1
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 PMCID: PMC11541885 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
2
|
Im S, Altuame F, Gonzalez-Bocco IH, Martins de Oliveira Filho C, Shipper AG, Malinis M, Foppiano Palacios C. A Scoping Review of Arthropod-Borne Flavivirus Infections in Solid Organ Transplant Recipients. Transpl Infect Dis 2024:e14400. [PMID: 39494749 DOI: 10.1111/tid.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Arthropod-borne flaviviruses (ABFs), transmitted by mosquitoes or ticks, are increasing due to climate change and globalization. This scoping review examines the epidemiology, clinical characteristics, diagnostics, treatment, and outcomes of ABF infection in solid organ transplant recipients (SOTRs). A database search up to January 25, 2024, focused on ABFs such as West Nile virus (WNV), dengue virus (DENV), Japanese encephalitis virus (JEV), Powassan virus (POWV), yellow fever virus (YFV), and Zika virus (ZIKV), limited to SOTRs. We identified 173 WNV cases from 84 studies, with 28 donor-derived infections (DDIs). Common clinical features included fever (78.5%), altered mental status (65.1%), and weakness or paralysis (45.6%). Treatment involved reducing immunosuppression (IS) in 93 cases, with intravenous immunoglobulin (IVIG), interferon alfa-2b, and ribavirin used in 75 cases. Seven cases involved graft loss or rejection post-infection. WNV infection had a 23.7% mortality rate, with severe neurological complications in 43.9% For DENV infection, 386 cases from 47 studies were identified, including 14 DDI cases. Symptoms included fever (85%), myalgias (56.4%), and headache or retro-orbital pain (34.6%). Severe dengue occurred in 50 cases (13.0%). IVIG was administered in six cases. Reduction in IS was reported in 116 patients. DENV mortality rate was 4.9%. Additionally, 26 cases of less common ABFs such as JEV, POWV, YFV, and ZIKV were described. In summary, ABF infections among SOTRs are associated with higher morbidity and mortality compared to the general population, emphasizing the need for improved preventive strategies, timely diagnosis, and optimized management protocols.
Collapse
Affiliation(s)
- Seohyeon Im
- Department of Internal Medicine, Mass General Brigham-Salem Hospital, Salem, Massachusetts, USA
| | - Fadie Altuame
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Isabel H Gonzalez-Bocco
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | - Maricar Malinis
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carlo Foppiano Palacios
- Department of Medicine, Division of Infectious Diseases, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
3
|
Rai P, Webb EM, Paulson SL, Kang L, Weger-Lucarelli J. Obesity's Unexpected Influence: Reduced Alphavirus Transmission and Altered Immune Activation in the Vector. J Med Virol 2024; 96:e70032. [PMID: 39466902 DOI: 10.1002/jmv.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are emerging/re-emerging alphaviruses transmitted by Aedes spp. mosquitoes and responsible for recent disease outbreaks in the Americas. The capacity of these viruses to cause epidemics is frequently associated with increased mosquito transmission, which in turn is governed by virus-host-vector interactions. Although many studies have explored virus-vector interactions, significant gaps remain in understanding how vertebrate host factors influence alphavirus transmission by mosquitoes. We previously showed that obesity, a ubiquitous vertebrate host biological factor, reduces alphavirus transmission potential in mosquitoes. We hypothesized that alphavirus-infected obese bloodmeals altered immune genes and/or pathways in mosquitoes, thereby inhibiting virus transmission. To test this, we conducted RNA sequencing (RNA-seq) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) on midgut RNA from mosquitoes fed on alphavirus-infected lean and obese mice. This approach aimed to identify potential antiviral or proviral genes and pathways altered in mosquitoes after consuming infected obese bloodmeals. We found upregulation of the Toll pathway and downregulation of several metabolic and other genes in mosquitoes fed on alphavirus-infected obese bloodmeals. Through gene knockdown studies, we demonstrated the antiviral role of Toll pathway and proviral roles of AAEL009965 and fatty acid synthase (FASN) in the transmission of alphaviruses by mosquitoes. Therefore, this study utilized obesity to identify factors influencing alphavirus transmission by mosquitoes and this research approach may pave the way for designing broadly effective antiviral measures to combat mosquito-borne viruses, such as releasing transgenic mosquitoes deficient in the identified genes.
Collapse
Affiliation(s)
- Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| | - Emily M Webb
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
- Department of Entomology, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Sally L Paulson
- Department of Entomology, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Los Angeles, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, Los Angeles, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Estallo EL, Madelon MI, Benítez EM, Camacho-Rodríguez D, Martín ME, Stewart-Ibarra AM, Ludueña-Almeida FF. Empowering Communities through Citizen Science: Dengue Prevention in Córdoba. BIOLOGY 2024; 13:826. [PMID: 39452135 PMCID: PMC11504844 DOI: 10.3390/biology13100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Traditional mosquito vector control methods have proved ineffective in controlling the spread of dengue fever. This study aimed to assess the effectiveness of community engagement through student-led science in promoting dengue prevention and socioecological factors in the temperate urban city of Córdoba, Argentina. It assesses community perceptions, knowledge, attitudes, and preventive practices regarding dengue fever and its vector. Results showed a significant increase in knowledge about the vector and the disease and respondents' adoption of good preventive practices. Student-led science was identified as a valuable tool for reaching households and leading to behavior changes at home. Furthermore, the findings highlighted the need for school programs to address vector biology and vector-borne disease prevention all year round. This study provides invaluable insights into the effectiveness of community engagement through student-led science to promote dengue prevention and socioecological factors. The findings suggest that this approach could be used to control the spread in other regions affected by the disease.
Collapse
Affiliation(s)
- Elizabet L. Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET—Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba X5016GCA, Argentina; (E.L.E.); (E.M.B.); (F.F.L.-A.)
| | | | - Elisabet M. Benítez
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET—Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba X5016GCA, Argentina; (E.L.E.); (E.M.B.); (F.F.L.-A.)
| | - Doriam Camacho-Rodríguez
- Facultad de Enfermería, Universidad Cooperativa de Colombia Campus Santa Marta, Troncal del Caribe Sector Mamatoco, Santa Marta 470002, Colombia;
| | - Mía E. Martín
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET—Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba X5016GCA, Argentina; (E.L.E.); (E.M.B.); (F.F.L.-A.)
| | - Anna M. Stewart-Ibarra
- Inter-American Institute for Global Change Research (IAI), Edificio104, Calle Luis Bonilla, Ciudad del Saber, Clayton 0843-0308, Panama;
| | - Francisco F. Ludueña-Almeida
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET—Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba X5016GCA, Argentina; (E.L.E.); (E.M.B.); (F.F.L.-A.)
- Cátedra de Matemática (Cs. Biológicas), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba X5016GCA, Argentina
| |
Collapse
|
5
|
Parsons ES, Jowell A, Veidis E, Barry M, Israni ST. Climate change and inequality. Pediatr Res 2024:10.1038/s41390-024-03153-z. [PMID: 38914758 DOI: 10.1038/s41390-024-03153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 06/26/2024]
Abstract
This review explores how climate change is manifesting along existing lines of inequality and thus further exacerbating current health disparities with a particular focus on children and future generations. Climate change risk and vulnerability are not equally distributed, nor is the adaptive capacity to respond to its adverse effects, which include health consequences, economic impacts, and displacement. Existing lines of inequality are already magnifying the adverse effects of climate change. Today's children and future generations will experience a disproportionate number of adverse climate events than prior generations, especially children in lower-income populations, communities of color, and Indigenous communities. In order to mitigate the crisis of inequity accompanying the climate crisis, systemic action must be taken on a global scale - with a focus on protecting children and future generations, and in empowering youth-led environmental activism and engagement in climate policy. IMPACT STATEMENT: Our review offers a current summary of the ways in which inequality is manifesting with respect to climate change in children and future generations. Rather than use a systematic review, we opted to use a theoretical framework to guide our review. We divided the effects of climate change into three effect pathways: via disruptions in (i) climate and weather, (ii) ecosystems, and (iii) society. By dividing our review in this theoretical framework, we can better suggest targeted public health interventions at each effect level. Furthermore, we are able to successfully identify literature gaps and areas of future research.
Collapse
Affiliation(s)
- Ella Sandrine Parsons
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA.
| | - Ashley Jowell
- Stanford University School of Medicine, Stanford, CA, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
| | - Michele Barry
- Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
6
|
Costa-da-Silva AL, Dye-Braumuller KC, Wagner-Coello HU, Li H, Johnson-Carson D, Gunter SM, Nolan MS, DeGennaro M. Landscape and meteorological variables associated with Aedes aegypti and Aedes albopictus mosquito infestation in two southeastern USA coastal cities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597792. [PMID: 38895389 PMCID: PMC11185711 DOI: 10.1101/2024.06.06.597792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aedes transmitted arboviral human cases are increasing worldwide and spreading to new areas of the United States of America (USA). These diseases continue to re-emerge likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami (FL) is in the tropical zone and an established hotspot for arboviruses, while Charleston (SC) is in the humid subtropical zone and newly vulnerable. Although these coastal cities have distinct climates, both have hot summers. To understand mosquito infestation in both cities and potentiate our surveillance effort, we performed egg collections in the warmest season. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. Our study found predominant occurrence of Ae. aegypti and, to a lesser extent, Ae. albopictus in both cities. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data. There is a clear need for further observational studies to determine the impact of climate change on Ae. aegypti and Ae. albopictus infestation in the Southeastern region of the USA.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Kyndall C Dye-Braumuller
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Helen Urpi Wagner-Coello
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Huixuan Li
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Danielle Johnson-Carson
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Sarah M Gunter
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030
| | - Melissa S Nolan
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Matthew DeGennaro
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| |
Collapse
|
7
|
Drwiega EN, Danziger LH, Burgos RM, Michienzi SM. Commonly Reported Mosquito-Borne Viruses in the United States: A Primer for Pharmacists. J Pharm Pract 2024; 37:741-752. [PMID: 37018738 DOI: 10.1177/08971900231167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Mosquito-borne diseases are a public health concern. Pharmacists are often a patient's first stop for health information and may be asked questions regarding transmission, symptoms, and treatment of mosquito borne viruses (MBVs). The objective of this paper is to review transmission, geographic location, symptoms, diagnosis and treatment of MBVs. We discuss the following viruses with cases in the US in recent years: Dengue, West Nile, Chikungunya, LaCrosse Encephalitis, Eastern Equine Encephalitis Virus, and Zika. Prevention, including vaccines, and the impact of climate change are also discussed.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodrigo M Burgos
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah M Michienzi
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Madewell ZJ, Hernandez-Romieu AC, Wong JM, Zambrano LD, Volkman HR, Perez-Padilla J, Rodriguez DM, Lorenzi O, Espinet C, Munoz-Jordan J, Frasqueri-Quintana VM, Rivera-Amill V, Alvarado-Domenech LI, Sainz D, Bertran J, Paz-Bailey G, Adams LE. Sentinel Enhanced Dengue Surveillance System - Puerto Rico, 2012-2022. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2024; 73:1-29. [PMID: 38805389 PMCID: PMC11152364 DOI: 10.15585/mmwr.ss7303a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Problem/Condition Dengue is the most prevalent mosquitoborne viral illness worldwide and is endemic in Puerto Rico. Dengue's clinical spectrum can range from mild, undifferentiated febrile illness to hemorrhagic manifestations, shock, multiorgan failure, and death in severe cases. The disease presentation is nonspecific; therefore, various other illnesses (e.g., arboviral and respiratory pathogens) can cause similar clinical symptoms. Enhanced surveillance is necessary to determine disease prevalence, to characterize the epidemiology of severe disease, and to evaluate diagnostic and treatment practices to improve patient outcomes. The Sentinel Enhanced Dengue Surveillance System (SEDSS) was established to monitor trends of dengue and dengue-like acute febrile illnesses (AFIs), characterize the clinical course of disease, and serve as an early warning system for viral infections with epidemic potential. Reporting Period May 2012-December 2022. Description of System SEDSS conducts enhanced surveillance for dengue and other relevant AFIs in Puerto Rico. This report includes aggregated data collected from May 2012 through December 2022. SEDSS was launched in May 2012 with patients with AFIs from five health care facilities enrolled. The facilities included two emergency departments in tertiary acute care hospitals in the San Juan-Caguas-Guaynabo metropolitan area and Ponce, two secondary acute care hospitals in Carolina and Guayama, and one outpatient acute care clinic in Ponce. Patients arriving at any SEDSS site were eligible for enrollment if they reported having fever within the past 7 days. During the Zika epidemic (June 2016-June 2018), patients were eligible for enrollment if they had either rash and conjunctivitis, rash and arthralgia, or fever. Eligibility was expanded in April 2020 to include reported cough or shortness of breath within the past 14 days. Blood, urine, nasopharyngeal, and oropharyngeal specimens were collected at enrollment from all participants who consented. Diagnostic testing for dengue virus (DENV) serotypes 1-4, chikungunya virus, Zika virus, influenza A and B viruses, SARS-CoV-2, and five other respiratory viruses was performed by the CDC laboratory in San Juan. Results During May 2012-December 2022, a total of 43,608 participants with diagnosed AFI were enrolled in SEDSS; a majority of participants (45.0%) were from Ponce. During the surveillance period, there were 1,432 confirmed or probable cases of dengue, 2,293 confirmed or probable cases of chikungunya, and 1,918 confirmed or probable cases of Zika. The epidemic curves of the three arboviruses indicate dengue is endemic; outbreaks of chikungunya and Zika were sporadic, with case counts peaking in late 2014 and 2016, respectively. The majority of commonly identified respiratory pathogens were influenza A virus (3,756), SARS-CoV-2 (1,586), human adenovirus (1,550), respiratory syncytial virus (1,489), influenza B virus (1,430), and human parainfluenza virus type 1 or 3 (1,401). A total of 5,502 participants had confirmed or probable arbovirus infection, 11,922 had confirmed respiratory virus infection, and 26,503 had AFI without any of the arboviruses or respiratory viruses examined. Interpretation Dengue is endemic in Puerto Rico; however, incidence rates varied widely during the reporting period, with the last notable outbreak occurring during 2012-2013. DENV-1 was the predominant virus during the surveillance period; sporadic cases of DENV-4 also were reported. Puerto Rico experienced large outbreaks of chikungunya that peaked in 2014 and of Zika that peaked in 2016; few cases of both viruses have been reported since. Influenza A and respiratory syncytial virus seasonality patterns are distinct, with respiratory syncytial virus incidence typically reaching its annual peak a few weeks before influenza A. The emergence of SARS-CoV-2 led to a reduction in the circulation of other acute respiratory viruses. Public Health Action SEDSS is the only site-based enhanced surveillance system designed to gather information on AFI cases in Puerto Rico. This report illustrates that SEDSS can be adapted to detect dengue, Zika, chikungunya, COVID-19, and influenza outbreaks, along with other seasonal acute respiratory viruses, underscoring the importance of recognizing signs and symptoms of relevant diseases and understanding transmission dynamics among these viruses. This report also describes fluctuations in disease incidence, highlighting the value of active surveillance, testing for a panel of acute respiratory viruses, and the importance of flexible and responsive surveillance systems in addressing evolving public health challenges. Various vector control strategies and vaccines are being considered or implemented in Puerto Rico, and data from ongoing trials and SEDSS might be integrated to better understand epidemiologic factors underlying transmission and risk mitigation approaches. Data from SEDSS might guide sampling strategies and implementation of future trials to prevent arbovirus transmission, particularly during the expansion of SEDSS throughout the island to improve geographic representation.
Collapse
|
9
|
Guerrero D, Lay S, Piv E, Chhin C, Leng S, Meng R, Mam KE, Pean P, Vantaux A, Boyer S, Missé D, Cantaert T. In-vitro assessment of cutaneous immune responses to aedes mosquito salivary gland extract and dengue virus in Cambodian individuals. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae003. [PMID: 38737941 PMCID: PMC11035005 DOI: 10.1093/oxfimm/iqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
Dengue virus (DENV) poses a global health threat, affecting millions individuals annually with no specific therapy and limited vaccines. Mosquitoes, mainly Aedes aegypti and Aedes albopictus worldwide, transmit DENV through their saliva during blood meals. In this study, we aimed to understand how Aedes mosquito saliva modulate skin immune responses during DENV infection in individuals living in mosquito-endemic regions. To accomplish this, we dissociated skin cells from Cambodian volunteers and incubated them with salivary gland extract (SGE) from three different mosquito strains: Ae. aegypti USDA strain, Ae. aegypti and Ae. albopictus wild type (WT) in the presence/absence of DENV. We observed notable alterations in skin immune cell phenotypes subsequent to exposure to Aedes salivary gland extract (SGE). Specifically, exposure lead to an increase in the frequency of macrophages expressing chemokine receptor CCR2, and neutrophils expressing CD69. Additionally, we noted a substantial increase in the percentage of macrophages that became infected with DENV in the presence of Aedes SGE. Differences in cellular responses were observed when Aedes SGE of three distinct mosquito strains were compared. Our findings deepen the understanding of mosquito saliva's role in DENV infection and skin immune responses in individuals regularly exposed to mosquito bites. This study provides insights into skin immune cell dynamics that could guide strategies to mitigate DENV transmission and other arbovirus diseases.
Collapse
Affiliation(s)
- David Guerrero
- Institut Pasteur du Cambodge, Immunology Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Sokchea Lay
- Institut Pasteur du Cambodge, Immunology Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Eakpor Piv
- Institut Pasteur du Cambodge, Malaria Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Chansophea Chhin
- Institut Pasteur du Cambodge, Malaria Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Sokkeang Leng
- Institut Pasteur du Cambodge, Medical and Veterinary Entomology Unit, Phnom Penh 12201, Cambodia
| | - Ratana Meng
- Institut Pasteur du Cambodge, Immunology Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Kim Eng Mam
- Crystal Esthetic Center, Phnom Penh 12201, Cambodia
| | - Polidy Pean
- Institut Pasteur du Cambodge, Immunology Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Amelie Vantaux
- Institut Pasteur du Cambodge, Malaria Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| | - Sebastien Boyer
- Institut Pasteur du Cambodge, Medical and Veterinary Entomology Unit, Phnom Penh 12201, Cambodia
- Unité Ecologie et Emergence des Pathogènes Transmis par les Arthropodes, Institut Pasteur, Paris, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34000, Montpellier, France
| | - Tineke Cantaert
- Institut Pasteur du Cambodge, Immunology Unit, Pasteur Network, Phnom Penh 12201, Cambodia
| |
Collapse
|
10
|
Beddingfield BJ, Plante KS, Plante JA, Weaver SC, Bose S, Krzykwa C, Chirichella N, Redmann RK, Seiler SZ, Dufour J, Blair RV, Endt K, Volkmann A, Maness NJ, Roy CJ. MVA-based vaccines are protective against lethal eastern equine encephalitis virus aerosol challenge in cynomolgus macaques. NPJ Vaccines 2024; 9:47. [PMID: 38413593 PMCID: PMC10899228 DOI: 10.1038/s41541-024-00842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
MVA-based monovalent eastern equine encephalitis virus (MVA-BN-EEEV) and multivalent western, eastern, and Venezuelan equine encephalitis virus (MVA-BN-WEV) vaccines were evaluated in the cynomolgus macaque aerosol model of EEEV infection. Macaques vaccinated with two doses of 5 × 108 infectious units of the MVA-BN-EEEV or MVA-BN-WEV vaccine by the intramuscular route rapidly developed robust levels of neutralizing antibodies to EEEV that persisted at high levels until challenge at day 84 via small particle aerosol delivery with a target inhaled dose of 107 PFU of EEEV FL93-939. Robust protection was observed, with 7/8 animals receiving MVA-BN-EEEV and 100% (8/8) animals receiving MVA-BN-WEV surviving while only 2/8 mock vaccinated controls survived lethal challenge. Complete protection from viremia was afforded by both vaccines, with near complete protection from vRNA loads in tissues and any pathologic evidence of central nervous system damage. Overall, the results indicate both vaccines are effective in eliciting an immune response that is consistent with protection from aerosolized EEEV-induced disease.
Collapse
Affiliation(s)
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sarah Bose
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Clara Krzykwa
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nicole Chirichella
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Rachel K Redmann
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Stephanie Z Seiler
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Jason Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Robert V Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Kathrin Endt
- Bavarian Nordic GmbH, Fraunhofer Strasse 13, 82152, Martinsried, Germany
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhofer Strasse 13, 82152, Martinsried, Germany
| | - Nicholas J Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA
| | - Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
11
|
Vilcins D, Christofferson RC, Yoon JH, Nazli SN, Sly PD, Cormier SA, Shen G. Updates in Air Pollution: Current Research and Future Challenges. Ann Glob Health 2024; 90:9. [PMID: 38312715 PMCID: PMC10836163 DOI: 10.5334/aogh.4363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
Background The United Nations has declared that humans have a right to clean air. Despite this, many deaths and disability-adjusted life years are attributed to air pollution exposure each year. We face both challenges to air quality and opportunities to improve, but several areas need to be addressed with urgency. Objective This paper summarises the recent research presented at the Pacific Basin Consortium for Environment and Health Symposium and focuses on three key areas of air pollution that are important to human health and require more research. Findings and conclusion Indoor spaces are commonly places of exposure to poor air quality and are difficult to monitor and regulate. Global climate change risks worsening air quality in a bi-directional fashion. The rising use of electric vehicles may offer opportunities to improve air quality, but it also presents new challenges. Government policies and initiatives could lead to improved air and environmental justice. Several populations, such as older people and children, face increased harm from air pollution and should become priority groups for action.
Collapse
Affiliation(s)
- Dwan Vilcins
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
| | - Rebecca C. Christofferson
- Louisiana State University, School of Veterinary Medicine, Department of Pathobiological Sciences, Baton Rouge, Louisiana, USA
| | - Jin-Ho Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Siti Nurshahida Nazli
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
- Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Peter D. Sly
- The University of Queensland, Child Health Research Centre, South Brisbane, QLD, Australia
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Gómez-Vargas W, Ríos-Tapias PA, Marin-Velásquez K, Giraldo-Gallo E, Segura-Cardona A, Arboleda M. Density of Aedes aegypti and dengue virus transmission risk in two municipalities of Northwestern Antioquia, Colombia. PLoS One 2024; 19:e0295317. [PMID: 38271346 PMCID: PMC10810462 DOI: 10.1371/journal.pone.0295317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024] Open
Abstract
The high infestation of Aedes aegypti populations in Urabá, Antioquia, Colombia represents a risk factor for increased dengue morbidity and mortality. This study aimed to determine the risk of dengue transmission by estimating the population of Ae. aegypti using entomological indices, density of females per dwelling and inhabitant, and virological surveillance in two municipalities in Colombia. A cross-sectional study was conducted with quarterly entomological surveys in three neighborhoods of Apartadó and Turbo between 2021 and 2022. Aedes indices and vector density per dwelling and per inhabitant were calculated. The Kernel method was used for spatial analysis, and correlations between climatic variables and mosquito density were examined. Virus detection and serotyping in mosquitoes was performed using single-step reverse transcription polymerase chain reaction. The housing, reservoir, and Breteau indices were 48.9%, 29.5%, and 70.2%, respectively. The mean density of Ae. aegypti was 1.47 females / dwelling and 0.51 females / inhabitant. The overall visual analysis showed several critical points in the neighborhoods studied. There was significant correlation of vector density and relative humidity and precipitation in the neighborhoods 29 de noviembre and 24 de diciembre. Additionally, serotypes DENV-1 and DENV-2 were found. The overall indices for dwellings, reservoirs, and Breteau were lower than those recorded in 2014 in Urabá. The vector density results in this study were similar to those reported in other studies conducted in Latin America, and vector infection was detected. The Aedes and density indices are complementary, emphasizing the importance of continuous surveillance of Ae. aegypti to inform appropriate control strategies and prevent future dengue outbreaks in these municipalities.
Collapse
Affiliation(s)
- Wilber Gómez-Vargas
- Epidemiology and Biostatistics Group, Graduate School, Universidad CES, Medellín, Colombia
| | - Paola Astrid Ríos-Tapias
- Tropical Medicine Group, Colombian Institute of Tropical Medicine - Universidad CES, Apartadó, Colombia
| | - Katerine Marin-Velásquez
- Tropical Medicine Group, Colombian Institute of Tropical Medicine - Universidad CES, Sabaneta, Colombia
| | - Erika Giraldo-Gallo
- Epidemiology and Biostatistics Group, Graduate School, Universidad CES, Medellín, Colombia
| | - Angela Segura-Cardona
- Epidemiology and Biostatistics Group, Graduate School, Universidad CES, Medellín, Colombia
| | - Margarita Arboleda
- Tropical Medicine Group, Colombian Institute of Tropical Medicine - Universidad CES, Apartadó, Colombia
| |
Collapse
|
13
|
Laverdeur J, Desmecht D, Hayette MP, Darcis G. Dengue and chikungunya: future threats for Northern Europe? FRONTIERS IN EPIDEMIOLOGY 2024; 4:1342723. [PMID: 38456075 PMCID: PMC10911022 DOI: 10.3389/fepid.2024.1342723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Arthropod-borne viral diseases are likely to be affected by the consequences of climate change with an increase in their distribution and intensity. Among these infectious diseases, chikungunya and dengue viruses are two (re)emergent arboviruses transmitted by Aedes species mosquitoes and which have recently demonstrated their capacity for rapid expansion. They most often cause mild diseases, but they can both be associated with complications and severe forms. In Europe, following the establishment of invasive Aedes spp, the first outbreaks of autochtonous dengue and chikungunya have already occurred. Northern Europe is currently relatively spared, but climatic projections show that the conditions are permissive for the establishment of Aedes albopictus (also known as the tiger mosquito) in the coming decades. It is therefore essential to question and improve the means of surveillance in northern Europe, at the dawn of inevitable future epidemics.
Collapse
Affiliation(s)
- Justine Laverdeur
- Department of General Practice, University Hospital of Liège, Liège, Belgium
| | - Daniel Desmecht
- Department of Animal Pathology, Fundamental and Applied Research for Animals & Health, University of Liège, Liège, Belgium
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, University Hospital of Liège, Liège, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
14
|
Lukindu M, Mukwaya LG, Masembe C, Birungi J. Behavioral Changes of Some Arboviral Vectors in Zika Forest: A Concern for Emerging and Re-Emerging Diseases in Uganda. Vector Borne Zoonotic Dis 2023; 23:653-661. [PMID: 37669008 DOI: 10.1089/vbz.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Background: The increasing reports on emerging/re-emerging arboviral disease outbreaks or epidemics in Sub-Saharan Africa have been impacted by factors, including the changing climate plus human activities that have resulted in land cover changes. These factors influence the prevalence, incidence, behavior, and distribution of vectors and vector-borne diseases. In this study, we assessed the potential effect of land cover changes on the distribution and oviposition behavior of some arboviral vectors in Zika forest, Uganda, which has decreased by an estimated 7 hectares since 1952 due to an increase in anthropogenic activities in the forest and its periphery. Materials and Methods: Immature mosquitoes were collected using bamboo pots and placed at various levels of a steel tower in the forest and at different intervals from the forest periphery to areas among human dwellings. Collections were conducted for 20 months. Results and Conclusion: Inside the forest, 22,280 mosquitoes were collected belonging to four arboviral vectors: Aedes aegypti, Aedes africanus, Aedes apicoargenteus, and Aedes cumminsii. When compared with similar studies conducted in the forest in 1964, there was a change from a sylvatic to a tendency of peridomestic behavior in A. africanus, which was now collected among human dwellings. There was an unexpected change in the distribution of A. aegypti, which was not only collected outside the forest as in previous reports but also collected in the forest. Conversely, A. cumminsii originally collected in the forest expanded its ranges with collections outside the forest in this study. Aedes simpsoni maintained its distribution range outside the forest among agricultural sites. We suspect that land cover changes were favorable to most of the arboviral vectors hence enhancing their proliferation and habitat range. This potentially increases the transmission of arboviral diseases in the area, hence impacting the epidemiology of emerging/remerging diseases in Uganda.
Collapse
Affiliation(s)
- Martin Lukindu
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Louis G Mukwaya
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Science, College of Natural Sciences School, Makerere University, Kampala, Uganda
| | - Josephine Birungi
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
15
|
Christofferson RC, Turner EA, Peña-García VH. Identifying Knowledge Gaps through the Systematic Review of Temperature-Driven Variability in the Competence of Aedes aegypti and Ae. albopictus for Chikungunya Virus. Pathogens 2023; 12:1368. [PMID: 38003832 PMCID: PMC10675276 DOI: 10.3390/pathogens12111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Temperature is a well-known effector of several transmission factors of mosquito-borne viruses, including within mosquito dynamics. These dynamics are often characterized by vector competence and the extrinsic incubation period (EIP). Vector competence is the intrinsic ability of a mosquito population to become infected with and transmit a virus, while EIP is the time it takes for the virus to reach the salivary glands and be expectorated following an infectious bloodmeal. Temperatures outside the optimal range act on life traits, decreasing transmission potential, while increasing temperature within the optimal range correlates to increasing vector competence and a decreased EIP. These relatively well-studied effects of other Aedes borne viruses (dengue and Zika) are used to make predictions about transmission efficiency, including the challenges presented by urban heat islands and climate change. However, the knowledge of temperature and chikungunya (CHIKV) dynamics within its two primary vectors-Ae. aegypti and Ae. albopictus-remains less characterized, even though CHIKV remains a virus of public-health importance. Here, we review the literature and summarize the state of the literature on CHIKV and temperature dependence of vector competence and EIP and use these data to demonstrate how the remaining knowledge gap might confound the ability to adequately predict and, thus, prepare for future outbreaks.
Collapse
Affiliation(s)
| | - Erik A. Turner
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | | |
Collapse
|
16
|
Nii-Trebi NI, Mughogho TS, Abdulai A, Tetteh F, Ofosu PM, Osei MM, Yalley AK. Dynamics of viral disease outbreaks: A hundred years (1918/19-2019/20) in retrospect - Loses, lessons and emerging issues. Rev Med Virol 2023; 33:e2475. [PMID: 37602770 DOI: 10.1002/rmv.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Infectious diseases continue to be the leading cause of morbidity and mortality, and a formidable obstacle to the development and well-being of people worldwide. Viruses account for more than half of infectious disease outbreaks that have plagued the world. The past century (1918/19-2019/20) has witnessed some of the worst viral disease outbreaks the world has recorded, with overwhelming impact especially in low- and middle-income countries (LMIC). The frequency of viral disease outbreak appears to be increasing. Generally, although infectious diseases have afflicted the world for centuries and humankind has had opportunities to examine the nature of their emergence and mode of spread, almost every new outbreak poses a formidable challenge to humankind, beating the existing pandemic preparedness systems, if any, and causing significant losses. These underscore inadequacy in our understanding of the dynamics and preparedness against viral disease outbreaks that lead to epidemics and pandemics. Despite these challenges, the past 100 years of increasing frequencies of viral disease outbreaks have engendered significant improvements in response to epidemics and pandemics, and offered lessons to inform preparedness. Hence, the increasing frequency of emergence of viral outbreaks and the challenges these outbreaks pose to humankind, call for the continued search for effective ways to tackle viral disease outbreaks in real time. Through a PRISMA-based approach, this systematic review examines the outbreak of viral diseases in retrospect to decipher the outbreak patterns, losses inflicted on humanity and highlights lessons these offer for meaningful preparation against future viral disease outbreaks and pandemics.
Collapse
Affiliation(s)
- Nicholas I Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | | | - Anisa Abdulai
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Francis Tetteh
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Priscilla M Ofosu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Mary-Magdalene Osei
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Akua K Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Delrieu M, Martinet JP, O’Connor O, Viennet E, Menkes C, Burtet-Sarramegna V, Frentiu FD, Dupont-Rouzeyrol M. Temperature and transmission of chikungunya, dengue, and Zika viruses: A systematic review of experimental studies on Aedes aegypti and Aedes albopictus. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100139. [PMID: 37719233 PMCID: PMC10500480 DOI: 10.1016/j.crpvbd.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Mosquito-borne viruses are leading causes of morbidity and mortality in many parts of the world. In recent years, modelling studies have shown that climate change strongly influences vector-borne disease transmission, particularly rising temperatures. As a result, the risk of epidemics has increased, posing a significant public health risk. This review aims to summarize all published laboratory experimental studies carried out over the years to determine the impact of temperature on the transmission of arboviruses by the mosquito vector. Given their high public health importance, we focus on dengue, chikungunya, and Zika viruses, which are transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Following PRISMA guidelines, 34 papers were included in this systematic review. Most studies found that increasing temperatures result in higher rates of infection, dissemination, and transmission of these viruses in mosquitoes, although several studies had differing findings. Overall, the studies reviewed here suggest that rising temperatures due to climate change would alter the vector competence of mosquitoes to increase epidemic risk, but that some critical research gaps remain.
Collapse
Affiliation(s)
- Méryl Delrieu
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Jean-Philippe Martinet
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Olivia O’Connor
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Elvina Viennet
- School of Biomedical Sciences, Queensland University of Technology,
Kelvin Grove, QLD 4059, Australia
| | - Christophe Menkes
- ENTROPIE, IRD, University of New Caledonia, University of La Réunion,
CNRS, Ifremer, Nouméa, New Caledonia
| | - Valérie Burtet-Sarramegna
- Institute of Exact and Applied Sciences (ISEA), University of New
Caledonia, 45 Avenue James Cook - BP R4 98 851 - Nouméa Cedex, New
Caledonia
| | - Francesca D. Frentiu
- School of Biomedical Sciences, And Centre for Immunology and Infection
Control, Queensland University of Technology, Brisbane, QLD 4000,
Australia
| | - Myrielle Dupont-Rouzeyrol
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| |
Collapse
|
18
|
Pozzetto B, Grard G, Durand G, Paty MC, Gallian P, Lucas-Samuel S, Diéterlé S, Fromage M, Durand M, Lepelletier D, Chidiac C, Hoen B, Nicolas de Lamballerie X. Arboviral Risk Associated with Solid Organ and Hematopoietic Stem Cell Grafts: The Prophylactic Answers Proposed by the French High Council of Public Health in a National Context. Viruses 2023; 15:1783. [PMID: 37766192 PMCID: PMC10536626 DOI: 10.3390/v15091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Diseases caused by arboviruses are on the increase worldwide. In addition to arthropod bites, most arboviruses can be transmitted via accessory routes. Products of human origin (labile blood products, solid organs, hematopoietic stem cells, tissues) present a risk of contamination for the recipient if the donation is made when the donor is viremic. Mainland France and its overseas territories are exposed to a complex array of imported and endemic arboviruses, which differ according to their respective location. This narrative review describes the risks of acquiring certain arboviral diseases from human products, mainly solid organs and hematopoietic stem cells, in the French context. The main risks considered in this study are infections by West Nile virus, dengue virus, and tick-borne encephalitis virus. The ancillary risks represented by Usutu virus infection, chikungunya, and Zika are also addressed more briefly. For each disease, the guidelines issued by the French High Council of Public Health, which is responsible for mitigating the risks associated with products of human origin and for supporting public health policy decisions, are briefly outlined. This review highlights the need for a "One Health" approach and to standardize recommendations at the international level in areas with the same viral epidemiology.
Collapse
Affiliation(s)
- Bruno Pozzetto
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
- GIMAP Team, CIRI-Centre International de Recherche en Infectiologie, Université Jean Monnet de Saint-Etienne, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, 42023 Saint-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Gilda Grard
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm), 13005 Marseille, France; (G.G.); (G.D.); (X.N.d.L.)
- French Armed Forces Biomedical Research Institute (IRBA), Valérie-André, 91220 Brétigny-sur-Orge, France
| | - Guillaume Durand
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm), 13005 Marseille, France; (G.G.); (G.D.); (X.N.d.L.)
- French Armed Forces Biomedical Research Institute (IRBA), Valérie-André, 91220 Brétigny-sur-Orge, France
| | - Marie-Claire Paty
- Santé Publique France, The French Public Health Agency, 94410 Saint-Maurice, France;
| | - Pierre Gallian
- Etablissement Français du Sang, 93218 Saint-Denis, France;
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), 13385 Marseille, France
| | | | | | - Muriel Fromage
- Agence Nationale de Sécurité du Médicament et des Produits de Santé (ANSM), 93200 Saint-Denis, France;
| | - Marc Durand
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
| | - Didier Lepelletier
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
| | - Christian Chidiac
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
- Department of Infectious and Tropical Diseases, University Hospital of Lyon, 69002 Lyon, France
| | - Bruno Hoen
- Haut Conseil de la Santé Publique, Ministère de la Santé et de la Prévention, 75007 Paris, France; (M.D.); (D.L.); (C.C.); (B.H.)
- Department of Infectious Diseases, University Hospital of Nancy, 54500 Vandoeuvre-lès-Nancy, France
| | - Xavier Nicolas de Lamballerie
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm), 13005 Marseille, France; (G.G.); (G.D.); (X.N.d.L.)
- French Armed Forces Biomedical Research Institute (IRBA), Valérie-André, 91220 Brétigny-sur-Orge, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), 13385 Marseille, France
| |
Collapse
|
19
|
Freifeld AG, Todd AI, Khan AS. The climate crisis and healthcare: What do infection prevention and stewardship professionals need to know? ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e136. [PMID: 37592967 PMCID: PMC10428152 DOI: 10.1017/ash.2023.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 08/19/2023]
Abstract
The climate crisis calls for urgent action from every level of the US healthcare sector, starting with an acknowledgment of our own outsized contribution to greenhouse gas emissions (at least 8.5% of carbon emissions). As the climate continues to become warmer and wetter, the medical establishment must deal with increasing rates of pulmonary and cardiovascular diseases, heat-related illness, and emerging infectious diseases among many other health harms. Additionally, extreme weather events are causing healthcare delivery breakdown due to physical infrastructure damage, slowed supply chains, and workforce burden. Pathways for healthcare systems to meet these challenges are emerging. They entail significant measures to mitigate our carbon footprint, embrace shared and equity-driven governance, develop new metrics of accountability, and build more resilience into our care delivery processes. We call upon SHEA to play a unique leadership role in the fight for sustainable, equitable, and efficient health care in a rapidly changing climate that immediately threatens human well-being.
Collapse
Affiliation(s)
- Alison G. Freifeld
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alexandra I. Todd
- University of Nebraska Medical Center, College of Public Health, Omaha, Nebraska
| | - Ali S. Khan
- University of Nebraska Medical Center, College of Public Health, Omaha, Nebraska
| |
Collapse
|
20
|
Prince BC, Walsh E, Torres TZB, Rückert C. Recognition of Arboviruses by the Mosquito Immune System. Biomolecules 2023; 13:1159. [PMID: 37509194 PMCID: PMC10376960 DOI: 10.3390/biom13071159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to both human and animal health worldwide. These viruses are transmitted through the bites of mosquitoes, ticks, sandflies, or biting midges to humans or animals. In humans, arbovirus infection often results in mild flu-like symptoms, but severe disease and death also occur. There are few vaccines available, so control efforts focus on the mosquito population and virus transmission control. One area of research that may enable the development of new strategies to control arbovirus transmission is the field of vector immunology. Arthropod vectors, such as mosquitoes, have coevolved with arboviruses, resulting in a balance of virus replication and vector immune responses. If this balance were disrupted, virus transmission would likely be reduced, either through reduced replication, or even through enhanced replication, resulting in mosquito mortality. The first step in mounting any immune response is to recognize the presence of an invading pathogen. Recent research advances have been made to tease apart the mechanisms of arbovirus detection by mosquitoes. Here, we summarize what is known about arbovirus recognition by the mosquito immune system, try to generate a comprehensive picture, and highlight where there are still gaps in our current understanding.
Collapse
Affiliation(s)
- Brian C Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
21
|
Sanei-Dehkordi A, Ghasemian A, Zarenezhad E, Qasemi H, Nasiri M, Osanloo M. Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes aegypti and Anopheles stephensi. Sci Rep 2023; 13:11002. [PMID: 37420038 PMCID: PMC10328918 DOI: 10.1038/s41598-023-38284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
Aedes aegypti and Anopheles stephensi have challenged human health by transmitting several infectious disease agents, such as malaria, dengue fever, and yellow fever. Larvicides, especially in endemic regions, is an effective approach to the control of mosquito-borne diseases. In this study, the composition of three essential oil from the Artemisia L. family was analyzed by Gas Chromatography-Mass Spectrometry. Afterward, nanoliposomes containing essential oils of A. annua, A. dracunculus, and A. sieberi with particle sizes of 137 ± 5, 151 ± 6, and 92 ± 5 nm were prepared. Besides, their zeta potential values were obtained at 32 ± 0.5, 32 ± 0.6, and 43 ± 1.7 mV. ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) confirmed the successful loading of the essential oils. Moreover, The LC50 values of nanoliposomes against Ae. aegypti larvae were 34, 151, and 197 µg/mL. These values for An.stephensi were obtained as 23 and 90, and 140 µg/mL, respectively. The results revealed that nanoliposomes containing A. dracunculus exerted the highest potential larvicidal effect against Ae. aegypti and An. stephensi, which can be considered against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasemi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
22
|
Kiener M, Cudjoe N, Evans R, Mapp-Alexander V, Tariq A, Macpherson C, Noël T, Gérardin P, Waechter R, LaBeaud AD. Factors Associated with Chikungunya Infection among Pregnant Women in Grenada, West Indies. Am J Trop Med Hyg 2023; 109:123-125. [PMID: 37253436 PMCID: PMC10324015 DOI: 10.4269/ajtmh.23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023] Open
Abstract
Neonates are vulnerable to vector-borne diseases given the potential for mother-to-child congenital transmission. To determine factors associated with chikungunya virus (CHIKV) infection among pregnant women in Grenada, West Indies, a retrospective cohort study enrolled women who were pregnant during the 2014 CHIKV epidemic. In all, 520/688 women (75.5%) were CHIKV IgG positive. Low incomes, use of pit latrines, lack of home window screens, and subjective reporting of frequent mosquito bites were associated with increased risk of CHIKV infection in bivariate analyses. In the multivariate modified Poisson regression model, low income (adjusted relative risk [aRR]: 1.05 [95% CI: 1.01-1.10]) and frequent mosquito bites (aRR: 1.05 [95% CI: 1.01-1.10]) were linked to increased infection risk. In Grenada, markers of low socioeconomic status are associated with CHIKV infection among pregnant women. Given that Grenada will continue to face vector-borne outbreaks, interventions dedicated to improving living conditions of the most disadvantaged will help reduce the incidence of arboviral infections.
Collapse
Affiliation(s)
- Melanie Kiener
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Nikita Cudjoe
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - Roberta Evans
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | | | - Amna Tariq
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, California
| | - Calum Macpherson
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - Trevor Noël
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - Patrick Gérardin
- INSERM CIC1410/Plateforme de Recherche Clinique et Translationnelle, Centre Hospitalier Universitaire Réunion, Saint-Pierre, France
| | - Randall Waechter
- Windward Islands Research and Education Foundation, St. George’s, Grenada
| | - A. Desiree LaBeaud
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, California
| |
Collapse
|
23
|
Estallo EL, Sippy R, Robert MA, Ayala S, Barboza Pizard CJ, Pérez-Estigarribia PE, Stewart-Ibarra AM. Increasing arbovirus risk in Chile and neighboring countries in the Southern Cone of South America. LANCET REGIONAL HEALTH. AMERICAS 2023; 23:100542. [PMID: 37408952 PMCID: PMC10319332 DOI: 10.1016/j.lana.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Elizabet L Estallo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Investigaciones Entomológicas de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rachel Sippy
- Department of Psychiatry, University of Cambridge, Cambridge, England, United Kingdom
| | - Michael A Robert
- Department of Mathematics and Center for Emerging, Zoonotic, and Arthropod-borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | |
Collapse
|
24
|
de Castro Poncio L, Apolinário dos Anjos F, de Oliveira DA, de Oliveira da Rosa A, Piraccini Silva B, Rebechi D, Pedrosa JM, da Costa Franciscato DA, de Souza C, Paldi N. Prevention of a dengue outbreak via the large-scale deployment of Sterile Insect Technology in a Brazilian city: a prospective study. LANCET REGIONAL HEALTH. AMERICAS 2023; 21:100498. [PMID: 37187486 PMCID: PMC10176055 DOI: 10.1016/j.lana.2023.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/28/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Background Dengue is a global problem that seems to be worsening, as hyper-urbanization associated with climate change has led to a significant increase in the abundance and geographical spread of its principal vector, the Aedes aegypti mosquito. Currently available solutions have not been able to stop the spread of dengue which shows the urgent need to implement alternative technologies as practical solutions. In a previous pilot trial, we demonstrated the efficacy and safety of the method 'Natural Vector Control' (NVC) in suppressing the Ae. aegypti vector population and in blocking the occurrence of an outbreak of dengue in the treated areas. Here, we expand the use of the NVC program in a large-scale 20 months intervention period in an entire city in southern Brazil. Methods Sterile male mosquitoes were produced from locally sourced Ae. aegypti mosquitoes by using a treatment that includes double-stranded RNA and thiotepa. Weekly massive releases of sterile male mosquitoes were performed in predefined areas of Ortigueira city from November 2020 to July 2022. Mosquito monitoring was performed by using ovitraps during the entire intervention period. Dengue incidence data was obtained from the Brazilian National Disease Surveillance System. Findings During the two epidemiological seasons, the intervention in Ortigueira resulted in up to 98.7% suppression of live progeny of field Ae. aegypti mosquitoes recorded over time. More importantly, when comparing the 2020 and 2022 dengue outbreaks that occurred in the region, the post-intervention dengue incidence in Ortigueira was 97% lower compared to the control cities. Interpretation The NVC method was confirmed to be a safe and efficient way to suppress Ae. aegypti field populations and prevent the occurrence of a dengue outbreak. Importantly, it has been shown to be applicable in large-scale, real-world conditions. Funding This study was funded by Klabin S/A and Forrest Innovations Ltd.
Collapse
Affiliation(s)
| | | | | | | | | | - Débora Rebechi
- Forrest Brasil Tecnologia Ltda, São José dos Pinhais, PR, Brazil
| | | | | | | | - Nitzan Paldi
- Forrest Innovations Ltd, Rehovot, Israel
- Corresponding author. Forrest Innovations Ltd, 13 Gad Feinstein Street, Rehovot, Israel.
| |
Collapse
|
25
|
López MS, Gómez AA, Müller GV, Walker E, Robert MA, Estallo EL. Relationship between Climate Variables and Dengue Incidence in Argentina. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57008. [PMID: 37224070 DOI: 10.1289/ehp11616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Climate change is an important driver of the increased spread of dengue from tropical and subtropical regions to temperate areas around the world. Climate variables such as temperature and precipitation influence the dengue vector's biology, physiology, abundance, and life cycle. Thus, an analysis is needed of changes in climate change and their possible relationships with dengue incidence and the growing occurrence of epidemics recorded in recent decades. OBJECTIVES This study aimed to assess the increasing incidence of dengue driven by climate change at the southern limits of dengue virus transmission in South America. METHODS We analyzed the evolution of climatological, epidemiological, and biological variables by comparing a period of time without the presence of dengue cases (1976-1997) to a more recent period of time in which dengue cases and important outbreaks occurred (1998-2020). In our analysis, we consider climate variables associated with temperature and precipitation, epidemiological variables such as the number of reported dengue cases and incidence of dengue, and biological variables such as the optimal temperature ranges for transmission of dengue vector. RESULTS The presence of dengue cases and epidemic outbreaks are observed to be consistent with positive trends in temperature and anomalies from long-term means. Dengue cases do not seem to be associated with precipitation trends and anomalies. The number of days with optimal temperatures for dengue transmission increased from the period without dengue cases to the period with occurrences of dengue cases. The number of months with optimal transmission temperatures also increased between periods but to a lesser extent. CONCLUSIONS The higher incidence of dengue virus and its expansion to different regions of Argentina seem to be associated with temperature increases in the country during the past two decades. The active surveillance of both the vector and associated arboviruses, together with continued meteorological data collection, will facilitate the assessment and prediction of future epidemics that use trends in the accelerated changes in climate. Such surveillance should go hand in hand with efforts to improve the understanding of the mechanisms driving the geographic expansion of dengue and other arboviruses beyond the current limits. https://doi.org/10.1289/EHP11616.
Collapse
Affiliation(s)
- María S López
- Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
- Centro de Estudios de Variabilidad y Cambio Climático, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andre A Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
- Centro de Estudios de Variabilidad y Cambio Climático, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela V Müller
- Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
- Centro de Estudios de Variabilidad y Cambio Climático, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elisabet Walker
- Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
- Centro de Estudios de Variabilidad y Cambio Climático, Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Michael A Robert
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Elizabet L Estallo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Investigaciones Entomológicas de Córdoba, Córdoba Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
26
|
Simon F, Caumes E, Jelinek T, Lopez-Velez R, Steffen R, Chen LH. Chikungunya: risks for travellers. J Travel Med 2023; 30:taad008. [PMID: 36648431 PMCID: PMC10075059 DOI: 10.1093/jtm/taad008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
RATIONALE FOR REVIEW Chikungunya outbreaks continue to occur, with changing epidemiology. Awareness about chikungunya is low both among the at-risk travellers and healthcare professionals, which can result in underdiagnosis and underreporting. This review aims to improve awareness among healthcare professionals regarding the risks of chikungunya for travellers. KEY FINDINGS Chikungunya virus transmission to humans occurs mainly via daytime-active mosquitoes, Aedes aegypti and Aedes albopictus. The areas where these mosquitoes live is continuously expanding, partly due to climate changes. Chikungunya is characterized by an acute onset of fever with joint pain. These symptoms generally resolve within 1-3 weeks, but at least one-third of the patients suffer from debilitating rheumatologic symptoms for months to years. Large outbreaks in changing regions of the world since the turn of the 21st century (e.g. Caribbean, La Réunion; currently Brazil, India) have resulted in growing numbers of travellers importing chikungunya, mainly to Europe and North America. Viremic travellers with chikungunya infection have seeded chikungunya clusters (France, United States of America) and outbreaks (Italy in 2007 and 2017) in non-endemic countries where Ae. albopictus mosquitoes are present. Community preventive measures are important to prevent disease transmission by mosquitoes. Individual preventive options are limited to personal protection measures against mosquito bites, particularly the daytime-active mosquitos that transmit the chikungunya virus. Candidate vaccines are on the horizon and regulatory authorities will need to assess environmental and host risk factors for persistent sequelae, such as obesity, age (over 40 years) and history of arthritis or inflammatory rheumatologic disease to determine which populations should be targeted for these chikungunya vaccines. CONCLUSIONS/RECOMMENDATIONS Travellers planning to visit destinations with active CHIKV circulation should be advised about the risk for chikungunya, prevention strategies, the disease manifestations, possible chronic rheumatologic sequelae and, if symptomatic, seek medical evaluation and report potential exposures.
Collapse
Affiliation(s)
- Fabrice Simon
- Service de Pathologie Infectieuse et Tropicale, Hôpital d’Instruction des Armées Laveran, Marseille, France
| | - Eric Caumes
- Centre de Diagnostic, Hôpital de l’Hôtel-Dieu, Paris, France
| | - Tomas Jelinek
- Berlin Centre for Travel and Tropical Medicine, Berlin, Germany
| | - Rogelio Lopez-Velez
- Ramón y Cajal Institute for Health Research (IRyCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Robert Steffen
- Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Center on Travelers’ Health, University of Zurich, Zurich, Switzerland
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | - Lin H Chen
- Division of Infectious Diseases and Travel Medicine, Mount Auburn Hospital, Cambridge, MA, USA
- Faculty of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
An S, Liu W, Fu J, Zhang Z, Zhang R. Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition. Parasit Vectors 2023; 16:120. [PMID: 37005671 PMCID: PMC10068161 DOI: 10.1186/s13071-023-05733-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/11/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Aedes albopictus is an increasingly serious threat in public health due to it is vector of multiple arboviruses that cause devastating human diseases, as well as its widening distribution in recent years. Insecticide resistance is a serious problem worldwide that limits the efficacy of chemical control strategies against Ae. albopictus. Chitinase genes have been widely recognized as attractive targets for the development of effective and environmentally safe insect management measures. METHODS Chitinase genes of Ae. albopictus were identified and characterized on the basis of bioinformatics search of the referenced genome. Gene characterizations and phylogenetic relationships of chitinase genes were investigated, and spatio-temporal expression pattern of each chitinase gene was evaluated using qRT-PCR. RNA interference (RNAi) was used to suppress the expression of AaCht10, and the roles of AaCht10 were verified based on phynotype observations, chitin content analysis and hematoxylin and eosin (H&E) stain of epidermis and midgut. RESULTS Altogether, 14 chitinase-related genes (12 chitinase genes and 2 IDGFs) encoding 17 proteins were identified. Phylogenetic analysis showed that all these AaChts were classified into seven groups, and most of them were gathered into group IX. Only AaCht5-1, AaCht10 and AaCht18 contained both catalytic and chitin-binding domains. Different AaChts displayed development- and tissue-specific expression profiling. Suppression of the expression of AaCht10 resulted in abnormal molting, increased mortality, decreased chitin content and thinning epicuticle, procuticle and midgut wall of pupa. CONCLUSIONS Findings of the present study will aid in determining the biological functions of AaChts and also contribute to using AaChts as potential target for mosquito management.
Collapse
Affiliation(s)
- Sha An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Wenjuan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Jingwen Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Zhong Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| | - Ruiling Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
- School of Laboratory Animal (Shandong Laboratory Animal Center), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| |
Collapse
|
28
|
Hartinger SM, Yglesias-González M, Blanco-Villafuerte L, Palmeiro-Silva YK, Lescano AG, Stewart-Ibarra A, Rojas-Rueda D, Melo O, Takahashi B, Buss D, Callaghan M, Chesini F, Flores EC, Gil Posse C, Gouveia N, Jankin S, Miranda-Chacon Z, Mohajeri N, Helo J, Ortiz L, Pantoja C, Salas MF, Santiago R, Sergeeva M, Souza de Camargo T, Valdés-Velásquez A, Walawender M, Romanello M. The 2022 South America report of The Lancet Countdown on health and climate change: trust the science. Now that we know, we must act. LANCET REGIONAL HEALTH. AMERICAS 2023; 20:100470. [PMID: 37125022 PMCID: PMC10122119 DOI: 10.1016/j.lana.2023.100470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Stella M. Hartinger
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marisol Yglesias-González
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luciana Blanco-Villafuerte
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Yasna K. Palmeiro-Silva
- Pontificia Universidad Católica de Chile, Santiago, Chile
- University College London, London, UK
| | - Andres G. Lescano
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Oscar Melo
- Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Daniel Buss
- Pan American Health Organization, Washington, DC, USA
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | | | - Elaine C. Flores
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
- Centre on Climate Change and Planetary Health, LSHTM, London, UK
| | | | | | | | | | | | | | | | - Chrissie Pantoja
- Duke University, Durham, NC, USA
- Universidad del Pacífico, Lima, Peru
| | | | - Raquel Santiago
- Universidade de São Paulo, São Paulo, Brazil
- Universidade Federal de Goiás, Goiás, Brazil
| | | | | | - Armando Valdés-Velásquez
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | |
Collapse
|
29
|
Martín ME, Alonso AC, Faraone J, Stein M, Estallo EL. Satellite observation to assess dengue risk due to Aedes aegypti and Aedes albopictus in a subtropical city of Argentina. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:27-36. [PMID: 36070184 DOI: 10.1111/mve.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Earth observation environmental features measured through remote sensing and models of vector mosquitoes species Aedes aegypti and Ae. albopictus provide an advancement with regards to dengue risk in urban environments of subtropical areas of Argentina. The authors aim to estimate the effect of landscape coverage and spectral indices (Normalized Difference Vegetation Index [NDVI], Normalized Difference Water Index [NDWI] and Normalized Difference Built-up Index [NDBI]) on the larvae abundance of Ae. aegypti and Ae. albopictus in Eldorado, Misiones, Argentina using remote satellite sensors. Larvae of these species were collected monthly (June 2016 to April 2018), in four environments: tire repair shops, cemeteries, dwellings and an urban natural park. The proportion of landscape coverage (water, urban areas, bare soil, low vegetation and high vegetation) was determined from the supervised classification of Sentinel-2 images and spectral indices, calculated. The authors developed spatial models of both vector species by generalized linear mixed models. The model's results showed that Ae. aegypti larvae abundance was better modelled by NDVI minimum values, NDBI maximum values and the interaction between them. For Ae. albopictus proportion of bare soil, low vegetation and the interaction between both variables explained better the abundance.
Collapse
Affiliation(s)
- Mía Elisa Martín
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Universidad Nacional de Córdoba, CONICET, Centro de Investigaciones Entomológicas de Córdoba (CIEC), FCEFyN, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), Argentina
| | - Ana Carolina Alonso
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), Argentina
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
- Instituto de Investigaciones en Energía no Convencional (INENCO-CONICET), Universidad Nacional de Salta, Salta, Argentina
| | - Janinna Faraone
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), Argentina
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Marina Stein
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), Argentina
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Elizabet Lilia Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Universidad Nacional de Córdoba, CONICET, Centro de Investigaciones Entomológicas de Córdoba (CIEC), FCEFyN, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), Argentina
| |
Collapse
|
30
|
Dittmer DP, Eason AB, Juarez A. Scaling Biosafety Up During and Down After the COVID-19 Pandemic. APPLIED BIOSAFETY 2022; 27:247-254. [PMID: 36761994 PMCID: PMC9902049 DOI: 10.1089/apb.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Purpose The aim of this work was to review and analyze changes to the practice of biosafety imposed by pandemics. Methods A narrative review of the COVID-19 pandemic that began in 2020 and prior pandemics from the perspective of a working virologist. Results By definition, pandemics, outbreaks, and other emergencies are transient phenomena. They manifest as waves of events that induce unforeseen needs and present unknown challenges. After a pandemic, the return to normality is as crucial as the scale-up during the exponential growth phase. The COVID-19 pandemic presents an example to study operational biosafety and biocontainment issues during community transmission of infectious agents with established pandemic potential, the propensity to induce severe disease, and the ability to disrupt aspects of human society. Conclusions Scaling down heightened biocontainment measures after a pandemic is as important as scaling up during a pandemic. The availability of preventive vaccines, and therapeutic drug regimens, should be considered in risk assessments for laboratory studies. There exists the need to preserve situational memory at the personal and institutional levels that can be served by professional societies.
Collapse
Affiliation(s)
- Dirk P. Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony B. Eason
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Angelica Juarez
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Mbanzulu KM, Wumba R, Mboera LEG, Kayembe JMN, Engbu D, Bojabwa MM, Zanga JK, Misinzo G, Kimera SI. Pattern of Aedes aegypti and Aedes albopictus Associated with Human Exposure to Dengue Virus in Kinshasa, the Democratic Republic of the Congo. Trop Med Infect Dis 2022; 7:392. [PMID: 36422943 PMCID: PMC9695267 DOI: 10.3390/tropicalmed7110392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2023] Open
Abstract
Dengue is a worldwide public health concern. The current study assessed the extent of human exposure to the dengue virus in relation to the distribution pattern of Aedes aegypti and Ae. albopictus in Kinshasa. Cross-sectional surveys were carried out in 2021 and 2022. The baseline entomological survey involved 19 municipalities using a grid cell sampling approach. All containers holding water were inspected for the presence of larvae in each grid. The collected larvae were kept in an insectary until the adult emergence for morphological identification. Four hundred febrile patients attending the hospital were screened for the presence of dengue antibodies (IgG, IgM) and NS1 antigen using a rapid diagnostic test (RDT) Biosynex®. Residences of positive cases were geo-referenced. We evaluated 1850 grid cells, of which 19.5% were positive for Aedes larvae. The positive grid cells were identified in the Ndjili (44.0%), Mont Ngafula (32.0%) and Ngaliema (26.0%), and Limete (32.0%) municipalities. The Ae. aegypti (11.2%) predominated in the northwestern, and Ae. albopictus (9.1%) appeared in the high vegetation coverage areas. Of 61 (15.3%) participants exposed to dengue, 8.3% presented acute dengue. Young, (6-17 years), male, and Mont Amba district participants were most exposed to dengue. In conclusion, dengue occurrence in Kinshasa overlaps somewhat the geographical and ecological distributions of Ae. aegypti and Ae. albopictus. Both species are not homogenously distributed, likely due to environmental factors. These findings can assist the targeted control activities.
Collapse
Affiliation(s)
- Kennedy Makola Mbanzulu
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
- Department of Tropical Medicine, Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa P.O. Box 01306, Democratic Republic of the Congo
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3019, Tanzania
| | - Roger Wumba
- Department of Tropical Medicine, Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa P.O. Box 01306, Democratic Republic of the Congo
| | - Leonard E. G. Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
| | - Jean-Marie Ntumba Kayembe
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
- Department of Internal Medicine, University of Kinshasa, Kinshasa P.O. Box 747, Democratic Republic of the Congo
| | - Danoff Engbu
- Department of Tropical Medicine, Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa P.O. Box 01306, Democratic Republic of the Congo
| | - Michael Mondjo Bojabwa
- Department of Tropical Medicine, Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa P.O. Box 01306, Democratic Republic of the Congo
| | - Josué Kikana Zanga
- Department of Tropical Medicine, Infectious and Parasitic Diseases, University of Kinshasa, Kinshasa P.O. Box 01306, Democratic Republic of the Congo
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3019, Tanzania
| | - Sharadhuli Iddi Kimera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro P.O. Box 3021, Tanzania
| |
Collapse
|
32
|
How heterogeneous is the dengue transmission profile in Brazil? A study in six Brazilian states. PLoS Negl Trop Dis 2022; 16:e0010746. [PMID: 36095004 PMCID: PMC9499305 DOI: 10.1371/journal.pntd.0010746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/22/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Dengue is a vector-borne disease present in most tropical countries, infecting an average of 50 to 100 million people per year. Socioeconomic, demographic, and environmental factors directly influence the transmission cycle of the dengue virus (DENV). In Brazil, these factors vary between regions producing different profiles of dengue transmission and challenging the epidemiological surveillance of the disease. In this article, we aimed at classifying the profiles of dengue transmission in 1,823 Brazilian municipalities, covering different climates, from 2010 to 2019. Time series data of dengue cases were obtained from six states: Ceará and Maranhão in the semiarid Northeast, Minas Gerais in the countryside, Espírito Santo and Rio de Janeiro in the tropical Atlantic coast, and Paraná in the subtropical region. To describe the time series, we proposed a set of epi-features of the magnitude and duration of the dengue epidemic cycles, totaling 13 indicators. Using these epi-features as inputs, a multivariate cluster algorithm was employed to classify the municipalities according to their dengue transmission profile. Municipalities were classified into four distinct dengue transmission profiles: persistent transmission (7.8%), epidemic (21.3%), episodic/epidemic (43.2%), and episodic transmission (27.6%). Different profiles were associated with the municipality’s population size and climate. Municipalities with higher incidence and larger populations tended to be classified as persistent transmission, suggesting the existence of critical community size. This association, however, varies depending on the state, indicating the importance of other factors. The proposed classification is useful for developing more specific and precise surveillance protocols for regions with different dengue transmission profiles, as well as more precise public policies for dengue prevention. Dengue is one of the fastest-growing vector-borne diseases in the world. Currently, vaccines are experimental and are not very effective, so prevention depends on the control of the mosquito Aedes aegypti. Health promotion campaigns aimed at encouraging people to reduce mosquito breeding sites have limited effect. In addition, the heterogeneity of the territories that have dengue becomes a major challenge for the epidemiological surveillance of the disease. Brazil has a territory of continental size, and single standardized surveillance is not very effective for monitoring this arbovirus. Classifying types of dengue dynamics based on features of the epidemiological cycle in each location has the potential to increase the precision of surveillance and control strategies. In our study, we were able to classify areas according to different dengue transmission profiles, ranging from episodic to persistent transmission. These results can provide tools to guide actions aimed at achieving the World Health Organization’s goals of eliminating neglected tropical diseases in countries that have the virus.
Collapse
|
33
|
Lee SA, Economou T, Lowe R. A Bayesian modelling framework to quantify multiple sources of spatial variation for disease mapping. J R Soc Interface 2022; 19:20220440. [PMID: 36128702 PMCID: PMC9490350 DOI: 10.1098/rsif.2022.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Spatial connectivity is an important consideration when modelling infectious disease data across a geographical region. Connectivity can arise for many reasons, including shared characteristics between regions and human or vector movement. Bayesian hierarchical models include structured random effects to account for spatial connectivity. However, conventional approaches require the spatial structure to be fully defined prior to model fitting. By applying penalized smoothing splines to coordinates, we create two-dimensional smooth surfaces describing the spatial structure of the data while making minimal assumptions about the structure. The result is a non-stationary surface which is setting specific. These surfaces can be incorporated into a hierarchical modelling framework and interpreted similarly to traditional random effects. Through simulation studies, we show that the splines can be applied to any symmetric continuous connectivity measure, including measures of human movement, and that the models can be extended to explore multiple sources of spatial structure in the data. Using Bayesian inference and simulation, the relative contribution of each spatial structure can be computed and used to generate hypotheses about the drivers of disease. These models were found to perform at least as well as existing modelling frameworks, while allowing for future extensions and multiple sources of spatial connectivity.
Collapse
Affiliation(s)
- Sophie A. Lee
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Theodoros Economou
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
34
|
Lee WL, Gu X, Armas F, Leifels M, Wu F, Chandra F, Chua FJD, Syenina A, Chen H, Cheng D, Ooi EE, Wuertz S, Alm EJ, Thompson J. Monitoring human arboviral diseases through wastewater surveillance: Challenges, progress and future opportunities. WATER RESEARCH 2022; 223:118904. [PMID: 36007397 DOI: 10.1016/j.watres.2022.118904] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 05/21/2023]
Abstract
Arboviral diseases are caused by a group of viruses spread by the bite of infected arthropods. Amongst these, dengue, Zika, west nile fever and yellow fever cause the greatest economic and social impact. Arboviral epidemics have increased in frequency, magnitude and geographical extent over the past decades and are expected to continue increasing with climate change and expanding urbanisation. Arboviral prevalence is largely underestimated, as most infections are asymptomatic, nevertheless existing surveillance systems are based on passive reporting of loosely defined clinical syndromes with infrequent laboratory confirmation. Wastewater-based surveillance (WBS), which has been demonstrated to be useful for monitoring diseases with significant asymptomatic populations including COVID19 and polio, could be a useful complement to arboviral surveillance. We review the current state of knowledge and identify key factors that affect the feasibility of monitoring arboviral diseases by WBS to include viral shedding loads by infected persons, the persistence of shed arboviruses and the efficiency of their recovery from sewage. We provide a simple model on the volume of wastewater that needs to be processed for detection of arboviruses, in face of lower arboviral shedding rates. In all, this review serves to reflect on the key challenges that need to be addressed and overcome for successful implementation of arboviral WBS.
Collapse
Affiliation(s)
- Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Fuqing Wu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Disease, University of Texas School of Public Health, Houston, TX, USA
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Eng Eong Ooi
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
35
|
Hopkins FR, Álvarez-Rodríguez B, Heath GR, Panayi K, Hover S, Edwards TA, Barr JN, Fontana J. The Native Orthobunyavirus Ribonucleoprotein Possesses a Helical Architecture. mBio 2022; 13:e0140522. [PMID: 35762594 PMCID: PMC9426602 DOI: 10.1128/mbio.01405-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Bunyavirales order is the largest group of negative-sense RNA viruses, containing many lethal human pathogens for which approved anti-infective measures are not available. The bunyavirus genome consists of multiple negative-sense RNA segments enwrapped by the virus-encoded nucleocapsid protein (NP), which together with the viral polymerase form ribonucleoproteins (RNPs). RNPs represent substrates for RNA synthesis and virion assembly, which require inherent flexibility, consistent with the appearance of RNPs spilled from virions. These observations have resulted in conflicting models describing the overall RNP architecture. Here, we purified RNPs from Bunyamwera virus (BUNV), the prototypical orthobunyavirus. The lengths of purified RNPs imaged by negative staining resulted in 3 populations of RNPs, suggesting that RNPs possess a consistent method of condensation. Employing microscopy approaches, we conclusively show that the NP portion of BUNV RNPs is helical. Furthermore, we present a pseudo-atomic model for this portion based on a cryo-electron microscopy average at 13 Å resolution, which allowed us to fit the BUNV NP crystal structure by molecular dynamics. This model was confirmed by NP mutagenesis using a mini-genome system. The model shows that adjacent NP monomers in the RNP chain interact laterally through flexible N- and C-terminal arms only, with no longitudinal helix-stabilizing interactions, thus providing a potential model for the molecular basis for RNP flexibility. Excessive RNase treatment disrupts native RNPs, suggesting that RNA was key in maintaining the RNP structure. Overall, this work will inform studies on bunyaviral RNP assembly, packaging, and RNA replication, and aid in future antiviral strategies. IMPORTANCE Bunyaviruses are emerging RNA viruses that cause significant disease and economic burden and for which vaccines or therapies approved for humans are not available. The bunyavirus genome is wrapped up by the nucleoprotein (NP) and interacts with the viral polymerase, forming a ribonucleoprotein (RNP). This is the only form of the genome active for viral replication and assembly. However, until now how NPs are organized within an RNP was not known for any orthobunyavirus. Here, we purified RNPs from the prototypical orthobunyavirus, Bunyamwera virus, and employed microscopy approaches to show that the NP portion of the RNP was helical. We then combined our helical average with the known structure of an NP monomer, generating a pseudo-atomic model of this region. This arrangement allowed the RNPs to be highly flexible, which was critical for several stages of the viral replication cycle, such as segment circularization.
Collapse
Affiliation(s)
- Francis R. Hopkins
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Beatriz Álvarez-Rodríguez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - George R. Heath
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Kyriakoulla Panayi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Samantha Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Thomas A. Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| |
Collapse
|
36
|
Gomes FM, Bahia AC. Implications of vector surveillance for arbovirus epidemiology in Miami-Dade County, Florida. LANCET REGIONAL HEALTH. AMERICAS 2022; 11:100310. [PMID: 36778923 PMCID: PMC9903789 DOI: 10.1016/j.lana.2022.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fabio M. Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana C. Bahia
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
Innovative formulations of PCL:Pluronic monoliths with copaiba oleoresin using supercritical CO2 foaming/mixing to control Aedes aegypti. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Flichman DM, Pereson MJ, Baré P, Espindola SL, Carballo GM, Albrecht A, Agote F, Alter A, Bartoli S, Blanco S, Blejer J, Borda M, Bouzon N, Carrizo LH, Etcheverry L, Fernandez R, Reyes MIF, Gallego S, Hahn R, Luna SG, Marranzino G, Romanazzi JS, Rossi A, Troffe A, Lin CC, Martínez AP, García G, DI Lello FA. Epidemiology of Dengue in Argentina: Antibodies seroprevalence in blood donors and circulating serotypes. J Clin Virol 2022; 147:105078. [PMID: 34999567 DOI: 10.1016/j.jcv.2022.105078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Diego M Flichman
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías J Pereson
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia Baré
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sonia Lorena Espindola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio GIGA, Instituto de Biología Subtropical (IBS), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones (UNaM), Misiones, Argentina
| | | | - Andrés Albrecht
- Laboratorio Mega Rafaela, Departamento de Enfermedades Transmisibles por Transfusión, Santa Fe, Argentina
| | - Felicitas Agote
- Banco Central de Sangre "Dr. César Guerra", Tucumán (PRIS-SI.PRO.SA), Argentina
| | - Adriana Alter
- Fundación Hemocentro Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sonia Bartoli
- Centro regional de Hemoterapia Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - Sebastián Blanco
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Córdoba, Argentina; Fundación Banco Central de Sangre, Córdoba, Córdoba, Argentina
| | - Jorgelina Blejer
- Fundación Hemocentro Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Borda
- Servicio de Hemoterapia, Instituto de Cardiología de Corrientes "Juana F. Cabral", Corrientes, Argentina
| | - Néstor Bouzon
- Banco de Sangre Bouzon, Santiago del Estero, Argentina
| | - Luis H Carrizo
- Fundación Banco Central de Sangre, Córdoba, Córdoba, Argentina
| | - Lucrecia Etcheverry
- Programa Provincial de Hemoterapia de Entre Ríos, Paraná, Entre Ríos, Argentina
| | - Roberto Fernandez
- Fundación Hemocentro Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Inés Figueroa Reyes
- Laboratorio de Detección de Infecciones Transmisibles por Transfusión del Centro Regional de Hemoterapia, Salta, Argentina
| | - Sandra Gallego
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Córdoba, Argentina; Fundación Banco Central de Sangre, Córdoba, Córdoba, Argentina
| | - Romina Hahn
- Banco de Sangre, Tejidos y Biológicos de la Provincia de Misiones, Misiones, Argentina
| | - Silvana Gisela Luna
- Laboratorio de Detección de Infecciones Transmisibles por Transfusión del Centro Regional de Hemoterapia, Salta, Argentina
| | - Gabriela Marranzino
- Banco Central de Sangre "Dr. César Guerra", Tucumán (PRIS-SI.PRO.SA), Argentina
| | | | - Ariel Rossi
- Servicio Hemoterapia, Hospital Delicia C. Masvernat, Concordia, Entre Ríos, Argentina
| | - Antonia Troffe
- Hospital Interzonal General de Agudos "San Felipe", San Nicolás, Argentina
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei City, Taiwan (Province of China)
| | - Alfredo P Martínez
- Sección Virología, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel García
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico A DI Lello
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Angina J, Bachhu A, Talati E, Talati R, Rychtář J, Taylor D. Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever. DYNAMIC GAMES AND APPLICATIONS 2022; 12:133-146. [PMID: 35127230 PMCID: PMC8800840 DOI: 10.1007/s13235-021-00418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 05/14/2023]
Abstract
Zika fever is an emerging mosquito-borne disease. While it often causes no or only mild symptoms that are similar to dengue fever, Zika virus can spread from a pregnant woman to her baby and cause severe birth defects. There is no specific treatment or vaccine, but the disease can be mitigated by using several control strategies, generally focusing on the reduction in mosquitoes or mosquito bites. In this paper, we model Zika virus transmission and incorporate a game-theoretical approach to study a repeated population game of DEET usage to prevent insect bites. We show that the optimal use effectively leads to disease elimination. This result is robust and not significantly dependent on the cost of the insect repellents.
Collapse
Affiliation(s)
- Jabili Angina
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Anish Bachhu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Eesha Talati
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Rishi Talati
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012 USA
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014 USA
| | - Dewey Taylor
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014 USA
| |
Collapse
|
40
|
The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Negl Trop Dis 2021; 15:e0009773. [PMID: 34882679 PMCID: PMC8691609 DOI: 10.1371/journal.pntd.0009773] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/21/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
Dengue is hyperendemic in Brazil, with outbreaks affecting all regions. Previous studies identified geographical barriers to dengue transmission in Brazil, beyond which certain areas, such as South Brazil and the Amazon rainforest, were relatively protected from outbreaks. Recent data shows these barriers are being eroded. In this study, we explore the drivers of this expansion and identify the current limits to the dengue transmission zone. We used a spatio-temporal additive model to explore the associations between dengue outbreaks and temperature suitability, urbanisation, and connectivity to the Brazilian urban network. The model was applied to a binary outbreak indicator, assuming the official threshold value of 300 cases per 100,000 residents, for Brazil’s municipalities between 2001 and 2020. We found a nonlinear relationship between higher levels of connectivity to the Brazilian urban network and the odds of an outbreak, with lower odds in metropoles compared to regional capitals. The number of months per year with suitable temperature conditions for Aedes mosquitoes was positively associated with the dengue outbreak occurrence. Temperature suitability explained most interannual and spatial variation in South Brazil, confirming this geographical barrier is influenced by lower seasonal temperatures. Municipalities that had experienced an outbreak previously had double the odds of subsequent outbreaks. We identified geographical barriers to dengue transmission in South Brazil, western Amazon, and along the northern coast of Brazil. Although a southern barrier still exists, it has shifted south, and the Amazon no longer has a clear boundary. Few areas of Brazil remain protected from dengue outbreaks. Communities living on the edge of previous barriers are particularly susceptible to future outbreaks as they lack immunity. Control strategies should target regions at risk of future outbreaks as well as those currently within the dengue transmission zone. Dengue is a mosquito-borne disease that has expanded rapidly around the world due to increased urbanisation, global mobility and climate change. In Brazil, geographical barriers to dengue transmission exist, beyond which certain areas including South Brazil and the Amazon rainforest are relatively protected from outbreaks. However, we found that the previous barrier in South Brazil has shifted further south as a result of increased temperature suitability. The previously identified barrier protecting the western Amazon no longer exists. This is particularly concerning as we found dengue outbreaks tend to become established in areas after introduction. Highly influential cities with many transport links had increased odds of an outbreak. However, the most influential cities had lower odds of an outbreak than cities connected regionally. This study highlights the importance of monitoring the expansion of dengue outbreaks and designing disease prevention strategies for areas at risk of future outbreaks as well as areas in the established dengue transmission zone.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize recent advances in understanding the origins, drivers and clinical context of zoonotic disease epidemics and pandemics. In addition, we aimed to highlight the role of clinicians in identifying sentinel cases of zoonotic disease outbreaks. RECENT FINDINGS The majority of emerging infectious disease events over recent decades, including the COVID-19 pandemic, have been caused by zoonotic viruses and bacteria. In particular, coronaviruses, haemorrhagic fever viruses, arboviruses and influenza A viruses have caused significant epidemics globally. There have been recent advances in understanding the origins and drivers of zoonotic epidemics, yet there are gaps in diagnostic capacity and clinical training about zoonoses. SUMMARY Identifying the origins of zoonotic pathogens, understanding factors influencing disease transmission and improving the diagnostic capacity of clinicians will be crucial to early detection and prevention of further epidemics of zoonoses.
Collapse
Affiliation(s)
| | - Peter M Rabinowitz
- Department of Medicine
- Department of Environmental and Occupational Health Sciences, Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Vernal S, Nahas AK, Chiaravalloti Neto F, Prete Junior CA, Cortez AL, Sabino EC, Luna EJDA. Geoclimatic, demographic and socioeconomic characteristics related to dengue outbreaks in Southeastern Brazil: an annual spatial and spatiotemporal risk model over a 12-year period. Rev Inst Med Trop Sao Paulo 2021; 63:e70. [PMID: 34586304 PMCID: PMC8494490 DOI: 10.1590/s1678-9946202163070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
Dengue fever is re-emerging worldwide, however the reasons of this new emergence
are not fully understood. Our goal was to report the incidence of dengue in one
of the most populous States of Brazil, and to assess the high-risk areas using a
spatial and spatio-temporal annual models including geoclimatic, demographic and
socioeconomic characteristics. An ecological study with both, a spatial and a
temporal component was carried out in Sao Paulo State, Southeastern Brazil,
between January 1st, 2007 and December 31st, 2019. Crude
and Bayesian empirical rates of dengue cases following by Standardized Incidence
Ratios (SIR) were calculated considering the municipalities as the analytical
units and using the Integrated Nested Laplace Approximation in a Bayesian
context. A total of 2,027,142 cases of dengue were reported during the studied
period. The spatial model allocated the municipalities in four groups according
to the SIR values: (I) SIR<0.8; (II) SIR 0.8<1.2; (III) SIR 1.2<2.0 and
SIR>2.0 identified the municipalities with higher risk for dengue outbreaks.
“Hot spots” are shown in the thematic maps. Significant correlations between SIR
and two climate variables, two demographic variables and one socioeconomical
variable were found. No significant correlations were found in the
spatio-temporal model. The incidence of dengue exhibited an inconstant and
unpredictable variation every year. The highest rates of dengue are concentrated
in geographical clusters with lower surface pressure, rainfall and altitude, but
also in municipalities with higher degree of urbanization and better
socioeconomic conditions. Nevertheless, annual consolidated variations in
climatic features do not influence in the epidemic yearly pattern of dengue in
southeastern Brazil.
Collapse
Affiliation(s)
- Sebastian Vernal
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
| | - Andressa K Nahas
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, São Paulo, Brazil
| | - Francisco Chiaravalloti Neto
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, São Paulo, Brazil
| | - Carlos A Prete Junior
- Universidade de São Paulo, Escola Politécnica, Departamento de Engenharia de Sistemas Eletrônicos, São Paulo, São Paulo, Brazil
| | - André L Cortez
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Expedito José de Albuquerque Luna
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Departamento de Medicina Preventiva, São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Calle-Tobón A, Holguin-Rocha AF, Moore C, Rippee-Brooks M, Rozo-Lopez P, Harrod J, Fatehi S, Rua-Uribe GL, Park Y, Londoño-Rentería B. Blood Meals With Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus. Front Microbiol 2021; 12:724345. [PMID: 34566927 PMCID: PMC8458951 DOI: 10.3389/fmicb.2021.724345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian "tiger mosquito" Aedes albopictus is currently the most widely distributed disease-transmitting mosquito in the world. Its geographical expansion has also allowed the expansion of multiple arboviruses like dengue, Zika, and chikungunya, to higher latitudes. Due to the enormous risk to global public health caused by mosquitoes species vectors of human disease, and the challenges in slowing their expansion, it is necessary to develop new and environmentally friendly vector control strategies. Among these, host-associated microbiome-based strategies have emerged as promising options. In this study, we performed an RNA-seq analysis on dissected abdomens of Ae. albopictus females from Manhattan, KS, United States fed with sugar and human blood containing either normal or heat-inactivated serum, to evaluate the effect of heat inactivation on gene expression, the bacteriome transcripts and the RNA virome of this mosquito species. Our results showed at least 600 genes with modified expression profile when mosquitoes were fed with normal vs. heat-inactivated-containing blood. These genes were mainly involved in immunity, oxidative stress, lipid metabolism, and oogenesis. Also, we observed bacteriome changes with an increase in transcripts of Actinobacteria, Rhodospirillaceae, and Anaplasmataceae at 6 h post-feeding. We also found that feeding with normal blood seems to particularly influence Wolbachia metabolism, demonstrated by a significant increase in transcripts of this bacteria in mosquitoes fed with blood containing normal serum. However, no differences were observed in the virome core of this mosquito population. These results suggest that heat and further inactivation of complement proteins in human serum may have profound effect on mosquito and microbiome metabolism, which could influence interpretation of the pathogen-host interaction findings when using this type of reagents specially when measuring the effect of Wolbachia in vector competence.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia
| | | | - Celois Moore
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Meagan Rippee-Brooks
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jania Harrod
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
44
|
Faire face à l’apparition de maladies virales infectieuses, un défi contemporain. ACTUALITES PHARMACEUTIQUES 2021. [DOI: 10.1016/j.actpha.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
López MS, Jordan DI, Blatter E, Walker E, Gómez AA, Müller GV, Mendicino D, Robert MA, Estallo EL. Dengue emergence in the temperate Argentinian province of Santa Fe, 2009-2020. Sci Data 2021; 8:134. [PMID: 34016998 PMCID: PMC8137689 DOI: 10.1038/s41597-021-00914-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Dengue virus (DENV) transmission occurs primarily in tropical and subtropical climates, but within the last decade it has extended to temperate regions. Santa Fe, a temperate province in Argentina, has experienced an increase in dengue cases and virus circulation since 2009, with the recent 2020 outbreak being the largest in the province to date. The aim of this work is to describe spatio-temporal fluctuations of dengue cases from 2009 to 2020 in Santa Fe Province. The data presented in this work provide a detailed description of DENV transmission for Santa Fe Province by department. These data are useful to assist in investigating drivers of dengue emergence in Santa Fe Province and for developing a better understanding of the drivers and the impacts of ongoing dengue emergence in temperate regions across the world. This work provides data useful for future studies including those investigating socio-ecological, climatic, and environmental factors associated with DENV transmission, as well as those investigating other variables related to the biology and the ecology of vector-borne diseases.
Collapse
Affiliation(s)
- María S López
- Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
- Centro de Investigaciones sobre Endemias Nacionales (CIEN), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Daniela I Jordan
- Dirección de Bioquímica y Red de Laboratorios, Ministerio de Salud de la Provincia de Santa Fe, Bv Gálvez 1563 1er piso, Santa Fe, Argentina
| | - Evelyn Blatter
- Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
| | - Elisabet Walker
- Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Andrea A Gómez
- Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Gabriela V Müller
- Centro de Estudios de Variabilidad y Cambio Climático (CEVARCAM), Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Diego Mendicino
- Centro de Investigaciones sobre Endemias Nacionales (CIEN), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Argentina
| | - Michael A Robert
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, 1015 Floyd Ave., Richmond, VA, 23284, USA
| | - Elizabet L Estallo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) CONICET- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1611, CP (X5016GCA), Ciudad Universitaria, Córdoba Capital, Argentina.
| |
Collapse
|
46
|
Estallo EL, Sippy R, Stewart-Ibarra AM, Grech MG, Benitez EM, Ludueña-Almeida FF, Ainete M, Frias-Cespedes M, Robert M, Romero MM, Almirón WR. A decade of arbovirus emergence in the temperate southern cone of South America: dengue, Aedes aegypti and climate dynamics in Córdoba, Argentina. Heliyon 2020; 6:e04858. [PMID: 32954035 PMCID: PMC7489993 DOI: 10.1016/j.heliyon.2020.e04858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Argentina is located at the southern temperate range of arboviral transmission by the mosquito Aedes aegypti and has experienced a rapid increase in disease transmission in recent years. Here we present findings from an entomological surveillance study that began in Córdoba, Argentina, following the emergence of dengue in 2009. METHODS From 2009 to 2017, larval surveys were conducted monthly, from November to May, in 600 randomly selected households distributed across the city. From 2009 to 2013, ovitraps (n = 177) were sampled weekly to monitor the oviposition activity of Ae. aegypti. We explored seasonal and interannual dynamics of entomological variables and dengue transmission. Cross correlation analysis was used to identify significant lag periods. RESULTS Aedes aegypti were detected over the entire study period, and abundance peaked during the summer months (January to March). We identified a considerable increase in the proportion of homes with juvenile Ae. aegypti over the study period (from 5.7% of homes in 2009-10 to 15.4% of homes in 2016-17). Aedes aegypti eggs per ovitrap and larval abundance were positively associated with temperature in the same month. Autochthonous dengue transmission peaked in April, following a peak in imported dengue cases in March; autochthonous dengue was not positively associated with vector or climate variables. CONCLUSIONS This longitudinal study provides insights into the complex dynamics of arbovirus transmission and vector populations in a temperate region of arbovirus emergence. Our findings suggest that Córdoba is well suited for arbovirus disease transmission, given the stable and abundant vector populations. Further studies are needed to better understand the role of regional human movement.
Collapse
Affiliation(s)
- Elizabet L. Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba Capital, Córdoba, Argentina
| | - Rachel Sippy
- Institute for Global Health & Translational Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Anna M. Stewart-Ibarra
- Institute for Global Health & Translational Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- InterAmerican Institute for Global Change Research (IAI), Montevideo, Department of Montevideo, Uruguay
| | - Marta G. Grech
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP), CONICET and Universidad Nacional de la Patagonia San Juan Bosco, Facultad de Ciencias Naturales y Ciencias de la Salud, Sede Esquel, Esquel, Chubut, Argentina
| | - Elisabet M. Benitez
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba Capital, Córdoba, Argentina
| | - Francisco F. Ludueña-Almeida
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba Capital, Córdoba, Argentina
- Cátedra de Matemática (Cs. Biológicas), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba Capital, Córdoba, Argentina
| | - Mariela Ainete
- Ministerio de Salud de la Provincia de Córdoba- Dirección de Epidemiología, Hospital San Roque Viejo, Córdoba Capital, Córdoba, Argentina
| | - María Frias-Cespedes
- Ministerio de Salud de la Provincia de Córdoba- Dirección de Epidemiología, Hospital San Roque Viejo, Córdoba Capital, Córdoba, Argentina
| | - Michael Robert
- Department of Mathematics, Statistics, and Physics, University of the Sciences, Philadelphia, PA, USA
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, USA
| | - Moory M. Romero
- Institute for Global Health & Translational Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Environmental Studies, State University of New York College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY, USA
| | - Walter R. Almirón
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba Capital, Córdoba, Argentina
| |
Collapse
|