-1-derived lentivirus vectors pseudotyped with Env.
Collapse
|
21
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|
22
|
Bally M, Block S, Höök F, Larson G, Parveen N, Rydell GE. Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context. Anal Bioanal Chem 2021; 413:7157-7178. [PMID: 34490501 PMCID: PMC8421089 DOI: 10.1007/s00216-021-03510-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
Collapse
Affiliation(s)
- Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45, Gothenburg, Sweden.
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
23
|
Anes E, Azevedo-Pereira JM, Pires D. Cathepsins and Their Endogenous Inhibitors in Host Defense During Mycobacterium tuberculosis and HIV Infection. Front Immunol 2021; 12:726984. [PMID: 34421929 PMCID: PMC8371317 DOI: 10.3389/fimmu.2021.726984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The moment a very old bacterial pathogen met a young virus from the 80's defined the beginning of a tragic syndemic for humanity. Such is the case for the causative agent of tuberculosis and the human immunodeficiency virus (HIV). Syndemic is by definition a convergence of more than one disease resulting in magnification of their burden. Both pathogens work synergistically contributing to speed up the replication of each other. Mycobacterium tuberculosis (Mtb) and HIV infections are in the 21st century among the leaders of morbidity and mortality of humankind. There is an urgent need for development of new approaches for prevention, better diagnosis, and new therapies for both infections. Moreover, these approaches should consider Mtb and HIV as a co-infection, rather than just as separate problems, to prevent further aggravation of the HIV-TB syndemic. Both pathogens manipulate the host immune responses to establish chronic infections in intracellular niches of their host cells. This includes manipulation of host relevant antimicrobial proteases such as cathepsins or their endogenous inhibitors. Here we discuss recent understanding on how Mtb and HIV interact with cathepsins and their inhibitors in their multifactorial functions during the pathogenesis of both infections. Particularly we will address the role on pathogen transmission, during establishment of intracellular chronic niches and in granuloma clinical outcome and tuberculosis diagnosis. This area of research will open new avenues for the design of innovative therapies and diagnostic interventions so urgently needed to fight this threat to humanity.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
25
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
26
|
Khan H, Pan JJ, Li Y, Zhang Z, Yang GY. Native and Bioengineered Exosomes for Ischemic Stroke Therapy. Front Cell Dev Biol 2021; 9:619565. [PMID: 33869170 PMCID: PMC8044840 DOI: 10.3389/fcell.2021.619565] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are natural cells-derived vesicles, which are at the forefront toward clinical success for various diseases, including cerebral ischemia. Exosomes mediate cell-to-cell communication in different brain cells during both physiological and pathological conditions. Exosomes are an extensively studied type of extracellular vesicle, which are considered to be the best alternative for stem cell-based therapy. They can be secreted by various cell types and have unique biological properties. Even though native exosomes have potential for ischemic stroke therapy, some undesirable features prevent their success in clinical applications, including a short half-life, poor targeting property, low concentration at the target site, rapid clearance from the lesion region, and inefficient payload. In this review, we highlight exosome trafficking and cellular uptake and survey the latest discoveries in the context of exosome research as the best fit for brain targeting owing to its natural brain-homing abilities. Furthermore, we overview the methods by which researchers have bioengineered exosomes (BioEng-Exo) for stroke therapy. Finally, we summarize studies in which exosomes were bioengineered by a third party for stroke recovery. This review provides up-to-date knowledge about the versatile nature of exosomes with a special focus on BioEng-Exo for ischemic stroke. Standard exosome bioengineering techniques are mandatory for the future and will lead exosomes toward clinical success for stroke therapy.
Collapse
Affiliation(s)
- Haroon Khan
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Ji Pan
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience 2021; 24:102170. [PMID: 33585805 PMCID: PMC7871100 DOI: 10.1016/j.isci.2021.102170] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cell entry of the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its spike protein S. As a main antigenic determinant, S protein is in focus of various therapeutic strategies. Besides particle-cell fusion, S mediates fusion between infected and uninfected cells resulting in syncytia formation. Here, we present sensitive assay systems with a high dynamic range and high signal-to-noise ratios covering not only particle-cell and cell-cell fusion but also fusion from without (FFWO). In FFWO, S-containing viral particles induce syncytia independently of de novo synthesis of S. Neutralizing antibodies, as well as sera from convalescent patients, inhibited particle-cell fusion with high efficiency. Cell-cell fusion, in contrast, was only moderately inhibited despite requiring levels of S protein below the detection limit of flow cytometry and Western blot. The data indicate that syncytia formation as pathological consequence during coronavirus disease 2019 (COVID-19) can proceed at low levels of S protein and may not be effectively prevented by antibodies. Minimal levels of SARS-CoV-2 spike protein can cause cell fusion Spike protein displayed on virus-like particles induces fusion from without Particle-cell fusion is more sensitive toward neutralization than cell-cell fusion Highly sensitive and scalable membrane fusion assays are applicable at BSL-1
Collapse
|
28
|
Application of Advanced Light Microscopy to the Study of HIV and Its Interactions with the Host. Viruses 2021; 13:v13020223. [PMID: 33535486 PMCID: PMC7912744 DOI: 10.3390/v13020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
This review highlights the significant observations of human immunodeficiency virus (HIV) assembly, release and maturation made possible with advanced light microscopy techniques. The advances in technology which now enables these light microscopy measurements are discussed with special emphasis on live imaging approaches including Total Internal Reflection Fluorescence (TIRF), high-resolution light microscopy techniques including PALM and STORM and single molecule measurements, including Fluorescence Resonance Energy Transfer (FRET). The review concludes with a discussion on what new insights and understanding can be expected from these measurements.
Collapse
|
29
|
Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Viruses 2021; 13:v13020213. [PMID: 33573241 PMCID: PMC7911428 DOI: 10.3390/v13020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
During the last two decades, progresses in bioimaging and the development of various strategies to fluorescently label the viral components opened a wide range of possibilities to visualize the early phase of Human Immunodeficiency Virus 1 (HIV-1) life cycle directly in infected cells. After fusion of the viral envelope with the cell membrane, the viral core is released into the cytoplasm and the viral RNA (vRNA) is retro-transcribed into DNA by the reverse transcriptase. During this process, the RNA-based viral complex transforms into a pre-integration complex (PIC), composed of the viral genomic DNA (vDNA) coated with viral and host cellular proteins. The protective capsid shell disassembles during a process called uncoating. The viral genome is transported into the cell nucleus and integrates into the host cell chromatin. Unlike biochemical approaches that provide global data about the whole population of viral particles, imaging techniques enable following individual viruses on a single particle level. In this context, quantitative microscopy has brought original data shedding light on the dynamics of the viral entry into the host cell, the cytoplasmic transport, the nuclear import, and the selection of the integration site. In parallel, multi-color imaging studies have elucidated the mechanism of action of host cell factors implicated in HIV-1 viral cycle progression. In this review, we describe the labeling strategies used for HIV-1 fluorescence imaging and report on the main advancements that imaging studies have brought in the understanding of the infection mechanisms from the viral entry into the host cell until the provirus integration step.
Collapse
|
30
|
Akimov SA, Kondrashov OV, Zimmerberg J, Batishchev OV. Ectodomain Pulling Combines with Fusion Peptide Inserting to Provide Cooperative Fusion for Influenza Virus and HIV. Int J Mol Sci 2020; 21:ijms21155411. [PMID: 32751407 PMCID: PMC7432320 DOI: 10.3390/ijms21155411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Enveloped viruses include the most dangerous human and animal pathogens, in particular coronavirus, influenza virus, and human immunodeficiency virus (HIV). For these viruses, receptor binding and entry are accomplished by a single viral envelope protein (termed the fusion protein), the structural changes of which trigger the remodeling and merger of the viral and target cellular membranes. The number of fusion proteins required for fusion activity is still under debate, and several studies report this value to range from 1 to 9 for type I fusion proteins. Here, we consider the earliest stage of viral fusion based on the continuum theory of membrane elasticity. We demonstrate that membrane deformations induced by the oblique insertion of amphipathic fusion peptides mediate the lateral interaction of these peptides and drive them to form into a symmetric fusion rosette. The pulling force produced by the structural rearrangements of the fusion protein ectodomains gives additional torque, which deforms the membrane and additionally stabilizes the symmetric fusion rosette, thus allowing a reduction in the number of fusion peptides needed for fusion. These findings can resolve the large range of published cooperativity indices for HIV, influenza, and other type I fusion proteins.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
- Correspondence: ; Tel.: +7-495-955-4776
| | - Oleg V. Kondrashov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (O.V.K.); (O.V.B.)
| |
Collapse
|
31
|
Abstract
Exosomes are small, single-membrane, secreted organelles of ∼30 to ∼200 nm in diameter that have the same topology as the cell and are enriched in selected proteins, lipids, nucleic acids, and glycoconjugates. Exosomes contain an array of membrane-associated, high-order oligomeric protein complexes, display pronounced molecular heterogeneity, and are created by budding at both plasma and endosome membranes. Exosome biogenesis is a mechanism of protein quality control, and once released, exosomes have activities as diverse as remodeling the extracellular matrix and transmitting signals and molecules to other cells. This pathway of intercellular vesicle traffic plays important roles in many aspects of human health and disease, including development, immunity, tissue homeostasis, cancer, and neurodegenerative diseases. In addition, viruses co-opt exosome biogenesis pathways both for assembling infectious particles and for establishing host permissiveness. On the basis of these and other properties, exosomes are being developed as therapeutic agents in multiple disease models.
Collapse
Affiliation(s)
- D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
32
|
Ghosh U, Weliky DP. 2H nuclear magnetic resonance spectroscopy supports larger amplitude fast motion and interference with lipid chain ordering for membrane that contains β sheet human immunodeficiency virus gp41 fusion peptide or helical hairpin influenza virus hemagglutinin fusion peptide at fusogenic pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183404. [PMID: 32585207 DOI: 10.1016/j.bbamem.2020.183404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Enveloped viruses are surrounded by a membrane which is obtained from an infected host cell during budding. Infection of a new cell requires joining (fusion) of the virus and cell membranes. This process is mediated by a monotopic viral fusion protein with a large ectodomain outside the virus. The ectodomains of class I enveloped viruses have a N-terminal "fusion peptide" (fp) domain that is critical for fusion and binds to the cell membrane. In this study, 2H NMR spectra are analyzed for deuterated membrane with fp from either HIV gp41 (GP) or influenza hemagglutinin (HA) fusion proteins. In addition, the HAfp samples are studied at more fusogenic pH 5 and less fusogenic pH 7. GPfp adopts intermolecular antiparallel β sheet structure whereas HAfp is a monomeric helical hairpin. The data are obtained for a set of temperatures between 35 and 0 °C using DMPC-d54 lipid with perdeuterated acyl chains. The DMPC has liquid-crystalline (Lα) phase with disordered chains at higher temperature and rippled gel (Pβ') or gel phase (Lβ') with ordered chains at lower temperature. At given temperature T, the no peptide and HAfp, pH 7 samples exhibit similar spectral lineshapes. Spectral broadening with reduced temperature correlates with the transition from Lα to Pβ' and then Lβ' phases. At given T, the lineshapes are narrower for HAfp, pH 5 vs. no peptide and HAfp, pH 7 samples, and even narrower for the GPfp sample. These data support larger-amplitude fast (>105 Hz) lipid acyl chain motion for samples with fusogenic peptides, and peptide interference with chain ordering. The NMR data of the present paper correlate with insertion of these peptides into the hydrocarbon core of the membrane and support a significant fusion contribution from the resultant lipid acyl chain disorder, perhaps because of reduced barriers between the different membrane topologies in the fusion pathway. Membrane insertion and lipid perturbation appear common to both β sheet and helical hairpin peptides.
Collapse
Affiliation(s)
- Ujjayini Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
33
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
34
|
Environmental Restrictions: A New Concept Governing HIV-1 Spread Emerging from Integrated Experimental-Computational Analysis of Tissue-Like 3D Cultures. Cells 2020; 9:cells9051112. [PMID: 32365826 PMCID: PMC7291240 DOI: 10.3390/cells9051112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
HIV-1 can use cell-free and cell-associated transmission modes to infect new target cells, but how the virus spreads in the infected host remains to be determined. We recently established 3D collagen cultures to study HIV-1 spread in tissue-like environments and applied iterative cycles of experimentation and computation to develop a first in silico model to describe the dynamics of HIV-1 spread in complex tissue. These analyses (i) revealed that 3D collagen environments restrict cell-free HIV-1 infection but promote cell-associated virus transmission and (ii) defined that cell densities in tissue dictate the efficacy of these transmission modes for virus spread. In this review, we discuss, in the context of the current literature, the implications of this study for our understanding of HIV-1 spread in vivo, which aspects of in vivo physiology this integrated experimental-computational analysis takes into account, and how it can be further improved experimentally and in silico.
Collapse
|
35
|
Coomer CA, Carlon-Andres I, Iliopoulou M, Dustin ML, Compeer EB, Compton AA, Padilla-Parra S. Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathog 2020; 16:e1008359. [PMID: 32084246 PMCID: PMC7055913 DOI: 10.1371/journal.ppat.1008359] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
There has been resurgence in determining the role of host metabolism in viral infection yet deciphering how the metabolic state of single cells affects viral entry and fusion remains unknown. Here, we have developed a novel assay multiplexing genetically-encoded biosensors with single virus tracking (SVT) to evaluate the influence of global metabolic processes on the success rate of virus entry in single cells. We found that cells with a lower ATP:ADP ratio prior to virus addition were less permissive to virus fusion and infection. These results indicated a relationship between host metabolic state and the likelihood for virus-cell fusion to occur. SVT revealed that HIV-1 virions were arrested at hemifusion in glycolytically-inactive cells. Interestingly, cells acutely treated with glycolysis inhibitor 2-deoxyglucose (2-DG) become resistant to virus infection and also display less surface membrane cholesterol. Addition of cholesterol in these in glycolytically-inactive cells rescued the virus entry block at hemifusion and enabled completion of HIV-1 fusion. Further investigation with FRET-based membrane tension and membrane order reporters revealed a link between host cell glycolytic activity and host membrane order and tension. Indeed, cells treated with 2-DG possessed lower plasma membrane lipid order and higher tension values, respectively. Our novel imaging approach that combines lifetime imaging (FLIM) and SVT revealed not only changes in plasma membrane tension at the point of viral fusion, but also that HIV is less likely to enter cells at areas of higher membrane tension. We therefore have identified a connection between host cell glycolytic activity and membrane tension that influences HIV-1 fusion in real-time at the single-virus fusion level in live cells.
Collapse
Affiliation(s)
- Charles A. Coomer
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
- University of Kentucky, College of Medicine, Lexington, Kentucky, United States of America
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| | - Irene Carlon-Andres
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| | - Maro Iliopoulou
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ewoud B. Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alex A. Compton
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Sergi Padilla-Parra
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| |
Collapse
|
36
|
Yin W, Li W, Li Q, Liu Y, Liu J, Ren M, Ma Y, Zhang Z, Zhang X, Wu Y, Jiang S, Zhang XE, Cui Z. Real-time imaging of individual virion-triggered cortical actin dynamics for human immunodeficiency virus entry into resting CD4 T cells. NANOSCALE 2020; 12:115-129. [PMID: 31773115 DOI: 10.1039/c9nr07359k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Real-time imaging of single virus particles allows the visualization of subtle dynamic events of virus-host interaction. During the human immunodeficiency virus (HIV) infection of resting CD4 T lymphocytes, overcoming cortical actin restriction is an essential step, but the dynamic process and mechanism remain to be characterized. Herein, by using quantum dot (QD) encapsulated fluorescent viral particles and single-virus tracking, we explored detailed scenarios of HIV dynamic entry and crossing the cortical actin barrier. The fine-scale temporal and spatial processes of single HIV virion interaction with the cortical actin were studied in depth during virus entry via plasma membrane fusion. Individual HIV virions modulate the subtle rearrangement of the cortical actin barrier to open a door to facilitate viral entry. The actin-binding protein, α-actinin, was found to be critical for actin dynamics during HIV entry. An α-actinin-derived peptide, actin-binding site 1 peptide (ABS1p), was developed to block HIV infection. Our findings reveal an α-actinin-mediated dynamic cortical actin rearrangement for HIV entry, and identify an antiviral target as well as a corresponding peptide inhibitor based on HIV interaction with the actin cytoskeleton.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Qin Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Min Ren
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingxin Ma
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 22030, USA
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| |
Collapse
|
37
|
Abstract
Single-molecule Förster resonance energy transfer (smFRET) imaging has emerged as a powerful tool to probe conformational dynamics of viral proteins, identify novel structural intermediates that are hiding in averaging population-based measurements, permit access to the energetics of transitions and as such to the precise molecular mechanisms of viral replication. One strength of smFRET is the capability of characterizing biological molecules in their fully hydrated/native state, which are not necessarily available to other structural methods. Elegant experimental design for physiologically relevant conditions, such as intact virions, has permitted the detection of previously unknown conformational states of viral glycoproteins, revealed asymmetric intermediates, and allowed access to the real-time imaging of conformational changes during viral fusion. As more laboratories are applying smFRET, our understanding of the molecular mechanisms and the dynamic nature of viral proteins throughout the virus life cycle are predicted to improve and assist the development of novel antiviral therapies and vaccine design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
38
|
Abstract
Viruses must navigate the complex endomembranous network of the host cell to cause infection. In the case of a non-enveloped virus that lacks a surrounding lipid bilayer, endocytic uptake from the plasma membrane is not sufficient to cause infection. Instead, the virus must travel within organelle membranes to reach a specific cellular destination that supports exposure or arrival of the virus to the cytosol. This is achieved by viral penetration across a host endomembrane, ultimately enabling entry of the virus into the nucleus to initiate infection. In this review, we discuss the entry mechanisms of three distinct non-enveloped DNA viruses-adenovirus (AdV), human papillomavirus (HPV), and polyomavirus (PyV)-highlighting how each exploit different intracellular transport machineries and membrane penetration apparatus associated with the endosome, Golgi, and endoplasmic reticulum (ER) membrane systems to infect a host cell. These processes not only illuminate a highly-coordinated interplay between non-enveloped viruses and their host, but may provide new strategies to combat non-enveloped virus-induced diseases.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mara C Harwood
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
39
|
Hoffmann AB, Mazelier M, Léger P, Lozach PY. Deciphering Virus Entry with Fluorescently Labeled Viral Particles. Methods Mol Biol 2019; 1836:159-183. [PMID: 30151573 DOI: 10.1007/978-1-4939-8678-1_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
To infect host cells, viruses have to gain access to the intracellular compartment. The infection process starts with the attachment of viruses to the cell surface. Then a complex series of events, highly dynamic, tightly intricate, and often hard to investigate, follows. This includes virus displacement at the plasma membrane, binding to receptors, signaling, internalization, and release of the viral genome and material into the cytosol. In the past decades, the emergence of sensitive, accurate fluorescence-based technologies has opened new perspectives of investigations in the field. Visualization of single viral particles in fixed and living cells as well as quantification of each virus entry step has been made possible. Here we describe the procedure to fluorescently label viral particles. We also illustrate how to use this powerful tool to decipher the entry of viruses with the most recent fluorescence-based techniques such as high-speed confocal and total internal reflection microscopy, flow cytometry, and fluorimetry.
Collapse
Affiliation(s)
- Anja B Hoffmann
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Magalie Mazelier
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Psylvia Léger
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pierre-Yves Lozach
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
40
|
Marin M, Kushnareva Y, Mason CS, Chanda SK, Melikyan GB. HIV-1 Fusion with CD4+ T cells Is Promoted by Proteins Involved in Endocytosis and Intracellular Membrane Trafficking. Viruses 2019; 11:v11020100. [PMID: 30691001 PMCID: PMC6409670 DOI: 10.3390/v11020100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/23/2019] [Indexed: 01/23/2023] Open
Abstract
The HIV-1 entry pathway into permissive cells has been a subject of debate. Accumulating evidence, including our previous single virus tracking results, suggests that HIV-1 can enter different cell types via endocytosis and CD4/coreceptor-dependent fusion with endosomes. However, recent studies that employed indirect techniques to infer the sites of HIV-1 entry into CD4+ T cells have concluded that endocytosis does not contribute to infection. To assess whether HIV-1 enters these cells via endocytosis, we probed the role of intracellular trafficking in HIV-1 entry/fusion by a targeted shRNA screen in a CD4+ T cell line. We performed a screen utilizing a direct virus-cell fusion assay as readout and identified several host proteins involved in endosomal trafficking/maturation, including Rab5A and sorting nexins, as factors regulating HIV-1 fusion and infection. Knockdown of these proteins inhibited HIV-1 fusion irrespective of coreceptor tropism, without altering the CD4 or coreceptor expression, or compromising the virus’ ability to mediate fusion of two adjacent cells initiated by virus-plasma membrane fusion. Ectopic expression of Rab5A in non-permissive cells harboring Rab5A shRNAs partially restored the HIV-cell fusion. Together, these results implicate endocytic machinery in productive HIV-1 entry into CD4+ T cells.
Collapse
Affiliation(s)
- Mariana Marin
- Department of Pediatric, Division of Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | - Yulia Kushnareva
- Functional Genomics Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - Caleb S Mason
- Department of Pediatric, Division of Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
| | - Sumit K Chanda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Gregory B Melikyan
- Department of Pediatric, Division of Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, USA.
- Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Crenshaw BJ, Gu L, Sims B, Matthews QL. Exosome Biogenesis and Biological Function in Response to Viral Infections. Open Virol J 2018; 12:134-148. [PMID: 30416610 PMCID: PMC6187740 DOI: 10.2174/1874357901812010134] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/27/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Exosomes are extracellular vesicles that originate as intraluminal vesicles during the process of multivescular body formation. Exosomes mediate intercellular transfer of functional proteins, lipids, and RNAs. The investigation into the formation and role of exosomes in viral infections is still being elucidated. Exosomes and several viruses share similar structural and molecular characteristics. Explanation It has been documented that viral hijacking exploits the exosomal pathway and mimics cellular protein trafficking. Exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modify recipient host cell responses. Recent studies have demonstrated that exosomes are crucial components in the pathogenesis of virus infection. Exosomes also allow the host to produce effective immunity against pathogens by activating antiviral mechanisms and transporting antiviral factors between adjacent cells. Conclusion Given the ever-growing roles and importance of exosomes in both host and pathogen response, this review will address the impact role of exosome biogenesis and composition after DNA, RNA virus, on Retrovirus infections. This review also will also address how exosomes can be used as therapeutic agents as well as a vaccine vehicles.
Collapse
Affiliation(s)
- Brennetta J Crenshaw
- Department of Biological Sciences, Microbiology Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, AL, USA
| | - Qiana L Matthews
- Department of Biological Sciences, Microbiology Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
42
|
Wang X, Wang J, Zhang W, Li B, Zhu Y, Hu Q, Yang Y, Zhang X, Yan H, Zeng Y. Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Keggin Polyoxometalate. Viruses 2018; 10:v10050265. [PMID: 29772712 PMCID: PMC5977258 DOI: 10.3390/v10050265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Here, we report the anti-human immunodeficiency virus (HIV) potency and underlying mechanisms of a Keggin polyoxometalate (PT-1, K6HPTi2W10O40). Our findings showed that PT-1 exhibited highly potent effects against a diverse group of HIV type 1 (HIV-1) strains and displayed low cytotoxicity and genotoxicity. The time-addition assay revealed that PT-1 acted at an early stage of infection, and these findings were supported by the observation that PT-1 had more potency against Env-pseudotyped virus than vesicular stomatitis virus glycoprotein (VSVG) pseudotyped virus. Surface plasmon resonance binding assays and flow cytometry analysis showed that PT-1 blocked the gp120 binding site in the CD4 receptor. Moreover, PT-1 bound directly to gp41 NHR (N36 peptide), thereby interrupting the core bundle formation of gp41. In conclusion, our data suggested that PT-1 may be developed as a new anti-HIV-1 agent through its effects on entry inhibition.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Jiao Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Wenmei Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Boye Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Zhu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Qin Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoguang Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
43
|
Molotkovsky RJ, Alexandrova VV, Galimzyanov TR, Jiménez-Munguía I, Pavlov KV, Batishchev OV, Akimov SA. Lateral Membrane Heterogeneity Regulates Viral-Induced Membrane Fusion during HIV Entry. Int J Mol Sci 2018; 19:ijms19051483. [PMID: 29772704 PMCID: PMC5983600 DOI: 10.3390/ijms19051483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Sphingomyelin- and cholesterol- enriched membrane domains, commonly referred to as “rafts” play a crucial role in a large number of intra- and intercellular processes. Recent experiments suggest that not only the volumetric inhomogeneity of lipid distribution in rafts, but also the arrangement of the 1D boundary between the raft and the surrounding membrane is important for the membrane-associated processes. The reason is that the boundary preferentially recruits different peptides, such as HIV (human immunodeficiency virus) fusion peptide. In the present work, we report a theoretical investigation of mechanisms of influence of the raft boundary arrangement upon virus-induced membrane fusion. We theoretically predict that the raft boundary can act as an attractor for viral fusion peptides, which preferentially distribute into the vicinity of the boundary, playing the role of ‘line active components’ of the membrane (‘linactants’). We have calculated the height of the fusion energy barrier and demonstrated that, in the case of fusion between HIV membrane and the target cell, presence of the raft boundary in the vicinity of the fusion site facilitates fusion. The results we obtained can be further generalized to be applicable to other enveloped viruses.
Collapse
Affiliation(s)
- Rodion J Molotkovsky
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
| | - Veronika V Alexandrova
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, 119991 Moscow, Russia.
| | - Timur R Galimzyanov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, 119049 Moscow, Russia.
| | - Irene Jiménez-Munguía
- Department of Engineering of Technological Equipment, National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, 119049 Moscow, Russia.
| | - Konstantin V Pavlov
- Laboratory of Electrophysiology, Federal Clinical Center of Physical-Chemical Medicine of FMBA, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia.
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
- Department of Physics of Living Systems, Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudniy, 141700 Moscow Region, Russia.
| | - Sergey A Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, 119049 Moscow, Russia.
| |
Collapse
|
44
|
Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 2017; 61:62-80. [PMID: 29271653 DOI: 10.1021/acs.jmedchem.7b01337] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David A Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dennis M Grasela
- Innovative Medicines Development, Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter Timmins
- Drug Product Science and Technology, Bristol-Myers Squibb , Reeds Lane, Moreton, Merseyside CH46 1QW, United Kingdom
| | | | | |
Collapse
|
45
|
Shepherd JD. Arc - An endogenous neuronal retrovirus? Semin Cell Dev Biol 2017; 77:73-78. [PMID: 28941877 DOI: 10.1016/j.semcdb.2017.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022]
Abstract
The neuronal gene Arc is essential for long-lasting information storage in the mammalian brain and has been implicated in various neurological disorders. However, little is known about Arc's evolutionary origins. Recent studies suggest that mammalian Arc originated from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestral to retroviruses. In particular, Arc contains homology to the Gag polyprotein that forms the viral capsid and is essential for viral infectivity. This surprising connection raises the intriguing possibility that Arc may share molecular characteristics of retroviruses.
Collapse
Affiliation(s)
- Jason D Shepherd
- Department of Neurobiology and Anatomy, The University of Utah School of Medicine, 4539 SMBB, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, United States.
| |
Collapse
|
46
|
Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov 2017; 17:35-56. [PMID: 28935918 PMCID: PMC7097079 DOI: 10.1038/nrd.2017.162] [Citation(s) in RCA: 437] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host-directed therapy (HDT) is a novel approach in the field of anti-infectives for overcoming antimicrobial resistance. HDT aims to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. HDTs encompassing the 'shock and kill' strategy or the delivery of recombinant interferons are possible approaches to treat HIV infections. HDTs that suppress the cytokine storm that is induced by some acute viral infections represent a promising concept. In tuberculosis, HDT aims to enhance the antimicrobial activities of phagocytes through phagosomal maturation, autophagy and antimicrobial peptides. HDTs also curtail inflammation through interference with soluble (such as eicosanoids or cytokines) or cellular (co-stimulatory molecules) factors and modulate granulomas to allow the access of antimicrobials or to restrict tissue damage. Numerous parallels between the immunological abnormalities that occur in sepsis and cancer indicate that the HDTs that are effective in oncology may also hold promise in sepsis. Advances in immune phenotyping, genetic screening and biosignatures will help to guide drug therapy to optimize the host response. Combinations of canonical pathogen-directed drugs and novel HDTs will become indispensable in treating emerging infections and diseases caused by drug-resistant pathogens.
Host-directed therapy (HDT) aims to interfere with host cell factors that are required by a pathogen for replication or persistence. In this Review, Kaufmannet al. describe recent progress in the development of HDTs for the treatment of viral and bacterial infections and the challenges in bringing these approaches to the clinic. Despite the recent increase in the development of antivirals and antibiotics, antimicrobial resistance and the lack of broad-spectrum virus-targeting drugs are still important issues and additional alternative approaches to treat infectious diseases are urgently needed. Host-directed therapy (HDT) is an emerging approach in the field of anti-infectives. The strategy behind HDT is to interfere with host cell factors that are required by a pathogen for replication or persistence, to enhance protective immune responses against a pathogen, to reduce exacerbated inflammation and to balance immune reactivity at sites of pathology. Although HDTs encompassing interferons are well established for the treatment of chronic viral hepatitis, novel strategies aimed at the functional cure of persistent viral infections and the development of broad-spectrum antivirals against emerging viruses seem to be crucial. In chronic bacterial infections, such as tuberculosis, HDT strategies aim to enhance the antimicrobial activities of phagocytes and to curtail inflammation through interference with soluble factors (such as eicosanoids and cytokines) or cellular factors (such as co-stimulatory molecules). This Review describes current progress in the development of HDTs for viral and bacterial infections, including sepsis, and the challenges in bringing these new approaches to the clinic.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Richard S Hotchkiss
- Departments of Anesthesiology, Medicine, and Surgery, Washington University School of Medicine, St Louis, 660 S. Euclid, St Louis, Missouri 63110, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Chand S, Messina EL, AlSalmi W, Ananthaswamy N, Gao G, Uritskiy G, Padilla-Sanchez V, Mahalingam M, Peachman KK, Robb ML, Rao M, Rao VB. Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by α4β7 integrin. Virology 2017; 508:199-212. [PMID: 28577856 PMCID: PMC5526109 DOI: 10.1016/j.virol.2017.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
The α4ß7 integrin present on host cells recognizes the V1V2 domain of the HIV-1 envelope protein. This interaction might be involved in virus transmission. Administration of α4ß7-specific antibodies inhibit acquisition of SIV in a macaque challenge model. But the molecular details of V1V2: α4ß7 interaction are unknown and its importance in HIV-1 infection remains controversial. Our biochemical and mutational analyses show that glycosylation is a key modulator of V1V2 conformation and binding to α4ß7. Partially glycosylated, but not fully glycosylated, envelope proteins are preferred substrates for α4ß7 binding. Surprisingly, monomers of the envelope protein bound strongly to α4ß7 whereas trimers bound poorly. Our results suggest that a conformationally flexible V1V2 domain allows binding of the HIV-1 virion to the α4ß7 integrin, which might impart selectivity for the poorly glycosylated HIV-1 envelope containing monomers to be more efficiently captured by α4ß7 integrin present on mucosal cells at the time of HIV-1 transmission.
Collapse
Affiliation(s)
- Subhash Chand
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Emily L Messina
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Wadad AlSalmi
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Guofen Gao
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Gherman Uritskiy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | | | | | - Kristina K Peachman
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Merlin L Robb
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington DC 20064.
| |
Collapse
|
48
|
Abstract
CCR5 (R5)-tropic, but not CXCR4 (X4)-tropic, HIV-1 is associated with primary HIV-1 infection and transmission. Recent studies have shown that IFN-induced transmembrane (IFITM) proteins, including IFITM1, IFITM2, and IFITM3, restrict a broad range of viruses. Here, we demonstrate that an IFITM2 isoform (Δ20 IFITM2) lacking 20 amino acids at the N terminus differentially restricts X4 and R5 HIV-1. Δ20 IFITM2 suppresses replication of X4 HIV-1 strains by inhibiting their entry. High levels of Δ20 IFITM2 expression could be detected in CD4+ T cells and in monocytes. Infection of X4 viruses in monocyte-derived macrophages and dendritic cells is enhanced upon depletion of IFITM2 isoforms. Furthermore, we also show that coreceptor use is the determining factor for differential HIV-1 restriction of Δ20 IFITM2. When we replace the C terminus of CCR5 with the C terminus of CXCR4, R5 viruses become more susceptible to Δ20 IFITM2-mediated restriction. In contrast to previous studies, our research reveals that neither X4 nor R5 HIV-1 is suppressed by IFITM2 and IFITM3. The multifactor gatekeeping model has been proposed to explain restriction of X4 viruses in the early stage of HIV-1 diseases. Our findings indicate that Δ20 IFITM2 may serve as a major contributor to this gatekeeping mechanism.
Collapse
|
49
|
Abstract
The bacteriophage ϕ29 infects Gram-positive Bacillus subtilis with a short noncontractile tail. Recent studies showed that the ϕ29 tail protein gp9 forms a hexameric tube with six long loops of membrane-active peptides blocking in the tube at the distal end of the tail. The long loops exit on genome release and form a membrane pore for passage of the genome. The membrane penetration mechanism of the ϕ29 tail might be common among tailed bacteriophages.
Collapse
|
50
|
Delpeut S, Sisson G, Black KM, Richardson CD. Measles Virus Enters Breast and Colon Cancer Cell Lines through a PVRL4-Mediated Macropinocytosis Pathway. J Virol 2017; 91:e02191-16. [PMID: 28250131 PMCID: PMC5411587 DOI: 10.1128/jvi.02191-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
Measles virus (MeV) is a member of the family Paramixoviridae that causes a highly contagious respiratory disease but has emerged as a promising oncolytic platform. Previous studies of MeV entry focused on the identification of cellular receptors. However, the endocytic and trafficking pathways utilized during MeV entry remain poorly described. The contribution of each endocytic pathway has been examined in cells that express the MeV receptors SLAM (signaling lymphocyte-activating molecule) and PVRL4 (poliovirus receptor-like 4) (nectin-4). Recombinant MeVs expressing either firefly luciferase or green fluorescent protein together with a variety of inhibitors were used. The results showed that MeV uptake was dynamin independent in the Vero.hPVRL4, Vero.hSLAM, and PVRL4-positive MCF7 breast cancer cell lines. However, MeV infection was blocked by 5-(N-ethyl-N-propyl)amiloride (EIPA), the hallmark inhibitor of macropinocytosis, as well as inhibitors of actin polymerization. By using phalloidin staining, MeV entry was shown to induce actin rearrangements and the formation of membrane ruffles accompanied by transient elevated fluid uptake. Small interfering RNA (siRNA) knockdown of p21-activated kinase 1 (PAK1) demonstrated that MeV enters both Vero.hPVRL4 and Vero.hSLAM cells in a PAK1-independent manner using a macropinocytosis-like pathway. In contrast, MeV entry into MCF7 human breast cancer cells relied upon Rac1 and its effector PAK1 through a PVRL4-mediated macropinocytosis pathway. MeV entry into DLD-1 colon and HTB-20 breast cancer cells also appeared to use the same pathway. Overall, these findings provide new insight into the life cycle of MeV, which could lead to therapies that block virus entry or methods that improve the uptake of MeV by cancer cells during oncolytic therapy.IMPORTANCE In the past decades, measles virus (MeV) has emerged as a promising oncolytic platform. Previous studies concerning MeV entry focused mainly on the identification of putative receptors for MeV. Nectin-4 (PVRL4) was recently identified as the epithelial cell receptor for MeV. However, the specific endocytic and trafficking pathways utilized during MeV infections are poorly documented. In this study, we demonstrated that MeV enters host cells via a dynamin-independent and actin-dependent endocytic pathway. Moreover, we show that MeV gains entry into MCF7, DLD-1, and HTB-20 cancer cells through a PVRL4-mediated macropinocytosis pathway and identified the typical cellular GTPase and kinase involved. Our findings provide new insight into the life cycle of MeV, which may lead to the development of therapies that block the entry of the virus into the host cell or alternatively promote the uptake of oncolytic MeV into cancer cells.
Collapse
Affiliation(s)
- Sebastien Delpeut
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
| | - Gary Sisson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen M Black
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|