1
|
Chen L, Elizalde M, Dubois LJ, Roeth AA, Neumann UP, Olde Damink SWM, Schaap FG, Alvarez-Sola G. GAL3ST1 Deficiency Reduces Epithelial-Mesenchymal Transition and Tumorigenic Capacity in a Cholangiocarcinoma Cell Line. Int J Mol Sci 2024; 25:7279. [PMID: 39000386 PMCID: PMC11242791 DOI: 10.3390/ijms25137279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cholangiocarcinoma (CCA), or bile duct cancer, is the second most common liver malignancy, with an increasing incidence in Western countries. The lack of effective treatments associated with the absence of early symptoms highlights the need to search for new therapeutic targets for CCA. Sulfatides (STs), a type of sulfoglycosphingolipids, have been found in the biliary tract, with increased levels in CCA and other types of cancer. STs are involved in protein trafficking and cell adhesion as part of the lipid rafts of the plasma membrane. We aimed to study the role of STs in CCA by the genetic targeting of GAL3ST1, an enzyme involved in ST synthesis. We used the CRISPR-Cas9 system to generate GAL3ST1-deficient TFK1 cells. GAL3ST1 KO cells showed lower proliferation and clonogenic activity and reduced glycolytic activity compared to TFK1 cells. Polarized TFK1 GAL3ST1 KO cells displayed increased transepithelial resistance and reduced permeability compared to TFK1 wt cells. The loss of GAL3ST1 showed a negative effect on growth in 30 out of 34 biliary tract cancer cell lines from the DepMap database. GAL3ST1 deficiency partially restored epithelial identity and barrier function and reduced proliferative activity in CCA cells. Sulfatide synthesis may provide a novel therapeutic target for CCA.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
| | - Montserrat Elizalde
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Anjali A. Roeth
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Ulf P. Neumann
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Steven W. M. Olde Damink
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
- Department of General, Visceral and Transplant Surgery, University Hospital Aachen, 52074 Aachen, Germany
| | - Gloria Alvarez-Sola
- Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (L.C.); (A.A.R.); (U.P.N.); (S.W.M.O.D.); (F.G.S.)
| |
Collapse
|
2
|
Suwanchiwasiri K, Phanthaphol N, Somboonpatarakun C, Yuti P, Sujjitjoon J, Luangwattananun P, Maher J, Yenchitsomanus PT, Junking M. Bispecific T cell engager-armed T cells targeting integrin ανβ6 exhibit enhanced T cell redirection and antitumor activity in cholangiocarcinoma. Biomed Pharmacother 2024; 175:116718. [PMID: 38744221 DOI: 10.1016/j.biopha.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvβ6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvβ6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvβ6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvβ6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.β6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvβ6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvβ6-expressing cancers.
Collapse
Affiliation(s)
- Kwanpirom Suwanchiwasiri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Phanthaphol
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; School of Cardiovascular and Medical Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London, United Kingdom
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Gu D, Zhao X, Song J, Xiao J, Zhang L, Deng G, Li D. Expression and clinical significance of interleukin-6 pathway in cholangiocarcinoma. Front Immunol 2024; 15:1374967. [PMID: 38881895 PMCID: PMC11176422 DOI: 10.3389/fimmu.2024.1374967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background Cholangiocarcinoma (CCA) is a typical inflammation-induced malignancy, and elevated serum interleukin-6 (IL-6) levels have been reported to be linked to the onset and progression of CCA. We aim to investigate the potential prognostic value of the IL-6 pathway for CCA. Methods We detected the expressions of IL-6, IL-6R, glycoprotein (gp130), C-reactive protein (CRP), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) in CCA tissue microarray using multiplex immunofluorescence. Furthermore, the clinical associations and prognostic values were assessed. Finally, single-cell transcriptome analysis was performed to evaluate the expression level of IL-6 pathway genes in CCA. Results The results revealed that the expression of IL-6 was lower, while the expression of STAT3 was higher in tumor tissues compared to normal tissues. Especially in tumor microenvironment, the expression of IL-6 pathway genes was generally downregulated. Importantly, gp130 was strongly correlated with JAK2 in tumor tissues, while it was moderately correlated with JAK2 in normal tissue. Although none of the gene expressions were directly associated with overall survival and disease-free survival, our study found that IL-6, IL-6R, CRP, gp130, and JAK2 were inversely correlated with vascular invasion, which is a risk factor for poor prognosis in patients with CCA. Conclusion The findings from this study suggest that the IL-6 signaling pathway may have a potential prognostic value for CCA. Further investigation is needed to understand the underlying molecular mechanisms of the IL-6 pathway in CCA.
Collapse
Affiliation(s)
- Dongqing Gu
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Viral Infectious Diseases, Chongqing, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing Song
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University (CHCMU), Chongqing, China
| | - Jianmei Xiao
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Viral Infectious Diseases, Chongqing, China
| | - Leida Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, First Affiliated Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Viral Infectious Diseases, Chongqing, China
| | - Dajiang Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhang C, Qin C. Protein regulator of cytokinesis 1 accentuates cholangiocarcinoma progression via mTORC1-mediated glycolysis. Hum Cell 2024; 37:739-751. [PMID: 38416277 DOI: 10.1007/s13577-024-01032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to investigate the expression of protein regulator of cytokinesis 1 (PRC1) in cholangiocarcinoma (CHOL) and elucidate its potential impact as well as the underlying mechanisms governing the progression of CHOL. In this study, we used CHOL cells (HUCCT1, RBE, and CCLP1) and conducted a series of experiments, including qRT-PCR, cell counting kit-8 assays, EdU assays, flow cytometry, wound healing assays, Transwell assays, western blotting, double luciferase assays, and ELISA. Subsequently, a mouse model was established using cancer cell injections. Haematoxylin-eosin staining, along with Ki67 and TUNEL assays, were employed to assess tissue histopathology, cell proliferation, and apoptosis. Our findings revealed significantly elevated PRC1 expression in CHOL. According to bioinformatics analysis, it was found that the increased PRC1 level is correlated with the high tumour grades, metastases, and unfavourable prognoses. Notably, PRC1 knockdown inhibited cell viability, proliferation, migration, and invasion while promoting apoptosis in CHOL cells. Analysing TCGA-CHOL data and utilising transcription factor prediction tools (hTFtarget and HumanTFDB), we identified that genes positively correlated with PRC1 in TCGA-CHOL intersect with predicted transcription factors, revealing the activation of PRC1 by forkhead box protein M1 (FOXM1). Moreover, PRC1 was found to exert regulatory control over glycolysis and the mammalian target of rapamycin complex 1 (mTORC1) pathway in the context of CHOL based on KEGG and GSEA analysis. Collectively, these results underscore the pivotal role of PRC1 in CHOL progression, wherein it modulates glycolysis and the mTORC1 pathway under the regulatory influence of FOXM1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276034, Shandong, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, 324 Jingwuwei 7Th Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Yang Y, Li H, Liu K, Zou L, Xiang S, Geng Y, Li X, Qiu S, Yang J, Cui X, Li L, Li Y, Li W, Yan S, Liu L, Wu X, Liu F, Wu W, Chen S, Liu Y. Acylcarnitines promote gallbladder cancer metastasis through lncBCL2L11-THOC5-JNK axis. J Transl Med 2024; 22:299. [PMID: 38519939 PMCID: PMC10958842 DOI: 10.1186/s12967-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The progression of gallbladder cancer (GBC) is accompanied by abnormal fatty acid β-oxidation (FAO) metabolism. Different types of lipids perform various biological functions. This study aimed to determine the role of acyl carnitines in the molecular mechanisms of GBC progression. METHODS Distribution of lipids in GBC was described by LC-MS-based lipidomics. Cellular localization, expression level and full-length of lncBCL2L11 were detected using fluorescence in situ hybridization (FISH) assays, subcellular fractionation assay and 5' and 3' rapid amplification of the cDNA ends (RACE), respectively. In vitro and in vivo experiments were used to verify the biological function of lncBCL2L11 in GBC cells. Methylated RNA Immunoprecipitation (MeRIP) was performed to detect the methylation levels of lncBCL2L11. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were used to identify lncBCL2L11 interacting proteins. Co-Immunoprecipitation (Co-IP) and Western blot assay were performed to validate the regulatory mechanism of lncBCL2L11 and THO complex. RESULTS Acylcarnitines were significantly up-regulated in GBC tissues. High serum triglycerides correlated to decreased survival in GBC patients and promoted tumor migration. LncBCL2L11 was identified in the joint analysis of highly metastatic cells and RNA sequencing data. LncBCl2L11 prevented the binding of THOC6 and THOC5 and causes the degradation of THOC5, thus promoting the accumulation of acylcarnitines in GBC cells, leading to the malignant progression of cancer cells. In addition, highly expressed acylcarnitines stabilized the expression of lncBCL2L11 through N6-methyladenosine methylation (m6A), forming a positive feedback regulation in tumor dissemination. CONCLUSIONS LncBCL2L11 is involved in gallbladder cancer metastasis through FAO metabolism. High lipid intake is associated with poor prognosis of GBC. Therefore, targeting lncBCL2L11 and its pathway-related proteins or reducing lipid intake may be significant for the treatment of GBC patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shanshan Xiang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiahua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xuya Cui
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lin Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Siyuan Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Fatao Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Shili Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
6
|
Caragut RL, Ilie M, Cabel T, Günșahin D, Panaitescu A, Pavel C, Plotogea OM, Rînja EM, Constantinescu G, Sandru V. Updates in Diagnosis and Endoscopic Management of Cholangiocarcinoma. Diagnostics (Basel) 2024; 14:490. [PMID: 38472961 DOI: 10.3390/diagnostics14050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an adenocarcinoma originating from the epithelial cells of the bile ducts/hepatocytes or peribiliary glands. There are three types of cholangiocarcinoma: intrahepatic, perihilar and distal. CCA represents approximately 3% of the gastrointestinal malignancies. The incidence of CCA is higher in regions of the Eastern world compared to the Western countries. There are multiple risk factors associated with cholangiocarcinoma such as liver fluke, primary sclerosing cholangitis, chronic hepatitis B, liver cirrhosis and non-alcoholic fatty liver disease. Endoscopy plays an important role in the diagnosis and management of cholangiocarcinoma. The main endoscopic methods used for diagnosis, biliary drainage and delivering intrabiliary local therapies are endoscopic retrograde cholangiopancreatography and endoscopic ultrasound. The purpose of this review is to analyze the current data found in literature about cholangiocarcinoma, with a focus on the actual diagnostic tools and endoscopic management options.
Collapse
Affiliation(s)
- Roxana-Luiza Caragut
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Madalina Ilie
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Teodor Cabel
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Deniz Günșahin
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Afrodita Panaitescu
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Christopher Pavel
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Oana Mihaela Plotogea
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Ecaterina Mihaela Rînja
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Gabriel Constantinescu
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Vasile Sandru
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Ma X, Qian X, Wang Q, Zhang Y, Zong R, Zhang J, Qian B, Yang C, Lu X, Shi Y. Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma. LA RADIOLOGIA MEDICA 2023; 128:1296-1309. [PMID: 37679641 PMCID: PMC10620280 DOI: 10.1007/s11547-023-01704-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Microvascular invasion (MVI) is a significant adverse prognostic indicator of intrahepatic cholangiocarcinoma (ICC) and affects the selection of individualized treatment regimens. This study sought to establish a radiomics nomogram based on the optimal VOI of multi-sequence MRI for predicting MVI in ICC tumors. METHODS 160 single ICC lesions with MRI scanning confirmed by postoperative pathology were randomly separated into training and validation cohorts (TC and VC). Multivariate analysis identified independent clinical and imaging MVI predictors. Radiomics features were obtained from images of 6 MRI sequences at 4 different VOIs. The least absolute shrinkage and selection operator algorithm was performed to enable the derivation of robust and effective radiomics features. Then, the best three sequences and the optimal VOI were obtained through comparison. The MVI prediction nomogram combined the independent predictors and optimal radiomics features, and its performance was evaluated via the receiver operating characteristics, calibration, and decision curves. RESULTS Tumor size and intrahepatic ductal dilatation are independent MVI predictors. Radiomics features extracted from the best three sequences (T1WI-D, T1WI, DWI) with VOI10mm (including tumor and 10 mm peritumoral region) showed the best predictive performance, with AUCTC = 0.987 and AUCVC = 0.859. The MVI prediction nomogram obtained excellent prediction efficacy in both TC (AUC = 0.995, 95%CI 0.987-1.000) and VC (AUC = 0.867, 95%CI 0.798-0.921) and its clinical significance was further confirmed by the decision curves. CONCLUSION A nomogram combining tumor size, intrahepatic ductal dilatation, and the radiomics model of MRI multi-sequence fusion at VOI10mm may be a predictor of preoperative MVI status in ICC patients.
Collapse
Affiliation(s)
- Xijuan Ma
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China
| | - Xianling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Qing Wang
- Graduate Department, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Central Research Institute, United Imaging Healthcare, No. 2258 Chengbei Rd, Shanghai, 201807, People's Republic of China
| | - Ruilong Zong
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China
| | - Jia Zhang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China
| | - Baoxin Qian
- Huiying Medical Technology, Huiying Medical Technology Co., Ltd, Room A206, B2, Dongsheng Science and Technology Park, Haidian District, Beijing City, 100192, People's Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xin Lu
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China.
- Department of Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China.
- Department of Radiology, Shanghai Geriatric Medical Center, No. 2560 Chunshen Rd, Shanghai, 201104, People's Republic of China.
| | - Yibing Shi
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Lederer AK, Rasel H, Kohnert E, Kreutz C, Huber R, Badr MT, Dellweg PKE, Bartsch F, Lang H. Gut Microbiota in Diagnosis, Therapy and Prognosis of Cholangiocarcinoma and Gallbladder Carcinoma-A Scoping Review. Microorganisms 2023; 11:2363. [PMID: 37764207 PMCID: PMC10538110 DOI: 10.3390/microorganisms11092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Cancers of the biliary tract are more common in Asia than in Europe, but are highly lethal due to delayed diagnosis and aggressive tumor biology. Since the biliary tract is in direct contact with the gut via the enterohepatic circulation, this suggests a potential role of gut microbiota, but to date, the role of gut microbiota in biliary tract cancers has not been elucidated. This scoping review compiles recent data on the associations between the gut microbiota and diagnosis, progression and prognosis of biliary tract cancer patients. Systematic review of the literature yielded 154 results, of which 12 studies and one systematic review were eligible for evaluation. The analyses of microbiota diversity indices were inconsistent across the included studies. In-depth analyses revealed differences between gut microbiota of biliary tract cancer patients and healthy controls, but without a clear tendency towards particular species in the studies. Additionally, most of the studies showed methodological flaws, for example non-controlling of factors that affect gut microbiota. At the current stage, there is a lack of evidence to support a general utility of gut microbiota diagnostics in biliary tract cancers. Therefore, no recommendation can be made at this time to include gut microbiota analyses in the management of biliary tract cancer patients.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hannah Rasel
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Roman Huber
- Center for Complementary Medicine, Department of Medicine II, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Patricia K. E. Dellweg
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Fabian Bartsch
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
9
|
Nanjundappa RH, Christen U, Umeshappa CS. Distinct immune surveillance in primary biliary cholangitis and primary sclerosing cholangitis is linked with discrete cholangiocarcinoma risk. Hepatol Commun 2023; 7:e0218. [PMID: 37555943 PMCID: PMC10412426 DOI: 10.1097/hc9.0000000000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/10/2023] [Indexed: 08/10/2023] Open
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are 2 major liver autoimmune diseases. PBC is common in women and primarily affects intrahepatic small bile duct epithelial cells, known as cholangiocytes. In contrast, PSC is dominant in men and primarily affects medium and big intrahepatic and extrahepatic bile duct epithelial cells. Cholangiocarcinoma (CCA) is a malignancy arising from cholangiocytes, and its incidence is increasing worldwide in both men and women. Numerous retrospective and clinical studies have suggested that PBC patients rarely develop CCA compared to PSC patients. CCA is accountable for the higher deaths in PSC patients due to ineffective therapies and our inability to diagnose the disease at an early stage. Therefore, it is paramount to understand the differences in immune surveillance mechanisms that render PBC patients more resistant while PSC patients are susceptible to CCA development. Here, we review several potential mechanisms contributing to differences in the susceptibility to CCA in PBC versus PSC patients.
Collapse
Affiliation(s)
- Roopa H. Nanjundappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Urs Christen
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Channakeshava S. Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Center, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Doroshow DB, Wei W, Mehrotra M, Sia D, Eder JP, Bindra R, Houldsworth J, LoRusso P, Walther Z. Platinum Sensitivity in IDH1/2 Mutated Intrahepatic Cholangiocarcinoma: Not All "BRCAness" Is Created Equal. Cancer Invest 2023; 41:646-655. [PMID: 37505929 DOI: 10.1080/07357907.2023.2242957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
Preclinical data suggest that IDH1/2 mutations result in defective homologous recombination repair (HRR). We hypothesized that patients with IDH1/2mt intrahepatic cholangiocarcinoma (IHCC) would benefit more from 1 L platinum chemotherapy than patients with wildtype (WT) tumors. We performed a multicenter retrospective study of 81 patients with unresectable IHCC treated with 1 L platinum with a primary endpoint of clinical benefit rate (CBR). Patients with IDH1/2mt tumors had a similar CBR and objective response rate compared to those with IDH WT disease (59 versus 54%; p = 0.803), suggesting that a relationship between platinum sensitivity and HRR gene defects may be specific to tumor context.
Collapse
Affiliation(s)
| | - Wei Wei
- Yale School of Public Health, New Haven, CT, USA
| | | | - Daniella Sia
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Paul Eder
- Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | | | | | - Patricia LoRusso
- Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| | - Zenta Walther
- Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
11
|
Yu T, Zhang T, Zhao L, Li K, Li J, Yu A. Bioinformatic analysis the expression and clinical significance of CDRT15 in cholangiocarcinoma using TCGA database. Medicine (Baltimore) 2023; 102:e34602. [PMID: 37543771 PMCID: PMC10403009 DOI: 10.1097/md.0000000000034602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a common and lethal malignant tumor originating from bile duct epithelial cells. Various tumor biomarkers have been used for its clinical screening, such as carbohydrate antigen 19-9 and carcinoembryonic antigen. This study aimed to demonstrate the value of associated genes-CMT1A duplicated region transcript 15 (CDRT15) for prognosis of CCA by integrated bioinformatics analysis. We obtained CDRT15 expression data and clinical information on patients with CCA from The Cancer Genome Atlas database. Then, we processed the data by differentially expressed gene analysis, gene set enrichment analysis, statistical analysis, etc. Gene Ontology enrichment analysis was aimed to explore the function of gene-related proteins. Single-sample gene set enrichment analysis was used to analyze the correlation between CDRT15 and immune cells. Finally, we constructed the nomogram to predict the prognosis of patients with CCA. The analysis of data in The Cancer Genome Atlas database revealed that CDRT15 was overexpressed in CCA tissues. We performed the interrelation analysis of immune infiltration, showing that CDRT15 are mainly associated with the immune/inflammatory response. ROC curve showed that CDRT15 can be a diagnostic marker of CCA. Subsequently, the prognostic analysis showed that the high expression of CDRT15 was correlated with the poor OS, and patients with high CDRT15 expression may have a poor prognosis. CDRT15 is more highly expressed in CCA, thus we identified that CDRT15 could be an efficient biomarker for patients. CDRT15 expression was negatively correlated with prognosis of CCA. CDRT15 may be involved in the immune infiltration process of CCA.
Collapse
Affiliation(s)
- Tianyang Yu
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, PR China
| | - Tiezhao Zhang
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, PR China
| | - Luwen Zhao
- The First Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, PR China
| | - Kefan Li
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, PR China
| | - Jian Li
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, PR China
| | - Aijun Yu
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, PR China
| |
Collapse
|
12
|
Scimeca M, Rovella V, Palumbo V, Scioli MP, Bonfiglio R, Tor Centre, Melino G, Piacentini M, Frati L, Agostini M, Candi E, Mauriello A. Programmed Cell Death Pathways in Cholangiocarcinoma: Opportunities for Targeted Therapy. Cancers (Basel) 2023; 15:3638. [PMID: 37509299 PMCID: PMC10377326 DOI: 10.3390/cancers15143638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Frati
- Institute Pasteur Italy-Cenci Bolognetti Foundation, Via Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed S.p.A., Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
13
|
Yang J, Shu C, Shang X, Xu H, Wei N. Prognostic Value of Systemic Immune-Inflammation Index-Based Nomogram in Patients with Extrahepatic Cholangiocarcinoma Treated by Percutaneous Transhepatic Biliary Stenting Combined with 125I Seed Intracavitary Irradiation. Int J Gen Med 2023; 16:2081-2094. [PMID: 37275332 PMCID: PMC10237196 DOI: 10.2147/ijgm.s411577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Purpose This study aimed to investigate the prognostic value of systemic immune-inflammation index (SII) in patients with extrahepatic cholangiocarcinoma (EHCC) treated by percutaneous transhepatic biliary stenting (PTBS) combined with 125I seed intracavitary irradiation and further develop a predictive model related to SII. Methods A total of 145 patients with EHCC who received PTBS combined with 125I seed implantation were retrospectively analyzed. The optimal cut-off value of SII was identified by receiver operating characteristic (ROC) curve analysis. Kaplan-Meier curves and Cox regression were applied to estimate the prognostic value of SII and identify other significant factors of overall survival (OS). Additionally, a novel nomogram was constructed. The concordance index (C-index), calibration plots and decision curve analysis were used to evaluate the performance of the nomogram model. Results The optimal cut-off value for preoperative SII of 890.2 stratified the patients into High-SII (H-SII) and Low-SII (L-SII) groups. Univariate and multivariate analyses demonstrated that SII was an independent factor for OS. We also found that better therapeutic effect could be obtained with combined postoperative chemotherapy (P < 0.001). Moreover, we revealed that elevated preoperative CA19-9 (P = 0.038) and TBIL level (P = 0.024) were reason for poor prognosis of EHCC. A well-discriminated and calibrated nomogram was developed to predict the 1-year and 2-year OS of EHCC (C-index: 0.709). Conclusion The SII may be a feasible and convenient prognosis predictor for EHCC. The comprehensive nomogram based on SII presented in this study is a promising model for predicting OS in EHCC patients after PTBS combined with 125I seed intracavitary irradiation.
Collapse
Affiliation(s)
- Jing Yang
- Department of Interventional Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People’s Republic of China
| | - Chengsen Shu
- Department of Interventional Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People’s Republic of China
| | - Xianfu Shang
- Department of Interventional Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People’s Republic of China
| | - Hao Xu
- Department of Interventional Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People’s Republic of China
| | - Ning Wei
- Department of Interventional Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People’s Republic of China
| |
Collapse
|
14
|
Wang Y, Gong P, Zhang X, Wang X, Zhang X, Zhang N, Yu Y, Ma Y, Zhang H, Zhang X, Li X, Li J. TLR3 activation by Clonorchis sinensis infection alleviates the fluke-induced liver fibrosis. PLoS Negl Trop Dis 2023; 17:e0011325. [PMID: 37167198 PMCID: PMC10174496 DOI: 10.1371/journal.pntd.0011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Clonorchis sinensis is a zoonotic parasite associated with liver fibrosis and cholangiocarcinoma development. The role of toll-like receptors (TLRs) in C. sinensis infection has not yet been fully elucidated. Here, the TLR3 signaling pathway, cytokine expression and liver fibrosis were examined in C. sinensis-infected wildtype (WT) and TLR3-/- mice. Polyinosinic-polycytidylic acid (Poly (I:C)) was used to treat C. sinensis infections. The results showed that TLR3 deficiency caused severe clonorchiasis with increased parasite burden, exacerbated proinflammatory cytokine expression and liver lesions, promoted the TGF-β1/Smad2/3 pathway and myofibroblast activation, exacerbated liver fibrosis (compared to WT mice). Poly (I:C) intervention increased the body weight, decreased mouse mortality and parasite burden, reduced liver inflammation, and alleviated C. sinensis-induced liver fibrosis. Furthermore, C. sinensis extracellular vesicles (CsEVs) promote the production of IL-6, TNF in WT biliary epithelial cells (BECs) via p38/ERK pathway, compared with control group, while TLR3 deletion induced much higher levels of IL-6 and TNF in TLR3-/- BECs than that in WT BECs. Taken together, TLR3 inhibit IL-6 and TNF production via p38/ERK signaling pathway, a phenomenon that resulted in the alleviation of C. sinensis-induced liver fibrosis. Poly (I:C) is a potential treatment for clonorchiasis.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuancheng Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanhui Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yeting Ma
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haoyang Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang Y, Zhang X, Wang X, Zhang N, Yu Y, Gong P, Zhang X, Ma Y, Li X, Li J. Clonorchis sinensis aggravates biliary fibrosis through promoting IL-6 production via toll-like receptor 2-mediated AKT and p38 signal pathways. PLoS Negl Trop Dis 2023; 17:e0011062. [PMID: 36693049 PMCID: PMC9873171 DOI: 10.1371/journal.pntd.0011062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Clonorchis sinensis is an important food-borne zoonotic parasite which has been linked to biliary fibrosis and cholangiocarcinoma. However, the details of the pathogenesis of C. sinensis were unclear. To explore the role and regulatory mechanism of toll-like receptor 2 (TLR2) in C. sinensis-induced biliary fibrosis, we established the C. sinensis-infected C57BL/6 mouse model with TLR2-/- and wild type (WT) mice. The mortality rate, liver lesions, TLR2 and TGF-β1 expression, phosphorylation of Smad2/3, AKT, p38, ERK and p65, and cytokine productions were analyzed. Furthermore, similar parameters were examined in mouse biliary epithelial cells (BECs) co-cultured with C. sinensis excretory/secretory proteins (ESPs). The results showed that TLR2 expression was enhanced significantly in C. sinensis-infected WT mice and mouse BECs. C. sinensis-infected TLR2-/- mice exhibited an increased weight and a decreased mortality rate; significantly alleviated liver lesions and biliary fibrosis, reduced numbers of myofibroblasts; decreased expression of TGF-β1 and phosphorylation level of AKT, p38 and Smad2/3; significantly decreased production of IL-6, TNF-α and IL-4, while increased production of IFN-γ compared with C. sinensis-infected WT mice. Furthermore, C. sinensis ESPs could activate TLR2-mediated AKT and p38 pathways to increase the production of IL-6 in mouse BECs. In conclusion, these data indicate that C. sinensis infection activated TGF-β1-Smad2/3 through TLR2-mediated AKT and p38 pathways to promote IL-6 production, which resulted in myofibroblast activation and aggravating biliary fibrosis in mice.
Collapse
Affiliation(s)
- Yuru Wang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanhui Yu
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yeting Ma
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (JL); (XL)
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education; College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (JL); (XL)
| |
Collapse
|
16
|
Rapid label-free detection of cholangiocarcinoma from human serum using Raman spectroscopy. PLoS One 2022; 17:e0275362. [PMID: 36227878 PMCID: PMC9562168 DOI: 10.1371/journal.pone.0275362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the northeastern region of Thailand. Current diagnostic methods for CCA are often expensive, time-consuming, and require medical professionals. Thus, there is a need for a simple and low-cost CCA screening method. This work developed a rapid label-free technique by Raman spectroscopy combined with the multivariate statistical methods of principal component analysis and linear discriminant analysis (PCA-LDA), aiming to analyze and classify between CCA (n = 30) and healthy (n = 30) serum specimens. The model's classification performance was validated using k-fold cross validation (k = 5). Serum levels of cholesterol (548, 700 cm-1), tryptophan (878 cm-1), and amide III (1248,1265 cm-1) were found to be statistically significantly higher in the CCA patients, whereas serum beta-carotene (1158, 1524 cm-1) levels were significantly lower. The peak heights of these identified Raman marker bands were input into an LDA model, achieving a cross-validated diagnostic sensitivity and specificity of 71.33% and 90.00% in distinguishing the CCA from healthy specimens. The PCA-LDA technique provided a higher cross-validated sensitivity and specificity of 86.67% and 96.67%. To conclude, this work demonstrated the feasibility of using Raman spectroscopy combined with PCA-LDA as a helpful tool for cholangiocarcinoma serum-based screening.
Collapse
|
17
|
Ding X, Li G, Sun W, Shen Y, Teng Y, Xu Y, Li W, Liu M, Chen J. Sintilimab Combined with Lenvatinib for Advanced Intrahepatic Cholangiocarcinoma in Second-Line Setting—A Multi-Center Observational Study. Front Oncol 2022; 12:907055. [PMID: 35912220 PMCID: PMC9333059 DOI: 10.3389/fonc.2022.907055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Patients with advanced intrahepatic cholangiocarcinoma (iCCA) have a poor prognosis and a substantial unmet clinical need. The study was aimed to investigate the efficacy and safety of sintilimab combined with lenvatinib for advanced iCCA in second-line setting. Methods The patients at multiple centers, who progressed after the first-line chemotherapy or could not tolerate chemotherapy, were treated with the combination of sintilimab plus lenvatinib. The primary endpoint was time to progression (TTP), and the secondary endpoints included tumor objective response rate (ORR), disease control rate (DCR), overall survival (OS), and toxicity. Prognostic factors were analyzed using Cox regression analysis. Results A total of 41 patients with advanced iCCA were enrolled for this multi-center observational study. Under a median follow-up of 12.1 months, the median age was 59 years (range, 33–75 years). Sixteen patients died of disease progression, with a median TTP of 6.6 months (95% CI, 4.9–8.3). ORR and DCR were 46.3% and 70.3%, respectively. The patients with PD-L1 TPS ≥10% reported a significantly higher ORR compared to those with PD-L1 TPS <10%, 93.8% (15/16) vs. 16.0% (4/25), p<0.001. The median TTP was significantly improved in patients with PD-L1 TPS ≥10%, 16.9 months (95% CI, 7.5–26.3) vs. 4.1 months (95% CI, 1.8–6.4), p=0.001. Attaining treatment response predicts favorable TTP in a multivariate Cox model. Treatment-emergent adverse events occurred with 70.3% probability, and no treatment-related death had been reported. Conclusion The combination of sintilimab plus lenvatinib is effective and well tolerated for advanced iCCA in the second-line setting. PD-L1 TPS expression may predict the efficacy of the combination therapy. Further investigation is warranted to investigate this combination regimen in advanced iCCA.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guangxin Li
- Radiation Oncology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wei Sun
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjun Shen
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Teng
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yawen Xu
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wendong Li
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jinglong Chen, ; Mei Liu,
| | - Jinglong Chen
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jinglong Chen, ; Mei Liu,
| |
Collapse
|
18
|
Wu Q, Shi X, Pan Y, Liao X, Xu J, Gu X, Yu W, Chen Y, Yu G. The Chemopreventive Role of β-Elemene in Cholangiocarcinoma by Restoring PCDH9 Expression. Front Oncol 2022; 12:874457. [PMID: 35903688 PMCID: PMC9314746 DOI: 10.3389/fonc.2022.874457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background β-Elemene, an effective anticancer component isolated from the Chinese herbal medicine Rhizoma Zedoariae, has been proved to have therapeutic potential against multiple cancers by extensive clinical trials and experimental research. However, its preventive role in cholangiocarcinoma (CCA) and the mechanisms of action of β-elemene on CCA need to be further investigated. Methods A thioacetamide (TAA)-induced pre-CCA animal model was well-established, and a low dosage of β-elemene was intragastrically (i.g.) administered for 6 months. Livers were harvested and examined histologically by a deep-learning convolutional neural network (CNN). cDNA array was used to analyze the genetic changes of CCA cells following β-elemene treatment. Immunohistochemical methods were applied to detect β-elemene-targeted protein PCDH9 in CCA specimens, and its predictive role was analyzed. β-Elemene treatment at the cellular or animal level was performed to test the effect of this traditional Chinese medicine on CCA cells. Results In the rat model of pre-CCA, the ratio of cholangiolar proliferation lesions was 0.98% ± 0.72% in the control group, significantly higher than that of the β-elemene (0. 47% ± 0.30%) groups (p = 0.0471). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the top 10 pathways affected by β-elemene treatment were associated with energy metabolism, and one was associated with the cell cycle. β-Elemene inactivated a number of oncogenes and restored the expression of multiple tumor suppressors. PCDH9 is a target of β-elemene and displays an important role in predicting tumor recurrence in CCA patients. Conclusions These findings proved that long-term use of β-elemene has the potential to interrupt the progression of CCA and improve the life quality of rats. Moreover, β-elemene exerted its anticancer potential partially by restoring the expression of PCDH9.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xintong Shi
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yating Pan
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Liao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Gu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlong Yu
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| |
Collapse
|
19
|
Xie C, Huang Z, Huang Z, Zhang X, Lou S. microRNA-206 Suppresses Cholangiocarcinoma Cell Growth and Invasion by Targeting Jumonji AT-Rich Interactive Domain 2. Dig Dis Sci 2022; 67:2994-3005. [PMID: 34240323 DOI: 10.1007/s10620-021-07121-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The current study set out to elucidate the specific role of microRNA (miR)-206 in cholangiocarcinoma (CCA) cell biological activities by negatively modulating jumonji AT-rich interactive domain 2 (JARID2). METHODS Firstly, human intrahepatic biliary epithelial cells and CCA cell lines were selected via the analysis of miR-206 and JARID2 expression patterns in CCA by qRT-PCR. Next, the target relation between miR-206 and JARID2 was predicted by Targetscan and validated using dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Subsequently, CCK-8 method, colony formation assay, scratch test, Transwell assay, and western blot analysis were performed to evaluate cancer cell development after the overexpression of miR-206 and/or JARID2, with levels of invasion-related proteins assessed. In addition, xenograft transplantation was also employed to confirm the role of miR-206 in vivo. Lastly, Ki-67 expression pattern was also quantified with immunohistochemistry. RESULTS It was found that miR-206 was poorly expressed and JARID2 was highly expressed in CCA cell lines. Also, miR-206 overexpression brought about a suppressive effect on cancer cell proliferation, migration, and invasion. Furthermore, miR-206 was observed to target JARID2. Meanwhile, JARID2 overexpression promoted cell growth, while simultaneous overexpression of miR-206 and JARID2 impeded malignant cancer progression, indicating that miR-206 overexpression inhibited cell progression via targeting JARID2. Finally, in vivo experimentation illustrated that miR-206 overexpression suppressed tumor growth and weight, and inhibited the expressions of JARID2 N-cadherin, vimentin, and Ki-67. CONCLUSION Altogether, our findings clarified that miR-206 inhibited CCA malignancy by negatively regulating JARID2.
Collapse
Affiliation(s)
- Chunying Xie
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhenxing Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhaohui Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Xue Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Siyuan Lou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330000, China.
| |
Collapse
|
20
|
Lan L, Zhang S, Xu T, Liu H, Wang W, Feng Y, Wang L, Chen Y, Qiu L. Prospective Comparison of 68Ga-FAPI versus 18F-FDG PET/CT for Tumor Staging in Biliary Tract Cancers. Radiology 2022; 304:648-657. [PMID: 35579524 DOI: 10.1148/radiol.213118] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Gallium 68-labeled fibroblast-activation protein inhibitor (68Ga-FAPI), an imaging agent for detecting tumors, represents a promising alternative to fluorine 18 fluorodeoxyglucose (18F-FDG). Purpose To compare the potential efficacy of 68Ga-FAPI PET/CT with that of 18F-FDG PET/CT for detecting primary tumor and nodal and distant metastases in biliary tract cancer (BTC) and to explore the impact (tumor staging) of 68Ga-FAPI compared with 18F-FDG on clinical management of BTC. Materials and Methods This single-center prospective clinical study was performed at the Affiliated Hospital of Southwest Medical University between June 2020 and June 2021. Participants with BTC underwent both 68Ga-FAPI and 18F-FDG PET/CT. Histopathologic examination, morphologic imaging, and/or follow-up imaging served as the reference standard. The maximum standardized uptake value (SUVmax) of the primary tumor and nodal and distant metastases between 18F-FDG and 68Ga-FAPI PET/CT were compared using the paired-sample t test. Results Eighteen participants with primary or recurrent BTC were evaluated (mean age, 61 years ± 10 [SD]). The sensitivity of 68Ga-FAPI PET/CT was higher than that of 18F-FDG PET/CT for detecting primary tumors (16 of 16 [100%] vs 13 of 16 [81%]), nodal metastases (41 of 42 [98%] vs 35 of 42 [83%]), and distant metastases (99 of 99 [100%] vs 78 of 99 [79%]). 68Ga-FAPI PET/CT resulted in new oncologic findings in 10 of 18 participants and upgraded tumor staging or restaging in five of 18 participants compared with 18F-FDG PET/CT. 68Ga-FAPI PET/CT demonstrated higher sensitivity than 18F-FDG PET/CT in inflammatory processes secondary to tumor-related obstruction (seven of eight [88%] vs one of eight [13%]). 68Ga-FAPI showed lower average SUVmax in inflammatory processes than in oncologic lesions (4.9 ± 2.6 vs 10.0 ± 4.6, respectively; P = .003). Conclusion Gallium 68-labeled fibroblast-activation protein inhibitor PET/CT for tumor staging showed potential for more accurate staging of biliary tract cancer, thereby improving treatment decision making. Clinical trial registration no. ChiCTR2100044131 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Choyke in this issue.
Collapse
Affiliation(s)
- Lianjun Lan
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Shumao Zhang
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Tingting Xu
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Huipan Liu
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Wei Wang
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Yue Feng
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Li Wang
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Yue Chen
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| | - Lin Qiu
- From the Departments of Radiology (L.L.) and Nuclear Medicine (S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.), The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou 646000, People's Republic of China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.); and Academician (Expert) Workstation of Sichuan Province, Luzhou, People's Republic of China (L.L., S.Z., T.X., H.L., W.W., Y.F., L.W., Y.C., L.Q.)
| |
Collapse
|
21
|
Gundlach JP, Kerber J, Hendricks A, Bernsmeier A, Halske C, Röder C, Becker T, Röcken C, Braun F, Sebens S, Heits N. Paracrine Interaction of Cholangiocellular Carcinoma with Cancer-Associated Fibroblasts and Schwann Cells Impact Cell Migration. J Clin Med 2022; 11:jcm11102785. [PMID: 35628911 PMCID: PMC9145811 DOI: 10.3390/jcm11102785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Although the Mitogen-activated protein kinase (MAPK) pathway is enriched in cholangiocarcinoma (CCA), treatment with the multityrosine kinase-inhibitor Sorafenib is disappointing. While cancer-associated fibroblasts (CAF) are known to contribute to treatment resistance in CCA, knowledge is lacking for Schwann cells (SC). We investigated the impact of stromal cells on CCA cells and whether this is affected by Sorafenib. Immunohistochemistry revealed elevated expression of CAF and SC markers significantly correlating with reduced tumor-free survival. In co-culture with CAF, CCA cells mostly migrated, which could be diminished by Sorafenib, while in SC co-cultures, SC predominantly migrated towards CCA cells, unaffected by Sorafenib. Moreover, increased secretion of pro-inflammatory cytokines MCP-1, CXCL-1, IL-6 and IL-8 was determined in CAF mono- and co-cultures, which could be reduced by Sorafenib. Corresponding to migration results, an increased expression of phospho-AKT was measured in CAF co-cultured HuCCT-1 cells, although was unaffected by Sorafenib. Intriguingly, CAF co-cultured TFK-1 cells showed increased activation of STAT3, JNK, ERK and AKT pathways, which was partly reduced by Sorafenib. This study indicates that CAF and SC differentially impact CCA cells and Sorafenib partially reverts these stroma-mediated effects. These findings contribute to a better understanding of the paracrine interplay of CAF and SC with CCA cells.
Collapse
Affiliation(s)
- Jan-Paul Gundlach
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (J.K.); (A.B.); (T.B.); (F.B.); (N.H.)
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany; (C.R.); (S.S.)
- Correspondence:
| | - Jannik Kerber
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (J.K.); (A.B.); (T.B.); (F.B.); (N.H.)
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany; (C.R.); (S.S.)
| | - Alexander Hendricks
- Department of General, Visceral-, Vascular-, and Transplantation Surgery, Medical University Rostock, Schillingallee 35, 18057 Rostock, Germany;
| | - Alexander Bernsmeier
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (J.K.); (A.B.); (T.B.); (F.B.); (N.H.)
| | - Christine Halske
- Institute of Pathology, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany; (C.H.); (C.R.)
| | - Christian Röder
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany; (C.R.); (S.S.)
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (J.K.); (A.B.); (T.B.); (F.B.); (N.H.)
| | - Christoph Röcken
- Institute of Pathology, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building U33, 24105 Kiel, Germany; (C.H.); (C.R.)
| | - Felix Braun
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (J.K.); (A.B.); (T.B.); (F.B.); (N.H.)
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building U30, 24105 Kiel, Germany; (C.R.); (S.S.)
| | - Nils Heits
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany; (J.K.); (A.B.); (T.B.); (F.B.); (N.H.)
- Gesundheitszentrum Kiel-Mitte, Prüner Gang 15, 24103 Kiel, Germany
| |
Collapse
|
22
|
Ohtsubo K, Miyake K, Arai S, Fukuda K, Suzuki C, Kotani H, Tanimoto A, Nishiyama A, Nanjo S, Yamashita K, Takeuchi S, Yano S. Methylation of Tumor Suppressive miRNAs in Plasma from Patients With Pancreaticobiliary Diseases. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:378-383. [PMID: 35530650 PMCID: PMC9066530 DOI: 10.21873/cdp.10120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM We previously reported the usefulness of aberrant methylation of tumor suppressive miRNAs in bile to discriminate pancreaticobiliary cancers (PBCs) from benign pancreaticobiliary diseases (BD). Here we performed a methylation analysis of plasma miRNAs to identify miRNAs specific for PBCs. PATIENTS AND METHODS Plasma was collected from 80 patients with pancreatic cancer (PC); 18 with biliary tract cancer (BTC) and 28 with BD. Sequences encoding 3 tumor suppressive miRNAs (miR-200a, -200b, and -1247) were PCR amplified and sequenced, and their methylation rates were determined. RESULTS The methylation rate of miR-1247 was significantly higher in patients with BTC than in those with BD, and tended to be higher in patients with PC than in those with BD. Furthermore, it was significantly higher in three patients with stages I/II BTC than in those with BD. CONCLUSION Methylation of miR-1247 in plasma may be useful to distinguish BTC from BD.
Collapse
Affiliation(s)
- Koushiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kunio Miyake
- Department of Health Sciences, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Suzuki
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kotani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
23
|
Abstract
Pancreatobiliary malignancies have poor prognosis, and many patients are inoperable at the time of diagnosis. When surgical resection is impossible, systemic chemotherapy or radiotherapy is traditionally conducted with trial of immunotherapy or gene therapy lately. With the rapid development of endoscopic instruments and accessories in recent years, not only endoscopic early detection, characterization, and staging but also endoscopic palliative management of the pancreatobiliary malignancies is expanding the horizons. Endoscopic management is often preferred due to similar efficacy to surgical management with less morbidity. Here, we review the methodology and treatment outcome of various endoscopic management strategies in pancreatobiliary malignancies including endoscopic complication management, local palliative therapy, endoscopy-assisted therapy, and pain control utilizing endoscopic retrograde cholangiopancreatography or endoscopic ultrasound.
Collapse
|
24
|
Wang N, Huang A, Kuang B, Xiao Y, Xiao Y, Ma H. Progress in Radiotherapy for Cholangiocarcinoma. Front Oncol 2022; 12:868034. [PMID: 35515132 PMCID: PMC9063097 DOI: 10.3389/fonc.2022.868034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CCA) originates from the epithelium of the bile duct and is highly malignant with a poor prognosis. Radical resection is the only treatment option to completely cure primary CCA. Due to the insidious onset of CCA, most patients are already in an advanced stage at the time of the initial diagnosis and may lose the chance of radical surgery. Radiotherapy is an important method of local treatment, which plays a crucial role in preoperative neoadjuvant therapy, postoperative adjuvant therapy, and palliative treatment of locally advanced lesions. However, there is still no unified and clear recommendation on the timing, delineating the range of target area, and the radiotherapy dose for CCA. This article reviews recent clinical studies on CCA, including the timing of radiotherapy, delineation of the target area, and dose of radiotherapy. Further, we summarize large fraction radiotherapy (stereotactic body radiotherapy [SBRT]; proton therapy) in CCA and the development of immunotherapy and the use of targeted drugs combined with radiotherapy.
Collapse
Affiliation(s)
- Ningyu Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bohua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xiao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Ma, ; Yong Xiao,
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Ma, ; Yong Xiao,
| |
Collapse
|
25
|
Qian X, Lu X, Ma X, Zhang Y, Zhou C, Wang F, Shi Y, Zeng M. A Multi-Parametric Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion Status in Intrahepatic Cholangiocarcinoma. Front Oncol 2022; 12:838701. [PMID: 35280821 PMCID: PMC8907475 DOI: 10.3389/fonc.2022.838701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer with increasing incidence in the last decades. Microvascular invasion (MVI) is a poor prognostic factor for patients with ICC, which correlates early recurrence and poor prognosis, and it can affect the selection of personalized therapeutic regime. Purpose This study aimed to develop and validate a radiomics-based nomogram for predicting MVI in ICC patients preoperatively. Methods A total of 163 pathologically confirmed ICC patients (training cohort: n = 130; validation cohort: n = 33) with postoperative Ga-DTPA-enhanced MR examination were enrolled, and a time-independent test cohort (n = 24) was collected for external validation. Univariate and multivariate analyses were used to determine the independent predictors of MVI status, which were then incorporated into the MVI prediction nomogram. Least absolute shrinkage and selection operator logistic regression was performed to select optimal features and construct radiomics models. The prediction performances of models were assessed by receiver operating characteristic (ROC) curve analysis. The performance of the MVI prediction nomogram was evaluated by its calibration, discrimination, and clinical utility. Results Larger tumor size (p = 0.003) and intrahepatic duct dilatation (p = 0.002) are independent predictors of MVI. The final radiomics model shows desirable and stable prediction performance in the training cohort (AUC = 0.950), validation cohort (AUC = 0.883), and test cohort (AUC = 0.812). The MVI prediction nomogram incorporates tumor size, intrahepatic duct dilatation, and the final radiomics model and achieves excellent predictive efficacy in training cohort (AUC = 0.953), validation cohort (AUC = 0.861), and test cohort (AUC = 0.819), fitting well in calibration curves (p > 0.05). Decision curve and clinical impact curve further confirm the clinical usefulness of the nomogram. Conclusion The nomogram incorporating tumor size, intrahepatic duct dilatation, and the final radiomics model is a potential biomarker for preoperative prediction of the MVI status in ICC patients.
Collapse
Affiliation(s)
- Xianling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Lu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xijuan Ma
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Ying Zhang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Changwu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Yibing Shi
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Liu QQ, Lin HM, Han HW, Yang CN, Liu C, Zhang R. Complete Response to Combined Chemotherapy and Anti-PD-1 Therapy for Recurrent Gallbladder Carcinosarcoma: A Case Report and Literature Review. Front Oncol 2022; 12:803454. [PMID: 35372010 PMCID: PMC8967174 DOI: 10.3389/fonc.2022.803454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Gallbladder carcinosarcoma (GBCS) is a rare and aggressive malignancy with extremely poor prognosis. Although surgery is regarded as the primary therapy for GBCS, the effective therapeutic strategies for unresected lesions have been poorly defined. Case Presentation We presented a case of a 74-year-old male who underwent radical resection of gallbladder carcinoma at a local hospital. Seven months later, he was admitted to our hospital due to right upper abdominal discomfort. Postoperative radiological examinations showed multiple hepatic lesions, hilar lymph node metastasis, and main portal vein tumor thrombus. The pathological consultation results confirmed GBCS and immunohistochemical examinations revealed PD-L1 expression in 20% of tumor cells. Then, the patient received chemotherapy (Gemcitabine plus Oxaliplatin, GEMOX) in combination with anti-PD-1 therapy. After nine courses of the combination therapy, complete regression of the tumors was achieved with no evidence of relapse till now. Conclusions We, for the first time, reported a patient with recurrent GBCS who benefited from the combined chemotherapy and immunotherapy, providing a potential effective management strategy for the refractory malignant tumor.
Collapse
Affiliation(s)
| | | | | | | | - Chao Liu
- *Correspondence: Chao Liu, ; Rui Zhang,
| | - Rui Zhang
- *Correspondence: Chao Liu, ; Rui Zhang,
| |
Collapse
|
27
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
28
|
Jaidee R, Kukongviriyapan V, Senggunprai L, Prawan A, Jusakul A, Laphanuwat P, Kongpetch S. Inhibition of FGFR2 enhances chemosensitivity to gemcitabine in cholangiocarcinoma through the AKT/mTOR and EMT signaling pathways. Life Sci 2022; 296:120427. [PMID: 35218764 DOI: 10.1016/j.lfs.2022.120427] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022]
Abstract
AIM To investigate the oncogenic role of FGFR2 in carcinogenesis in cholangiocarcinoma (CCA) cells. In addition, the feasibility of using FGFR inhibitors in combination with standard chemotherapy was also explored for the chemosensitizing effect in CCA cells. MAIN METHODS Five CCA cell lines were used to screen FGFR2 expression by Western immunoblotting. Two CCA cell lines, KKU-100 and KKU-213A, were knocked down of the FGFR2 gene using siRNA. Cell viability was assessed by the MTS cell proliferation assay. Reproductive cell death was assessed by clonogenic assay. The effects on cell migration and invasion were analyzed by the Transwell chamber method. Cell cycle analysis was performed by flow cytometry. Cell angiogenesis was assessed by HUVEC tube formation and human angiogenesis antibody array analysis. Proteins associated with proliferative and metastatic properties were evaluated by Western blotting. KEY FINDINGS Knockdown of FGFR2 suppressed cell growth and colony formation in CCA cells in association with G2/M cell cycle arrest and downregulation of STAT3, cyclin A and cyclin B1. Silencing FGFR2 enhanced the suppressive effect of gemcitabine (Gem) on cell migration and invasion. The combination of infigratinib, an FGFR inhibitor, and Gem, interrupted cell growth, migration, and invasion via downregulation of FGFR/AKT/mTOR pathways and the EMT-associated proteins vimentin and slug. Moreover, the combination also suppressed tube formation together with decreased expression of the proangiogenic factor VEGF. SIGNIFICANCE Inhibition of FGFRs by infigratinib enhanced the antitumor effect of Gem in CCA cells through downregulation of the FGFR/AKT/mTOR, FGFR/STAT3 and EMT signaling pathways.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Bile Duct Neoplasms/drug therapy
- Bile Duct Neoplasms/metabolism
- Bile Duct Neoplasms/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/physiology
- Humans
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Gemcitabine
Collapse
Affiliation(s)
- Rattanaporn Jaidee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Phatthamon Laphanuwat
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
29
|
Rodpai R, Luvira V, Sadaow L, Sukeepaisarnjaroen W, Kitkhuandee A, Paonariang K, Sanpool O, Ittiprasert W, Mann VH, Intapan PM, Brindley PJ, Maleewong W. Rapid assessment of Opisthorchis viverrini IgG antibody in serum: a potential diagnostic biomarker to predict risk of cholangiocarcinoma in regions endemic for opisthorchiasis. Int J Infect Dis 2021; 116:80-84. [PMID: 34954313 PMCID: PMC9569029 DOI: 10.1016/j.ijid.2021.12.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Opisthorchiasis is caused by an infection with fish-borne liver flukes of the genus Opisthorchis. Opisthorchiasis frequently leads to chronic inflammation in the biliary tract and is classified as a group 1 biological carcinogen by the International Agency for Research on Cancer: a definitive risk for cholangiocarcinoma (CCA). Methods: We used the rapid immunochromatographic test (ICT) to detect anti-Opisthorchis viverrini IgG and IgG4 subclass antibodies in sera of patients with CCA. The ICT kits were developed based on soluble antigens excreted and secreted by O. viverrini adult worms. Results: ICT indicated sera was positive for IgG and IgG4 antibodies, respectively, in 22 (61.1%) and 15 (41.6%) participants of the 36 study participants diagnosed with CCA (P > 0.05). Our study also included groups with other cancers and with liver cirrhosis, where the IgG ICT and IgG4 ICT kits were 27.7% (13/47) and 25.5% (12/47) positive, respectively (P > 0.05). Neither total the IgG ICT nor the IgG4 ICT yielded positive results in a control group of 20 healthy participants. Moreover, the percentage positivity rate using the ICT for total IgG between the CCA group and the other cancers and liver cirrhosis group was significantly different (P < 0.05). By contrast, no significant difference between these groups was apparent in the ICT for IgG4 antibody. The CCA group was 6.53 times more likely to have positive anti–O. viverrini IgG antibody (odds ratio 6.53, P < 0.001) and 3.27 times more likely to have positive anti–O. viverrini IgG4 antibody (odds ratio 3.27, P = 0.010) than the non-CCA group. Conclusion: This information is of potential value for the development of a diagnostic biomarker to predict risk for O. viverrini infection-associated CCA.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Amnat Kitkhuandee
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Krisada Paonariang
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Science, George Washington University, Washington, District of Columbia, USA
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Science, George Washington University, Washington, District of Columbia, USA
| | - Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Science, George Washington University, Washington, District of Columbia, USA
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
30
|
Chen Y, Liu H, Zhang J, Wu Y, Zhou W, Cheng Z, Lou J, Zheng S, Bi X, Wang J, Guo W, Li F, Wang J, Zheng Y, Li J, Cheng S, Zeng Y, Liu J. Prognostic value and predication model of microvascular invasion in patients with intrahepatic cholangiocarcinoma: a multicenter study from China. BMC Cancer 2021; 21:1299. [PMID: 34863147 PMCID: PMC8645153 DOI: 10.1186/s12885-021-09035-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND At present, hepatectomy is still the most common and effective treatment method for intrahepatic cholangiocarcinoma (ICC) patients. However, the postoperative prognosis is poor. Therefore, the prognostic factors for these patients require further exploration. Whether microvascular invasion (MVI) plays a crucial role in the prognosis of ICC patients is still unclear. Moreover, few studies have focused on preoperative predictions of MVI in ICC patients. METHODS Clinicopathological data of 704 ICC patients after curative resection were retrospectively collected from 13 hospitals. Independent risk factors were identified by the Cox or logistic proportional hazards model. In addition, the survival curves of the MVI-positive and MVI-negative groups before and after matching were analyzed. Subsequently, 341 patients from a single center (Eastern Hepatobiliary Hospital) in the above multicenter retrospective cohort were used to construct a nomogram prediction model. Then, the model was evaluated by the index of concordance (C-Index) and the calibration curve. RESULTS After propensity score matching (PSM), Child-Pugh grade and MVI were independent risk factors for overall survival (OS) in ICC patients after curative resection. Major hepatectomy and MVI were independent risk factors for recurrence-free survival (RFS). The survival curves of OS and RFS before and after PSM in the MVI-positive groups were significantly different compared with those in the MVI-negative groups. Multivariate logistic regression results demonstrated that age, gamma-glutamyl transpeptidase (GGT), and preoperative image tumor number were independent risk factors for the occurrence of MVI. Furthermore, the prediction model in the form of a nomogram was constructed, which showed good prediction ability for both the training (C-index = 0.7622) and validation (C-index = 0.7591) groups, and the calibration curve showed good consistency with reality. CONCLUSION MVI is an independent risk factor for the prognosis of ICC patients after curative resection. Age, GGT, and preoperative image tumor number were independent risk factors for the occurrence of MVI in ICC patients. The prediction model constructed further showed good predictive ability in both the training and validation groups with good consistency with reality.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Jinyu Zhang
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Yijun Wu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
| | - Weiping Zhou
- Department of Hepatobiliary Surgery III, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai, China
| | - Zhangjun Cheng
- Department of Hepatobiliary Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jianying Lou
- Department of Hepatobiliary Surgery, The Second Hospital Affiliated to Zhejiang University, Hangzhou, China
| | - Shuguo Zheng
- Department of Hepatobiliary Surgery, The Southwest Hospital Affiliated to the Army Medical University, Chongqing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianming Wang
- Department of Hepatobiliary Surgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Guo
- Department of Hepatobiliary Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Fuyu Li
- Department of Hepatobiliary Surgery, The West China Hospital of Sichuan University, Chengdu, China
| | - Jian Wang
- Department of Hepatobiliary Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yamin Zheng
- Department of Hepatobiliary Surgery, Xuanwu Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Chuanbei Medical University, Nanchong, China
| | - Shi Cheng
- Department of Hepatobiliary Surgery, Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yongyi Zeng
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China. .,Liver Diseases Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Jingfeng Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China.
| |
Collapse
|
31
|
Rimini M, Puzzoni M, Pedica F, Silvestris N, Fornaro L, Aprile G, Loi E, Brunetti O, Vivaldi C, Simionato F, Zavattari P, Scartozzi M, Burgio V, Ratti F, Aldrighetti L, Cascinu S, Casadei-Gardini A. Cholangiocarcinoma: new perspectives for new horizons. Expert Rev Gastroenterol Hepatol 2021; 15:1367-1383. [PMID: 34669536 DOI: 10.1080/17474124.2021.1991313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Biliary tract cancer represents a heterogeneous group of malignancies characterized by dismal prognosis and scarce therapeutic options. AREA COVERED In the last years, a growing interest in BTC pathology has emerged, thus highlighting a significant heterogeneity of the pathways underlying the carcinogenesis process, from both a molecular and genomic point of view. A better understanding of these differences is mandatory to deepen the behavior of this complex disease, as well as to identify new targetable target mutations, with the aim to improve the survival outcomes. The authors decided to provide a comprehensive overview of the recent highlights on BTCs, with a special focus on the genetic, epigenetic and molecular alterations, which may have an interesting clinical application in the next future. EXPERT OPINION In the last years, the efforts resulted from international collaborations have led to the identification of new promising targets for precision medicine approaches in the BTC setting. Further investigations and prospective trials are needed, but the hope is that these new knowledge in cooperation with the new technologies and procedures, including bio-molecular and genomic analysis as well radiomic studies, will enrich the therapeutic armamentarium thus improving the survival outcomes in a such lethal and complex disease.
Collapse
Affiliation(s)
- Margherita Rimini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Puzzoni
- Medical Oncology, University and University Hospital of Cagliari, Italy
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Silvestris
- Department of oncology, Instituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Lorenzo Fornaro
- Department of medical oncology, U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Oronzo Brunetti
- Department of oncology, Instituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Caterina Vivaldi
- Department of medical oncology, U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Francesca Simionato
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital of Cagliari, Italy
| | - Valentina Burgio
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, IRCCS San Raffaele and Vita-Salute University, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele and Vita-Salute University, Italy
| | - Stefano Cascinu
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | | |
Collapse
|
32
|
Protein profiling reveals potential isomiR-associated cross-talks among RNAs in cholangiocarcinoma. Comput Struct Biotechnol J 2021; 19:5722-5734. [PMID: 34745457 PMCID: PMC8551523 DOI: 10.1016/j.csbj.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Protein profiling identified crucial genes that were used to screen related ncRNAs. Both miRNAs and isomiRs were involved in coding-non-coding RNA regulatory network. IsomiR-associated ceRNA networks implied the complex interactions among RNAs.
Cholangiocarcinomas (CCAs) are tumors that arise from the cholangiocytes. Although some genes have been shown with important roles in pathological process, interactions or cross-talks among different RNAs are important to understand the detailed molecular mechanisms in cancer development, especially discussing cross-talks among isomiRs and other RNAs. Herein, to characterize crucial genes in CCA, the protein expression profile was performed to survey potential crucial mRNAs and related non-coding RNAs (ncRNAs) in mRNA-ncRNA network, mainly including miRNAs/isomiRs and lncRNAs. Deregulated mRNAs were firstly obtained if consistent expression patterns were found at protein and mRNA levels, and related miRNAs/isomiRs were screened according to regulatory relationships. Diverse isomiRs from a given miRNA locus also contributed to interactions between the small RNAs and target mRNAs, and miRNAs were further used to survey related lncRNAs to expand the interactions. Thus, several groups of RNAs were constructed as candidate competitive endogenous RNA (ceRNA) networks. Finally, we found that RAB11FIP1:miR-101-3p:MIR3142HG may be a potential ceRNA network, and the interactions among them may be more complex due to variety of isomiRs. Simultaneously, RAB11FIP1 and miR-194-5p were also detected other related lncRNAs (FBXL19-AS1, SNHG1 and PVT1) that may be crucial in coding-non-coding RNA regulatory network. Our results show that diverse isomiRs with sequence and expression heterogeneities contribute to ceRNA regulatory network that may have crucial roles in CCA, which will expand our understanding of interactions among diverse RNAs and their contributions in cancer development.
Collapse
Key Words
- BLCA, bladder urothelial carcinoma
- BRCA, breast invasive carcinoma
- CHOL, cholangiocarcinoma
- COAD, colon adenocarcinoma
- Cholangiocarcinoma (CCA)
- Cross-talk
- ESCA, esophageal carcinoma
- HNSC, head and neck squamous cell carcinoma
- KICH, kidney chromophobe
- KIRC, Kidney renal clear cell carcinoma
- KIRP, kidney renal papillary cell carcinoma
- LIHC, liver hepatocellular carcinoma
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Long non-coding RNA (lncRNA)
- PRAD, prostate adenocarcinoma
- Protein profiling
- STAD, stomach adenocarcinoma
- THCA, thyroid carcinoma
- UCEC, uterine corpus endometrial carcinoma
- isomiR
- microRNA (miRNA)
Collapse
|
33
|
Ioffe D, Phull P, Dotan E. Optimal Management of Patients with Advanced or Metastatic Cholangiocarcinoma: An Evidence-Based Review. Cancer Manag Res 2021; 13:8085-8098. [PMID: 34737637 PMCID: PMC8558827 DOI: 10.2147/cmar.s276104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinomas are rare tumors originating at any point along the biliary tree. These tumors often pose significant challenges for diagnosis and treatment, and often carry a poor prognosis. However, in recent years, studies have identified significant molecular heterogeneity with up to 50% of tumors having detectable mutations, leading to the guideline recommendations for molecular testing as part of the diagnostic workup for these tumors. In addition, better classification of these tumors and understanding of their biology has led to new drugs being approved for treatment of this resistant tumor. This manuscript will provide a comprehensive review of the epidemiology, risk factors, diagnostic approach, molecular classification, and treatment options for patients with advanced cholangiocarcinomas.
Collapse
Affiliation(s)
- Dina Ioffe
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pooja Phull
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Efrat Dotan
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
34
|
Hunter LA, Soares HP. Quality of Life and Symptom Management in Advanced Biliary Tract Cancers. Cancers (Basel) 2021; 13:5074. [PMID: 34680223 PMCID: PMC8533827 DOI: 10.3390/cancers13205074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Biliary tract carcinomas (BTCs) account for less than 1% of all cancers but are increasing in incidence. Prognosis is poor for BTC patients, with 5-year survival rates of less than 10%. While chemotherapy has been the mainstay treatment for patients with advanced BTC, immunotherapy and targeted therapies are being evaluated in numerous clinical trials and rapidly incorporated into clinical practice. As patients with BTC have reduced health-related quality of life (HRQoL) due to both tumor- and treatment-related symptoms, it is important for clinicians to recognize and manage these symptoms early. This review will highlight the anticipated complications from BTC and its systemic treatment, as well as their effects on HRQoL.
Collapse
Affiliation(s)
- Lindsay A. Hunter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | | |
Collapse
|
35
|
Paillet J, Plantureux C, Lévesque S, Le Naour J, Stoll G, Sauvat A, Caudana P, Tosello Boari J, Bloy N, Lachkar S, Martins I, Opolon P, Checcoli A, Delaune A, Robil N, de la Grange P, Hamroune J, Letourneur F, Autret G, Leung PS, Gershwin ME, Zhu JS, Kurth MJ, Lekbaby B, Augustin J, Kim Y, Gujar S, Coulouarn C, Fouassier L, Zitvogel L, Piaggio E, Housset C, Soussan P, Maiuri MC, Kroemer G, Pol JG. Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J Exp Med 2021; 218:e20200853. [PMID: 34495298 PMCID: PMC8429038 DOI: 10.1084/jem.20200853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.
Collapse
Affiliation(s)
- Juliette Paillet
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Céleste Plantureux
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Sarah Lévesque
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Julie Le Naour
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Gautier Stoll
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pamela Caudana
- Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Jimena Tosello Boari
- Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Sylvie Lachkar
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Martins
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Andrea Checcoli
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
- Institut National de la Santé et de la Recherche Médicale U900, Paris, France
| | | | | | | | - Juliette Hamroune
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Franck Letourneur
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Gwennhael Autret
- Université de Paris, Paris Cardiovascular Research Centre, Institut National de la Santé et de la Recherche Médicale U970, Paris, France
| | - Patrick S.C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis School of Medicine, Davis, CA
| | - M. Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis School of Medicine, Davis, CA
| | - Jie S. Zhu
- Department of Chemistry, University of California, Davis, Davis, CA
| | - Mark J. Kurth
- Department of Chemistry, University of California, Davis, Davis, CA
| | - Bouchra Lekbaby
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Jérémy Augustin
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Henri-Mondor, Département de Pathologie, Paris, France
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cédric Coulouarn
- Institut National de la Santé et de la Recherche Médicale, Université de Rennes 1, Chemistry, Oncogenesis Stress Signaling, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Laura Fouassier
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale U1015, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eliane Piaggio
- Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, Paris, France
| | - Chantal Housset
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Department of Hepatology, Saint-Antoine Hospital, Paris, France
| | - Patrick Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut Universitaire de France, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan G. Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
36
|
Rompianesi G, Di Martino M, Gordon-Weeks A, Montalti R, Troisi R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J Gastrointest Oncol 2021; 13:332-350. [PMID: 34040697 PMCID: PMC8131901 DOI: 10.4251/wjgo.v13.i5.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) are a heterogeneous group of tumors in terms of aetiology, natural history, morphological subtypes, molecular alterations and management, but all sharing complex diagnosis, management, and poor prognosis. Several mutated genes and epigenetic changes have been detected in CCA, with the potential to identify diagnostic and prognostic biomarkers and therapeutic targets. Accessing tumoral components and genetic material is therefore crucial for the diagnosis, management and selection of targeted therapies; but sampling tumor tissue, when possible, is often risky and difficult to be repeated at different time points. Liquid biopsy (LB) represents a way to overcome these issues and comprises a diverse group of methodologies centering around detection of tumor biomarkers from fluid samples. Compared to the traditional tissue sampling methods LB is less invasive and can be serially repeated, allowing a real-time monitoring of the tumor genetic profile or the response to therapy. In this review, we analysis the current evidence on the possible roles of LB (circulating DNA, circulating RNA, exosomes, cytokines) in the diagnosis and management of patients affected by CCA.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Marcello Di Martino
- Hepato-Bilio-Pancreatic Surgery Unit, Department of General and Digestive Surgery, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Alex Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roberto Montalti
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| | - Roberto Troisi
- Hepato-Bilio-Pancreatic, Minimally Invasive and Robotic Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Napoli 80131, Italy
| |
Collapse
|
37
|
Wang Q, An Y, Wang F, Zhang G, Zhang L, Dong H, Xin J, Li Y, Ji S, Guo X. OSchol: an online consensus survival web server for cholangiocarcinoma prognosis analysis. HPB (Oxford) 2021; 23:545-550. [PMID: 32888851 DOI: 10.1016/j.hpb.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND As the most common biliary ducts, cholangiocarcinoma (CHOL) is an aggressive malignancy with complex pathological context, high mortality and relapse rate. The current therapy of CHOL is mainly performed with surgery followed by chemoradiotherapy. Due to the high metastasis and relapse rate of CHOL, the prognosis of CHOL is still poor, and the molecular prognostic system is to be constructed. METHODS In this study, we have established an online prognostic analysis web server named OSchol to evaluate the correlation between candidate genes and survival for CHOL. RESULTS The prognostic values of previous published biomarkers in OSchol, including ITIH4, PTEN and DACH1, have been validated by OSchol. In addition, we have identified novel potential prognostic biomarker for CHOL using OSchol, that E2F1 has significant prognostic ability in OSchol (both TCGA and GSE107943 cohorts). CONCLUSION Our study provides a platform for researchers and clinicians to screen, develop and validate their genes of interest to be potential prognostic biomarkers for CHOL and may also help guide the targeted therapies for CHOL.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Fengling Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Junfang Xin
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yongqiang Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shaoping Ji
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
38
|
Du X, Zhang C, Yin C, Wang W, Yan X, Xie D, Zheng X, Zheng Q, Li M, Song Z. High BLM Expression Predicts Poor Clinical Outcome and Contributes to Malignant Progression in Human Cholangiocarcinoma. Front Oncol 2021; 11:633899. [PMID: 33828983 PMCID: PMC8019910 DOI: 10.3389/fonc.2021.633899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular mechanisms underlying the tumorigenesis of a highly malignant cancer, cholangiocarcinoma (CCA), are still obscure. In our study, the CCA expression profile data were acquired from The Cancer Genome Atlas (TCGA) database, and differentially expressed genes (DEGs) in the TCGA-Cholangiocarcinoma (TCGA-CHOL) data set were utilized to construct a co-expression network via weighted gene co-expression network analysis (WGCNA). The blue gene module associated with the histopathologic grade of CCA was screened. Then, five candidate hub genes were screened by combining the co-expression network with protein–protein interaction (PPI) network. After progression and survival analyses, bloom syndrome helicase (BLM) was ultimately identified as a real hub gene. Moreover, the receiver operating characteristic (ROC) curve analysis suggested that BLM had a favorable diagnostic and predictive recurrence value for CCA. The gene set enrichment analysis (GSEA) results for a single hub gene revealed the importance of cell cycle-related pathways in the CCA progression and prognosis. Furthermore, we detected the BLM expression in vitro, and the results demonstrated that the expression level of BLM was much higher in the CCA tissues and cells relative to adjacent non-tumor samples and normal bile duct epithelial cells. Additionally, after further silencing the BLM expression by small interfering RNA (siRNA), the proliferation and migration ability of CCA cells were all inhibited, and the cell cycle was arrested. Altogether, a real hub gene (BLM) and cell cycle-related pathways were identified in the present study, and the gene BLM may be involved in the CCA progression and could act as a reliable biomarker for potential diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueke Yan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma. Eur Radiol 2021; 31:6846-6855. [PMID: 33638019 DOI: 10.1007/s00330-021-07793-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To develop a radiomics signature based on dynamic contrast-enhanced (DCE) MR images for preoperative prediction of microvascular invasion (MVI) in patients with mass-forming intrahepatic cholangiocarcinoma (IMCC). METHODS One hundred twenty-six patients with surgically resected single IMCC (34 MVI-positive and 92 MVI-negative) were enrolled and allocated to training and validation cohorts (7:3 ratio). Findings of clinical characteristics and MR features were analyzed. A radiomics signature was built on the basis of reproducible features by using the least absolute shrinkage and selection operator (LASSO) regression algorithm in the training cohort. The prediction performance of radiomics signature was evaluated by receiver operating characteristics curve (ROC) analysis. Internal validation was performed on an independent cohort containing 38 patients. RESULTS Larger tumor size and higher radiomics score were positively correlated with MVI in both training cohort (p < 0.001, < 0.001, respectively) and validation cohort (p = 0.008, 0.001, respectively). The radiomics signature, consisting of seven wavelet features, showed optimal prediction performance in both training (AUC = 0.873) and validation cohorts (AUC = 0.850). CONCLUSION A radiomics signature derived from DCE-MRI of the liver can be a reliable imaging biomarker for predicting MVI of IMCC, which could aid in tailoring treatment strategies. KEY POINTS • The radiomics signature based on dynamic contrast-enhanced magnetic resonance imaging can be a useful tool to preoperatively predict MVI of IMCC. • Larger tumor size is positively correlated with MVI of IMCC.
Collapse
|
40
|
Wang Y, Man Z, Hu X, Zhou L, Jin H, Liu H, Pang Q. Percutaneous biliary stent with intraluminal brachytherapy versus palliative surgery in the management of extrahepatic cholangiocarcinoma. Int J Clin Oncol 2021; 26:933-940. [PMID: 33630187 DOI: 10.1007/s10147-021-01877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND To compare the efficacy and outcomes of self-expandable metallic stent combined with catheter-loaded iodine-125 seeds (SEMS-CL-125I) brachytherapy versus conventional palliative surgery (PS) in advanced extrahepatic cholangiocarcinoma (EHCC). METHODS The retrospective analysis consisted of 101 advanced EHCC patients who received SEMS-CL-125I (n = 67) or underwent PS (n = 34). The clinical characteristics, postoperative complications and overall survival (OS) were compared between the two groups. RESULTS Serum levels of bilirubin, transaminase, and albumin (ALB) were significantly improved at 1 month, 3 months, and 6 months postoperatively in both groups (all P < 0.05). At 1 month after operation, the level of ALB in SEMS-CL-125I group was significantly higher than that in PS group (39.07 ± 3.83 vs. 36.60 ± 5.58 g/L, P = 0.015). No statistically significant difference was found in postoperative overall complications between the two groups (P = 0.052). Length of hospital stay was significantly shorter (P < 0.001), hospital costs were significantly less (P < 0.001), and OS was significantly better (P = 0.029) in SEMS-CL-125I group compared to PS group. Multivariate analysis further identified PS (HR = 2.90, 95% CI 1.71-4.93, P < 0.001) and higher level of carbohydrate antigen 19-9 (HR = 2.67, 95% CI 1.36-3.79, P = 0.002) as independent predictors of worse OS. CONCLUSION SEMS-CL-125I significantly improves outcomes compared with PS and could be a safe and effective treatment for advanced EHCC.
Collapse
Affiliation(s)
- Yong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233000, Anhui, China
| | - Zhongran Man
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233000, Anhui, China
| | - Xiaosi Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233000, Anhui, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233000, Anhui, China
| | - Hao Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233000, Anhui, China
| | - Huichun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233000, Anhui, China.
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
41
|
Boškoski I, Schepis T, Tringali A, Familiari P, Bove V, Attili F, Landi R, Perri V, Costamagna G. Personalized Endoscopy in Complex Malignant Hilar Biliary Strictures. J Pers Med 2021; 11:jpm11020078. [PMID: 33572913 PMCID: PMC7911877 DOI: 10.3390/jpm11020078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant hilar biliary obstruction (HBO) represents a complex clinical condition in terms of diagnosis, surgical and medical treatment, endoscopic approach, and palliation. The main etiology of malignant HBO is hilar cholangiocarcinoma that is considered an aggressive biliary tract's cancer and has still today a poor prognosis. Endoscopy plays a crucial role in malignant HBO from the diagnosis to the palliation. This technique allows the collection of cytological or histological samples, direct visualization of the suspect malignant tissue, and an echoendoscopic evaluation of the primary tumor and its locoregional staging. Because obstructive jaundice is the most common clinical presentation of malignant HBO, endoscopic biliary drainage, when indicated, is the preferred treatment over the percutaneous approach. Several endoscopic techniques are today available for both the diagnosis and the treatment of biliary obstruction. The choice among them can differ for each clinical scenario. In fact, a personalized endoscopic approach is mandatory in order to perform the proper procedure in the singular patient.
Collapse
Affiliation(s)
- Ivo Boškoski
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Tommaso Schepis
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Tringali
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Pietro Familiari
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
| | - Vincenzo Bove
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
| | - Fabia Attili
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
| | - Rosario Landi
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
| | - Vincenzo Perri
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
| | - Guido Costamagna
- Center for Endoscopic Research Therapeutics and training (CERTT), Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (T.S.); (A.T.); (P.F.); (V.B.); (F.A.); (R.L.); (V.P.); (G.C.)
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
42
|
Barroso Marquez L, Chao González L, Samada Suárez M, Rodríguez Rodríguez H, Tusen Toledo Y, Valenzuela Aguilera K, Pérez González T. Title: Endoscopic retrograde cholangiopancreatography and carbohydrate antigen 19-9 in the differential diagnosis of biliary strictures. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 114:204-207. [PMID: 33438433 DOI: 10.17235/reed.2021.7711/2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Bile duct strictures include a wide spectrum of benign or malignant diseases. OBJECTIVE To determine the usefulness of endoscopic retrograde cholangiopancreatography (ERCP) and circulating carbohydrate antigen19-9 (CA 19-9) in the differential diagnosis of biliary strictures. METHOD We used an observational, prospective and cross-sectional study in 75 patients with biliary stricture diagnosed by ERCP between October 2018-January 2020. The variables were: type of biliary stricture diagnosed by ERCP, biliary cytology and CA 19-9 levels. For the statistical analysis, descriptive statistic was used according to the type of variable. The relationship among them was performed using Pearson's chi-square and Fisher's exact probability tests, assuming the differences as significant when p <0.05. The cut-off point for CA 19-9 was calculated using the ROC curve and the Cohen's Kappa index was used to measure concordance between diagnostic methods. RESULTS Cytology was positive in 51 (68%) patients with biliary stenosis. The mean age was 63 years. Acute cholangitis predominated in malignant strictures (93.7%). There was agreement between the cytology and the cut-off value calculated for CA 19-9 of 85.4U / ml, with Kappa agreement index = 0.332 (p = 0.004); as well as between ERCP and cytology with Kappa concordance index = 0.701 (p <0.001). CONCLUSIONS A serum CA 19-9 value higher than 85.4 U / ml is highly related to neoplastic biliary stenosis.
Collapse
|
43
|
Ketpueak T, Thiennimitr P, Apaijai N, Chattipakorn SC, Chattipakorn N. Association of Chronic Opisthorchis Infestation and Microbiota Alteration on Tumorigenesis in Cholangiocarcinoma. Clin Transl Gastroenterol 2020; 12:e00292. [PMID: 33464733 PMCID: PMC8345922 DOI: 10.14309/ctg.0000000000000292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a common hepatobiliary cancer in East and Southeast Asia. The data of microbiota contribution in CCA are still unclear. Current available reports have demonstrated that an Opisthorchis viverrini (OV) infection leads to dysbiosis in the bile duct. An increase in the commensal bacteria Helicobacter spp. in OV-infected CCA patients is associated with bile duct inflammation, severity of bile duct fibrosis, and cholangiocyte proliferation. In addition, secondary bile acids, major microbial metabolites, can mediate cholangiocyte inflammation and proliferation in the liver. A range of samples from CCA patients (stool, bile, and tumor) showed different degrees of dysbiosis. The evidence from these samples suggests that OV infection is associated with alterations in microbiota and could potentially have a role in CCA. In this comprehensive review, reports from in vitro, in vivo, and clinical studies that demonstrate possible links between OV infection, microbiota, and CCA pathogenesis are summarized and discussed. Understanding these associations may pave ways for novel potential adjunct intervention in gut microbiota in CCA patients.
Collapse
Affiliation(s)
- Thanika Ketpueak
- Division of Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
44
|
Sun L, Wei Y, Chen Y, Hu W, Ji X, Xu H, Du S, Zhao H, Lu X, Sang X, Zhong S, Yang H, Mao Y. Comparison of the Prognostic Value of Platelet-Related Indices in Biliary Tract Cancer Undergoing Surgical Resection. Cancer Res Treat 2020; 53:528-540. [PMID: 33253516 PMCID: PMC8053856 DOI: 10.4143/crt.2020.833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Platelet-related indices, including mean platelet volume (MPV) and plateletocrit (PCT), have been reported as new prognostic factors of overall survival (OS) in many cancers, but not yet in biliary tract cancer (BTC). We intended to assess these indices in predicting OS in BTC patients with the aim to build a new prognostic model for patients with BTC after surgical resection. Materials and Methods Survival analysis and time receiver operating characteristic analysis were applied to screen the platelet indices. Univariate and multivariate Cox analyses were used to identify independent prognostic factors and develop a new prognostic model. Harrell’s C-statistics, calibration curves, and decisive curve analysis were used to assess the model. Results MPV and platelet distribution width (PDW)/PCT showed the best prognostic accuracy among the platelet indices. In multivariable analysis, factors predictive of poor OS were presence of nodal involvement, Non-radical surgery, poor tumor differentiation, carbohydrate antigen 19-9 > 100 U/mL, MPV > 8.1 fl, and PDW/PCT > 190. The new model was found to be superior to the TNM staging system and our new staging system showed higher discriminative power. Conclusion MPV and PDW/PCT have high prognostic value in BTC patients, and the novel staging system based on these two indices showed good discrimination and accuracy compared with the American Joint Committee on Cancer 7th TNM staging system.
Collapse
Affiliation(s)
- Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxi Wei
- Peking Union Medical College (PUMC), PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Chen
- Peking Union Medical College (PUMC), PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Wenmo Hu
- Peking Union Medical College (PUMC), PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Ji
- Peking Union Medical College (PUMC), PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Shouxian Zhong
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Li H, Hu Y, Jin Y, Zhu Y, Hao Y, Liu F, Yang Y, Li G, Song X, Ye Y, Xiang S, Gao Y, Zhu J, Zhang Y, Jiang L, Huang W, Zhu J, Wu X, Liu Y. Long noncoding RNA lncGALM increases risk of liver metastasis in gallbladder cancer through facilitating N-cadherin and IL-1β-dependent liver arrest and tumor extravasation. Clin Transl Med 2020; 10:e201. [PMID: 33252861 PMCID: PMC7653798 DOI: 10.1002/ctm2.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNA) represent significant factors of the mammalian transcriptome that mediates varied biological and pathological processes. The liver is the most common site for gallbladder cancer (GBC) distant metastasis and contributes to the majority of GBC-related death. How lncRNA affects GBC metastasis is not completely understood. RESULTS A novel lncRNA termed lncGALM (lncRNA in GBC associated with liver metastasis) was discovered to be highly expressed in cancer patients and xenografted tumors with liver metastasis. Elevated lncGALM in GBC patients also correlated to decreased survival. Invasion and migration of GBC cells were enhanced through lncGALM, both in vitro and in vivo. lncGALM functioned as sponges by competitively binding to and inactivating miR-200 family members, which increase epithelial-mesenchymal transition-associated transcription factor ZEB1 and ZEB2, leading to a fibroblastic phenotype and increased expression of N-cadherin. In addition, lncGALM bound to IL-1β mRNA and stabilized the IL-1β gene that mediates liver sinusoidal endothelial cell (LSECs) apoptosis. lncGALM-expressing LiM2-NOZ cells acquired a strong ability to migrate and adhere to LSECs, promoting LSECs apoptosis and therefore facilitating tumor cell extravasation and dissemination. CONCLUSIONS lncGALM promotes GBC liver metastasis by facilitating GBC cell migration, invasion, liver arrest, and extravasation via the invasion-metastasis cascade. Targeting lncGALM may be protective against the development of liver metastasis in GBC patients.
Collapse
Affiliation(s)
- Huaifeng Li
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yunping Hu
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yunpeng Jin
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yidi Zhu
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yajuan Hao
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Fatao Liu
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yang Yang
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Biliary‐Pancreatic SurgeryRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghaiChina
| | - Guoqiang Li
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Biliary‐Pancreatic SurgeryRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghaiChina
| | - Xiaoling Song
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Shanshan Xiang
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yuan Gao
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Biliary‐Pancreatic SurgeryRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghaiChina
| | - Jinhui Zhu
- Department of General Surgery and Laparoscopic CenterThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouChina
| | - Yijian Zhang
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Biliary‐Pancreatic SurgeryRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Lin Jiang
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Wen Huang
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Jian Zhu
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Xiangsong Wu
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
| | - Yingbin Liu
- Department of General Surgery, Xinhua HospitalAffiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Biliary‐Pancreatic SurgeryRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
- Shanghai Research Center of Biliary Tract DiseaseShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghaiChina
| |
Collapse
|
46
|
Zhu J, Feng H, Zhang D, Li R, Li J, Peng H, Tang W, Hu D, Wu W, Hu K, Cai W, Yin G. Percutaneous transhepatic cholangiography and drainage and endoscopic retrograde cholangiopancreatograph for hilar cholangiocarcinoma: which one is preferred? REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 112:893-897. [PMID: 33118356 DOI: 10.17235/reed.2020.6937/2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION both percutaneous transhepatic cholangiography and drainage (PTCD) and endoscopic retrograde cholangiopancreatography (ERCP) with SEMS implantation have been used for unresectable hilar cholangiocarcinoma (HC) in the clinic for many years. However, which one is preferred is still unknown. OBJECTIVE to study the effects of biliary drainage of self-expanding metal stents (SEMS) implantation under PTCD or ERCP to treat HC. METHODS the clinical data of 82 patients with HC from January 2006 to January 2015 were recorded retrospectively. Patients were treated with biliary implantation of self-expanding metal stents (SEMS) under PTCD (PTCD group, 40 patients) or ERCP (ERCP group, 42 patients). Clinical data, including total bilirubin concentrations, complications and survival time were analyzed. RESULTS the remission of jaundice was similar in both groups (p > 0.05). The median survival time of the ERCP group and PTCD group were 237 d and 252 d respectively, with no significant differences (p > 0.05). The biliary infection rates under ERCP and PTCD procedure were 52.4 % and 20.0 % respectively, with a significant statistical difference (p < 0.05). For those HC patients of Bismuth III/IV, the infection rates under ERCP and PTCD procedure were 58.3 % and 14.3 %, respectively (p < 0.05). CONCLUSIONS both PTCD and ERCP with SEMS implantation were effective to prolong the survival time of HC patients. The biliary infection rates were higher in the ERCP group, especially for Bismuth III/IV HC patients.
Collapse
Affiliation(s)
- Jianghong Zhu
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| | - Huang Feng
- Gastroenterology, the First Affiliated Hospital of Soochow University
| | - Deqing Zhang
- Gastroenterology, the First Affiliated Hospital of Soochow University
| | - Rui Li
- Gastroenterology, the First Affiliated Hospital of Soochow University
| | - Jing Li
- Gastroenterology, the Second Affiliated Hospital of Soochow University, China
| | - Hongwei Peng
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| | - Wen Tang
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| | - Duanmin Hu
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| | - Wei Wu
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| | - Kewei Hu
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| | - Wei Cai
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| | - Guojian Yin
- Gastroenterology, the Second Affiliated Hospital of Soochow University
| |
Collapse
|
47
|
Incidence and Prognosis of Biliary Tract and Gallbladder Cancers in a Belgian Academic Hospital. J Gastrointest Cancer 2020; 52:1003-1009. [PMID: 32984916 DOI: 10.1007/s12029-020-00526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Biliary tract and gallbladder cancers are rare tumors with a poor prognosis (except the ampulla type). The evolution of hepatobiliary cancer incidence varies widely around the world. According to the Belgian Cancer Registry, the number of hepatobiliary cancers has increased every year since 2004. MATERIALS AND METHODS This retrospective study included patients diagnosed with cholangiocarcinoma, ampulla cancer, or gallbladder cancer at the university hospital, CHU UCL, Godinne site, in Namur, Belgium, between 1997 and 2017. The evolution of cancer incidence was evaluated with the Mann-Kendall method, by analyzing 7 consecutive 3-year periods. We calculated survival with the Kaplan-Meier method, and we determined prognostic factors with the log-rank test and Cox models. RESULTS Between 1997 and 2017, we included 128 patients that were newly diagnosed in our center. According to the Mann-Kendall test, the evolution of the incidence of these cancers in our hospital increased significantly over the study period (Sen's slope = 7; p = 0.003). The 1-year overall survival was 53.0 ± 4.7%. Poor prognostic factors included age, cancer stage, local cancer extension, and metastatic disease. The independent prognostic factors of survival were age (p = 0.002), ampulla cancer (p < 0.001), and metastatic disease (p < 0.001). CONCLUSIONS We found that the incidence of biliary tract and gallbladder cancers increased over a period of 20 years in our center. Further investigations are needed to determine the reasons for this increase. Although new therapies are emerging, the prognosis remains poor for these cancers. Determining risk factors might promote the development of preventive approaches.
Collapse
|
48
|
Rizzo A, Ricci AD, Tavolari S, Brandi G. Circulating Tumor DNA in Biliary Tract Cancer: Current Evidence and Future Perspectives. Cancer Genomics Proteomics 2020; 17:441-452. [PMID: 32859625 PMCID: PMC7472453 DOI: 10.21873/cgp.20203] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Peripheral blood of cancer patients "physiologically" presents cells and cellular components deriving from primary or metastatic sites, including circulating tumor cells (CTCs), circulating free DNA (cfDNA) and exosomes containing proteins, lipids and nucleic acids. The term circulating tumor DNA (ctDNA) indicates the part of cfDNA which derives from primary tumors and/or metastatic sites, carrying tumor-specific genetic or epigenetic alterations. Analysis of ctDNA has enormous potential applications in all stages of cancer management, including earlier diagnosis of cancer, identification of driver alterations, monitoring of treatment response and detection of resistance mechanisms. Thus, ctDNA has the potential to profoundly change current clinical practice, by moving from tissue to peripheral blood as a source of information. Herein, we review current literature regarding the potential role for ctDNA in biliary tract cancer (BTC) patients, with a particular focus on state-of-the-art techniques and future perspectives of this highly aggressive disease.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Angela Dalia Ricci
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Simona Tavolari
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
49
|
Liu Y, Liu X, Zhou Y, Liu T, Li J. Overexpression of miR-27a predicts poor prognosis and promotes the progression in cholangiocarcinoma. Clin Exp Med 2020; 21:121-128. [PMID: 32816152 DOI: 10.1007/s10238-020-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
The function of microRNA-27a (miR-27a) expression in cholangiocarcinoma (CCA) remains largely unclear; therefore, this study aimed to investigate the clinical significance and functional role of miR-27a in CCA. This study included 117 paired CCA tissues and adjacent normal tissues from CCA patients who received surgical resection. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression levels of miR-27a in CCA tissues and cell lines. A Kaplan-Meier curve and Cox regression analysis were used to determine overall prognostic performance. The effects of miR-27a on cell proliferation, migration, and invasion were measured by CCK-8 and Transwell assays. The expression levels of miR-27a in patients with CCA and cell lines were higher than those in adjacent normal tissues and normal cells, respectively. Additionally, miR-27a levels were found to be associated with lymph node metastasis and TNM stages. The overall survival time of CCA patients with high miR-27a expression was poorer than that of those with low miR-27a expression. Furthermore, miR-27a overexpression promoted CCA cell proliferation, migration, and invasion, whereas knockdown of miR-27a suppressed cell proliferation, migration, and invasion. Taken together, these results suggest the potential usefulness of miR-27a in the prognosis and progression of CCA.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Internal Medicine, Fuyanshan Branch of Affiliated Hospital of Weifang Medical University, Intersection of Limin Road and Fuyuan Street, Weifang, 261053, Shandong, China.
| | - Xia Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, China
| | - Yanhua Zhou
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, China
| | - Tingting Liu
- Department of Internal Medicine, Fuyanshan Branch of Affiliated Hospital of Weifang Medical University, Intersection of Limin Road and Fuyuan Street, Weifang, 261053, Shandong, China
| | - Jie Li
- Department of Internal Medicine, Fuyanshan Branch of Affiliated Hospital of Weifang Medical University, Intersection of Limin Road and Fuyuan Street, Weifang, 261053, Shandong, China
| |
Collapse
|
50
|
Suárez-Bonnet A, Priestnall SL, Ramírez GA, Molín J, Jaber JR. Aberrant Expression of Cell Cycle Regulator 14-3-3-σ and E-Cadherin in a Metastatic Cholangiocarcinoma in a Vervet Monkey (Chlorocebus pygerythrus). J Comp Pathol 2020; 179:25-30. [PMID: 32958143 DOI: 10.1016/j.jcpa.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023]
Abstract
We present a unique case of metastatic cholangiocarcinoma with concurrent abdominal cestodiasis in an African green monkey (Chlorocebus pygerythrus) that presented with respiratory insufficiency and abdominal discomfort. There were multiple white-grey masses in the liver and colonic serosa alongside intra-abdominal parasitic cysts. Histopathologically, the liver masses were composed of poorly-differentiated epithelial cells that formed densely cellular solid areas and trabeculae. The neoplastic cells were strongly immunopositive for CK7 but negative for Hep-Par1 antigen, which confirmed a diagnosis of cholangiocarcinoma. Interestingly, there was strong and diffuse neoexpression in the tumour of the cell cycle regulator 14-3-3σ, which is not constitutively expressed in normal liver. There was aberrantly strong expression of E-cadherin, a key cell-cell adhesion protein, in neoplastic cells with evidence of cytoplasmic internalization. This is the first immunohistochemical analysis of 14-3-3σ and E-cadherin in a liver neoplasm in an animal species and the use of these markers requires further investigation in animal liver neoplasms.
Collapse
Affiliation(s)
- A Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK.
| | - S L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - G A Ramírez
- Department of Animal Science, Universitat de Lleida, Lleida, Spain
| | - J Molín
- Department of Animal Science, Universitat de Lleida, Lleida, Spain
| | - J R Jaber
- Morphology Department, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|