1
|
Sakuragi M, Shinagawa K, Terasawa Y, Umeda S. The body mirroring thought: The relationship between thought transitions and fluctuations in autonomic nervous activity mediated by interoception. Conscious Cogn 2024; 125:103770. [PMID: 39423474 DOI: 10.1016/j.concog.2024.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Our thought states change without intention. This study verified that the transition of thought states varies with fluctuations in autonomic nervous activity, and that this effect is modulated by interoceptive accuracy. The participants completed the heartbeat counting task (HCT) and vigilance task. We assessed the participants' interoceptive accuracy based on their performance on the HCT. The vigilance task is a simple attention task, and during this task, we asked the participants to report the content and contemplation of their thoughts. Consequently, participants with accurate interoception were more likely to remain in a highly contemplative thought state when parasympathetic activity was suppressed. In contrast, the dominance of parasympathetic activity facilitated transitions to different thought states or experiences of less contemplative thought states in them. The results suggest that even subtle changes in bodily responses at rest can affect thought transitions in people with accurate interoception.
Collapse
Affiliation(s)
- Mai Sakuragi
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Kazushi Shinagawa
- Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Yuri Terasawa
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Satoshi Umeda
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Keio University Global Research Institute, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| |
Collapse
|
2
|
Candia-Rivera D, Engelen T, Babo-Rebelo M, Salamone PC. Interoception, network physiology and the emergence of bodily self-awareness. Neurosci Biobehav Rev 2024; 165:105864. [PMID: 39208877 DOI: 10.1016/j.neubiorev.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the brain and interoceptive signals is key in maintaining internal balance and orchestrating neural dynamics, encompassing influences on perceptual and self-awareness. Central to this interplay is the differentiation between the external world, others and the self, a cornerstone in the construction of bodily self-awareness. This review synthesizes physiological and behavioral evidence illustrating how interoceptive signals can mediate or influence bodily self-awareness, by encompassing interactions with various sensory modalities. To deepen our understanding of the basis of bodily self-awareness, we propose a network physiology perspective. This approach explores complex neural computations across multiple nodes, shifting the focus from localized areas to large-scale neural networks. It examines how these networks operate in parallel with and adapt to changes in visceral activities. Within this framework, we propose to investigate physiological factors that disrupt bodily self-awareness, emphasizing the impact of interoceptive pathway disruptions, offering insights across several clinical contexts. This integrative perspective not only can enhance the accuracy of mental health assessments but also paves the way for targeted interventions.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière AP-HP, Inria Paris, 75013, Paris, France.
| | - Tahnée Engelen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, Jyväskylä FI-40014, Finland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Paula C Salamone
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Shirbache K, Liaghat A, Saeifar S, Nezameslami A, Shirbacheh A, Nasri H, Namazi H. Ultra-overt therapy: a novel medical approach centered on patient consciousness. Front Integr Neurosci 2024; 18:1457936. [PMID: 39220208 PMCID: PMC11363186 DOI: 10.3389/fnint.2024.1457936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Within the realms of human and artificial intelligence, the concepts of consciousness and comprehension are fundamental distinctions. In the clinical sphere, patient awareness regarding medication and its physiological processes plays a crucial role in determining drug efficacy and outcomes. This article introduces a novel perspective on prescription practices termed "Ultra-Overt Therapy" (UOT). A review of current supporting evidence was conducted through a non-systematic search in PubMed and Google Scholar, focusing on concepts such as the "mind-body relationship," "placebo response," "neuroscience," and "complementary medicine." Our findings, rooted in the mechanisms of the "placebo effect," the intricacies of "intersubjective therapy," the potency of "interoceptive awareness," and other domains of medical science, suggest that UOT holds theoretical promise. Future research endeavors focusing on these areas may elucidate the global impact of this method on medical treatment and patient care.
Collapse
Affiliation(s)
| | - Amirreza Liaghat
- Immunology from Concepts and Experiments to Translation, CNRS UMR 5164, Université Bordeaux Montaigne, Bordeaux, France
| | - Sanam Saeifar
- Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt Macromolecular Complexes (CEF-MC), Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Ali Shirbacheh
- Centre Hospitalier de l’agglomération de Nevers, Nevers, France
| | | | - Hamidreza Namazi
- Department of Medical Ethics, School of Medicine, Medical Ethics and History of Medicine Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Candia-Rivera D, Chavez M, De Vico Fallani F. Measures of the coupling between fluctuating brain network organization and heartbeat dynamics. Netw Neurosci 2024; 8:557-575. [PMID: 38952808 PMCID: PMC11168717 DOI: 10.1162/netn_a_00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/19/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
5
|
Pollatou A, Holland CM, Stockton TJ, Peterson BS, Scheinost D, Monk C, Spann MN. Mapping Early Brain-Body Interactions: Associations of Fetal Heart Rate Variation with Newborn Brainstem, Hypothalamic, and Dorsal Anterior Cingulate Cortex Functional Connectivity. J Neurosci 2024; 44:e2363232024. [PMID: 38604780 PMCID: PMC11140686 DOI: 10.1523/jneurosci.2363-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
The autonomic nervous system (ANS) regulates the body's physiology, including cardiovascular function. As the ANS develops during the second to third trimester, fetal heart rate variability (HRV) increases while fetal heart rate (HR) decreases. In this way, fetal HR and HRV provide an index of fetal ANS development and future neurobehavioral regulation. Fetal HR and HRV have been associated with child language ability and psychomotor development behavior in toddlerhood. However, their associations with postbirth autonomic brain systems, such as the brainstem, hypothalamus, and dorsal anterior cingulate cortex (dACC), have yet to be investigated even though brain pathways involved in autonomic regulation are well established in older individuals. We assessed whether fetal HR and HRV were associated with the brainstem, hypothalamic, and dACC functional connectivity in newborns. Data were obtained from 60 pregnant individuals (ages 14-42) at 24-27 and 34-37 weeks of gestation using a fetal actocardiograph to generate fetal HR and HRV. During natural sleep, their infants (38 males and 22 females) underwent a fMRI scan between 40 and 46 weeks of postmenstrual age. Our findings relate fetal heart indices to brainstem, hypothalamic, and dACC connectivity and reveal connections with widespread brain regions that may support behavioral and emotional regulation. We demonstrated the basic physiologic association between fetal HR indices and lower- and higher-order brain regions involved in regulatory processes. This work provides the foundation for future behavioral or physiological regulation research in fetuses and infants.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Cristin M Holland
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Thirsten J Stockton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California 90027
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Dustin Scheinost
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut 06520
- Child Study Center, Yale School of Medicine, New Haven, Connecticut 06520
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut 06520
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06511
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06506
| | - Catherine Monk
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
6
|
Galin S, Keren H. The Predictive Potential of Heart Rate Variability for Depression. Neuroscience 2024; 546:88-103. [PMID: 38513761 DOI: 10.1016/j.neuroscience.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Heart rate variability (HRV),a measure of the fluctuations in the intervals between consecutive heartbeats, is an indicator of changes in the autonomic nervous system. A chronic reduction in HRV has been repeatedly linked to clinical depression. However, the chronological and mechanistic aspects of this relationship, between the neural, physiological, and psychopathological levels, remain unclear. In this review we present evidence by which changes in HRV might precede the onset of depression. We describe several pathways that can facilitate this relationship. First, we examine a theoretical model of the impact of autonomic imbalance on HRV and its role in contributing to mood dysregulation and depression. We then highlight brain regions that are regulating both HRV and emotion, suggesting these neural regions, and the Insula in particular, as potential mediators of this relationship. We also present additional possible mediating mechanisms involving the immune system and inflammation processes. Lastly, we support this model by showing evidence that modification of HRV with biofeedback leads to an improvement in some symptoms of depression. The possibility that changes in HRV precede the onset of depression is critical to put to the test, not only because it could provide insights into the mechanisms of the illness but also because it may offer a predictive anddiagnosticphysiological marker for depression. Importantly, it could also help to develop new effective clinical interventions for treating depression.
Collapse
Affiliation(s)
- Shir Galin
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel; Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Hanna Keren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel; Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
7
|
Fouragnan EF, Hosking B, Cheung Y, Prakash B, Rushworth M, Sel A. Timing along the cardiac cycle modulates neural signals of reward-based learning. Nat Commun 2024; 15:2976. [PMID: 38582905 PMCID: PMC10998831 DOI: 10.1038/s41467-024-46921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Natural fluctuations in cardiac activity modulate brain activity associated with sensory stimuli, as well as perceptual decisions about low magnitude, near-threshold stimuli. However, little is known about the relationship between fluctuations in heart activity and other internal representations. Here we investigate whether the cardiac cycle relates to learning-related internal representations - absolute and signed prediction errors. We combined machine learning techniques with electroencephalography with both simple, direct indices of task performance and computational model-derived indices of learning. Our results demonstrate that just as people are more sensitive to low magnitude, near-threshold sensory stimuli in certain cardiac phases, so are they more sensitive to low magnitude absolute prediction errors in the same cycles. However, this occurs even when the low magnitude prediction errors are associated with clearly suprathreshold sensory events. In addition, participants exhibiting stronger differences in their prediction error representations between cardiac cycles exhibited higher learning rates and greater task accuracy.
Collapse
Affiliation(s)
- Elsa F Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK.
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Billy Hosking
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Yin Cheung
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Brooke Prakash
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Matthew Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Alejandra Sel
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
8
|
Candia‐Rivera D, Vidailhet M, Chavez M, De Vico Fallani F. A framework for quantifying the coupling between brain connectivity and heartbeat dynamics: Insights into the disrupted network physiology in Parkinson's disease. Hum Brain Mapp 2024; 45:e26668. [PMID: 38520378 PMCID: PMC10960553 DOI: 10.1002/hbm.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been linked to a reduced sensitivity to cardiac inputs, that is, cardiac interoception. Altogether, those signs suggest that PD causes an altered brain-heart connection whose mechanisms remain unclear. Our study aimed to explore the large-scale network disruptions and the neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We developed a proof-of-concept method to quantify relationships between the co-fluctuations of brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the brain-heart couplings from electroencephalogram and electrocardiogram recordings from PD patients on and off dopaminergic medication, as well as in healthy individuals at rest. Our results show that the couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under dopamine medication recover part of the brain-heart coupling, in proportion with the reduced motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and promoting the development of new evaluation methods for the early stages of the disease.
Collapse
Affiliation(s)
- Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute (ICM)—Team “Movement Investigations and Therapeutics” (MOV'IT), CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| |
Collapse
|
9
|
Kurtz P, van den Boogaard M, Girard TD, Hermann B. Acute encephalopathy in the ICU: a practical approach. Curr Opin Crit Care 2024; 30:106-120. [PMID: 38441156 DOI: 10.1097/mcc.0000000000001144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW Acute encephalopathy (AE) - which frequently develops in critically ill patients with and without primary brain injury - is defined as an acute process that evolves rapidly and leads to changes in baseline cognitive status, ranging from delirium to coma. The diagnosis, monitoring, and management of AE is challenging. Here, we discuss advances in definitions, diagnostic approaches, therapeutic options, and implications to outcomes of the clinical spectrum of AE in ICU patients without primary brain injury. RECENT FINDINGS Understanding and definitions of delirium and coma have evolved. Delirium is a neurocognitive disorder involving impairment of attention and cognition, usually fluctuating, and developing over hours to days. Coma is a state of unresponsiveness, with absence of command following, intelligible speech, or visual pursuit, with no imaging or neurophysiological evidence of cognitive motor dissociation. The CAM-ICU(-7) and the ICDSC are validated, guideline-recommended tools for clinical delirium assessment, with identification of clinical subtypes and stratification of severity. In comatose patients, the roles of continuous EEG monitoring and neuroimaging have grown for the early detection of secondary brain injury and treatment of reversible causes. SUMMARY Evidence-based pharmacologic treatments for delirium are limited. Dexmedetomidine is effective for mechanically ventilated patients with delirium, while haloperidol has minimal effect of delirium but may have other benefits. Specific treatments for coma in nonprimary brain injury are still lacking.
Collapse
Affiliation(s)
- Pedro Kurtz
- D'Or Institute of Research and Education
- Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mark van den Boogaard
- Radboud University Medical Center, Department of Intensive Care, Nijmegen, The Netherlands
| | - Timothy D Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) in the Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bertrand Hermann
- Medical Intensive Care Unit, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris - Centre (APHP-Centre)
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP), Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Hermann B, Candia‐Rivera D, Sharshar T, Gavaret M, Diehl J, Cariou A, Benghanem S. Aberrant brain-heart coupling is associated with the severity of post cardiac arrest brain injury. Ann Clin Transl Neurol 2024; 11:866-882. [PMID: 38243640 PMCID: PMC11021613 DOI: 10.1002/acn3.52000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/24/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE To investigate autonomic nervous system activity measured by brain-heart interactions in comatose patients after cardiac arrest in relation to the severity and prognosis of hypoxic-ischemic brain injury. METHODS Strength and complexity of bidirectional interactions between EEG frequency bands (delta, theta, and alpha) and ECG heart rate variability frequency bands (low frequency, LF and high frequency, HF) were computed using a synthetic data generation model. Primary outcome was the severity of brain injury, assessed by (i) standardized qualitative EEG classification, (ii) somatosensory evoked potentials (N20), and (iii) neuron-specific enolase levels. Secondary outcome was the 3-month neurological status, assessed by the Cerebral Performance Category score [good (1-2) vs. poor outcome (3-4-5)]. RESULTS Between January 2007 and July 2021, 181 patients were admitted to ICU for a resuscitated cardiac arrest. Poor neurological outcome was observed in 134 patients (74%). Qualitative EEG patterns suggesting high severity were associated with decreased LF/HF. Severity of EEG changes were proportional to higher absolute values of brain-to-heart coupling strength (p < 0.02 for all brain-to-heart frequencies) and lower values of alpha-to-HF complexity (p = 0.049). Brain-to-heart coupling strength was significantly higher in patients with bilateral absent N20 and correlated with neuron-specific enolase levels at Day 3. This aberrant brain-to-heart coupling (increased strength and decreased complexity) was also associated with 3-month poor neurological outcome. INTERPRETATION Our results suggest that autonomic dysfunctions may well represent hypoxic-ischemic brain injury post cardiac arrest pathophysiology. These results open avenues for integrative monitoring of autonomic functioning in critical care patients.
Collapse
Affiliation(s)
- Bertrand Hermann
- Faculté de MédecineUniversité Paris CitéParisFrance
- Medical Intensive Care UnitHEGP Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP.Centre)ParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS UMR 722, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Tarek Sharshar
- Faculté de MédecineUniversité Paris CitéParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
- GHU Paris Psychiatrie Neurosciences, Service hospitalo‐universitaire de Neuro‐anesthésie réanimationParisFrance
| | - Martine Gavaret
- Faculté de MédecineUniversité Paris CitéParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
- Neurophysiology and Epileptology DepartmentGHU Paris Psychiatrie et NeurosciencesParisFrance
| | - Jean‐Luc Diehl
- Faculté de MédecineUniversité Paris CitéParisFrance
- Medical Intensive Care UnitHEGP Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP.Centre)ParisFrance
- Université Paris Cité, INSERM, Innovative Therapies in HaemostasisParisFrance
- Biosurgical Research Lab (Carpentier Foundation)ParisFrance
| | - Alain Cariou
- Faculté de MédecineUniversité Paris CitéParisFrance
- Medical Intensive Care UnitCochin Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP‐Centre)ParisFrance
- Paris‐Cardiovascular‐Research‐CenterINSERM U970ParisFrance
| | - Sarah Benghanem
- Faculté de MédecineUniversité Paris CitéParisFrance
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP)Université Paris CitéParisFrance
- Medical Intensive Care UnitCochin Hospital, Assistance Publique ‐ Hôpitaux de Paris‐Centre (APHP‐Centre)ParisFrance
| |
Collapse
|
11
|
Rosas FE, Candia-Rivera D, Luppi AI, Guo Y, Mediano PAM. Bayesian at heart: Towards autonomic outflow estimation via generative state-space modelling of heart rate dynamics. Comput Biol Med 2024; 170:107857. [PMID: 38244468 DOI: 10.1016/j.compbiomed.2023.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance. Heart rate dynamics are of particular interest as they provide a way to track the sympathetic and parasympathetic outflow from the autonomic nervous system, which is known to play a key role in modulating attention, memory, decision-making, and emotional processing. However, extracting useful information from heartbeats about the autonomic outflow is still challenging due to the noisy estimates that result from standard signal-processing methods. To advance this state of affairs, we propose a novel approach in how to conceptualise and model heart rate: instead of being a mere summary of the observed inter-beat intervals, we introduce a modelling framework that views heart rate as a hidden stochastic process that drives the observed heartbeats. Moreover, by leveraging the rich literature of state-space modelling and Bayesian inference, our proposed framework delivers a description of heart rate dynamics that is not a point estimate but a posterior distribution of a generative model. We illustrate the capabilities of our method by showing that it recapitulates linear properties of conventional heart rate estimators, while exhibiting a better discriminative power for metrics of dynamical complexity compared across different physiological states.
Collapse
Affiliation(s)
- Fernando E Rosas
- School of Engineering and Informatics, University of Sussex, United Kingdom; Centre for Psychedelic Research, Department of Brain Science, Imperial College London, United Kingdom; Centre for Complexity Science, Imperial College London, London, United Kingdom; Centre for Eudaimonia and Human Flourishing, University of Oxford, United Kingdom.
| | - Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Andrea I Luppi
- University Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom; Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Yike Guo
- Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, South Kensington, London, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Jammal Salameh L, Bitzenhofer SH, Hanganu-Opatz IL, Dutschmann M, Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 2024; 383:eadk8511. [PMID: 38301001 DOI: 10.1126/science.adk8511] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The transmission of the heartbeat through the cerebral vascular system causes intracranial pressure pulsations. We discovered that arterial pressure pulsations can directly modulate central neuronal activity. In a semi-intact rat brain preparation, vascular pressure pulsations elicited correlated local field oscillations in the olfactory bulb mitral cell layer. These oscillations did not require synaptic transmission but reflected baroreceptive transduction in mitral cells. This transduction was mediated by a fast excitatory mechanosensitive ion channel and modulated neuronal spiking activity. In awake animals, the heartbeat entrained the activity of a subset of olfactory bulb neurons within ~20 milliseconds. Thus, we propose that this fast, intrinsic interoceptive mechanism can modulate perception-for example, during arousal-within the olfactory bulb and possibly across various other brain areas.
Collapse
Affiliation(s)
- Luna Jammal Salameh
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Veronica Egger
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
13
|
Candia-Rivera D, Machado C. Reduced Heartbeat-Evoked Responses in a Near-Death Case Report. J Clin Neurol 2023; 19:581-588. [PMID: 37455508 PMCID: PMC10622722 DOI: 10.3988/jcn.2022.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Whether brain-heart communication continues under ventricular fibrillation (VF) remains to be determined. There is weak evidence of physiological changes in cortical activity under VF. Moreover, brain-heart communication has not previously been studied in this condition. We aimed to measure parallel changes in heart-rate variability (HRV), cortical activity, and brain-heart interactions in a patient who experienced VF. METHODS The EEG and EKG signals for the case report were acquired for approximately 20 h. We selected different 1-min-long segments based on the changes in the EKG waveform. We present the changes in heartbeat-evoked responses (HERs), HRV, and EEG power for each selected segment. RESULTS The overall physiological activity appeared to deteriorate as VF proceeded. Brain-heart interactions measured using HERs disappeared, with a few aberrant amplitudes appearing occasionally. The parallel changes in EEG and HRV were not pronounced, suggesting the absence of bidirectional neural control. CONCLUSIONS Our measurements of brain-heart interactions suggested that the evolving VF impairs communication between the central and autonomic nervous systems. These results may support that reduced brain-heart interactions reflect loss of consciousness and deterioration in the overall health state.
Collapse
Affiliation(s)
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba
| |
Collapse
|
14
|
Candia-Rivera D, Raimondo F, Pérez P, Naccache L, Tallon-Baudry C, Sitt JD. Conscious processing of global and local auditory irregularities causes differentiated heartbeat-evoked responses. eLife 2023; 12:e75352. [PMID: 37888955 PMCID: PMC10651171 DOI: 10.7554/elife.75352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
Recent research suggests that brain-heart interactions are associated with perceptual and self-consciousness. In this line, the neural responses to visceral inputs have been hypothesized to play a leading role in shaping our subjective experience. This study aims to investigate whether the contextual processing of auditory irregularities modulates both direct neuronal responses to the auditory stimuli (ERPs) and the neural responses to heartbeats, as measured with heartbeat-evoked responses (HERs). HERs were computed in patients with disorders of consciousness, diagnosed with a minimally conscious state or unresponsive wakefulness syndrome. We tested whether HERs reflect conscious auditory perception, which can potentially provide additional information for the consciousness diagnosis. EEG recordings were taken during the local-global paradigm, which evaluates the capacity of a patient to detect the appearance of auditory irregularities at local (short-term) and global (long-term) levels. The results show that local and global effects produce distinct ERPs and HERs, which can help distinguish between the minimally conscious state and unresponsive wakefulness syndrome patients. Furthermore, we found that ERP and HER responses were not correlated suggesting that independent neuronal mechanisms are behind them. These findings suggest that HER modulations in response to auditory irregularities, especially local irregularities, may be used as a novel neural marker of consciousness and may aid in the bedside diagnosis of disorders of consciousness with a more cost-effective option than neuroimaging methods.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Federico Raimondo
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Pauline Pérez
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- AP-HP, Hôpital de la Pitié Salpêtrière, Neuro ICU, DMU NeurosciencesParisFrance
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Pitié-Salpêtrière Faculty of Medicine, Pierre and Marie Curie University, Sorbonne UniversitiesParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
- Department of Neurology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
- Department of Neurophysiology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
| | - Jacobo D Sitt
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
| |
Collapse
|
15
|
Méndez JC, Perry BAL, Premereur E, Pelekanos V, Ramadan T, Mitchell AS. Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations. Sci Rep 2023; 13:16913. [PMID: 37805650 PMCID: PMC10560229 DOI: 10.1038/s41598-023-42752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Department of Clinical and Biomedical Sciences, University of Exeter, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Brook A L Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | | | - Tamara Ramadan
- Department of Biological Sciences, University of Oxford, Oxford, UK
| | - Anna S Mitchell
- Department of Psychology, Speech and Hearing, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
16
|
Callara AL, Fontanelli L, Belcari I, Rho G, Greco A, Zelič Ž, Sebastiani L, Santarcangelo EL. Modulation of the heartbeat evoked cortical potential by hypnotizability and hypnosis. Psychophysiology 2023; 60:e14309. [PMID: 37070749 DOI: 10.1111/psyp.14309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Hypnotizability is a psychophysiological trait measured by scales and associated with several differences, including interoceptive accuracy and the morpho-functional characteristics of interoception-related brain regions. The aim of the study was to assess whether the amplitude of the heartbeat evoked cortical potential (HEP), a correlate of interoceptive accuracy, differs in participants with low (lows) and high (highs) hypnotizability scores (assessed by the Stanford Hypnotic Susceptibility Scale, Form A) before and after the induction of hypnosis. ECG and EEG were monitored in 16 highs and 15 lows during an experimental session, including open eyes baseline (B), closed eyes relaxation (R), hypnotic induction (IND), neutral hypnosis (NH), and post session baseline (Post). No significant difference was observed between groups and conditions in autonomic variables. The HEP amplitude was lower in highs than in lows at the right parietal site, likely due to hypnotizability related differences in the functional connection between the right insula and parietal cortex. It increased in highs and decreased in lows across the session, possibly due to the highs' preeminently internally directed attention and to the lows' possible disengagement from the task. Since interoception is involved in several cognitive-emotional functions, its hypnotizability related differences may contribute to the variability of experience and behavior in daily life.
Collapse
Affiliation(s)
- Alejandro Luis Callara
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Lorenzo Fontanelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Belcari
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gianluca Rho
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Alberto Greco
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Žan Zelič
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Enrica L Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Candia-Rivera D, Machado C. Multidimensional assessment of heartbeat-evoked responses in disorders of consciousness. Eur J Neurosci 2023; 58:3098-3110. [PMID: 37382151 DOI: 10.1111/ejn.16079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Because consciousness does not necessarily translate into overt behaviour, detecting residual consciousness in noncommunicating patients remains a challenge. Bedside diagnostic methods based on EEG are promising and cost-effective alternatives to detect residual consciousness. Recent evidence showed that the cortical activations triggered by each heartbeat, namely, heartbeat-evoked responses (HERs), can detect through machine learning the presence of minimal consciousness and distinguish between overt and covert minimal consciousness. In this study, we explore different markers to characterize HERs to investigate whether different dimensions of the neural responses to heartbeats provide complementary information that is not typically found under standard event-related potential analyses. We evaluated HERs and EEG average non-locked to heartbeats in six types of participants: healthy state, locked-in syndrome, minimally conscious state, vegetative state/unresponsive wakefulness syndrome, comatose and brain-dead patients. We computed a series of markers from HERs that can generally separate the unconscious from the conscious. Our findings indicate that HER variance and HER frontal segregation tend to be higher in the presence of consciousness. These indices, when combined with heart rate variability, have the potential to enhance the differentiation between different levels of awareness. We propose that a multidimensional evaluation of brain-heart interactions could be included in a battery of tests to characterize disorders of consciousness. Our results may motivate further exploration of markers in brain-heart communication for the detection of consciousness at the bedside. The development of diagnostic methods based on brain-heart interactions may be translated into more feasible methods for clinical practice.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Paris Brain Institute - ICM, CNRS, INRIA, INSERM, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba
| |
Collapse
|
18
|
Zelič Ž, Sebastiani L, Santarcangelo EL. Association of Hypnotizability, Interoception, and Emotion. Int J Clin Exp Hypn 2023:1-13. [PMID: 37363858 DOI: 10.1080/00207144.2023.2226188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
The present scoping review reports the reciprocal relations between hypnotizability, interoception, and emotion. Brain morpho-functional differences may account for the lower interoceptive accuracy, higher interoceptive sensitivity, and different emotional strategies observed in highly hypnotizable participants with respect to medium-to-low hypnotizables. Since interoception is relevant to both physical and mental health and hypnotizability can predict both interoceptive abilities and the efficacy of interoception-based mental training, this allows for the development of new forms of treatment and rehabilitation.
Collapse
Affiliation(s)
- Žan Zelič
- Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrica Laura Santarcangelo
- Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Italy
| |
Collapse
|
19
|
Candia-Rivera D, Norouzi K, Ramsøy TZ, Valenza G. Dynamic fluctuations in ascending heart-to-brain communication under mental stress. Am J Physiol Regul Integr Comp Physiol 2023; 324:R513-R525. [PMID: 36802949 PMCID: PMC10026986 DOI: 10.1152/ajpregu.00251.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Dynamical information exchange between central and autonomic nervous systems, as referred to functional brain-heart interplay, occurs during emotional and physical arousal. It is well documented that physical and mental stress lead to sympathetic activation. Nevertheless, the role of autonomic inputs in nervous system-wise communication under mental stress is yet unknown. In this study, we estimated the causal and bidirectional neural modulations between electroencephalogram (EEG) oscillations and peripheral sympathetic and parasympathetic activities using a recently proposed computational framework for a functional brain-heart interplay assessment, namely the sympathovagal synthetic data generation model. Mental stress was elicited in 37 healthy volunteers by increasing their cognitive demands throughout three tasks associated with increased stress levels. Stress elicitation induced an increased variability in sympathovagal markers, as well as increased variability in the directional brain-heart interplay. The observed heart-to-brain interplay was primarily from sympathetic activity targeting a wide range of EEG oscillations, whereas variability in the efferent direction seemed mainly related to EEG oscillations in the γ band. These findings extend current knowledge on stress physiology, which mainly referred to top-down neural dynamics. Our results suggest that mental stress may not cause an increase in sympathetic activity exclusively as it initiates a dynamic fluctuation within brain-body networks including bidirectional interactions at a brain-heart level. We conclude that directional brain-heart interplay measurements may provide suitable biomarkers for a quantitative stress assessment and bodily feedback may modulate the perceived stress caused by increased cognitive demand.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| | - Kian Norouzi
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Management, University of Tehran, Tehran, Iran
| | - Thomas Zoëga Ramsøy
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Neuroscience, Singularity University, Santa Clara, California, United States
| | - Gaetano Valenza
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Candia-Rivera D. Modeling brain-heart interactions from Poincaré plot-derived measures of sympathetic-vagal activity. MethodsX 2023; 10:102116. [PMID: 36970022 PMCID: PMC10034502 DOI: 10.1016/j.mex.2023.102116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Recent studies suggest that the interaction between the brain and heart plays a key role in cognitive processes, and measuring these interactions is crucial for understanding the interaction between the central and autonomic nervous systems. However, studying this bidirectional interplay presents methodological challenges, and there is still much room for exploration. This paper presents a new computational method called the Poincaré Sympathetic-Vagal Synthetic Data Generation Model (PSV-SDG) for estimating brain-heart interactions. The PSV-SDG combines EEG and cardiac sympathetic-vagal dynamics to provide time-varying and bidirectional estimators of mutual interplay. The method is grounded in the Poincaré plot, a heart rate variability method to estimate sympathetic-vagal activity that can account for potential non-linearities. This algorithm offers a new approach and computational tool for functional assessment of the interplay between EEG and cardiac sympathetic-vagal activity. The method is implemented in MATLAB under an open-source license. • A new brain-heart interaction modeling approach is proposed. • The modeling is based on coupled synthetic data generators of EEG and heart rate series. • Sympathetic and vagal activities are gathered from Poincaré plot geometry.
Collapse
|
21
|
Candia-Rivera D, Sappia MS, Horschig JM, Colier WNJM, Valenza G. Confounding effects of heart rate, breathing rate, and frontal fNIRS on interoception. Sci Rep 2022; 12:20701. [PMID: 36450811 PMCID: PMC9712694 DOI: 10.1038/s41598-022-25119-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies have established that cardiac and respiratory phases can modulate perception and related neural dynamics. While heart rate and respiratory sinus arrhythmia possibly affect interoception biomarkers, such as heartbeat-evoked potentials, the relative changes in heart rate and cardiorespiratory dynamics in interoceptive processes have not yet been investigated. In this study, we investigated the variation in heart and breathing rates, as well as higher functional dynamics including cardiorespiratory correlation and frontal hemodynamics measured with fNIRS, during a heartbeat counting task. To further investigate the functional physiology linked to changes in vagal activity caused by specific breathing rates, we performed the heartbeat counting task together with a controlled breathing rate task. The results demonstrate that focusing on heartbeats decreases breathing and heart rates in comparison, which may be part of the physiological mechanisms related to "listening" to the heart, the focus of attention, and self-awareness. Focusing on heartbeats was also observed to increase frontal connectivity, supporting the role of frontal structures in the neural monitoring of visceral inputs. However, cardiorespiratory correlation is affected by both heartbeats counting and controlled breathing tasks. Based on these results, we concluded that variations in heart and breathing rates are confounding factors in the assessment of interoceptive abilities and relative fluctuations in breathing and heart rates should be considered to be a mode of covariate measurement of interoceptive processes.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy.
| | - M Sofía Sappia
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
- Donders Institute for Brain, Behaviour and Cognition, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Jörn M Horschig
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
| | - Willy N J M Colier
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
| | - Gaetano Valenza
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy
| |
Collapse
|
22
|
Maciejewicz B. Neuroscience of consciousness in the locked-in syndrome: Prognostic and diagnostic review. IBRAIN 2022; 8:476-480. [PMID: 37786588 PMCID: PMC10529330 DOI: 10.1002/ibra.12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/04/2023]
Abstract
The neurological illness known as a locked-in syndrome is brought on by damage to the brainstem, usually as a consequence of a stroke. It is characterized by total paralysis with intact consciousness and cognitive capacity. The subjective experiences of people with locked-in syndrome are poorly understood. Presently, there is no systematic evaluation developed to describe them. The most compelling resources come from individuals' own words; however, only a small fraction of these accounts have been explored. When it comes to bioethics, locked-in syndrome protocols are almost completely absent. Investigations on how people with this condition feel about their sense of continuity are of importance. Utilizing the locked-in syndrome to pose questions on embodied cognition and levels of consciousness could serve as a lens through which to examine problems in the phenomenology of neuroparalysis and communication. Care and quality of patients' lives might be improved by an effort to understand this condition better, and ontological questions like "what makes a person a person?," "what makes a person appear in continuity?," and "what are the dynamics of embodiment and intersubjectivity?" might be better explored through that lens. This article aims to explore some biomedical factors that contribute to locked-in syndrome and offers some prognostic and diagnostic recommendations for this rare condition.
Collapse
Affiliation(s)
- Berenika Maciejewicz
- Department of Biomedical EngineeringEinstein Medical InstituteNorth Palm BeachFloridaUSA
| |
Collapse
|
23
|
Signorelli CM, Boils JD, Tagliazucchi E, Jarraya B, Deco G. From Brain-Body Function to Conscious Interactions. Neurosci Biobehav Rev 2022; 141:104833. [PMID: 36037978 DOI: 10.1016/j.neubiorev.2022.104833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
Abstract
In this review, we discuss empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience. First, we motivate the discussion through evidence regarding the dynamic brain. Second, we review different brain-body couplings associated with conscious experience and its potential role in driving brain dynamics. Third, we introduce the machinery of multilayer networks to account for several types of interactions in brain-body systems. Then, a multilayer structure consists of two main generalizations: a formal semantic to study biological systems, and an integrative account for several signatures and models of consciousness. Finally, under this framework, we define composition of layers to account for entangled features of brain-body systems related to conscious experience. As such, a multilayer mathematical framework is highly integrative and thus may be more complete than other models. In this short review, we discuss a variety of empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, OxfordOX1 3QG, United Kingdom; Physiology of Cognition, GIGA-CRC In Vivo Imaging, Allée du 6 Août, 8 (B30), 4000 Sart Tilman, University of Liège, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Joaquín Díaz Boils
- Universidad Internacional de La Rioja, Avda La Paz, 137, Logroño, La Rioja, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|