1
|
Cook GJR, Alberts IL, Wagner T, Fischer BM, Nazir MS, Lilburn D. The impact of long axial field of view (LAFOV) PET on oncologic imaging. Eur J Radiol 2024; 183:111873. [PMID: 39647272 DOI: 10.1016/j.ejrad.2024.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The development of long axial field of view (LAFOV) positron emission tomography coupled with computed tomography (PET/CT) scanners might be considered the biggest step forward in PET imaging since it became a mainstream clinical modality. Despite increased capital and maintenance costs and data storage requirements, the improvement in image quality, significantly faster acquisition times and lower radiopharmaceutical administered activities, allow a high quality and more efficient clinical service. This step change in technology overcomes some of the limitations of standard short axial field of view scanners. It allows simultaneous imaging of all body systems, and with the ability to obtain high temporal resolution data, it increases potential research applications, particularly in multisystem disease or for dosimetry measurements of novel radiopharmaceuticals. The improvements in sensitivity and signal-to-noise facilitates the use of tracers with long half-lives and low administered activity (e.g. [89Zr]-labelled monoclonal antibodies) or very short half-lives (e.g. [82Rb]), opening up applications that hitherto have been challenging. It is early in the evolution of LAFOV PET/CT and the advantages these systems offer have still to be fully realised in providing additional impact in clinical practice. In this article we describe the potential advantages of LAFOV PET technology and some of the clinical and research applications where it has been applied as well as some of the future developments that may enhance the modality further.
Collapse
Affiliation(s)
- Gary J R Cook
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London SE1 7EH, UK.
| | - Ian L Alberts
- Molecular Imaging and Therapy, BC Cancer Agency, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| | - Thomas Wagner
- Department of Nuclear Medicine, Royal Free London NHS Trust, London NW3 1TX, UK.
| | - B Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Muhummad Sohaib Nazir
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Cardio-Oncology Centre of Excellence, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - David Lilburn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London SE1 7EH, UK.
| |
Collapse
|
2
|
Duan Y, Zan K, Zhao M, Ng YL, Li H, Ge M, Chai L, Cui X, Quan W, Li K, Zhou Y, Chen L, Wang X, Cheng Z. The feasibility of quantitative assessment of dynamic 18F-fluorodeoxyglucose PET in Takayasu's arteritis: a pilot study. Eur J Nucl Med Mol Imaging 2023; 51:81-92. [PMID: 37691022 DOI: 10.1007/s00259-023-06429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE PET has been demonstrated to be sensitive for detecting active inflammation in Takayasu's arteritis (TAK) patients, but semi-quantitative-based assessment may be susceptible to various biological and technical factors. Absolute quantification via dynamic PET (dPET) may provide a more reliable and quantitative assessment of TAK-active arteries. The purpose of this study was to investigate the feasibility and efficacy of dPET in quantifying TAK-active arteries compared to static PET. MATERIALS AND METHODS This prospective study enrolled 10 TAK-active patients (fulfilled the NIH criteria) and 5 control participants from March to October 2022. One-hour dPET scan (all TAK and control participants) and delayed static PET scan at 2-h (all TAK patients) were acquired. For 1-h static PET, summed images from 50 to 60 min of the dPET were extracted. PET parameters derived from 1- and 2-h static PET including SUV (SUV1H and SUV2H), target-to-background ratio (TBR) (TBR1H and TBR2H), net influx rate (Ki), and TBRKi extracted from dPET were obtained. The detectability of TAK-active arteries was compared among different scanning methods using the generalized estimating equation (GEE) with a logistic regression with repeated measures, and the GEE with gamma distribution and log link function was used to evaluate the different study groups or scanning methods. RESULTS Based on the disease states, 5 cases of TAK were classified as untreated and relapsed, respectively. The SUVmax on 2-h PET was higher than that on 1-h PET in the untreated patients (P < 0.05). However, no significant differences were observed in the median SUVmax between 1-h PET and 2-h PET in the relapsed patients (P > 0.05). The TBRKi was significantly higher than both TBR1H and TBR2H (all P < 0.001). Moreover, the detectability of TAK-active arteries by dPET-derived Ki was significantly higher than 1-h and 2-h PET (all P < 0.001). Significant differences were observed in Kimax, SUVmax-1H, TBR1H, and TBRKi among untreated, relapsed, and control groups (all P < 0.05). CONCLUSIONS Absolute quantitative assessment by dPET provides an improved sensitivity and detectability in both visualization and quantification of TAK-active arteries. This elucidates the clinical significance of dPET in the early detection of active inflammation and monitoring recurrence.
Collapse
Affiliation(s)
- Yanhua Duan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Keyu Zan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Minjie Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Hui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Min Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Leiying Chai
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xiao Cui
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Wenjin Quan
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Li Chen
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China, 250021.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China, 250021.
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
3
|
Yoon JK, Kang WJ. Modulation of FDG Uptake by Cell Cycle Synchronization Using a T-Type Calcium Channel Inhibitor. Cancers (Basel) 2023; 15:5244. [PMID: 37958418 PMCID: PMC10650550 DOI: 10.3390/cancers15215244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND We investigated whether cell cycle synchronization induced by the T-type calcium channel inhibitor mibefradil could increase tumoral 2-[18F] fluoro-2-deoxy-d-glucose (FDG) uptake in vitro and in vivo. METHODS Human prostate cancer cells (PC-3) were treated with 10 μM mibefradil for 24, 48, and 72 h to induce G1 arrest. Cell cycle distribution was analyzed at 0, 4, 8, 12, 15, 18, and 24 h after mibefradil withdrawal. Cellular uptake was measured after incubating cells with [3H] Deoxy-d-Glucose (DDG) for 1 h at the same time points used in the cell cycle analysis. The correlation between [3H] DDG uptake and each cell cycle phase was evaluated in the early (0-12 h) and late phases (15-24 h) of synchronization. In vivo FDG PET imaging was performed in PC-3-bearing mice at baseline, 24 h, and 48 h after mibefradil treatment. RESULTS The G0/G1 fraction of PC-3 cells was significantly increased from 33.1% ± 0.2% to 60.9% ± 0.8% after 24 h mibefradil treatment, whereas the S and G2/M fractions were decreased from 36.3% ± 1.4% to 23.2% ± 1.1% and from 29.7% ± 1.3% to 14.9% ± 0.9%, respectively, which were similar to the results by serum starvation. Mibefradil treatment for 24, 48, and 72 h increased the number of cells in S phase at 18-24 h after withdrawal; however, only the 72 h treatment increased [3H] DDG uptake (145.8 ± 5.8% of control at 24 h after withdrawal). [3H] DDG uptake was positively correlated with the size of the S phase fraction and negatively correlated with the size of the G0/G1 fraction in the late phase of synchronization. DDG uptake was significantly increased by mibefradil-induced cell cycle synchronization and correlated with the sizes of cell cycle fractions. In vivo FDG PET imaging also demonstrated a significant increase in tumor uptake after mibefradil treatment. Quantified tumor FDG uptake (%ID/g) increased from 4.13 ± 2.10 to 4.7 ± 2.16 at 24 h, and 5.95 ± 2.57 at 48 h (p < 0.05). CONCLUSION Cell cycle synchronization could be used to increase the diagnostic sensitivity of clinical FDG positron emission tomography.
Collapse
Affiliation(s)
- Joon-Kee Yoon
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Roya M, Mostafapour S, Mohr P, Providência L, Li Z, van Snick JH, Brouwers AH, Noordzij W, Willemsen ATM, Dierckx RAJO, Lammertsma AA, Glaudemans AWJM, Tsoumpas C, Slart RHJA, van Sluis J. Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology. Cancers (Basel) 2023; 15:5173. [PMID: 37958347 PMCID: PMC10648837 DOI: 10.3390/cancers15215173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above. In this review, novel applications of LAFOV PET in oncology are highlighted and future directions are discussed.
Collapse
Affiliation(s)
- Mostafa Roya
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Samaneh Mostafapour
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Laura Providência
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Zekai Li
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Johannes H. van Snick
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adrienne H. Brouwers
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Antoon T. M. Willemsen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 NB Enchede, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| |
Collapse
|
5
|
Jha DK, Gupta P, Neelam PB, Kumar R, Krishnaraju VS, Rohilla M, Prasad AS, Dutta U, Sharma V. Clinical and Radiological Parameters to Discriminate Tuberculous Peritonitis and Peritoneal Carcinomatosis. Diagnostics (Basel) 2023; 13:3206. [PMID: 37892027 PMCID: PMC10605989 DOI: 10.3390/diagnostics13203206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
It is challenging to differentiate between tuberculous peritonitis and peritoneal carcinomatosis due to their insidious nature and intersecting symptoms. Computed tomography (CT) is the modality of choice in evaluating diffuse peritoneal disease. We conducted an ambispective analysis of patients suspected as having tuberculous peritonitis or peritoneal tuberculosis between Jan 2020 to Dec 2021. The study aimed to identify the clinical and radiological features differentiating the two entities. We included 44 cases of tuberculous peritonitis and 45 cases of peritoneal carcinomatosis, with a median age of 31.5 (23.5-40) and 52 (46-61) years, respectively (p ≤ 0.001). Fever, past history of tuberculosis, and loss of weight were significantly associated with tuberculous peritonitis (p ≤ 0.001, p = 0.038 and p = 0.001). Pain in the abdomen and history of malignancy were significantly associated with peritoneal carcinomatosis (p = 0.038 and p ≤ 0.001). Ascites was the most common radiological finding. Loculated ascites, splenomegaly and conglomeration of lymph nodes predicted tuberculous peritonitis significantly (p ≤ 0.001, p = 0.010, p = 0.038). Focal liver lesion(s) and nodular omental involvement were significantly associated with peritoneal carcinomatosis (p = 0.011, p = 0.029). The use of clinical features in conjunction with radiological findings provide better diagnostic yields because of overlapping imaging findings.
Collapse
Affiliation(s)
- Daya K. Jha
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (D.K.J.); (P.B.N.); (U.D.)
| | - Pankaj Gupta
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Pardhu B. Neelam
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (D.K.J.); (P.B.N.); (U.D.)
| | - Rajender Kumar
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.K.); (V.S.K.)
| | - Venkata S. Krishnaraju
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (R.K.); (V.S.K.)
| | - Manish Rohilla
- Department of Cytopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ajay S. Prasad
- Department of Gastroenterology, Army Hospital Research and Referral, New Delhi 110010, India;
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (D.K.J.); (P.B.N.); (U.D.)
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (D.K.J.); (P.B.N.); (U.D.)
| |
Collapse
|
6
|
Loharkar S, Basu S. Imaging Recommendations for Diagnosis, Staging, and Management of Carcinoma of Unknown Origin (Lymph Node, Pulmonary, Liver, Skeletal, and Brain) with Emphasis on the Current Position of PET-CT in Carcinoma of Unknown Origin (CUP). Indian J Med Paediatr Oncol 2023. [DOI: 10.1055/s-0042-1760311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
AbstractMost of the established guidelines mention and recommend the use of FDG-PET/CT (fluorodeoxyglucose positron emission tomography/computed tomography) in carcinoma of unknown primary (CUP) especially in head–neck squamous cell carcinoma; as described in this article, this forms a powerful one-stop shop in diagnosing and staging modality and has multiple applications in difficult situations of CUPs. Although not used as a screening modality, FDG-PET/CT is recommended as the primary imaging modality in the evaluation of primary, staging, and response evaluation for CUP with histology known to demonstrate FDG avidity, especially patients presenting with lymph nodal disease. It should be remembered that many histological types do not concentrate on FDG and FDG also shows false-positive results in many other conditions like infection-inflammation; however, at the same time, it delivers high negative predictive values, an important consideration when employing FDG-PET/CT in the CUP scenario. SSTR-based PET/CT plays a pivotal role in primary diagnosis, staging, therapy planning, and response assessment in CUPs with neuroendocrine tumor or neuroendocrine neoplasm histology. The last two decades has witnessed great advancement in PET instrumentation and radiopharmaceuticals: particularly techniques like PET/magnetic resonance imaging and radiopharmaceuticals like FAPI (fibroblast-activation protein inhibitor)-based PET tracers. Hence, the role of PET/CT is expected to expand its reach in the coming years in line with accruing literature evidence, thereby upgrading its role and reliability in oncological practice strategies.
Collapse
Affiliation(s)
- Sarvesh Loharkar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Parel, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Parel, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Calabro’ A, Abdelhafez YG, Triumbari EKA, Spencer BA, Chen MS, Albano D, Cassim CR, Bertagna F, Dondi F, Cherry SR, Badawi RD, Sen F, Nardo L. 18F-FDG gallbladder uptake: observation from a total-body PET/CT scanner. BMC Med Imaging 2023; 23:9. [PMID: 36627570 PMCID: PMC9832624 DOI: 10.1186/s12880-022-00957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Total-body positron emission tomography/computed tomography (PET/CT) scanners are characterized by higher signal collection efficiency and greater spatial resolution compared to conventional scanners, allowing for delayed imaging and improved image quality. These advantages may also lead to better detection of physiological processes that diagnostic imaging professionals should be aware of. The gallbladder (GB) is not usually visualized as an 18F-2-fluorodeoxyglucose (18F-FDG)-avid structure in routine clinical PET/CT studies; however, with the total-body PET/CT, we have been increasingly visualizing GB activity without it being involved in an inflammatory or neoplastic process. The aim of this study was to report visualization rates and characteristics of GB 18F-FDG uptake observed in both healthy and oncological subjects scanned on a total-body PET/CT system. MATERIALS AND METHODS Scans from 73 participants (48 healthy and 25 with newly diagnosed lymphoma) who underwent 18F-FDG total-body PET/CT were retrospectively reviewed. Subjects were scanned at multiple timepoints up to 3 h post-injection. Gallbladder 18F-FDG activity was graded using liver uptake as a reference, and the pattern was qualified as present in the wall, lumen, or both. Participants' characteristics, such as age, sex, body-mass index, blood glucose, and other clinical parameters, were collected to assess for any significant correlation with GB 18F-FDG uptake. RESULTS All 73 subjects showed GB uptake at one or more imaging timepoints. An increase in uptake intensity overtime was observed up until the 180-min scan, and the visualization rate of GB 18F-FDG uptake was 100% in the 120- and 180-min post-injection scans. GB wall uptake was detected in a significant number of patients (44/73, 60%), especially at early timepoint scans, whereas luminal activity was detected in 71/73 (97%) subjects, especially at later timepoint scans. No significant correlation was found between GB uptake intensity/pattern and subjects' characteristics. CONCLUSION The consistent observation of GB 18F-FDG uptake recorded in this study in healthy participants and subjects with a new oncological diagnosis indicates that this is a normal physiologic finding rather than representing an exception.
Collapse
Affiliation(s)
- Anna Calabro’
- grid.27860.3b0000 0004 1936 9684Department of Radiology, EXPLORER Molecular Imaging Center, University of California, Davis, 3195 Folsom Blvd, Davis, Sacramento, CA 95816 USA
| | - Yasser G. Abdelhafez
- grid.27860.3b0000 0004 1936 9684Department of Radiology, EXPLORER Molecular Imaging Center, University of California, Davis, 3195 Folsom Blvd, Davis, Sacramento, CA 95816 USA ,grid.252487.e0000 0000 8632 679XNuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Asyut, Egypt
| | - Elizabeth K. A. Triumbari
- grid.414603.4Nuclear Medicine Unit, TracerGLab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Benjamin A. Spencer
- grid.27860.3b0000 0004 1936 9684Department of Radiology, EXPLORER Molecular Imaging Center, University of California, Davis, 3195 Folsom Blvd, Davis, Sacramento, CA 95816 USA ,grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA USA
| | - Moon S. Chen
- grid.27860.3b0000 0004 1936 9684Department of Internal Medicine, University of California Davis, Davis, CA USA
| | - Domenico Albano
- grid.7637.50000000417571846Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Christopher R. Cassim
- Department of Radiology, Sangre Grande Hospital, Eastern Regional Health Authority, Sangre Grande, Trinidad and Tobago
| | - Francesco Bertagna
- grid.7637.50000000417571846Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Dondi
- grid.7637.50000000417571846Nuclear Medicine Department, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Simon R. Cherry
- grid.27860.3b0000 0004 1936 9684Department of Radiology, EXPLORER Molecular Imaging Center, University of California, Davis, 3195 Folsom Blvd, Davis, Sacramento, CA 95816 USA ,grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA USA
| | - Ramsey D. Badawi
- grid.27860.3b0000 0004 1936 9684Department of Radiology, EXPLORER Molecular Imaging Center, University of California, Davis, 3195 Folsom Blvd, Davis, Sacramento, CA 95816 USA ,grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA USA
| | - Fatma Sen
- grid.27860.3b0000 0004 1936 9684Department of Radiology, EXPLORER Molecular Imaging Center, University of California, Davis, 3195 Folsom Blvd, Davis, Sacramento, CA 95816 USA
| | - Lorenzo Nardo
- grid.27860.3b0000 0004 1936 9684Department of Radiology, EXPLORER Molecular Imaging Center, University of California, Davis, 3195 Folsom Blvd, Davis, Sacramento, CA 95816 USA
| |
Collapse
|
8
|
Camoni L, Albano D. Contrast-enhanced 18F-FDG PET/CT to differentiate primary cardiac lymphoma from primary cardiac angiosarcoma. J Nucl Cardiol 2022; 29:2390-2392. [PMID: 34414553 DOI: 10.1007/s12350-021-02767-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Luca Camoni
- Nuclear Medicine, University of Brescia, Brescia, Italy.
| | | |
Collapse
|
9
|
Promise of hypoxia-targeted tracers in metastatic lymph node imaging. Eur J Nucl Med Mol Imaging 2022; 49:4293-4297. [PMID: 35994060 DOI: 10.1007/s00259-022-05938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Sari H, Teimoorisichani M, Mingels C, Alberts I, Panin V, Bharkhada D, Xue S, Prenosil G, Shi K, Conti M, Rominger A. Quantitative evaluation of a deep learning-based framework to generate whole-body attenuation maps using LSO background radiation in long axial FOV PET scanners. Eur J Nucl Med Mol Imaging 2022; 49:4490-4502. [PMID: 35852557 PMCID: PMC9606046 DOI: 10.1007/s00259-022-05909-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Purpose Attenuation correction is a critically important step in data correction in positron emission tomography (PET) image formation. The current standard method involves conversion of Hounsfield units from a computed tomography (CT) image to construct attenuation maps (µ-maps) at 511 keV. In this work, the increased sensitivity of long axial field-of-view (LAFOV) PET scanners was exploited to develop and evaluate a deep learning (DL) and joint reconstruction-based method to generate µ-maps utilizing background radiation from lutetium-based (LSO) scintillators. Methods Data from 18 subjects were used to train convolutional neural networks to enhance initial µ-maps generated using joint activity and attenuation reconstruction algorithm (MLACF) with transmission data from LSO background radiation acquired before and after the administration of 18F-fluorodeoxyglucose (18F-FDG) (µ-mapMLACF-PRE and µ-mapMLACF-POST respectively). The deep learning-enhanced µ-maps (µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST) were compared against MLACF-derived and CT-based maps (µ-mapCT). The performance of the method was also evaluated by assessing PET images reconstructed using each µ-map and computing volume-of-interest based standard uptake value measurements and percentage relative mean error (rME) and relative mean absolute error (rMAE) relative to CT-based method. Results No statistically significant difference was observed in rME values for µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST both in fat-based and water-based soft tissue as well as bones, suggesting that presence of the radiopharmaceutical activity in the body had negligible effects on the resulting µ-maps. The rMAE values µ-mapDL-MLACF-POST were reduced by a factor of 3.3 in average compared to the rMAE of µ-mapMLACF-POST. Similarly, the average rMAE values of PET images reconstructed using µ-mapDL-MLACF-POST (PETDL-MLACF-POST) were 2.6 times smaller than the average rMAE values of PET images reconstructed using µ-mapMLACF-POST. The mean absolute errors in SUV values of PETDL-MLACF-POST compared to PETCT were less than 5% in healthy organs, less than 7% in brain grey matter and 4.3% for all tumours combined. Conclusion We describe a deep learning-based method to accurately generate µ-maps from PET emission data and LSO background radiation, enabling CT-free attenuation and scatter correction in LAFOV PET scanners. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05909-3.
Collapse
Affiliation(s)
- Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.
| | | | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | | | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - George Prenosil
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
11
|
Tanaka A, Sekine T, Ter Voert EEGW, Zeimpekis KG, Delso G, de Galiza Barbosa F, Warnock G, Kumita SI, Veit Haibach P, Huellner M. Reproducibility of Standardized Uptake Values Including Volume Metrics Between TOF-PET-MR and TOF-PET-CT. Front Med (Lausanne) 2022; 9:796085. [PMID: 35308500 PMCID: PMC8924656 DOI: 10.3389/fmed.2022.796085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the reproducibility of tracer uptake measurements, including volume metrics, such as metabolic tumor volume (MTV) and tumor lesion glycolysis (TLG) obtained by TOF-PET-CT and TOF-PET-MR. Materials and Methods Eighty consecutive patients with different oncologic diagnoses underwent TOF-PET-CT (Discovery 690; GE Healthcare) and TOF-PET-MR (SIGNA PET-MR; GE Healthcare) on the same day with single dose−18F-FDG injection. The scan order, PET-CT following or followed by PET-MR, was randomly assigned. A spherical volume of interest (VOI) of 30 mm was placed on the liver in accordance with the PERCIST criteria. For liver, the maximum and mean standard uptake value for body weight (SUV) and lean body mass (SUL) were obtained. For tumor delineation, VOI with a threshold of 40 and 50% of SUVmax was used (VOI40 and VOI50). The SUVmax, SUVmean, SUVpeak, MTV and TLG were calculated. The measurements were compared between the two scanners. Results In total, 80 tumor lesions from 35 patients were evaluated. There was no statistical difference observed in liver regions, whereas in tumor lesions, SUVmax, SUV mean, and SUVpeak of PET-MR were significantly underestimated (p < 0.001) in both VOI40 and VOI50. Among volume metrics, there was no statistical difference observed except TLG on VOI50 (p = 0.03). Correlation between PET-CT and PET-MR of each metrics were calculated. There was a moderate correlation of the liver SUV and SUL metrics (r = 0.63–0.78). In tumor lesions, SUVmax and SUVmean had a stronger correlation with underestimation in PET-MR on VOI 40 (SUVmax and SUVmean; r = 0.92 and 0.91 with slope = 0.71 and 0.72, respectively). In the evaluation of MTV and TLG, the stronger correlations were observed both on VOI40 (MTV and TLG; r = 0.75 and 0.92) and VOI50 (MTV and TLG; r = 0.88 and 0.95) between PET-CT and PET-MR. Conclusion PET metrics on TOF-PET-MR showed a good correlation with that of TOF-PET-CT. SUVmax and SUVpeak of tumor lesions were underestimated by 16% on PET-MRI. MTV with % threshold can be regarded as identical volumetric markers for both TOF-PET-CT and TOF-PET-MR.
Collapse
Affiliation(s)
- Aruki Tanaka
- Department of Radiology, Nippon Medical School Hospital, Tokyo, Japan
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Hospital, Tokyo, Japan.,Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan.,Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Edwin E G W Ter Voert
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Konstantinos G Zeimpekis
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Felipe de Galiza Barbosa
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Geoffrey Warnock
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,PMOD Technologies Ltd., Zurich, Switzerland
| | | | - Patrick Veit Haibach
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Martin Huellner
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Lai YC, Wu KC, Tseng NC, Chen YJ, Chang CJ, Yen KY, Kao CH. Differentiation Between Malignant and Benign Pulmonary Nodules by Using Automated Three-Dimensional High-Resolution Representation Learning With Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography. Front Med (Lausanne) 2022; 9:773041. [PMID: 35372415 PMCID: PMC8971840 DOI: 10.3389/fmed.2022.773041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background The investigation of incidental pulmonary nodules has rapidly become one of the main indications for 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET), currently combined with computed tomography (PET-CT). There is also a growing trend to use artificial Intelligence for optimization and interpretation of PET-CT Images. Therefore, we proposed a novel deep learning model that aided in the automatic differentiation between malignant and benign pulmonary nodules on FDG PET-CT. Methods In total, 112 participants with pulmonary nodules who underwent FDG PET-CT before surgery were enrolled retrospectively. We designed a novel deep learning three-dimensional (3D) high-resolution representation learning (HRRL) model for the automated classification of pulmonary nodules based on FDG PET-CT images without manual annotation by experts. For the images to be localized more precisely, we defined the territories of the lungs through a novel artificial intelligence-driven image-processing algorithm, instead of the conventional segmentation method, without the aid of an expert; this algorithm is based on deep HRRL, which is used to perform high-resolution classification. In addition, the 2D model was converted to a 3D model. Results All pulmonary lesions were confirmed through pathological studies (79 malignant and 33 benign). We evaluated its diagnostic performance in the differentiation of malignant and benign nodules. The area under the receiver operating characteristic curve (AUC) of the deep learning model was used to indicate classification performance in an evaluation using fivefold cross-validation. The nodule-based prediction performance of the model had an AUC, sensitivity, specificity, and accuracy of 78.1, 89.9, 54.5, and 79.4%, respectively. Conclusion Our results suggest that a deep learning algorithm using HRRL without manual annotation from experts might aid in the classification of pulmonary nodules discovered through clinical FDG PET-CT images.
Collapse
Affiliation(s)
- Yung-Chi Lai
- Department of Nuclear Medicine, PET Center, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Chen Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
| | - Neng-Chuan Tseng
- Division of Nuclear Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yi-Jin Chen
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Jen Chang
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Yang Yen
- Department of Nuclear Medicine, PET Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Department of Nuclear Medicine, PET Center, China Medical University Hospital, Taichung, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- *Correspondence: Chia-Hung Kao, ,
| |
Collapse
|
13
|
Bozovic G, Schaefer-Prokop CM, Bankier AA. Pulmonary functional imaging (PFI): A historical review and perspective. Acta Radiol 2022; 64:90-100. [PMID: 35118881 DOI: 10.1177/02841851221076324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFI Pulmonary Functional Imaging (PFI) refers to visualization and measurement of ventilation, perfusion, gas flow and exchange as well as biomechanics. In this review, we will highlight the historical development of PFI, describing recent advances and listing the various techniques for PFI offered per modality. Challenges PFI is facing and requirements for PFI from a clinical point of view will be pointed out. Hereby the review is meant as an introduction to PFI.
Collapse
Affiliation(s)
- Gracijela Bozovic
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cornelia M Schaefer-Prokop
- Department of Radiology, Meander Medical Centre, TZ Amersfoort, The Netherlands
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander A Bankier
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
14
|
Hansen JA, Naghavi-Behzad M, Gerke O, Baun C, Falch K, Duvnjak S, Alavi A, Høilund-Carlsen PF, Hildebrandt MG. Diagnosis of bone metastases in breast cancer: Lesion-based sensitivity of dual-time-point FDG-PET/CT compared to low-dose CT and bone scintigraphy. PLoS One 2021; 16:e0260066. [PMID: 34793550 PMCID: PMC8601566 DOI: 10.1371/journal.pone.0260066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
We compared lesion-based sensitivity of dual-time-point FDG-PET/CT, bone scintigraphy (BS), and low-dose CT (LDCT) for detection of various types of bone metastases in patients with metastatic breast cancer. Prospectively, we included 18 patients with recurrent breast cancer who underwent dual-time-point FDG-PET/CT with LDCT and BS within a median time interval of three days. A total of 488 bone lesions were detected on any of the modalities and were categorized by the LDCT into osteolytic, osteosclerotic, mixed morphologic, and CT-negative lesions. Lesion-based sensitivity was 98.2% (95.4-99.3) and 98.8% (96.8-99.5) for early and delayed FDG-PET/CT, respectively, compared with 79.9% (51.1-93.8) for LDCT, 76.0% (36.3-94.6) for BS, and 98.6% (95.4-99.6) for the combined BS+LDCT. BS detected only 51.2% of osteolytic lesions which was significantly lower than other metastatic types. SUVs were significantly higher for all lesion types on delayed scans than on early scans (P<0.0001). Osteolytic and mixed-type lesions had higher SUVs than osteosclerotic and CT-negative metastases at both time-points. FDG-PET/CT had significantly higher lesion-based sensitivity than LDCT and BS, while a combination of the two yielded sensitivity comparable to that of FDG-PET/CT. Therefore, FDG-PET/CT could be considered as a sensitive one-stop-shop in case of clinical suspicion of bone metastases in breast cancer patients.
Collapse
Affiliation(s)
- Jeanette Ansholm Hansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark
| | - Mohammad Naghavi-Behzad
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- * E-mail:
| | - Oke Gerke
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Kirsten Falch
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sandra Duvnjak
- Radiology Department–Breast Imaging, Herlev Gentofte Hospital, Copenhagen, Denmark
- Mammography Screening Center in the Capital Region, Herlev Gentofte Hospital, Copenhagen, Denmark
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Poul Flemming Høilund-Carlsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
- Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
15
|
Pucar D, Liu C. Standardization and quantification is a key to the future of atherosclerosis FDG PET/CT imaging. J Nucl Cardiol 2021; 28:1360-1363. [PMID: 31591696 DOI: 10.1007/s12350-019-01905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Darko Pucar
- Department of Radiology & Biomedical Imaging; Section of Nuclear Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06511, USA.
| | - Chi Liu
- Department of Radiology & Biomedical Imaging, Biomedical Engineering, Yale University, P.O. Box 208048, 801 Howard Ave, New Haven, CT, 06520, USA
| |
Collapse
|
16
|
Pijl JP, Nienhuis PH, Kwee TC, Glaudemans AWJM, Slart RHJA, Gormsen LC. Limitations and Pitfalls of FDG-PET/CT in Infection and Inflammation. Semin Nucl Med 2021; 51:633-645. [PMID: 34246448 DOI: 10.1053/j.semnuclmed.2021.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
White blood cells activated by either a pathogen or as part of a systemic inflammatory disease are characterized by high energy consumption and are therefore taking up the glucose analogue PET tracer FDG avidly. It is therefore not surprising that a steadily growing body of research and clinical reports now supports the use of FDG PET/CT to diagnose a wide range of patients with non-oncological diseases. However, using FDG PET/CT in patients with infectious or inflammatory diseases has some limitations and potential pitfalls that are not necessarily as pronounced in oncology FDG PET/CT. Some of these limitations are of a general nature and related to the laborious acquisition of PET images in patients that are often acutely ill, whereas others are more disease-specific and related to the particular metabolism in some of the organs most commonly affected by infections or inflammatory disease. Both inflammatory and infectious diseases are characterized by a more diffuse and less pathognomonic pattern of FDG uptake than oncology FDG PET/CT and the affected organs also typically have some physiological FDG uptake. In addition, patients referred to PET/CT with suspected infection or inflammation are rarely treatment naïve and may have received varying doses of antibiotics, corticosteroids or other immune-modulating drugs at the time of their examination. Combined, this results in a higher rate of false positive FDG findings and also in some cases a lower sensitivity to detect active disease. In this review, we therefore discuss the limitations and pitfalls of FDG PET/CT to diagnose infections and inflammation taking these issues into consideration. Our review encompasses the most commonly encountered inflammatory and infectious diseases in head and neck, in the cardiovascular system, in the abdominal organs and in the musculoskeletal system. Finally, new developments in the field of PET/CT that may help overcome some of these limitations are briefly highlighted.
Collapse
Affiliation(s)
- Jordy P Pijl
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Pieter H Nienhuis
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Thomas C Kwee
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Andor W J M Glaudemans
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen
| | - Riemer H J A Slart
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen; Faculty of Science and Technology, Department of Biomedical Photonic Imaging, University of Twente, Enschede
| | - Lars C Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus N.
| |
Collapse
|
17
|
Hwang JP, Moon JH, Kim HK, Lee MH, Lim CH, Park SB, Yoon JK, Park JM. Prognostic value of metabolic parameters measured by pretreatment dual-time-point 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with intrahepatic or perihilar cholangiocarcinoma: A STROBE study. Medicine (Baltimore) 2021; 100:e26015. [PMID: 34032720 PMCID: PMC8154415 DOI: 10.1097/md.0000000000026015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/30/2021] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to determine the glucose metabolism at delay phase measured by pretreatment dual-time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/ computed tomography (CT) provides prognostic information independent of well-known prognostic factors in patients with intrahepatic or perihilar cholangiocarcinoma (ICC or PCC).From July 2012 to December 2017, 55 patients (men 27, women 28, mean age 68 ± 11 years) with pathologically proven ICC or PCC were enrolled in this retrospective study. The dual-time-point 18F-FDG PET/CT as part of a staging workup was performed in all patients. The patient's data includes age, sex, serum CA19-9, presence of LN or distant metastasis, early SUVmax (early maximum standardized uptake value [eSUV]), delay SUVmax (delay maximum standardized uptake value [dSUV]), retention index of SUVmax (percent change of maximum standardized uptake values [ΔSUV]), neutrophil to lymphocyte ratio (NLR) and histopathology including pCEA, p53, Ki-67 index. The analysis of the relationship between metabolic parameters and survival was done using the Kaplan-Meier curve and Cox proportional hazards regression model.Median survival for all patients was 357 days. Median early and delay SUVmax was 5.2 (range: 2.0-21.4) and 6.5 (range 2.7-24.5), respectively. The overall survival was found to be significantly related to eSUV, dSUV, ΔSUV, age, serum CA19-9 and NLR in univariate analysis. In multivariate analysis, dSUV (P = .014, 95%CI; 1.30-10.7, HR 3.74) and ΔSUVmax (P = .037, 95%CI; 1.05-6.12, HR 2.5) were independent factors of overall survival. Kaplan-Meier curve analysis clearly showed the significant difference of overall survival between 2 groups (high eSUV, low eSUV + high ΔSUV vs low eSUV and ΔSUV, P < .001) among the comparisons of the SUV parameters on FDG PET. In the receiver operating characteristic analysis using combinations of the SUV parameters, the 2 groups [eSUV + ΔSUV (P = .0001, area under the curve [AUC] 0.68) and dSUV + ΔSUV (P = .0002, AUC 0.71)] showed significantly larger AUC than the other groups applying eSUV or dSUV alone (AUC 0.61 and AUC 0.68).dSUV and ΔSUV on pretreatment dual-time-point 18F-FDG PET/CT can be useful parameters in the prediction of survival in patients with ICC or PCC.
Collapse
Affiliation(s)
| | | | | | - Min Hee Lee
- Departments of Radiology, Soonchunhyang University Hospital Bucheon, Bucheon
| | - Chae Hong Lim
- Departments of Nuclear Medicine, Soonchunhyang University Hospital Seoul, Seoul
| | - Soo Bin Park
- Departments of Nuclear Medicine, Soonchunhyang University Hospital Seoul, Seoul
| | - Joon-Kee Yoon
- Department of Nuclear Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | | |
Collapse
|
18
|
Borja AJ, Hancin EC, Zhang V, Koa B, Bhattaru A, Rojulpote C, Detchou DK, Aly M, Kaghazchi F, Gerke O, Patil S, Gonuguntla K, Werner TJ, Revheim ME, Høilund-Carlsen PF, Alavi A. Global brain glucose uptake on 18F-FDG-PET/CT is influenced by chronic cardiovascular risk. Nucl Med Commun 2021; 42:444-450. [PMID: 33323870 DOI: 10.1097/mnm.0000000000001349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The goal of this study was to assess global cerebral glucose uptake in subjects with known cardiovascular risk factors by employing a quantitative 18F-fluorodeoxyglucose-PET/computed tomography (FDG-PET/CT) technique. We hypothesized that at-risk subjects would demonstrate decreased global brain glucose uptake compared to healthy controls. METHODS We compared 35 healthy male controls and 14 male subjects at increased risk for cardiovascular disease (CVD) as assessed by the systematic coronary risk evaluation (SCORE) tool. All subjects were grouped into two age-matched cohorts: younger (<50 years) and older (≥50 years). The global standardized uptake value mean (Avg SUVmean) was measured by mapping regions of interest of the entire brain across the supratentorial structures and cerebellum. Wilcoxon's rank-sum test was used to assess the differences in Avg SUVmean between controls and at-risk subjects. RESULTS Younger subjects demonstrated higher brain Avg SUVmean than older subjects. In addition, in both age strata, the 10-year risk for fatal CVD according to the SCORE tool was significantly greater in the at-risk groups than in healthy controls (younger: P = 0.0304; older: P = 0.0436). In the younger cohort, at-risk subjects demonstrated significantly lower brain Avg SUVmean than healthy controls (P = 0.0355). In the older cohort, at-risk subjects similarly had lower Avg SUVmean than controls (P = 0.0343). CONCLUSIONS Global brain glucose uptake appears to be influenced by chronic cardiovascular risk factors. Therefore, FDG-PET/CT may play a role in determining the importance of CVD on brain function and has potential for monitoring the efficacy of various therapeutic interventions.
Collapse
Affiliation(s)
- Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania
- Perelman School of Medicine, University of Pennsylvania
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania
- Lewis Katz School of Medicine, Temple University
| | - Vincent Zhang
- Department of Radiology, Hospital of the University of Pennsylvania
| | - Benjamin Koa
- Department of Radiology, Hospital of the University of Pennsylvania
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Abhijit Bhattaru
- Department of Radiology, Hospital of the University of Pennsylvania
| | | | - Donald K Detchou
- Department of Radiology, Hospital of the University of Pennsylvania
- Perelman School of Medicine, University of Pennsylvania
| | - Mahmoud Aly
- Department of Radiology, Hospital of the University of Pennsylvania
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital
- Department of Clinical Research, Research Unit of Clinical Physiology and Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Shivaraj Patil
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Medicine, University of Connecticut, Hartford, Connecticut, USA
| | - Karthik Gonuguntla
- Department of Radiology, Hospital of the University of Pennsylvania
- Department of Medicine, University of Connecticut, Hartford, Connecticut, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital
- Department of Clinical Research, Research Unit of Clinical Physiology and Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania
| |
Collapse
|
19
|
Kim SH, Song BI, Kim HW, Won KS. Comparison of Image Quality and Semi-quantitative Measurements with Digital PET/CT and Standard PET/CT from Different Vendors. Nucl Med Mol Imaging 2020; 54:233-240. [PMID: 33088352 DOI: 10.1007/s13139-020-00661-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose This study aimed to evaluate the concordance and equivalence of results between the newly acquired digital PET/CT(dPET) and the standard PET/CT (sPET) to investigate possible differences in visual and semi-quantitative analyses. Methods A total of 30 participants were enrolled and underwent a single 18F-FDG injection followed by dual PET/CT scans, by a dPET scan, and immediately after by the sPET scan or vice versa. Two readers reviewed overall image quality using a 5-point scale and counted the number of suggestive 18F-FDG avid lesions. The SUV values were measured in the background organs and in hypermetabolic target lesions. Additionally, we objectively evaluated image quality using the liver signal-to-noise ratio (SNR). Results The dPET identified 4 additional 18F-FDG avid lesions in 3 of 30 participants with improved visual image quality. The standard deviations of SUV of the background organs were significantly lower with DigitalPET than with sPET, and dPET could acquire images with better SNR (11.13 ± 2.01 vs. 8.71 ± 1.32, P < 0.001). The reliability of SUV values between scanners showed excellent agreement. Bland-Altman plot analysis of 81 lesions showed an acceptable agreement between scanners for most of the SUVmax and SUVpeak values. No relationship between the SUV values and time delays of dual PET/CT acquisition was found. Conclusions The dPET provides improved image quality and lesion detectability than the sPET. The semi-quantitative values of the two PET/CT systems of different vendors are comparable. This pilot study will be an important basis for possible interchangeable use of either system in clinical practice.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Department of Nuclear Medicine, Keimyung University Daegu Dongsan Hospital, Daegu, South Korea.,Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 Republic of Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 Republic of Korea
| |
Collapse
|
20
|
Pietrzak AK, Kazmierska J, Marszalek A, Golusinski P, Heydrych A, Wiechec K, Cholewinski W. Dual-time-point PET/CT study protocol can improve the larynx cancer diagnosis. Rep Pract Oncol Radiother 2020; 25:533-538. [PMID: 32477019 DOI: 10.1016/j.rpor.2020.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023] Open
Abstract
Aim To evaluate whether the sequential dual-time-point fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (DTP 18F-FDG PET/CT) study improves the differential diagnosis in the larynx. Background In some cases, the clinical and metabolic similarity of laryngitis and larynx cancer make differential diagnostics difficult when performing standard 18F-FDG PET/CT examinations; therefore, an additional study protocol performance seems to be of reasonable value. Materials and methods 90 patients (mean age: 61 ± 11 years, range: 41-84 years): 23 women (mean age: 63 ± 10 years, range: 51-84 years) and 67 men (mean age: 61 ± 11 years, range: 41-80 years) underwent delayed 18F-FDG PET/CT examinations at 60 and 90 min post intravenous injection (p.i.) of the radiopharmaceutical 18F-FDG. We compared the metabolic activity of 90 structures divided into following groups: normal larynx (30 patients), laryngitis (30 lesions) and larynx cancer (30 tumors) with maximal and mean standardized uptake value (SUVmax, SUVmean) and the retention index (RI-SUVmax). We used the receiver operating characteristics (ROC) curve to evaluate the SUVmax cut-off values. Results The SUVmax cut-off value at 60 and 90 min p.i. of 2.3 (sensitivity/specificity: 96.4%/100%) and 2.4 (94.2%/100%), respectively, distinguished normal and abnormal metabolic activity in the larynx. When laryngitis and tumors were compared, the SUVmax cut-off values obtained after initial and delayed imaging were 3.6 (87.5%/52.0%) and 6.1 (58.3%/84%), respectively. The RI-SUVmax of 1.3% (71.4%/88.1%) suggested abnormality, while RI-SUVmax of 6.6%, malignant etiology (75.0%/80.0%). Conclusions In this study, the sequential DTP scanning protocol improved the sensitivity and specificity of the PET/CT method in terms of differential diagnosis within the larynx.
Collapse
Affiliation(s)
- Agata Karolina Pietrzak
- Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland.,Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Joanna Kazmierska
- Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland
| | - Andrzej Marszalek
- Poznan University of Medical Sciences and the Greater Poland Cancer Center, Garbary 15, 61-866 Poznan, Poland
| | - Pawel Golusinski
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Poland
| | - Aleksandra Heydrych
- Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland.,Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Katarzyna Wiechec
- Department of Clinical Psychology, University of Medical Sciences, Poznan, Poland
| | - Witold Cholewinski
- Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland.,Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| |
Collapse
|
21
|
Pietrzak AK, Marszalek A, Kazmierska J, Kunikowska J, Golusinski P, Suchorska WM, Michalak M, Cholewinski W. Sequential delayed [18 F]FDG PET/CT examinations in the pharynx. Sci Rep 2020; 10:2910. [PMID: 32076053 PMCID: PMC7031226 DOI: 10.1038/s41598-020-59832-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the usefulness of the biphasic 2-deoxy-2-[18 F]fluoro-D-glucose positron emission tomography/computed tomography ([18 F]FDG PET/CT) examinations in terms of distinguishing benign and malignant lesions within the pharynx. 139 patients underwent sequential biphasic [18 F]FDG PET/CT examinations at 60 and 90 minutes (min) post intravenous injection (p.i.) of the [18 F]FDG. We evaluated the metabolic activity of 93 malignant lesions and 59 benign findings within pharynx as well as 70 normal blood vessels. We evaluated the maximal and mean standardized uptake value (SUVmax, SUVmean) and the retention index (RI-SUVmax). We used the receiver operating characteristics (ROC) analysis to obtain the prognostic metabolic indices cut-off which may differentiate between benign and malignant lesions. The SUVmax value cut-off at 60 and 90 min p.i. differentiating between normal and abnormal metabolic activity in the pharynx was 1.9 and 2.0, respectively. When compared benign and malignant lesions, the SUVmax on initial and delayed scans were 3.1 and 3.6, respectively. In this material, the increase of the SUVmax value over time of 1.7% suggested abnormality, while RI-SUVmax of 5.7% indicated malignant etiology. The biphasic [18 F]FDG PET/CT study protocol is useful in better stratification of normal and abnormal glucose metabolism activity in the pharynx.
Collapse
Affiliation(s)
- Agata Karolina Pietrzak
- Nuclear Medicine Department, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland. .,Electroradiology Department, Poznan University of Medical Sciences, Garbary 15, 61-866, Poznan, Poland.
| | - Andrzej Marszalek
- Chair of Oncologic Pathology and Prophylaxis Poznan University of Medical Sciences and the Greater Poland Cancer Center, Garbary 15, 61-866, Poznan, Poland
| | - Joanna Kazmierska
- Electroradiology Department, Poznan University of Medical Sciences, Garbary 15, 61-866, Poznan, Poland
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland. Banacha 1a, block E, 02-097, Warsaw, Poland
| | - Pawel Golusinski
- Chair, Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Zyty 28, 65-046, Zielona Gora, Poland
| | - Wiktoria Maria Suchorska
- Electroradiology Department, Poznan University of Medical Sciences, Garbary 15, 61-866, Poznan, Poland.,Radiobiology Department, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
| | - Marcin Michalak
- Gynecologic Oncology Department Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland
| | - Witold Cholewinski
- Nuclear Medicine Department, Greater Poland Cancer Centre, Garbary 15, 61-866, Poznan, Poland.,Electroradiology Department, Poznan University of Medical Sciences, Garbary 15, 61-866, Poznan, Poland
| |
Collapse
|
22
|
Evolving Roles of Fluorodeoxyglucose and Sodium Fluoride in Assessment of Multiple Myeloma Patients. PET Clin 2019; 14:341-352. [DOI: 10.1016/j.cpet.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Wang R, Wang X, Ji B, Guan Q, Chen B. Primary Common Iliac Artery Angiosarcoma With Multiple Bone Metastases Revealed by Dual-Time Point FDG PET/CT Imaging. Clin Nucl Med 2019; 44:232-233. [DOI: 10.1097/rlu.0000000000002435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Raynor WY, Al-Zaghal A, Zadeh MZ, Seraj SM, Alavi A. Metastatic Seeding Attacks Bone Marrow, Not Bone: Rectifying Ongoing Misconceptions. PET Clin 2019; 14:135-144. [PMID: 30420215 DOI: 10.1016/j.cpet.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional modalities, such as bone scintigraphy, are commonly used to assess osseous abnormalities in skeletal metastasis. Fluorine-18 (18F)-sodium fluoride (NaF) PET similarly portrays osteoblastic activity but with improved spatial and contrast resolution and more accurate anatomic localization. However, these modalities rely on indirect evidence for tumor activity. PET imaging with 18F-fluorodeoxyglucose (FDG) and tumor-specific tracers may have an increased role by directly portraying the metabolic activity of cancer cells, which are often seeded in bone marrow and cause osseous disease after initial latency. This article describes the utility and limitations of these modalities in assessing skeletal metastases.
Collapse
Affiliation(s)
- William Y Raynor
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Radiology, Drexel University College of Medicine, 230 N Broad Street, Philadelphia, PA 19102, USA
| | - Abdullah Al-Zaghal
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mahdi Zirakchian Zadeh
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Siavash Mehdizadeh Seraj
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Suboptimal Sensitivity and Specificity of PET and Other Gross Imaging Techniques in Assessing Lymph Node Metastasis. Mol Imaging Biol 2019; 21:808-811. [DOI: 10.1007/s11307-018-01311-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Al-Zaghal A, Raynor WY, Seraj SM, Werner TJ, Alavi A. FDG-PET imaging to detect and characterize underlying causes of fever of unknown origin: an unavoidable path for the foreseeable future. Eur J Nucl Med Mol Imaging 2018; 46:2-7. [DOI: 10.1007/s00259-018-4164-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Pietrzak AK, Kazmierska J, Marszalek A, Cholewinski W. Evaluation of physiologic and abnormal glucose uptake in palatine tonsils: differential diagnostics with sequential dual-time-point 2-deoxy-2-[18F]FDG PET/CT. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 64:299-306. [PMID: 30221906 DOI: 10.23736/s1824-4785.18.03065-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of this article was to evaluate the usefulness of sequential dual-time-point 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (DTP [18F]FDG PET/CT) in distinguishing physiologic, inflammatory and malignant palatine tonsils as difficult to differentiate in the oncological practice. METHODS A total of 90 patients before the treatment underwent sequential DTP [18F]FDG PET/CT examinations. We analyzed 104 structures in 90 patients: 31 physiologic tonsils, 28 histopathologically confirmed inflammatory tonsils of non-specified origin, 31 histopathologically confirmed palatine tonsils cancer and 14 non-malignant contralateral tonsils in patients with histopathologically confirmed unilateral palatine tonsil malignancy. Patients underwent sequential [18F]FDG PET/CT examinations at 60 and 90 minutes post-injection of the [18F]FDG. We analyzed the SUVmax and SUVmean values at 60 and 90 minutes post-injection changes over time and the Retention Index (RI-SUVmax). To find the predictive SUV value and the RI cut-off between physiology, inflammatory and malignancy, we used the ROC analysis. RESULTS The average SUVmax values at 60 and 90minutes post-injection within physiologic palatine tonsils were 1.36±0.26 and 1.31±0.26, respectively, P>0.05. The average SUVmax values at 60 and 90 minutes post-injection within inflammatory and malignant tonsils were 3.74±1.45, 3.80±1.47 (P>0.05) and 5.19±2.19, 5.81±2.50 (P<0.05), respectively. The RI-SUVmax fluctuation over time were 5±28% within physiologic, -4±11% within contralateral non-malignant tonsils in patients with one tonsil involved, 2±11% within inflammatory and 13±13% within malignant tonsils. CONCLUSIONS The sequential dual-time-point [18F]FDG PET/CT examinations may increase the sensitivity and the specificity of the PET/CT method in differential palatine tonsils diagnosis.
Collapse
Affiliation(s)
- Agata K Pietrzak
- Department of Nuclear Medicine, Greater Poland Cancer Center, Poznan, Poland -
| | - Joanna Kazmierska
- Department of Electroradiology, University of Medical Science, Poznan, Poland
| | - Andrzej Marszalek
- Poznan University of Medical Sciences, Greater Poland Cancer Center, Poznan, Poland
| | - Witold Cholewinski
- Department of Electroradiology, University of Medical Science, Poznan, Poland
| |
Collapse
|
28
|
Kwiecinski J, Berman DS, Lee SE, Dey D, Cadet S, Lassen ML, Germano G, Jansen MA, Dweck MR, Newby DE, Chang HJ, Yun M, Slomka PJ. Three-Hour Delayed Imaging Improves Assessment of Coronary 18F-Sodium Fluoride PET. J Nucl Med 2018; 60:530-535. [PMID: 30213848 DOI: 10.2967/jnumed.118.217885] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/05/2018] [Indexed: 01/26/2023] Open
Abstract
Coronary 18F-sodium fluoride (18F-NaF) PET identifies ruptured plaques in patients with recent myocardial infarction and localizes to atherosclerotic lesions with active calcification. Most studies to date have performed the PET acquisition 1 h after injection. Although qualitative and semiquantitative analysis is feasible with 1-h images, residual blood-pool activity often makes it difficult to discriminate plaques with 18F-NaF uptake from noise. We aimed to assess whether delayed PET performed 3 h after injection improves image quality and uptake measurements. Methods: Twenty patients (67 ± 7 y old, 55% male) with stable coronary artery disease underwent coronary CT angiography (CTA) and PET/CT both 1 h and 3 h after the injection of 266.2 ± 13.3 MBq of 18F-NaF. We compared the visual pattern of coronary uptake, maximal background (blood pool) activity, noise, SUVmax, corrected SUVmax (cSUVmax), and target-to-background (TBR) ratio in lesions defined by CTA on 1-h versus 3-h 18F-NaF PET. Results: On 1-h PET, 26 CTA lesions with 18F-NaF PET uptake were identified in 12 (60%) patients. On 3-h PET, we detected 18F-NaF PET uptake in 7 lesions that were not identified on 1-h PET. The median cSUVmax and TBRs of these lesions were 0.48 (interquartile range [IQR], 0.44-0.51) and 1.45 (IQR, 1.39-1.52), respectively, compared with -0.01 (IQR, -0.03-0.001) and 0.95 (IQR, 0.90-0.98), respectively, on 1-h PET (both P < 0.001). Across the entire cohort, 3-h PET SUVmax was similar to 1-h PET measurements (1.63 [IQR, 1.37-1.98] vs. 1.55 [IQR, 1.43-1.89], P = 0.30), and the background activity was lower (0.71 [IQR, 0.65-0.81] vs. 1.24 [IQR, 1.05-1.31], P < 0.001). On 3-h PET, TBR, cSUVmax, and noise were significantly higher (respectively: 2.30 [IQR, 1.70-2.68] vs. 1.28 [IQR, 0.98-1.56], P < 0.001; 0.38 [IQR, 0.27-0.70] vs. 0.90 [IQR, 0.64-1.17], P < 0.001; and 0.10 [IQR, 0.09-0.12] vs. 0.07 [IQR, 0.06-0.09], P = 0.02). Median cSUVmax and TBR increased by 92% (range, 33%-225%) and 80% (range, 20%-177%), respectively. Conclusion: Blood-pool activity decreases on delayed imaging, facilitating the assessment of 18F-NaF uptake in coronary plaques. Median TBR increases by 80%, leading to the detection of more plaques with significant uptake than are detected using the standard 1-h protocol. A greater than 1-h delay may improve the detection of 18F-NaF uptake in coronary artery plaques.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Cedars-Sinai Medical Center, Los Angeles, California.,BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom; and
| | | | - Sang-Eun Lee
- Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Damini Dey
- Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | - Guido Germano
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Maurits A Jansen
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David E Newby
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Hyuk-Jae Chang
- Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
29
|
Gómez Hernández MT, Rodríguez Alvarado I, Novoa N, Jiménez López MF. Immunoglobulin G4-Related Lung Disease as an Incidental Finding After Surgical Resection of Lung Cancer. Arch Bronconeumol 2018; 55:276-278. [PMID: 30122425 DOI: 10.1016/j.arbres.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Nuria Novoa
- Departamento de Cirugía Torácica, Hospital Universitario de Salamanca, Salamanca, España
| | | |
Collapse
|
30
|
Quantification of FDG-PET/CT with delayed imaging in patients with newly diagnosed recurrent breast cancer. BMC Med Imaging 2018; 18:11. [PMID: 29743027 PMCID: PMC5943993 DOI: 10.1186/s12880-018-0254-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Background Several studies have shown the advantage of delayed-time-point imaging with 18F-FDG-PET/CT to distinguish malignant from benign uptake. This may be relevant in cancer diseases with low metabolism, such as breast cancer. We aimed at examining the change in SUV from 1 h (1h) to 3 h (3h) time-point imaging in local and distant lesions in patients with recurrent breast cancer. Furthermore, we investigated the effect of partial volume correction in the different types of metastases, using semi-automatic quantitative software (ROVER™). Methods One-hundred and two patients with suspected breast cancer recurrence underwent whole-body PET/CT scans 1h and 3h after FDG injection. Semi-quantitative standardised uptake values (SUVmax, SUVmean) and partial volume corrected SUVmean (cSUVmean), were estimated in malignant lesions, and as reference in healthy liver tissue. The change in quantitative measures from 1h to 3h was calculated, and SUVmean was compared to cSUVmean. Metastases were verified by biopsy. Results Of the 102 included patients, 41 had verified recurrent disease with in median 15 lesions (range 1-70) amounting to a total of 337 malignant lesions included in the analysis. SUVmax of malignant lesions increased from 6.4 ± 3.4 [0.9-19.7] (mean ± SD, min and max) at 1h to 8.1 ± 4.4 [0.7-29.7] at 3h. SUVmax in breast, lung, lymph node and bone lesions increased significantly (p < 0.0001) between 1h and 3h by on average 25, 40, 33, and 27%, respectively. A similar pattern was observed with (uncorrected) SUVmean. Partial volume correction increased SUVmean significantly, by 63 and 71% at 1h and 3h imaging, respectively. The highest impact was in breast lesions at 3h, where cSUVmean increased by 87% compared to SUVmean. Conclusion SUVs increased from 1h to 3h in malignant lesions, SUVs of distant recurrence were in general about twice as high as those of local recurrence. Partial volume correction caused significant increases in these values. However, it is questionable, if these relatively modest quantitative advances of 3h imaging are sufficient to warrant delayed imaging in this patient group. Trial registration ClinicalTrails.gov NCT01552655. Registered 28 February 2012, partly retrospectively registered. Electronic supplementary material The online version of this article (10.1186/s12880-018-0254-8) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Shen CT, Qiu ZL, Sun ZK, Wei WJ, Song HJ, Zhang XY, Luo QY. Dual time-point 18F-FDG PET/CT imaging with multiple metabolic parameters in the differential diagnosis of malignancy-suspected bone/joint lesions. Oncotarget 2017; 8:71188-71196. [PMID: 29050355 PMCID: PMC5642630 DOI: 10.18632/oncotarget.17140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to evaluate the diagnostic potential of dual time-point18F-FDG PET/CT imaging with multiple metabolic parameters in malignancy-suspected bone/joint lesions. Fifty seven consecutive patients were recruited. PET parameters including SUVmax, SUVmean, metabolic tumor volume (MTV), total lesional glycolysis (TLG) and retention indexes (RIs) were obtained. Thirty five malignant and 22 benign lesions were confirmed by pathology. In all, 48 receiver operating characteristic (ROC) curves were derived. For SUVmax, MTV2.0, TLG2.0, MTV2.5 and TLG2.5, areas under the curves (AUCs) of early time-point imaging were similar to those of delayed time (P > 0.05), while higher than those of dual time (P< 0.05). For MTV50%max, TLG50%max, MTV75%max and TLG75%max, AUCs of early time-point imaging were lower than those of delayed time (P< 0.05), while similar to those of dual time (P> 0.05). In conclusion, dual time-point18F-FDG PET/CT imaging shows limited value in the differential diagnosis of malignancy-suspected bone/joint lesions. However, MTV and TLG at a fixed SUV threshold (50% or 75% of SUVmax) in delayed time-point imaging may provide better diagnostic accuracy
Collapse
Affiliation(s)
- Chen-Tian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Zhong-Ling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Zhen-Kui Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Wei-Jun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Hong-Jun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Xin-Yun Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| |
Collapse
|
32
|
Yoo J, Kim BS, Chung J, Yoon HJ. Percentage change of primary tumor on 18F-FDG PET/CT as a prognostic factor for invasive ductal breast cancer with axillary lymph node metastasis: Comparison with MRI. Medicine (Baltimore) 2017; 96:e7657. [PMID: 28767583 PMCID: PMC5626137 DOI: 10.1097/md.0000000000007657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We evaluated the prognostic value of quantitative parameters using dual time point (DTP) F-FDG PET/CT (PET/CT) in invasive ductal breast cancer (IDC) with metastatic axillary lymph nodes (ALN) as compared with dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) MRI.Seventy patients with IDC and metastatic ALN were retrospectively registered. Static PET parameters including maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG) of primary tumor, SUVmax of ALN (SUVALN), and percentage changes (Δ%) in those parameters were measured with DTP PET/CT. From DCE MRI, peak enhancement value, total tumor angio volume, and proportions of kinetic curve types on delayed-phases were investigated. The average apparent diffusion coefficient (ADCavg) was estimated on DWI. To demonstrate the prognostic value of quantitative imaging parameters for recurrence-free survival (RFS), univariate and multivariate analyses were performed using those parameters and clinicohistologic variables.All static PET parameters, %ΔSUVmax, %ΔMTV, and %ΔSUVALN on DTP PET/CT and ADCavg on DWI were significantly predictive for disease recurrence. Of clinicohistologic variables, pathologic tumor (pT) diameter, pathologic ALN stage, tumor grade, and hormonal status also were significantly prognostic. After multivariate analysis, %ΔSUVmax > 25.05 (P = .043), ADCavg ≤ 1016.55 (P = .020), pT diameter > 3 cm (P = .001), and ER negative status (P = .002) were independent prognostic factors for poor outcome.Only %ΔSUVmax of the primary tumor on PET/CT together with ADCavg, pT diameter, and ER status was an independent prognostic factor for predicting relapse in IDC with metastatic ALN. Percentage change of primary tumor on preoperative PET/CT may be a valuable imaging marker for selecting IDC patients that require adjunct treatment to prevent relapse.
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, Ewha Womans University School of Medicine
- Sungkyunkwan University School of Medicine
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University School of Medicine
| | - Jin Chung
- Department of Radiology, Ewha Womans University, School of Medicine, Seoul, South Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University School of Medicine
| |
Collapse
|
33
|
Initial Experience With Simultaneous 18F-FDG PET/MRI in the Evaluation of Cardiac Sarcoidosis and Myocarditis. Clin Nucl Med 2017; 42:e328-e334. [DOI: 10.1097/rlu.0000000000001669] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
18F-FDG silicon photomultiplier PET/CT: A pilot study comparing semi-quantitative measurements with standard PET/CT. PLoS One 2017; 12:e0178936. [PMID: 28582472 PMCID: PMC5459477 DOI: 10.1371/journal.pone.0178936] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose To evaluate if the new Discovery Molecular Insights (DMI) PET/CT scanner provides equivalent results compared to the standard of care PET/CT scanners (GE Discovery 600 or GE Discovery 690) used in our clinic and to explore any possible differences in semi-quantitative measurements. Methods The local Institutional Review Board approved the protocol and written informed consent was obtained from each patient. Between September and November 2016, 50 patients underwent a single 18F-FDG injection and two scans: the clinical standard PET/CT followed immediately by the DMI PET/CT scan. We measured SUVmax and SUVmean of different background organs and up to four lesions per patient from data acquired using both scanners. Results DMI PET/CT identified all the 107 lesions detected by standard PET/CT scanners, as well as additional 37 areas of focal increased 18F-FDG uptake. The SUVmax values for all 107 lesions ranged 1.2 to 14.6 (mean ± SD: 2.8 ± 2.8), higher on DMI PET/CT compared with standard of care PET/CT. The mean lesion:aortic arch SUVmax ratio and mean lesion:liver SUVmax ratio were 0.2–15.2 (mean ± SD: 3.2 ± 2.6) and 0.2–8.5 (mean ± SD: 1.9 ± 1.4) respectively, higher on DMI PET/CT than standard PET/CT. These differences were statistically significant (P value < 0.0001) and not correlated to the delay in acquisition of DMI PET data (P < 0.0001). Conclusions Our study shows high performance of the new DMI PET/CT scanner. This may have a significant role in diagnosing and staging disease, as well as for assessing and monitoring responses to therapies.
Collapse
|
35
|
Rodrigues RS, Bozza FA, Hanrahan CJ, Wang LM, Wu Q, Hoffman JM, Zimmerman GA, Morton KA. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nucl Med Biol 2017; 48:52-62. [PMID: 28237630 PMCID: PMC5380510 DOI: 10.1016/j.nucmedbio.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/10/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18F-fluoro-2-deoxyglucose (18F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14C-2DG uptake in activated neutrophils. METHODS Lung uptake of 18F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24h following the intraperitoneal injection of 10mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. RESULTS Significant uptake of 18F-FDG occurred by 2h following LPS, and progressively increased to 24h. Lung uptake of 18F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. CONCLUSION Systemic endotoxin-induced ALI results in very early and progressive uptake of 18F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: 18F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14C-2DG uptake in activated neutrophils. 18F-FDG PET may provide a potential mechanism for early diagnosis and therapeutic assessment of ALI/ARDS.
Collapse
Affiliation(s)
- Rosana S Rodrigues
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christopher J Hanrahan
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Li-Ming Wang
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qi Wu
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John M Hoffman
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Guy A Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
36
|
Predictive medicine: towards a multi-parametric imaging for a personal risk stratification. Eur J Nucl Med Mol Imaging 2017; 44:196-198. [PMID: 27678266 DOI: 10.1007/s00259-016-3522-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|