1
|
Her E, Han S, Ha SD. Development of poly(lactic acid)-based natural antimicrobial film incorporated with caprylic acid against Salmonella biofilm contamination in the meat industry. Int J Food Microbiol 2024; 425:110871. [PMID: 39178662 DOI: 10.1016/j.ijfoodmicro.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
Using a solvent-casting method, a poly(lactic acid) (PLA) film incorporated with caprylic acid (CA) was developed as an active packaging against Salmonella enterica ser. Typhimurium and S. enteritidis to reduce the risk of microbial contamination during distribution and storage of meat. According to the minimum inhibitory concentration (MIC) test results of the natural antimicrobial, CA was introduced at 0.6, 1.2, 2.4, and 4.8 % (v/v) into neat PLA. The biofilm inhibitory effect and antimicrobial efficacy of CA-PLA film against both Salmonella strains, as well as the intermolecular interactions and barrier properties of CA-PLA film, were evaluated. Biofilm formation was reduced to below the detection limit (<1.0 log CFU/cm2) for both S. typhimurium and S. enteritidis when co-cultured overnight with 4.8 % CA-PLA film. The 4.8 % CA-PLA film achieved maximum log reductions of 2.58 and 1.65 CFU/g for S. typhimurium and 2.59 and 1.76 CFU/g for S. enteritidis on inoculated chicken breast and beef stored at 25 °C overnight, respectively, without any quality (color and texture) losses. CA maintained its typical chemical structure in the film, as confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. Furthermore, film surface morphology observations by field emission scanning electron microscopy (FESEM) showed that CA-PLA film was smoother than neat PLA film. No significant (P > 0.05) changes were observed for water vapor permeability and oxygen permeability by the addition of CA into PLA film, suggesting that CA-PLA film is a promising strategy for active packaging to control Salmonella contamination in the meat industry.
Collapse
Affiliation(s)
- Eun Her
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sangha Han
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
2
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
3
|
dos Santos MR, Durval IJB, de Medeiros ADM, da Silva Júnior CJG, Converti A, Costa AFDS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods 2024; 13:3327. [PMID: 39456389 PMCID: PMC11507476 DOI: 10.3390/foods13203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact.
Collapse
Affiliation(s)
- Maryana Rogéria dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife 52171-900, Brazil;
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Italo José Batista Durval
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Alexandre D’Lamare Maia de Medeiros
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Cláudio José Galdino da Silva Júnior
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Attilio Converti
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, 15, 16145 Genoa, Italy
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Centro de Comunicação e Desing, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n—Nova Caruaru, Caruaru 50670-900, Brazil
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
| |
Collapse
|
4
|
Giordano FS, Reynolds A, Burgess CM, Foley L, Frias JM. Assessing baby leaf kale ( Brassica oleracea) waste production mitigation in the transition to sustainable packaging with the application of silicon through an integrative model of quality. Curr Res Food Sci 2024; 9:100881. [PMID: 39507070 PMCID: PMC11539109 DOI: 10.1016/j.crfs.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
This research builds a mathematical modelling to assess food waste production when designing sustainable packaging solutions integrated with an agricultural intervention in kale production. The model utilizes experimental data obtained from simulated retail and distribution storage conditions to assess the probability of the product to be found out of technical specification and becoming waste. The packaging design was made using a system of differential equations describing the gas exchanges inside the packaging. The waste was estimated fitting linear mixed effect models to the postharvest experimental data, accounting for the variability between and within groups. A field experiment with kale treated with silicon during growth as a bio stimulant was used with the aim to make the product more resilient to packaging conditions. The Kale was then packaged in polylactic acid and oriented polypropylene for postharvest testing. Technological thresholds that indicate out-of-specification product were used to estimate the percentage of product that would likely end up as food waste. In total 7.2% of the product was found to be out of specification with the PLA film after 7 days. Silicon treatment was able to reduce this value to negligible, demonstrating the ability of agricultural interventions to facilitate sustainable packaging and reducing food waste in horticultural products.
Collapse
Affiliation(s)
- Francesco S. Giordano
- Sustainability Health Research Hub and School of Food Science and Environmental Health, Technological University Dublin, Greenway Hub, Grangegorman, Dublin 7, Ireland
| | - Andrew Reynolds
- Sustainability Health Research Hub and School of Food Science and Environmental Health, Technological University Dublin, Greenway Hub, Grangegorman, Dublin 7, Ireland
| | - Catherine M. Burgess
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Lorraine Foley
- Dept of Architecture Building and Environment, Technological University Dublin, City Campus, Bolton Street, Dublin, Ireland
| | - Jesus M. Frias
- Sustainability Health Research Hub and School of Food Science and Environmental Health, Technological University Dublin, Greenway Hub, Grangegorman, Dublin 7, Ireland
| |
Collapse
|
5
|
Figueroa-Lopez KJ, Villabona-Ortíz Á, Ortega-Toro R. Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers (Basel) 2024; 16:2913. [PMID: 39458740 PMCID: PMC11511533 DOI: 10.3390/polym16202913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Biodegradable films are sustainable alternatives to conventional plastics, particularly in food preservation, where the barrier and mechanical properties are crucial for maintaining the physicochemical, microbiological, and sensory qualities of the product. This study evaluated films made from starches of corn, potato, cassava, yam, and wheat to determine their effectiveness in preserving cherry tomatoes. Amylose content, a key factor influencing the crystallinity and properties of the films, varied among the sources, with wheat starch having the highest (28.2%) and cassava the lowest (18.3%). The wheat starch film emerged as the best formulation, exhibiting the highest tensile strength and the lowest water vapor permeability (4.1 ± 0.3 g∙mm∙m-2∙h-1∙KPa-1), contributing to superior barrier performance. When applied to cherry tomatoes, the films based on wheat and corn starch showed the least moisture loss over fifteen days, highlighting their potential in fresh food preservation. These results suggest that starch-based films, specifically those rich in amylose, have significant potential as biodegradable packaging materials for food product conservation.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia
- Ethnopharmacology, Natural Products, and Food Research Group (GIEPRONAL), School of Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia
| | - Ángel Villabona-Ortíz
- Chemical Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Rodrigo Ortega-Toro
- Food Packaging and Shelf-Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
6
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
7
|
Karmakar B, Sarkar S, Chakraborty R, Saha SP, Thirugnanam A, Roy PK, Roy S. Starch-based biodegradable films amended with nano-starch and tannic acid-coated nano-starch exhibit enhanced mechanical and functional attributes with antimicrobial activity. Carbohydr Polym 2024; 341:122321. [PMID: 38876723 DOI: 10.1016/j.carbpol.2024.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.
Collapse
Affiliation(s)
- Biswanath Karmakar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Sayani Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Govt. College, Himachal Vihar, Matigara, Dist. Darjeeling, West Bengal, India.
| | - Shyama Prasad Saha
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Arunachalam Thirugnanam
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Pranab Kumar Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
8
|
Alibekov RS, Urazbayeva KU, Azimov AM, Rozman AS, Hashim N, Maringgal B. Advances in Biodegradable Food Packaging Using Wheat-Based Materials: Fabrications and Innovations, Applications, Potentials, and Challenges. Foods 2024; 13:2964. [PMID: 39335892 PMCID: PMC11431393 DOI: 10.3390/foods13182964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This article explores the advancements in biodegradable food packaging materials derived from wheat. Wheat, a predominant global cereal crop, offers a sustainable alternative to conventional single-use plastics through its starch, gluten, and fiber components. This study highlights the fabrication processes of wheat-based materials, including solvent casting and extrusion, and their applications in enhancing the shelf life and quality of packaged foods. Recent innovations demonstrate effectiveness in maintaining food quality, controlling moisture content, and providing microbiological protection. Despite the promising potential, challenges such as moisture content and interfacial adhesion in composites remain. This review concludes with an emphasis on the environmental benefits and future trends in wheat-based packaging materials.
Collapse
Affiliation(s)
- Ravshanbek S Alibekov
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Klara U Urazbayeva
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Abdugani M Azimov
- Food Biotechnology Scientific-Research Laboratory, M. Auezov' South-Kazakhstan University, Tauke Khan Avenie, 5, Shymkent 160000, Kazakhstan
| | - Azri Shahir Rozman
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| |
Collapse
|
9
|
Patanè GT, Calderaro A, Putaggio S, Ginestra G, Mandalari G, Cirmi S, Barreca D, Russo A, Gervasi T, Neri G, Chelly M, Visco A, Scolaro C, Mancuso F, Ficarra S, Tellone E, Laganà G. Novel Bioplastic Based on PVA Functionalized with Anthocyanins: Synthesis, Biochemical Properties and Food Applications. Int J Mol Sci 2024; 25:9929. [PMID: 39337419 PMCID: PMC11432356 DOI: 10.3390/ijms25189929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last ten years, researchers' efforts have aimed to replace the classic linear economy model with the circular economy model, favoring green chemical and industrial processes. From this point of view, biologically active molecules, coming from plants, flowers and biomass, are gaining considerable value. In this study, firstly we focus on the development of a green protocol to obtain the purification of anthocyanins from the flower of Callistemon citrinus, based on simulation and on response surface optimization methodology. After that, we utilize them to manufacture and add new properties to bioplastics belonging to class 3, based on modified polyvinyl alcohol (PVA) with increasing amounts from 0.10 to 1.00%. The new polymers are analyzed to monitor morphological changes, optical properties, mechanical properties and antioxidant and antimicrobial activities. Fourier transform infrared spectroscopy (FTIR) spectra of the new materials show the characteristic bands of the PVA alone and a modification of the band at around 1138 cm-1 and 1083 cm-1, showing an influence of the anthocyanins' addition on the sequence with crystalline and amorphous structures of the starting materials, as also shown by the results of the mechanical tests. These last showed an increase in thickening (from 29.92 μm to approx. 37 μm) and hydrophobicity with the concomitant increase in the added anthocyanins (change in wettability with water from 14° to 31°), decreasing the poor water/moisture resistance of PVA that decreases its strength and limits its application in food packaging, which makes the new materials ideal candidates for biodegradable packaging to extend the shelf-life of food. The functionalization also determines an increase in the opacity, from 2.46 to 3.42 T%/mm, the acquisition of antioxidant activity against 2,2-diphenyl-1-picrylhdrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals and, in the ferric reducing power assay, the antimicrobial (bactericidal) activity against different Staphylococcus aureus strains at the maximum tested concentration (1.00% of anthocyanins). On the whole, functionalization with anthocyanins results in the acquisition of new properties, making it suitable for food packaging purposes, as highlighted by a food fresh-keeping test.
Collapse
Affiliation(s)
- Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Giovanni Neri
- Engineering Department, University of Messina, 98166 Messina, Italy
| | - Meryam Chelly
- Engineering Department, University of Messina, 98166 Messina, Italy
- Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax 3038, Tunisia
| | - Annamaria Visco
- Engineering Department, University of Messina, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Cristina Scolaro
- Engineering Department, University of Messina, 98166 Messina, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| |
Collapse
|
10
|
Yadav K, Nikalje GC. Comprehensive analysis of bioplastics: life cycle assessment, waste management, biodiversity impact, and sustainable mitigation strategies. PeerJ 2024; 12:e18013. [PMID: 39282116 PMCID: PMC11401513 DOI: 10.7717/peerj.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
Bioplastics are emerging as a promising alternative to traditional plastics, driven by the need for more sustainable options. This review article offers an in-depth analysis of the entire life cycle of bioplastics, from raw material cultivation to manufacturing and disposal, with a focus on environmental impacts at each stage. It emphasizes the significance of adopting sustainable agricultural practices and selecting appropriate feedstock to improve environmental outcomes. The review highlights the detrimental effects of unsustainable farming methods, such as pesticide use and deforestation, which can lead to soil erosion, water pollution, habitat destruction, and increased greenhouse gas emissions. To address these challenges, the article advocates for the use of efficient extraction techniques and renewable energy sources, prioritizing environmental considerations throughout the production process. Furthermore, the methods for reducing energy consumption, water usage, and chemical inputs during manufacturing by implementing eco-friendly technologies. It stresses the importance of developing robust disposal systems for biodegradable materials and supports recycling initiatives to minimize the need for new resources. The holistic approach to sustainability, including responsible feedstock cultivation, efficient production practices, and effective end-of-life management. It underscores the need to evaluate the potential of bioplastics to reduce plastic pollution, considering technological advancements, infrastructure development, and increased consumer awareness. Future research should focus on enhancing production sustainability, understanding long-term ecological impacts, and advancing bioplastics technology for better performance and environmental compatibility. This comprehensive analysis of bioplastics' ecological footprint highlights the urgent need for sustainable solutions in plastic production.
Collapse
Affiliation(s)
- Kushi Yadav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ganesh Chandrakant Nikalje
- Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, University of Mumbai, Ulhasnagar, India
| |
Collapse
|
11
|
Castro D, Podshivalov A, Ponomareva A, Zhilenkov A. Study of the Reinforcing Effect and Antibacterial Activity of Edible Films Based on a Mixture of Chitosan/Cassava Starch Filled with Bentonite Particles with Intercalated Ginger Essential Oil. Polymers (Basel) 2024; 16:2531. [PMID: 39274163 PMCID: PMC11397879 DOI: 10.3390/polym16172531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains a relevant challenge. To solve this problem, a possible option is to fill the biopolymer matrix of films with a functional filler that combines high reinforcing and antibacterial properties. In this work, biocomposite films based on a mixture of chitosan and cassava starch were filled with a hybrid filler in the form of bentonite clay particles loaded with ginger essential oil (GEO) in their structure with varied concentrations. For this purpose, GEO components were intercalated into bentonite clay interlayer space using a mechanical capture approach without using surface-active and toxic agents. The structure and loading efficiency of the essential oil in the obtained hybrid filler were analyzed by lyophilization and laser analysis of dispersions, ATR-FTIR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The filled biocomposite films were analyzed using ATR-FTIR spectroscopy, optical and scanning electron spectroscopy, energy dispersive spectroscopy, mechanical analysis under tension, and the disk diffusion method for antibacterial activity. The results demonstrated that the tensile strength, Young's modulus, elongation at the break, and the antibacterial effect of the films increased by 40%, 19%, 44%, and 23%, respectively, compared to unfilled film when the filler concentration was 0.5-1 wt.%.
Collapse
Affiliation(s)
- David Castro
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Aleksandr Podshivalov
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Alina Ponomareva
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Anton Zhilenkov
- Institute of Robotics and Intelligent Systems, Saint-Petersburg State Marine Technical University, Lotsmanskaya Str., 3, 190121 Saint-Petersburg, Russia
| |
Collapse
|
12
|
Chandrababu V, Parameswaranpillai J, Gopi JA, Pathak C, Midhun Dominic CD, Feng NL, Krishnasamy S, Muthukumar C, Hameed N, Ganguly S. Progress in food packaging applications of biopolymer-nanometal composites - A comprehensive review. BIOMATERIALS ADVANCES 2024; 162:213921. [PMID: 38870740 DOI: 10.1016/j.bioadv.2024.213921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Eco-friendly nanotechnology-enabled biopolymers are one of the novel concepts of packaging materials to substitute traditional synthetic polymers and their composites. This article succinctly reviews the recent developments of introducing additional functionalities to biopolymers using metal and metal oxide nanoparticles. The functionality of metal nanoparticles such as silver, zinc oxide, titanium dioxide, copper oxide, gold, and magnesium oxide, as food packaging materials were discussed. The addition of nanoparticles in biopolymers improves mechanical properties, gas barrier properties, durability, temperature stability, moisture stability, antimicrobial activity, antioxidant property, and UV absorbance and can prevent the presence of ethylene and oxygen, hence extending the shelf life of foodstuffs. Other than this, the functional activity of these biopolymer composite films helps them to act like smart or intelligent packaging. The selection of metal nanoparticles, particle migration, toxicological effect, and potential future scope in the food packaging industry are also reviewed.
Collapse
Affiliation(s)
- Vibha Chandrababu
- Wimpey Laboratories, Warehouse 1 & 2, Wimpey Building, Plot No: 364-8730, Al Quoz Industrial Area 1, Dubai, United Arab Emirates
| | - Jyotishkumar Parameswaranpillai
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India; AU-Sophisticated Testing and Instrumentation Center, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India.
| | - Jineesh Ayippadath Gopi
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - Chandni Pathak
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College, Cochin 682013, Kerala, India
| | - Ng Lin Feng
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore 641062, Tamil Nadu, India
| | - Chandrasekar Muthukumar
- SIMCRASH CENTRE, Department of Aerospace Engineering, Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Tamil Nadu 603103, India
| | - Nishar Hameed
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
| | - Sayan Ganguly
- Bar-Ilan Institute of Nanotechnology & Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
13
|
Pires AF, Díaz O, Cobos A, Pereira CD. A Review of Recent Developments in Edible Films and Coatings-Focus on Whey-Based Materials. Foods 2024; 13:2638. [PMID: 39200565 PMCID: PMC11353588 DOI: 10.3390/foods13162638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Packaging for food products is particularly important to preserve product quality and shelf life. The most used materials for food packaging are plastic, glass, metal, and paper. Plastic films produced based on petroleum are widely used for packaging because they have good mechanical properties and help preserve the characteristics of food. However, environmental concerns are leading the trend towards biopolymers. Films and coatings based on biopolymers have been extensively studied in recent years, as they cause less impact on the environment, can be obtained from renewable sources or by-products, are relatively abundant, have a good coating and film-forming capacity, are biodegradable and have nutritional properties that can be beneficial to human health. Whey protein-based films have demonstrated good mechanical resistance and a good barrier to gases when at low relative humidity levels, in addition to demonstrating an excellent barrier to aromatic compounds and especially oils. The use of whey proteins for films or coatings has been extensively studied, as these proteins are edible, have high nutritional value, and are biodegradable. Thus, the main objective of this document was to review new methodologies to improve the physicochemical properties of whey protein films and coatings. Importance will also be given to the combinations of whey proteins with other polymers and the development of new techniques that allow the manipulation of structures at a molecular level. The controlled release and mass transfer of new biomaterials and the improvement of the design of films and packaging materials with the desired functional properties can increase the quality of the films and, consequently, broaden their applications.
Collapse
Affiliation(s)
- Arona Figueroa Pires
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Angel Cobos
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Carlos Dias Pereira
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
14
|
Ghosh R, Zhao X, Vodovotz Y. Addition of Coffee Waste-Derived Plasticizer Improves Processability and Barrier Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Natural Rubber Bioplastic. Polymers (Basel) 2024; 16:2164. [PMID: 39125190 PMCID: PMC11314180 DOI: 10.3390/polym16152164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to develop a value-added bio-based polymer product for food packaging. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising bioplastic with limitations in processability and brittleness, which our group previously addressed by incorporating high-molecular-weight natural rubber (NR) compatibilized with peroxide and coagent. Yet, processability in an industrial setting proved difficult. Coffee oil epoxide (COE), a waste-derived plasticizer, was incorporated into the PHBV/NR/peroxide/coagent matrix via extrusion, and properties of resulting sheets were evaluated. COE incorporation significantly decreased the oxygen and water permeability of the PHBV/NR sheets. Maximum degradation temperature Tpeak (°C) increased by ~4.6 °C, and degree of crystallinity decreased by ~15.5% relative to pristine PHBV, indicating good thermal stability. Melting (Tm) and glass transition temperatures (Tg) of the PHBV/NR blend remained unchanged with COE incorporation. X-ray diffraction (XRD) revealed ~10.36% decrease in crystal size for the plasticized blend. Energy-dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM) confirmed good dispersion with no phase separation. The water uptake capacity of the plasticized blend was reduced by 61.02%, while surface contact angle measurements showed improved water resistance. The plasticized PHBV sheet shows promise for environmentally friendly packaging films due to its high thermal stability, effective barrier properties, and industrial scalability.
Collapse
Affiliation(s)
- Rinky Ghosh
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH 43210, USA;
| | - Xiaoying Zhao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 33 Fucheng Road, Beijing 100048, China;
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Road, Columbus, OH 43210, USA;
| |
Collapse
|
15
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
16
|
Gao Y, Yang W, Yi W, Ni S, Fu Y, Qin M, Zhang F. Effect of molecular weight of PEI on the strength and hydrophobic performance of fiber-based papers via PEI-KH560 surface sizing. Int J Biol Macromol 2024; 273:133070. [PMID: 38866292 DOI: 10.1016/j.ijbiomac.2024.133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
In recent years, researchers have put much attention on the improvements and upgrades of novel wet strength agent in the papermaking fields, especially in the usage of household paper. Herein, PEIM-KH560 by polyethyleneimine (PEI) and γ-glycidyl ether propyl trimethoxysilane (KH560) was synthesized with five molecular weights (Mw) of PEI at 600, 1800, 10,000, 70,000 and 750,000. Results showed that the molecular weight greatly influenced the physicochemical properties of PEI-KH560, such as the size and thermal stability. The intrinsic cationic charge of PEI-KH560 provided the bonding sites with the paper fibers, forming strengthened fiber-fiber joints. It was shown that the dry, wet strength and hydrophobicity of cellulosic paper sheets were obviously improved. When the m (PEI):m(KH560) is 1:2, the strength of papers after sizing by Mw of PEI at 600 and 1800 is the most obvious, with the dry strength increased by 227.9 % and 187.5 %, and the wet strength increased by 183.8 % and 207.8 %, respectively. The maximum hydrophobicity was found at the PEI1800-KH560 with the contact angle value of 130.6°. The resultant environmental-friendly agent (PEI-KH560) obtained in this work provides valuable significance for the preparation of household and food packaging paper.
Collapse
Affiliation(s)
- Yali Gao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weisheng Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenbo Yi
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuzhen Ni
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Menghua Qin
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, China.
| |
Collapse
|
17
|
Jang M, Lee M, Chung S, Park SA, Park H, Jeon H, Jegal J, Park SB, Oh DX, Shin G, Kim HJ. Ecotoxicity assessment of additives in commercial biodegradable plastic products: Implications for sustainability and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172903. [PMID: 38697526 DOI: 10.1016/j.scitotenv.2024.172903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/11/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Biodegradable plastics have gained popularity as environmentally friendly alternatives to conventional petroleum-based plastics, which face recycling and degradation challenges. Although the biodegradability of these plastics has been established, research on their ecotoxicity remains limited. Biodegradable plastics may still contain conventional additives, including toxic and non-degradable substances, to maintain their functionality during production and processing. Despite degrading the polymer matrix, these additives can persist in the environment and potentially harm ecosystems and humans. Therefore, this study aimed to assess the potential ecotoxicity of biodegradable plastics by analyzing the phthalate esters (PAEs) leaching out from biodegradable plastics through soil leachate. Sixteen commercial biodegradable plastic products were qualitatively and quantitatively analyzed using gas chromatography-mass spectrometry to determine the types and amounts of PAE used in the products and evaluate their ecotoxicity. Among the various PAEs analyzed, non-regulated dioctyl isophthalate (DOIP) was the most frequently detected (ranging from 40 to 212 μg g-1). Although the DOIP is considered one of PAE alternatives, the detected amount of it revealed evident ecotoxicity, especially in the aquatic environment. Other additives, including antioxidants, lubricants, surfactants, slip agents, and adhesives, were also qualitatively detected in commercial products. This is the first study to quantify the amounts of PAEs leached from biodegradable plastics through water mimicking PAE leaching out from biodegradable plastics to soil leachate when landfilled and evaluate their potential ecotoxicity. Despite their potential toxicity, commercial biodegradable plastics are currently marketed and promoted as environmentally friendly materials, which could lead to indiscriminate public consumption. Therefore, in addition to improving biodegradable plastics, developing eco-friendly additives is significant. Future studies should investigate the leaching kinetics in soil leachate over time and toxicity of biodegradable plastics after landfill disposal.
Collapse
Affiliation(s)
- Min Jang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seonghyn Chung
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Huijeong Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
18
|
Praseptiangga D, Sesari AR, Rochima E, Muhammad DRA, Widyaastuti D, Zaman MZ, Widiyastuti, Syamani FA, Nazir N, Joni IM, Panatarani C. Development and characterization of semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO 2/ZnO nanoparticles. Int J Biol Macromol 2024; 271:132569. [PMID: 38797303 DOI: 10.1016/j.ijbiomac.2024.132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Food packaging based on natural polymers from polysaccharides and proteins can be an alternative to replace conventional plastics. In the present study, semi-refined iota carrageenan (SRIC) and fish gelatin (FG) were used as polymer matrix film with different concentration ratios (0.5:1.5 %, 1.0:1.0 % and 1.5:0.5 % w/w) and SiO2-ZnO nanoparticles were incorporated as fillers with the same concentration in all formulas (0.5:1.5 % w/w carrageenan-fish gelatin). This study aimed to develop films for food packaging applications with desirable physical, mechanical, optical, chemical, and microbiological properties. The results showed that incorporating SiO2-ZnO nanoparticles significantly (p < 0.05) improved the films' elongation at break, UV-screening properties, and antimicrobial activity. Also, the films' thickness, degradability, and transparency significantly (p < 0.05) increased with the higher concentration of fish gelatin addition in the SRIC matrix polymer. The best formula was obtained on the SRIC-FG film at the ratio of 1.5:0.5 % w/w, which performed excellent antimicrobial activity. Thus, semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO2-ZnO nanoparticles can be potentially developed as eco-friendly and intelligent food packaging materials to resolve traditional plastic-related issues and prevent food waste.
Collapse
Affiliation(s)
- Danar Praseptiangga
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.
| | - Annisa Rizki Sesari
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Emma Rochima
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Dimas Rahadian Aji Muhammad
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Dea Widyaastuti
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Muhammad Zukhrufuz Zaman
- Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Central Java 57126, Indonesia
| | - Widiyastuti
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, 60111, Indonesia
| | - Firda Aulya Syamani
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, West Java, 16911, Indonesia
| | - Novizar Nazir
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Andalas University, Padang, West Sumatra, 25175, Indonesia
| | - I Made Joni
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Camellia Panatarani
- Research Collaboration Center for Marine Biomaterials, Jatinangor, West Java 45363, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
19
|
Dermol Š, Borin B, Gregor-Svetec D, Slemenik Perše L, Lavrič G. The Development of a Bacterial Nanocellulose/Cationic Starch Hydrogel for the Production of Sustainable 3D-Printed Packaging Foils. Polymers (Basel) 2024; 16:1527. [PMID: 38891473 PMCID: PMC11174455 DOI: 10.3390/polym16111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Polymers have become an important part of everyday life, but most of the polymers currently used are petroleum-based. This poses an environmental problem, especially with respect to products that are quickly discarded. For this reason, current packaging development focuses on sustainable materials as an alternative to synthetic ones. Nanocellulose, a relatively new material derived from cellulose, has unique properties such as high strength, low density, high surface area, and good barrier properties, making it popular in various applications. Additionally, 3D printing technologies have become an important part of industrial and commercial processes, enabling the realization of innovative ideas and functionalities. The main aim of this research was to develop a hydrogel of bacterial nanocellulose with suitable rheological properties for the 3D printing of polymer foils. Three variations of bacterial nanocellulose hydrogel differing in ratios of bacterial nanocellulose to cationic starch were produced. The rheological studies confirmed the suitability of the hydrogels for 3D printing. Foils were successfully 3D-printed using a modified 3D printer. The physical-mechanical, surface, and optical properties of the foils were determined. All foils were homogeneous with adequate mechanical properties. The 3D-printed foils with the highest amount of cationic starch were the most homogeneous and transparent and, despite their rigidity, very strong. All foils were semi-transparent, had a non-glossy surface, and retained poor water wettability.
Collapse
Affiliation(s)
- Špela Dermol
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia;
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia;
| | - Bojan Borin
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia;
| | - Diana Gregor-Svetec
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia;
| | - Lidija Slemenik Perše
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia;
| | - Gregor Lavrič
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia;
| |
Collapse
|
20
|
Torres Vargas OL, Rodríguez Agredo IA, Galeano Loaiza YV. Effect of incorporating white pepper ( Piper nigrum L.) oleoresin on starch/alginate films. RSC Adv 2024; 14:15293-15301. [PMID: 38741955 PMCID: PMC11089458 DOI: 10.1039/d4ra00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The development of films based on natural components has demonstrated their potential for food preservation. In this research, the effect of the inclusion of white pepper oleoresin (WPO) in a film made from cassava starch and sodium alginate (FWPO) on the antimicrobial, physicochemical, mechanical, optical, and structural properties was evaluated. The films were formulated with different concentrations of WPO (0.0, 0.5, 1.0 and 1.5%). The results obtained indicated that the incorporation of WPO in the film increased the antioxidant activity against the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH), and an inhibitory effect against Escherichia coli and Staphylococcus aureus bacteria was also observed. Elongation at break (EB), water vapor permeability (WVP), moisture content, solubility, and luminosity (L*) decreased significantly (p < 0.05) with the addition of WPO. On the other hand, the tensile strength (TS), the value of b* (tendency toward yellow) and the opacity increased. Scanning electron microscopy (SEM) images showed a smooth, uniform appearance, and continuous dispersion between cassava starch, alginate and WPO. FTIR spectra showed the interactions between the film components. X-ray diffraction (XRD) patterns showed that the addition of WPO did not affect the structural stability of the films. The results obtained indicate the possible use of WPO in the packaging of food products, contributing to the improvement of food quality and safety.
Collapse
Affiliation(s)
- Olga Lucía Torres Vargas
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| | - Iván Andrés Rodríguez Agredo
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| | - Yessica Viviana Galeano Loaiza
- Group of Research on Agro-industrial Sciences, Interdisciplinary Science Institute, Food Engineering Laboratory, Universidad del Quindío Cra. 15# 12 N Armenia Quindío 630004 Colombia
| |
Collapse
|
21
|
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers (Basel) 2024; 16:1286. [PMID: 38732755 PMCID: PMC11085284 DOI: 10.3390/polym16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.
Collapse
Affiliation(s)
- Luis F. F. F. Gonçalves
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
22
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
23
|
Jacob Rani BS, Venkatachalam S. Biomass-derived nanoparticles reinforced chitosan films: as high barrier active packaging for extending the shelf life of highly perishable food. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:990-1002. [PMID: 38487285 PMCID: PMC10933241 DOI: 10.1007/s13197-023-05896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 03/17/2024]
Abstract
This study emphasizes the potential of biomass-derived nanoparticles such as nanocellulose (NC), nanohemicellulose (NHC), and nanolignin (NL) as reinforcements in chitosan (C) films to produce a higher barrier active packaging film. The incorporation of NC, NHC, and NL (1.5%) significantly improves the mechanical, water, and UV barrier properties of the chitosan film (P < 0.0001). Additionally, NHC and NL reinforcement significantly enhance antioxidant and antimicrobial activity. The physicochemical, sensory, and microbiological properties of fresh meat packed in chitosan films with 1.5% nanoparticles, as well as a commercial LDPE film, were assessed when stored at 4 °C for up to 18 days. C-NHC and C-NL packaging films preserved the quality of meat until the 18th day, whereas the meat packed in the LDPE film spoiled entirely on the sixth day. In conclusion, chitosan films with biomass-derived nanoparticles could be an excellent packaging material for highly perishable food, such as fresh meat, with an extended shelf life. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05896-9.
Collapse
Affiliation(s)
- Baby Salini Jacob Rani
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600025 India
| | - Sivakumar Venkatachalam
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600025 India
| |
Collapse
|
24
|
Yang Z, Li M, Li Y, Huang X, Li Z, Zhai X, Shi J, Zou X, Xiao J, Sun Y, Povey M, Gong Y, Holmes M. Sodium alginate/guar gum based nanocomposite film incorporating β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion for mushroom preservation. Food Chem 2024; 437:137891. [PMID: 37922795 DOI: 10.1016/j.foodchem.2023.137891] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The poor biological, mechanical and water-resistance properties of sodium alginate/guar gum film (SG) limit its application in food preservation. To overcome this disadvantage, we added β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion (BOPE) to enhance the mechanical and water resistance properties of SG film, and added green synthesized silver nanoparticles (AgNPS) and Lycium ruthenicum extract (LA) to improve the biological properties of the film. The properties of BOPE was optimized using Box-Behnken design (BBD). Scanning electron microscope and Fourier transform infrared results revealed the change of structure and molecular interaction in the SG film after the addition of AgNPS, LA, and optimized BOPE. The 2.0%BOPE-loaded film containing AgNPS/LA with the enhanced mechanical, barrier, BO retention, and biological properties not only improved the preservation effect on mushroom (A. bisporus), but also maintained structural stability. Thus, the 2.0%BOPE-loaded SG/LA/AgNPS film has considerable potential in active packaging applications.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
25
|
Fatima S, Khan MR, Ahmad I, Sadiq MB. Recent advances in modified starch based biodegradable food packaging: A review. Heliyon 2024; 10:e27453. [PMID: 38509922 PMCID: PMC10950564 DOI: 10.1016/j.heliyon.2024.e27453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
This study reviews the importance of resistant starch (RS) as the polymer of choice for biodegradable food packaging and highlights the RS types and modification methods for developing RS from native starch (NS). NS is used in packaging because of its vast availability, low cost and film forming capacity. However, application of starch is restricted due to its high moisture sensitivity and hydrophilic nature. The modification of NS into RS improves the film forming characteristics and extends the applications of starch into the formulation of packaging. The starch is blended with other bio-based polymers such as guar, konjac glucomannan, carrageenan, chitosan, xanthan gum and gelatin as well as active ingredients such as nanoparticles (NPs), plant extracts and essential oils to develop hybrid biodegradable packaging with reduced water vapor permeability (WVP), low gas transmission, enhanced antimicrobial activity and mechanical properties. Hybrid RS based active packaging is well known for its better film forming properties, crystalline structures, enhanced tensile strength, water resistance and thermal properties. This review concludes that RS, due to its better film forming ability and stability, can be utilized as polymer of choice in the formulation of biodegradable packaging.
Collapse
Affiliation(s)
- Saeeda Fatima
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055, Portici, NA, Italy
| | - Imran Ahmad
- Food Agriculture and Biotechnology Innovation Lab (FABIL), Florida International University, Biscayne Bay Campus, North Miami, Florida, USA
| | - Muhammad Bilal Sadiq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| |
Collapse
|
26
|
Venkatesan R, Vetcher AA, Al-Asbahi BA, Kim SC. Chitosan-Based Films Blended with Tannic Acid and Moringa Oleifera for Application in Food Packaging: The Preservation of Strawberries ( Fragaria ananassa). Polymers (Basel) 2024; 16:937. [PMID: 38611195 PMCID: PMC11013215 DOI: 10.3390/polym16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Biobased plastics provide a sustainable alternative to conventional food packaging materials, thereby reducing the environmental impact. The present study investigated the effectiveness of chitosan with varying levels of Moringa oleifera seed powder (MOSP) and tannic acid (TA). Chitosan (CS) biocomposite films with tannic acid acted as a cross-linker, and Moringa oleifera seed powder served as reinforcement. To enhance food packaging and film performance, Moringa oleifera seed powder was introduced at various loadings of 1.0, 3.0, 5.0, and 10.0 wt.%. Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy analyses were performed to study the structure and morphology of the CS/TA/MOSP films. The scanning electron microscopy results confirmed that chitosan/TA with 10.0 wt.% of MOSP produced a lightly miscible droplet/matrix structure. Furthermore, mechanical properties, swelling, water solubility, optical barrier, and water contact angle properties of the film were also calculated. With increasing Moringa oleifera seed powder contents, the biocomposite films' antimicrobial and antifungal activity increased at the 10.0 wt.% MOSP level; all of the observed bacteria [Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Aspergillus niger (A. niger), and Candida albicans (C. albicans)] had a notably increased percentage of growth. The film, with 10.0 wt.% MOSP content, effectively preserves strawberries' freshness, making it an ideal food packaging material.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia;
| | - Bandar Ali Al-Asbahi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
27
|
Devi LS, Jaiswal AK, Jaiswal S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr Res Food Sci 2024; 8:100720. [PMID: 38559379 PMCID: PMC10978484 DOI: 10.1016/j.crfs.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
In the evolving landscape of food packaging, lipid-based edible films and coatings are emerging as a sustainable and effective solution for enhancing food quality and prolonging shelf life. This critical review aims to offer a comprehensive overview of the functional properties, roles, and fabrication techniques associated with lipid-based materials in food packaging. It explores the unique advantages of lipids, including waxes, resins, and fatty acids, in providing effective water vapor, gas, and microbial barriers. When integrated with other biopolymers, such as proteins and polysaccharides, lipid-based composite films demonstrate superior thermal, mechanical, and barrier properties. The review also covers the application of these innovative coatings in preserving a wide range of fruits and vegetables, highlighting their role in reducing moisture loss, controlling respiration rates, and maintaining firmness. Furthermore, the safety aspects of lipid-based coatings are discussed to address consumer and regulatory concerns.
Collapse
Affiliation(s)
- L. Susmita Devi
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam, 783370, India
| | - Amit K. Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| |
Collapse
|
28
|
Shinde MM, Malik M, Kaur K, Gahlawat VK, Kumar N, Chiraang P, Upadhyay A. Formulization and characterization of guar gum and almond gum based composite coating and their application for shelf-life extension of okra (Hibiscus esculentus). Int J Biol Macromol 2024; 262:129630. [PMID: 38336319 DOI: 10.1016/j.ijbiomac.2024.129630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024]
Abstract
The current novel study aims was to development and characterization of gum based (guar gum: almond gum) composite formulations with or without addition of oregano essential oils to extend the shelf life of okra at ambient condition. In this study, the optimized composite of guar gum: almond gum (75:25 V/V) prepared with addition of different concentrations (0.05, 0.1 and 0.15 % (V/V) of oregano essential oils to study their physicochemical, rheological, antimicrobial and particle size & zeta potential distribution. In addition, the effects of prepared edible coatings on shelf-life of okra vegetables were also investigated by assessing their postharvest quality attributes at ambient (23 °C) storage up to 7 days storage. The results revealed, increasing concentration of essential oils in composite coating significantly increased in pH, TSS, particle size, antimicrobial (Apergillus. niger, Escherichia coli, Staphylococcus aureus) activity respectively. Furthermore, the increasing EOs improved viscosity (n) and stability of the coatings matrix. In addition, the applications of guar gum (0.25 %): almond gum (0.5 %) composite ratio (75,25) with oregano essential oils exhibited excellent properties and potential to maintain the postharvest characteristics of okra throughout the storage period. The results of this study revealed that the addition of higher concentration (0.15 %) of essential oils in composite formulation of 75 % guar gum +25 % almond gum (03) showed higher value of pH (5.45), antioxidant activity (20.87 %), particle size (899.1 nm), zeta potential (-8.6 mV), polydispersity index (50.6 %) and higher antimicrobial activity against E.coli (19 mm), S. aureus (29 mm) and A. niger (35 mm) as compared to other formulations. Therefore, the lower composite formulation (01) with lower concentration (0.05 %) of oregano essential oil was found most effective formulation to maintain the shelf life of okra for up to 4 days as compared to other treated and control okra samples at ambient temperature by retarded the weight loss (12.74 %), maintained higher firmness (0.998 N), lower respiration rate (484.32 ml Co2/kg/h) respectively on 7 days of storage. The microbial load in the okra samples treated with different guar gum: almond gum composite showed lower microbial load in terms of total plate count and yeast & mold counts as compared to control samples. Samples treated with O3 coating showed lowest TPC (0.1 × 108 cfu/g) and YMC (6.63 × 106 cfu/g) followed by O2 (0.48 × 108 cfu/g, 7.9 × 106 cfu/g) and O1 (0.78 × 108 cfu/g, 9.45 × 106 cfu/g) respectively on 6rd day of storage, overall results indicated that the application of composite coating with different concentrations of oregano essential oils were effective to maintained postharvest shelf life of okra up to 4 days at ambient condition.
Collapse
Affiliation(s)
- Mahesh Mohan Shinde
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Mohit Malik
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Kujinder Kaur
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Vijay Kumar Gahlawat
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India.
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India.
| | - Poojal Chiraang
- Department of Basic and Applied Science, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Trechnology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028, India
| |
Collapse
|
29
|
McClements DJ. Designing healthier and more sustainable ultraprocessed foods. Compr Rev Food Sci Food Saf 2024; 23:e13331. [PMID: 38517032 DOI: 10.1111/1541-4337.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
The food industry has been extremely successful in creating a broad range of delicious, affordable, convenient, and safe food and beverage products. However, many of these products are considered to be ultraprocessed foods (UPFs) that contain ingredients and are processed in a manner that may cause adverse health effects. This review article introduces the concept of UPFs and briefly discusses food products that fall into this category, including beverages, baked goods, snacks, confectionary, prepared meals, dressings, sauces, spreads, and processed meat and meat analogs. It then discusses correlations between consumption levels of UPFs and diet-related chronic diseases, such as obesity and diabetes. The different reasons for the proposed ability of UPFs to increase the risk of these chronic diseases are then critically assessed, including displacement of whole foods, high energy densities, missing phytochemicals, contamination with packaging chemicals, hyperpalatability, harmful additives, rapid ingestion and digestion, and toxic reaction products. Then, potential strategies to overcome the current problems with UPFs are presented, including reducing energy density, balancing nutritional profile, fortification, increasing satiety response, modulating mastication and digestion, reengineering food structure, and precision processing. The central argument is that it may be possible to reformulate and reengineer many UPFs to improve their healthiness and sustainability, although this still needs to be proved using rigorous scientific studies.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
30
|
Brandelli A. Nanocomposites and their application in antimicrobial packaging. Front Chem 2024; 12:1356304. [PMID: 38469428 PMCID: PMC10925673 DOI: 10.3389/fchem.2024.1356304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
The advances in nanocomposites incorporating bioactive substances have the potential to transform the food packaging sector. Different nanofillers have been incorporated into polymeric matrixes to develop nanocomposite materials with improved mechanical, thermal, optical and barrier properties. Nanoclays, nanosilica, carbon nanotubes, nanocellulose, and chitosan/chitin nanoparticles have been successfully included into polymeric films, resulting in packaging materials with advanced characteristics. Nanostructured antimicrobial films have promising applications as active packaging in the food industry. Nanocomposite films containing antimicrobial substances such as essential oils, bacteriocins, antimicrobial enzymes, or metallic nanoparticles have been developed. These active nanocomposites are useful packaging materials to enhance food safety. Nanocomposites are promising materials for use in food packaging applications as practical and safe substitutes to the traditional packaging plastics.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratory of Biochemistry and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Center of Nanoscience and Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
de Oliveira Filho JG, Bertolo MRV, Fernandes SS, Lemes AC, da Cruz Silva G, Junior SB, de Azeredo HMC, Mattoso LHC, Egea MB. Intelligent and active biodegradable biopolymeric films containing carotenoids. Food Chem 2024; 434:137454. [PMID: 37716153 DOI: 10.1016/j.foodchem.2023.137454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
There is growing interest in the use of natural bioactive compounds for the development of new bio-based materials for intelligent and active food packaging applications. Several beneficial effects have been associated with the antioxidant and antimicrobial potentials of carotenoid compounds. In addition, carotenoids are sensitive to pH changes and oxidation reactions, which make them useful bioindicators of food deterioration. This review summarizes the current research on the application of carotenoids as novel intelligent and active biodegradable food packaging materials. Carotenoids recovered from food processing by-products can be used in the development of active food packaging materials due to their antioxidant properties. They help maintain the stability of lipid-rich foods, such as vegetable oils. Additionally, when incorporated into films, carotenoids can monitor food oxidation, providing intelligent functionalities.
Collapse
Affiliation(s)
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | | | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
32
|
Wang Y, van der Maas K, Weinland DH, Trijnes D, van Putten RJ, Tietema A, Parsons JR, de Rijke E, Gruter GJM. Relationship between Composition and Environmental Degradation of Poly(isosorbide- co-diol oxalate) (PISOX) Copolyesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2293-2302. [PMID: 38277479 PMCID: PMC10851428 DOI: 10.1021/acs.est.2c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high Tg polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
Collapse
Affiliation(s)
- Yue Wang
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Kevin van der Maas
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Daniel H. Weinland
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Dio Trijnes
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | - Albert Tietema
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - John R. Parsons
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Eva de Rijke
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Gert-Jan M. Gruter
- van‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Avantium
Support BV, Zekeringstraat
29, Amsterdam 1014 BV, The Netherlands
| |
Collapse
|
33
|
Mohammed K, Yu D, Mahdi AA, Zhang L, Obadi M, Al-Ansi W, Xia W. Influence of cellulose viscosity on the physical, mechanical, and barrier properties of the chitosan-based films. Int J Biol Macromol 2024; 259:129383. [PMID: 38218274 DOI: 10.1016/j.ijbiomac.2024.129383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
This research paper presents a comprehensive investigation into developing biodegradable films for food packaging applications using chitosan (CN) in conjunction with three distinct types of cellulose (CE), each characterized by varying viscosities. The primary objective was to assess the influence of cellulose viscosity on the physical, mechanical, and barrier properties of the resulting films. The medium-viscosity cellulose imparted numerous advantageous qualities to the biodegradable films. These films exhibited optimal thickness (31 μm), ensuring versatility in food packaging while maintaining favorable mechanical properties, blending strength, and flexibility. Also, medium-viscosity cellulose significantly improved the films' barrier performance, particularly regarding oxygen permeability [1.80 × 10-6 (g.mm.m-2. s-1)]. Furthermore, the medium-viscosity cellulose contributed to superior moisture-related properties, including reduced water vapor permeability [14.80 × 10-9 (g.mm.m-2. s-1. Pa-1)], moisture content (13.22 %), and water solubility (22.87 %), while maintaining an appropriate degree of swelling (41.88 %). Moreover, the study employed advanced analytical techniques, including FTIR, XRD, and TGA, to provide critical insights into the films' chemical, structural, and thermal aspects. This research underscored the importance of the viscosity of film formulation materials as a crucial element in designing and efficiently producing films for food packaging.
Collapse
Affiliation(s)
- Khalid Mohammed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Amer Ali Mahdi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Liming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
34
|
Guivier M, Chevigny C, Domenek S, Casalinho J, Perré P, Almeida G. Water vapor transport properties of bio-based multilayer materials determined by original and complementary methods. Sci Rep 2024; 14:50. [PMID: 38168534 PMCID: PMC10761724 DOI: 10.1038/s41598-023-50298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
To enhance PLA gas barrier properties, multilayer designs with highly polar barrier layers, such as nanocelluloses, have shown promising results. However, the properties of these polar layers change with humidity. As a result, we investigated water transport phenomena in PLA films coated with nanometric layers of chitosan and nanocelluloses, utilizing a combination of techniques including dynamic vapor sorption (DVS) and long-term water vapor adsorption-diffusion experiments (back-face measurements) to understand the influence of each layer on the behavior of multilayer films. Surprisingly, nanometric coatings impacted PLA water vapor transport. Chitosan/nanocelluloses layers, representing less than 1 wt.% of the multilayer film, increased the water vapor uptake of the film by 14.6%. The nanometric chitosan coating appeared to have localized effects on PLA structure. Moreover, nanocelluloses coatings displayed varying impacts on sample properties depending on their interactions (hydrogen, ionic bonds) with chitosan. The negatively charged CNF TEMPO coating formed a dense network that demonstrated higher resistance to water sorption and diffusion compared to CNF and CNC coatings. This work also highlights the limitations of conventional water vapor permeability measurements, especially when dealing with materials containing ultrathin nanocelluloses layers. It shows the necessity of considering the synergistic effects between layers to accurately evaluate the transport properties.
Collapse
Affiliation(s)
- Manon Guivier
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Chloé Chevigny
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Sandra Domenek
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France
| | - Joel Casalinho
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Patrick Perré
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
- CentraleSupélec, LGPM, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France
| | - Giana Almeida
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, 22 Place de l'Agronomie, Palaiseau, France.
| |
Collapse
|
35
|
Ghosh N, De J, Chowdhury AR. Shelf life enhancement technique of Musa acuminata in a controlled environment and optimization of process parameters affecting shelf life using genetic algorithm. J Food Sci 2024; 89:390-403. [PMID: 38010746 DOI: 10.1111/1750-3841.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
An economical and effective storage solution has been designed in this work for the storage of postharvest fruits and vegetables. Musa acuminata or banana has a shelf life of 5-6 days in open uncontrolled environment. This article reports a storage solution of M. acuminata in a controlled enclosure containing titanium oxide (TiO2 )-coated inner walls and irradiated with ultraviolet ray of band "C," an air filtration unit, 5% by volume potassium permanganate (KMnO4 ) solution in a clay pot, grow lights, and activated charcoal granules. The same fruit was kept in an uncontrolled environment too. The percentages of dark spots on banana (M. acuminata) upon storage in controlled and uncontrolled environments have been estimated using an image-processing algorithm. The prediction of dark spots was conducted using multi-linear and multivariate polynomial regression. Experimentation with optimum process parameters obtained with genetic algorithm resulted in a shelf life extension of 6 days as compared to its storage in an uncontrolled environment. The setup can be used in vegetable and fruit markets for the extension of shelf life of postharvest perishable items in a compact and cost-effective manner. The setup does not use any refrigeration process thereby decreasing energy requirement.
Collapse
Affiliation(s)
- Niloy Ghosh
- Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Jhumpa De
- Mechanical Engineering Department, Academy of Technology, Adisaptagram, India
| | - Amit Roy Chowdhury
- Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, India
| |
Collapse
|
36
|
Kumar P, Gautam S, Bansal D, Kaur R. Starch-based antibacterial food packaging with ZnO nanoparticle. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:178-191. [PMID: 38192709 PMCID: PMC10771396 DOI: 10.1007/s13197-023-05834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 01/10/2024]
Abstract
Starch-based biofilms with embedded nanoparticles (NPs) are used to wrap food in biodegradable packaging system that has high antibacterial action against a variety of microorganisms. In this study, ZnO NPs were synthesised using both a green synthesis approach utilising Azadirachta indica (Neem) and a chemical synthesis approach using the sol-gel technique. The structural and morphological properties of all synthesized NPs were characterized through XRD, UV-VIS, UV-DRS, FTIR, and FESEM analysis. Further, these NPs were employed in the development of starch-based biodegradable films. A meticulous comparative analysis was performed to evaluate the functional properties of the nanocomposites, encompassing crucial parameters such as film thickness, moisture content, swelling index, opacity, solubility, water vapor permeability, and tensile strength. In comparison to films embedded with chemically synthesised NPs (F1), nanocomposite with green synthesised NPs (F2) showed 15.27% greater inhibition against Escherichia coli growth and 22.05% stronger inhibition against Staphylococcus aureus bacterial strains. Based on the biodegradability analysis, the nanocomposite film-F2 showed a 53.33% faster degradation rate compared to the film-F1. The developed films were utilized to assess the quality of both wrapped and unwrapped grapes, leading to the generalization of the research for the development of starch-based antibacterial and environmentally friendly food packaging material. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05834-9.
Collapse
Affiliation(s)
- Prakash Kumar
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160 014 India
| | - Sanjeev Gautam
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160 014 India
| | - Deepika Bansal
- Advanced Functional Materials Lab., Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160 014 India
| | - Ravneet Kaur
- Department of Zoology, Panjab University, Chandigarh, 160-014 India
| |
Collapse
|
37
|
Divakaran D, Suyambulingam I, Sanjay MR, Raghunathan V, Ayyappan V, Siengchin S. Isolation and characterization of microcrystalline cellulose from an agro-waste tamarind (Tamarindus indica) seeds and its suitability investigation for biofilm formulation. Int J Biol Macromol 2024; 254:127687. [PMID: 37890740 DOI: 10.1016/j.ijbiomac.2023.127687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The exploration of potential bio-fillers for bio-film application is a promising approach to ensure biodegradable, eco-friendly, good-quality materials with high-performance applications. This is a comprehensive study executed to establish the utility of an agro-waste Tamarindus indica seeds for microcrystalline cellulose production and to assess its feasibility for biofilm fabrication. The extraction was carried out through consecutive chemical-mediated alkalization, acid hydrolysis and bleaching. The isolated microcrystalline cellulose from Tamarindus indica seeds (TSMCC) was characterized through chemical, thermal and morphological characterization to validate the cellulose contribution, thermal resistance, and compatibility of the material. The physical parameters as density and yield percentage were assessed to evaluate its light-weight utility and economic productivity. These examinations revealed that TSMCC has good specific properties such as high cellulose content (90.57 %), average density (1.561 g/cm3), feasible average roughness (12.161 nm), desired particle size (60.40 ± 21.10 μm), good crystallinity (CI-77.6 %) and thermal stability (up to 230 °C); which are worthwhile to consider TSMCC for bio-film formulation. Subsequently, bio-films were formulated by reinforcing TSMCC in polylactic acid (PLA) matrix and the mechanical properties of the bio-films were then studied to establish the efficacy of TSMCC. It is revealed that the properties of pure PLA film increased after being incorporated with TSMCC, where 5 %TSMCC addition showed greater impact on crystalline index (26.16 % to 39.62 %), thermal stability (333oc to 389 °C), tensile strength (36.11 ± 2.90 MPa to 40.22 ± 3.22 MPa) and modulus (2.62 ± 0.55GPa to 4.15 ± 0.53GPa). In light of all promising features, 5 % TSMCC is recommended as a potential filler reinforcement for the groundwork of good quality bio-films for active packaging applications in future.
Collapse
Affiliation(s)
- Divya Divakaran
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Indran Suyambulingam
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - M R Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Vijay Raghunathan
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Vinod Ayyappan
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| |
Collapse
|
38
|
Long J, Zhang W, Zhao M, Ruan CQ. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr Polym 2023; 321:121267. [PMID: 37739519 DOI: 10.1016/j.carbpol.2023.121267] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based films are favored in the food packaging industry because of their advantages of green and safe characters, as well as natural degradability, but due to the structural defects of polysaccharides, they also have the disadvantages of high water vapor permeability (WVP), which greatly limits their application in the food packaging industry. To break the limitation, numerous methods, e.g., physical and/or chemical methods, have been employed. This review mainly elaborates the up-to-date research status of the application of polysaccharide-based films (PBFs) in food packaging area, including various films from cellulose and its derivatives, starch, chitosan, pectin, alginate, pullulan and so on, while the methods of reducing the WVP of PBFs, mainly divided into physical and chemical methods, are summarized, as well as the discussions about the existing problems and development trends of PBFs. In the end, suggestions about the future development of WVP of PBFs are presented.
Collapse
Affiliation(s)
- Jiyang Long
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Wenyu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Minzi Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chang-Qing Ruan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
39
|
Venkatesan R, Surya S, Suganthi S, Muthuramamoorthy M, Pandiaraj S, Kim SC. Biodegradable composites from poly(butylene adipate-co-terephthalate) with carbon nanoparticles: Preparation, characterization and performances. ENVIRONMENTAL RESEARCH 2023; 235:116634. [PMID: 37442258 DOI: 10.1016/j.envres.2023.116634] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The development of composites for food packaging that have good mechanical and antimicrobial characteristics is still a major challenge. In applications like food packaging, the usage of poly (butylene adipate-co-terephthalate) (PBAT), which has an adversative effect on the environment and reduces petroleum resources, has grown widespread. The present work reveals PBAT composites reinforced with CNPs at a few percentages up to 5.0 wt %. The PBAT/CNPs composites were produced using the solvent casting method. The results of TGA studies, CNPs significantly enhanced the thermal stability of composites using PBAT. The mechanical strength of the PBAT composites was improved by increasing CNPs concentration. Tensile strength increased from 7.38 to 10.22 MPa, respectively. The oxygen transmission rate (OTR) decreased with increasing the CNPs concentrations. The barrier properties (H2O and O2) of PBAT were improved by the presence of CNPs. WVTR was calculated to be 108.6 ± 1.8 g/m2/day for PBAT. WVTR reduced when CNPs concentration in PBAT increased. The PCN-5.0 film sample had the lowest WVTR value, 34.1 ± 3.1 g/m2/day. For PCN-3.0, WVTR dropped by 45.39%, indicating and even with a 3.0 wt% loading of CNPs in PBAT, the rise is noticeable. Contact angle measurements indicate that PBAT/CNPs composites becomes hydrophobic after reinforcing. Gram-positive (S. aureus) and Gram-negative (E. coli) food-borne pathogenic microorganisms showed enhanced antimicrobial activity against the developed PBAT composites. The carrot pieces preserved their freshness for an extended period of 12 days while packaged in the PBAT/CNPs composite film, indicating that the film is an effective and excellent packaging for food materials.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Sekar Surya
- Department of Chemistry, Anna University, Chennai, 600025, Tamil Nadu, India
| | - Sanjeevamuthu Suganthi
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011, Tamil Nadu, India
| | | | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
40
|
Navasingh RJH, Gurunathan MK, Nikolova MP, Królczyk JB. Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers (Basel) 2023; 15:3760. [PMID: 37765615 PMCID: PMC10534797 DOI: 10.3390/polym15183760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
It is crucial to find an effective, environmentally acceptable solution, such as bioplastics or biodegradable plastics, to the world's rising plastics demand and the resulting ecological destruction. This study has focused on the environmentally friendly production of bioplastic samples derived from corn starch, rice starch, and tapioca starch, with various calcium carbonate filler concentrations as binders. Two different plasticizers, glycerol and sorbitol, were employed singly and in a rich blend. To test the differences in the physical and chemical properties (water content, absorption of moisture, water solubility, dissolution rate in alcohol, biodegradation in soil, tensile strength, elastic modulus, and FT-IR) of the produced samples, nine samples from each of the three types of bioplastics were produced using various ratios and blends of the fillers and plasticizers. The produced bioplastic samples have a multitude of features that make them appropriate for a variety of applications. The test results show that the starch-based bioplastics that have been suggested would be a better alternative material to be used in the packaging sectors.
Collapse
Affiliation(s)
- Rajesh Jesudoss Hynes Navasingh
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India;
- Faculty of Mechanical Engineering, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland;
| | - Manoj Kumar Gurunathan
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India;
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “Angel Kanchev”, 8 Studentska Street, 7017 Ruse, Bulgaria;
| | - Jolanta B. Królczyk
- Faculty of Mechanical Engineering, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland;
| |
Collapse
|
41
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
42
|
Malafeev KV, Apicella A, Incarnato L, Scarfato P. Understanding the Impact of Biodegradable Microplastics on Living Organisms Entering the Food Chain: A Review. Polymers (Basel) 2023; 15:3680. [PMID: 37765534 PMCID: PMC10534621 DOI: 10.3390/polym15183680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Microplastics (MPs) pollution has emerged as one of the world's most serious environmental issues, with harmful consequences for ecosystems and human health. One proposed solution to their accumulation in the environment is the replacement of nondegradable plastics with biodegradable ones. However, due to the lack of true biodegradability in some ecosystems, they also give rise to biodegradable microplastics (BioMPs) that negatively impact different ecosystems and living organisms. This review summarizes the current literature on the impact of BioMPs on some organisms-higher plants and fish-relevant to the food chain. Concerning the higher plants, the adverse effects of BioMPs on seed germination, plant biomass growth, penetration of nutrients through roots, oxidative stress, and changes in soil properties, all leading to reduced agricultural yield, have been critically discussed. Concerning fish, it emerged that BioMPs are more likely to be ingested than nonbiodegradable ones and accumulate in the animal's body, leading to impaired skeletal development, oxidative stress, and behavioral changes. Therefore, based on the reviewed pioneering literature, biodegradable plastics seem to be a new threat to environmental health rather than an effective solution to counteract MP pollution, even if serious knowledge gaps in this field highlight the need for additional rigorous investigations to understand the potential risks associated to BioMPs.
Collapse
Affiliation(s)
| | - Annalisa Apicella
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (K.V.M.); (L.I.); (P.S.)
| | | | | |
Collapse
|
43
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
44
|
Raj VA, Sankar K, Narayanasamy P, Moorthy IG, Sivakumar N, Rajaram SK, Karuppiah P, Shaik MR, Alwarthan A, Oh TH, Shaik B. Development and Characterization of Bio-Based Composite Films for Food Packing Applications Using Boiled Rice Water and Pistacia vera Shells. Polymers (Basel) 2023; 15:3456. [PMID: 37631514 PMCID: PMC10457870 DOI: 10.3390/polym15163456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Customer demand for natural packaging materials in the food industry has increased. Biocomposite films developed using boiled rice water could be an eco-friendly and cost-effective packaging product in the future. This study reports the development of bio-based films using waste materials, such as boiled rice water (matrix) and Pistacia vera shells (reinforcement material), using an adapted solution casting method. Several film combinations were developed using various concentrations of plasticizing agent (sorbitol), thickening agent (oil and agar), and stabilizing agents (Arabic gum, corn starch, and Pistacia vera shell powder). Various packaging properties of the film were analyzed and examined to select the best bio-based film for food packaging applications. The film fabricated with Pistacia vera shell powder in the biocomposite film exhibited a reduced water solubility, swelling index, and moisture content, as compared to polyethene packaging material, whereas the biocomposite film exhibited poor antimicrobial properties, high vapor transmission rate, and high biodegradability rate. The packaging properties and characterization of the film indicated that the boiled rice water film with Pistacia vera shell powder was suitable for packaging material applications.
Collapse
Affiliation(s)
- Vinnarasi A. Raj
- Department of Biotechnology, Kamaraj College of Engineering and Technology, K. Vellakulam, Virudhunagar 625701, Tamil Nadu, India; (V.A.R.); (K.S.)
| | - Karthikumar Sankar
- Department of Biotechnology, Kamaraj College of Engineering and Technology, K. Vellakulam, Virudhunagar 625701, Tamil Nadu, India; (V.A.R.); (K.S.)
| | - Pandiarajan Narayanasamy
- Department of Mechanical Engineering, Kamaraj College of Engineering and Technology, K. Vellakulam, Virudhunagar 625701, Tamil Nadu, India;
| | - Innasi Ganesh Moorthy
- School of Chemical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Life Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India;
| | - Shyam Kumar Rajaram
- Department of Biotechnology, Kamaraj College of Engineering and Technology, K. Vellakulam, Virudhunagar 625701, Tamil Nadu, India; (V.A.R.); (K.S.)
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.R.S.); (A.A.)
| | - Abdulrahman Alwarthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.R.S.); (A.A.)
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
45
|
Campanelli-Morais Y, Silva CHF, Dantas MRDN, Sabry DA, Sassaki GL, Moreira SMG, Rocha HAO. A Blend Consisting of Agaran from Seaweed Gracilaria birdiae and Chromium Picolinate Is a Better Antioxidant Agent than These Two Compounds Alone. Mar Drugs 2023; 21:388. [PMID: 37504919 PMCID: PMC10381178 DOI: 10.3390/md21070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
A blend refers to the combination of two or more components to achieve properties that are superior to those found in the individual products used for their production. Gracilaria birdiae agaran (SPGb) and chromium picolinate (ChrPic) are both antioxidant agents. However, there is no documentation of blends that incorporate agarans and ChrPic. Hence, the objective of this study was to generate blends containing SPGb and ChrPic that exhibit enhanced antioxidant activity compared to SPGb or ChrPic alone. ChrPic was commercially acquired, while SPGb was extracted from the seaweed. Five blends (B1; B2; B3; B4; B5) were produced, and tests indicated B5 as the best antioxidant blend. B5 was not cytotoxic or genotoxic. H2O2 (0.6 mM) induced toxicity in fibroblasts (3T3), and this effect was abolished by B5 (0.05 mg·mL-1); neither ChrPic nor SPGb showed this effect. The cells also showed no signs of toxicity when exposed to H2O2 after being incubated with B5 and ChrPic for 24 h. In another experiment, cells were incubated with H2O2 and later exposed to SPGb, ChrPic, or B5. Again, SPGb was not effective, while cells exposed to ChrPic and B5 reduced MTT by 100%. The data demonstrated that B5 has activity superior to SPGb and ChrPic and points to B5 as a product to be used in future in vivo tests to confirm its antioxidant action. It may also be indicated as a possible nutraceutical agent.
Collapse
Affiliation(s)
- Yara Campanelli-Morais
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Cynthia Haynara Ferreira Silva
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Marina Rocha do Nascimento Dantas
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Diego Araujo Sabry
- Dapartamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Susana Margarida Gomes Moreira
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
- Dapartamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| |
Collapse
|
46
|
Moldovan A, Cuc S, Prodan D, Rusu M, Popa D, Taut AC, Petean I, Bomboş D, Doukeh R, Nemes O. Development and Characterization of Polylactic Acid (PLA)-Based Nanocomposites Used for Food Packaging. Polymers (Basel) 2023; 15:2855. [PMID: 37447500 DOI: 10.3390/polym15132855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The present study is focused on polylactic acid (PLA) blending with bio nanoadditives, such as Tonsil® (clay) and Aerosil®, to obtain nanocomposites for a new generation of food packaging. The basic composition was enhanced using Sorbitan oleate (E494) and Proviplast as plasticizers, increasing the composite samples' stability and their mechanical strength. Four mixtures were prepared: S1 with Tonsil®; S2 with Aerosil®; S3 with Aerosil® + Proviplast; and S4 with Sabosorb. They were complexly characterized by FT-IR spectroscopy, differential scanning calorimetry, mechanical tests on different temperatures, and absorption of the saline solution. FTIR shows a proper embedding of the filler component into the polymer matrix and DSC presents a good stability at the living body temperature for all prepared samples. Micro and nanostructural aspects were evidenced by SEM and AFM microscopy, revealing that S3 has the most compact and uniform filler distribution and S4 has the most irregular one. Thus, S3 evidenced the best diametral tensile strength and S4 evidenced the weakest values. All samples present the best bending strength at 18 °C and fair values at 4 °C, with the best values being obtained for the S1 sample and the worst for S4. The lack of mechanical strength of the S4 sample is compensated by its best resistance at liquid penetration, while S1 is more affected by the liquid infiltrations. Finally, results show that PLA composites are suitable for biodegradable and disposable food packages, and the desired properties could be achieved by proper adjustment of the filler proportions.
Collapse
Affiliation(s)
- Andrei Moldovan
- Department Environmental Engineering and Sustainable Development Entrepreneurship, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Stanca Cuc
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 400294 Cluj-Napoca, Romania
| | - Doina Prodan
- "Raluca Ripan" Institute of Research in Chemistry, "Babes Bolyai" University, 400294 Cluj-Napoca, Romania
| | - Mircea Rusu
- Lamar Auto Services S.R.L. Corpadea, 407038 Cluj-Napoca, Romania
| | - Dorin Popa
- Faculty of Exact Sciences and Engineering, "1 Decembrie 1918" University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Adrian Catalin Taut
- Applied Electronics Department, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Street, 400084 Cluj-Napoca, Romania
| | - Dorin Bomboş
- S.C. Medacril S.R.L., 8 Carpați Street, 551022 Mediaş, Romania
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploiesti, Romania
| | - Rami Doukeh
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 39 Bucharest Blvd., 100680 Ploiesti, Romania
| | - Ovidiu Nemes
- Department Environmental Engineering and Sustainable Development Entrepreneurship, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| |
Collapse
|
47
|
Singh M, Kaneko T. Ultra-tough artificial woods of polyphenol-derived biodegradable Co-polymer with Poly(butylene succinate). Heliyon 2023; 9:e16567. [PMID: 37303518 PMCID: PMC10248044 DOI: 10.1016/j.heliyon.2023.e16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Large productions of plastics worldwide are greater concern to the environment because of their non degradability and thus, damaging the ecosystem. Recent advancements in biobased plastics are growing exponentially because of their promise of a sustainable environment. Biobased polycoumarates plastics have a wood-like appearance with liquid crystalline grains, light brown color, and cinnamon-like aroma, but have very low toughness. The polycoumarates were hybridized via main-chain transesterification with poly (butylene succinate) (PBS). PBS itself being a biobased material has added more value to the final product due to biodegradability. The mechanical flexibility and toughness of the bio-based copolymers were controlled by varying the PBS content. As a result, well-processable and in-soil degradable artificial woods with a high strain energy density of approximately 76 MJ/m3 were developed while maintaining the wood-like appearance.
Collapse
|
48
|
Abedi-Firoozjah R, Parandi E, Heydari M, Kolahdouz-Nasiri A, Bahraminejad M, Mohammadi R, Rouhi M, Garavand F. Betalains as promising natural colorants in smart/active food packaging. Food Chem 2023; 424:136408. [PMID: 37245469 DOI: 10.1016/j.foodchem.2023.136408] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Betalains are water-soluble nitrogen pigments with beneficial effects, including antioxidant, antimicrobial, and pH-indicator properties. The development of packaging films incorporated with betalains has received increasing attention because of pH-responsive color-changing properties in the colorimetric indicators and smart packaging films. As such, intelligent and active packaging systems based on biodegradable polymers containing betalains have been recently developed as eco-friendly packaging to enhance the quality and safety of food products. Betalains could generally improve the functional properties of packaging films, such as higher water resistance, tensile strength, elongation at break, and antioxidant and antimicrobial activities. These effects are dependent on betalain composition (about its source and extraction), content, and the kind of biopolymer, film preparation method, food samples, and storage time. This review focused on betalains-rich films as pH- and ammonia-sensitive indicators and their applications as smart packaging to monitor the freshness of protein-rich foods such as shrimp, fish, chicken, and milk.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Parandi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran; Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahshid Bahraminejad
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
49
|
Pak AM, Maiorova EA, Siaglova ED, Aliev TM, Strukova EN, Kireynov AV, Piryazev AA, Novikov VV. MIL-100(Fe)-Based Composite Films for Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111714. [PMID: 37299617 DOI: 10.3390/nano13111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
A biocompatible metal-organic framework MIL-100(Fe) loaded with the active compounds of tea tree essential oil was used to produce composite films based on κ-carrageenan and hydroxypropyl methylcellulose with the uniform distribution of the particles of this filler. The composite films featured great UV-blocking properties, good water vapor permeability, and modest antibacterial activity against both Gram-negative and Gram-positive bacteria. The use of metal-organic frameworks as containers of hydrophobic molecules of natural active compounds makes the composites made from naturally occurring hydrocolloids attractive materials for active packaging of food products.
Collapse
Affiliation(s)
- Alexandra M Pak
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Elena A Maiorova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Elizaveta D Siaglova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Teimur M Aliev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
| | - Elena N Strukova
- Gause Institute of New Antibiotics, Russian Academy of Sciences, B. Pirogovskaya Str. 11/1, 119021 Moscow, Russia
| | - Aleksey V Kireynov
- Scientific and Educational Center "Composites of Russia", Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Alexey A Piryazev
- Research Center for Genetics and Life Sciences, Scientific Direction Biomaterials, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
- Scientific and Educational Center "Composites of Russia", Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| |
Collapse
|
50
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|