1
|
Yu J, Zhang Y, Ye Z, Tang K, Ma Y, Fu L, Cui T, Kang H, Yuan Y, Pan W. A Multi-Machine Learning Consensus Model Based on Clinical Features Reveals That Interleukin-10 Derived from Monocytes Leads to a Poor Prognosis in Patients with Coronavirus Disease-2019. J Inflamm Res 2024; 17:5923-5942. [PMID: 39247837 PMCID: PMC11378990 DOI: 10.2147/jir.s472099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Background Despite ongoing interventions, SARS-CoV-2 continues to cause significant global morbidity and mortality. Early diagnosis and intervention are crucial for effective clinical management. However, prognostic features based on transcriptional data have shown limited effectiveness, highlighting the need for more precise biomarkers to improve COVID-19 treatment outcomes. Methods We retrospectively analyzed 149 clinical features from 189 COVID-19 patients, identifying prognostic features via univariate Cox regression. The cohort was split into training and validation sets, and 77 prognostic models were developed using seven machine learning algorithms. Among these, the least absolute shrinkage and selection operator (Lasso) method was employed to refine the selection of prognostic variables by ten-fold cross-validation strategy, which were then integrated with random survival forests (RSF) to build a robust COVID-19-related prognostic model (CRM). Model accuracy was evaluated across training, validation, and entire cohorts. The diagnostic relevance of interleukin-10 (IL-10) was confirmed in bulk transcriptional data and validated at the single-cell level, where we also examined changes in cellular communication between mononuclear cells with differing IL-10 expression and other immune cells. Results Univariate Cox regression identified 43 prognostic features. Among the 77 machine learning models, the combination of Lasso and RSF produced the most robust CRM. This model consistently performed well across training, validation, and entire cohorts. IL-10 emerged as a key prognostic feature within the CRM, validated by single-cell transcriptional data. Transcriptome analysis confirmed the stable diagnostic value of IL-10, with mononuclear cells identified as the primary IL-10 source. Moreover, differential IL-10 expression in these cells was linked to altered cellular communication in the COVID-19 immune microenvironment. Conclusion The CRM provides accurate prognostic predictions for COVID-19 patients. Additionally, the study underscores the importance of early IL-10 level testing upon hospital admission, which could inform therapeutic strategies.
Collapse
Affiliation(s)
- Jing Yu
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yike Zhang
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhixiong Ye
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Kun Tang
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yiming Ma
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Linlin Fu
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tongtong Cui
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hening Kang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yadong Yuan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
2
|
Guo S, Peng J, Xiao Y, Chen J, Gao R. Synergistic effects of oral inoculation with a recombinant Lactobacillus plantarum NC8 strain co-expressing interleukin-2 and interleukin-17B on the efficacy of the infectious bronchitis vaccine in chickens. Poult Sci 2024; 103:103908. [PMID: 38981363 PMCID: PMC11279255 DOI: 10.1016/j.psj.2024.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024] Open
Abstract
Mucosal vaccination strategies are easier to implement than others in large-scale poultry farming. However, the adjuvants that are approved for veterinary use, which are predominantly aluminum- and oil-emulsion-based adjuvants, are not suitable for mucosal vaccination and carry a risk of adverse reactions. In this study, we engineered a novel Lactobacillus plantarum NC8 strain that co-expresses chicken interleukin-2 (IL-2) and IL-17B, which we designated NC8-ChIL2-17B, and evaluated its potential as an oral immunoadjuvant. The immunomodulatory properties of NC8-ChIL2-17B were evidenced by its ability to activate macrophages and inhibit the proliferation of infectious bronchitis virus (IBV) in vitro. We then confirmed its immunoadjuvant activity in vivo by orally administering NC8-ChIL2-17B along with a commercial IBV vaccine to chicks. The results indicated that NC8-ChIL2-17B enhanced the immune response elicited by the IBV vaccine and increased the levels of IBV-specific IgG and sIgA antibodies produced in response to IBV infection. Additionally, administration of NC8-ChIL2-17B promoted weight gain and beneficially modulated the gut microbiota, resulting in improved chicken performance. These findings suggest that oral administration of NC8-ChIL2-17B is a promising strategy to enhance the immune efficacy of the IBV vaccine in chickens, offering an efficacious alternative adjuvant.
Collapse
Affiliation(s)
- Shaohua Guo
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Junjie Peng
- Key Laboratory for Bio-resource and Eco-Environment of Education Ministry, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yongle Xiao
- School of Medicine, Sichuan University of Arts and Science, Dazhou, 635000, PR China
| | - Jianlin Chen
- School of Laboratory Medicine/Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Rong Gao
- Key Laboratory for Bio-resource and Eco-Environment of Education Ministry, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
3
|
Allard RL, Mayfield J, Barchiesi R, Salem NA, Mayfield RD. Toll-like receptor 7: A novel neuroimmune target to reduce excessive alcohol consumption. Neurobiol Stress 2024; 31:100639. [PMID: 38765062 PMCID: PMC11101708 DOI: 10.1016/j.ynstr.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Toll-like receptors (TLRs) are a family of innate immune receptors that recognize molecular patterns in foreign pathogens and intrinsic danger/damage signals from cells. TLR7 is a nucleic acid sensing endosomal TLR that is activated by single-stranded RNAs from microbes or by small noncoding RNAs that act as endogenous ligands. TLR7 signals through the MyD88 adaptor protein and activates the transcription factor interferon regulatory factor 7 (IRF7). TLR7 is found throughout the brain and is highly expressed in microglia, the main immune cells of the brain that have also been implicated in alcohol drinking in mice. Upregulation of TLR7 mRNA and protein has been identified in postmortem hippocampus and cortex from AUD subjects that correlated positively with lifetime consumption of alcohol. Similarly, Tlr7 and downstream signaling genes were upregulated in rat hippocampal and cortical slice cultures after chronic alcohol exposure and in these regions after chronic binge-like alcohol treatment in mice. In addition, repeated administration of the synthetic TLR7 agonists imiquimod (R837) or resiquimod (R848) increased voluntary alcohol drinking in different rodent models and produced sustained upregulation of IRF7 in the brain. These findings suggest that chronic TLR7 activation may drive excessive alcohol drinking. In the brain, this could occur through increased levels of endogenous TLR7 activators, like microRNAs and Y RNAs. This review explores chronic TLR7 activation as a pathway of dysregulated neuroimmune signaling in AUD and the endogenous small RNA ligands in the brain that could perpetuate innate immune responses and escalate alcohol drinking.
Collapse
Affiliation(s)
- Ruth L. Allard
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Riccardo Barchiesi
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nihal A. Salem
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
5
|
Naushad SM, Mandadapu G, Ramaiah MJ, Almajhdi FN, Hussain T. The role of TLR7 agonists in modulating COVID-19 severity in subjects with loss-of-function TLR7 variants. Sci Rep 2023; 13:13078. [PMID: 37567916 PMCID: PMC10421879 DOI: 10.1038/s41598-023-40114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
We investigate the mechanism associated with the severity of COVID-19 in men with TLR7 mutation. Men with loss-of-function (LOF) mutations in TLR7 had severe COVID-19. LOF mutations in TLR7 increased the risk of critical COVID by 16.00-fold (95% confidence interval 2.40-106.73). The deleterious mutations affect the binding of SARS-CoV2 RNA (- 328.66 ± 26.03 vs. - 354.08 ± 27.70, p = 0.03) and MYD88 (β: 40.279, p = 0.003) to TLR7 resulting in the disruption of TLR7-MyD88-TIRAP complex. In certain hypofunctional variants and all neutral/benign variants, there is no disruption of TLR7-MyD88-TIRAP complex and four TLR7 agonists showed binding affinity comparable to that of wild protein. N-acetylcysteine (NAC) also showed a higher binding affinity for the LOF variants (p = 0.03). To conclude, TLR7 LOF mutations increase the risk of critical COVID-19 due to loss of viral RNA sensing ability and disrupted MyD88 signaling. Majority of hypofunctional and neutral variants of TLR7 are capable of carrying MyD88 signaling by binding to different TLR7 agonists and NAC.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Yoda LifeLine Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add on, Ameerpet, Hyderabad, 500016, India.
| | | | | | - Fahad N Almajhdi
- COVID-19 Virus Research Chair, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Huang Z, Gao Y, Han Y, Yang J, Yang C, Li S, Zhou D, Huang Q, Yang J. Revealing the roles of TLR7, a nucleic acid sensor for COVID-19 in pan-cancer. BIOSAFETY AND HEALTH 2023:S2590-0536(23)00054-X. [PMID: 37362864 PMCID: PMC10167782 DOI: 10.1016/j.bsheal.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Recent studies suggested that cancer was a risk factor for coronavirus disease 2019 (COVID-19). Toll-like receptor 7 (TLR7), a severe acute respiratory syndrome 2 (SARS-CoV-2) virus's nucleic acid sensor, was discovered to be aberrantly expressed in many types of cancers. However, its expression pattern across cancers and association with COVID-19 (or its causing virus SARS-CoV-2) has not been systematically studied. In this study, we proposed a computational framework to comprehensively study the roles of TLR7 in COVID-19 and pan-cancers at genetic, gene expression, protein, epigenetic, and single-cell levels. We applied the computational framework in a few databases, including The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas (HPA), lung gene expression data of mice infected with SARS-CoV-2, and the like. As a result, TLR7 expression was found to be higher in the lung of mice infected with SARS-CoV-2 than that in the control group. The analysis in the Opentargets database also confirmed the association between TLR7 and COVID-19. There are also a few exciting findings in cancers. First, the most common type of TLR7 was "Missense" at the genomic level. Second, TLR7 mRNA expression was significantly up-regulated in 6 cancer types and down-regulated in 6 cancer types compared to normal tissues, further validated in the HPA database at the protein level. The genes significantly co-expressed with TLR7 were mainly enriched in the toll-like receptor signaling pathway, endolysosome, and signaling pattern recognition receptor activity. In addition, the abnormal TLR7 expression was associated with mismatch repair (MMR), microsatellite instability (MSI), and tumor mutational burden (TMB) in various cancers. Mined by the ESTIMATE algorithm, the expression of TLR7 was also closely linked to various immune infiltration patterns in pan-cancer, and TLR7 was mainly enriched in macrophages, as revealed by single-cell RNA sequencing. Third, abnormal expression of TLR7 could predict the survival of Brain Lower Grade Glioma (LGG), Lung adenocarcinoma (LUAD), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), and Testicular Germ Cell Tumors (TGCT) patients, respectively. Finally, TLR7 expressions were very sensitive to a few targeted drugs, such as Alectinib and Imiquimod. In conclusion, TLR7 might be essential in the pathogenesis of COVID-19 and cancers.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yaoxin Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China
| | - Jingwen Yang
- Department of Clinical Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Can Yang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Decong Zhou
- Geriatric Hospital of Hainan Medical Education Department, Haikou 571100, China
| | - Qiuyan Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| |
Collapse
|
7
|
Association between Serum Zinc and Toll-like-Receptor- Related Innate Immunity and Infectious Diseases in Well-Nourished Children with a Low Prevalence of Zinc Deficiency: A Prospective Cohort Study. Nutrients 2022; 14:nu14245395. [PMID: 36558553 PMCID: PMC9782999 DOI: 10.3390/nu14245395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Existing reports focus on zinc-associated immunity and infection in malnourished children; however, whether zinc also plays an important role in the immune homeostasis of the non-zinc-deficient population remained unknown. This study aimed to investigate the association between zinc status and toll-like receptor (TLR)-related innate immunity and infectious outcome in well-nourished children. A total of 961 blood samples were collected from 1 through 5 years of age. Serum zinc was analyzed, and mononuclear cells isolated to assess TNF-α, IL-6, and IL-10 production by ELISA after stimulation with TLR ligands. Childhood infections were analyzed as binary outcomes with logistic regression. The prevalence of zinc deficiency was 1.4-9.6% throughout the first 5 years. There was significant association between zinc and TLR-stimulated cytokine responses. Higher serum zinc was associated with decreased risk of ever having pneumonia (aOR: 0.94; 95% CI: 0.90, 0.99) at 3 years, and enterocolitis (aOR: 0.96; 95% CI: 0.93, 0.99) at 5 years. Serum zinc was lower in children who have had pneumonia before 3 years of age (72.6 ± 9 vs. 81.9 ± 13 μg/dL), and enterocolitis before 5 years (89.3 ± 12 vs. 95.5 ± 13 μg/dL). We emphasize the importance of maintaining optimal serum zinc in the young population.
Collapse
|
8
|
Toll-like receptor 7 regulates cardiovascular diseases. Int Immunopharmacol 2022; 113:109390. [DOI: 10.1016/j.intimp.2022.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
9
|
Gardiman E, Bianchetto-Aguilera F, Gasperini S, Tiberio L, Scandola M, Lotti V, Gibellini D, Salvi V, Bosisio D, Cassatella MA, Tamassia N. SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion. Cells 2022; 11:3785. [PMID: 36497044 PMCID: PMC9738506 DOI: 10.3390/cells11233785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.
Collapse
Affiliation(s)
- Elisa Gardiman
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Sara Gasperini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Matteo Scandola
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marco A. Cassatella
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
10
|
Dai J, Wang Y, Wang H, Gao Z, Wang Y, Fang M, Shi S, Zhang P, Wang H, Su Y, Yang M. Toll-Like Receptor Signaling in Severe Acute Respiratory Syndrome Coronavirus 2-Induced Innate Immune Responses and the Potential Application Value of Toll-Like Receptor Immunomodulators in Patients With Coronavirus Disease 2019. Front Microbiol 2022; 13:948770. [PMID: 35832809 PMCID: PMC9271922 DOI: 10.3389/fmicb.2022.948770] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors (TLRs) are key sensors that recognize the pathogen-associated molecular patterns (PAMPs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to activate innate immune response to clear the invading virus. However, dysregulated immune responses may elicit the overproduction of proinflammatory cytokines and chemokines, resulting in the enhancement of immune-mediated pathology. Therefore, a proper understanding of the interaction between SARS-CoV-2 and TLR-induced immune responses is very important for the development of effective preventive and therapeutic strategies. In this review, we discuss the recognition of SARS-CoV-2 components by TLRs and the downstream signaling pathways that are activated, as well as the dual role of TLRs in regulating antiviral effects and excessive inflammatory responses in patients with coronavirus disease 2019 (COVID-19). In addition, this article describes recent progress in the development of TLR immunomodulators including the agonists and antagonists, as vaccine adjuvants or agents used to treat hyperinflammatory responses during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jiayu Dai
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Yibo Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ziyuan Gao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Ying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Hua Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Jilin, China
- *Correspondence: Yingying Su,
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Ming Yang,
| |
Collapse
|
11
|
Ferrari D, Rubini M, Burns JS. The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Front Immunol 2022; 13:904419. [PMID: 35784277 PMCID: PMC9248768 DOI: 10.3389/fimmu.2022.904419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
A long-shared evolutionary history is congruent with the multiple roles played by purinergic signaling in viral infection, replication and host responses that can assist or hinder viral functions. An overview of the involvement of purinergic signaling among a range of viruses is compared and contrasted with what is currently understood for SARS-CoV-2. In particular, we focus on the inflammatory and antiviral responses of infected cells mediated by purinergic receptor activation. Although there is considerable variation in a patient's response to SARS-CoV-2 infection, a principle immediate concern in Coronavirus disease (COVID-19) is the possibility of an aberrant inflammatory activation causing diffuse lung oedema and respiratory failure. We discuss the most promising potential interventions modulating purinergic signaling that may attenuate the more serious repercussions of SARS-CoV-2 infection and aspects of their implementation.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michele Rubini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Jorge S. Burns
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Zanella I. COVID-19 therapy, from lung disease to systemic disorder. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100099. [PMID: 35382154 PMCID: PMC8973018 DOI: 10.1016/j.crphar.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|