1
|
Li H, Ma W, Wang X, Hu H, Cao L, Ma H, Lin J, Zhong M. A WUSCHEL-related homeobox transcription factor, SlWOX4, negatively regulates drought tolerance in tomato. PLANT CELL REPORTS 2024; 43:253. [PMID: 39370470 DOI: 10.1007/s00299-024-03333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
KEY MESSAGE CRISPR/Cas9-mediated knockout of SlWOX4 gene in tomato enhances tolerance to drought stress. Drought stress is one of the major abiotic factors that seriously affects plant growth and crop yield. WUSCHEL-related homeobox (WOX) transcription factors are involved in plant growth, development and stress response. However, little is known about the role of WOX genes in drought tolerance in tomato. Here, SlWOX4, a member of the WOX family in tomato, was functionally characterized in mediating drought tolerance. SlWOX4 was homologous to Nicotiana tabacum NtWOX4 with a conserved HD domain, and was localized in the nucleus. SlWOX4 was significantly down-regulated by drought and abscisic acid (ABA) treatments. The loss-of-function mutations of SlWOX4 produced using the CRISPR-Cas9 system in tomato improved drought tolerance by reducing water loss rate and enhancing stomatal closure. In addition, the wox4 lines exhibited reduced accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), increased antioxidant enzyme activity, proline contents and ABA contents under drought stress. Moreover, gene editing of SlWOX4 in tomato enhanced drought tolerance by regulating the expression of genes encoding antioxidants and ABA signaling molecules. In summary, SlWOX4 gene might negatively regulate drought stress tolerance in tomato and has great potential as a drought-resistant crop-breeding target genes.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wanying Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiao Wang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongling Hu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lina Cao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jingwei Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
2
|
Zhou M, Sun Y, Wang S, Liu Q, Li H. Photosynthesis Product Allocation and Yield in Sweet Potato in Response to Different Late-Season Irrigation Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091780. [PMID: 37176838 PMCID: PMC10180913 DOI: 10.3390/plants12091780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Soil water deficit is an important factor affecting the source-sink balance of sweet potato during its late-season growth, but water regulation during this period has not been well studied. Therefore, the aim of this study was to determine the appropriate irrigation level in late-season sweet potato, and the effect of irrigation level on accumulation and allocation of photosynthetic products. In this study, two yield-based field trials (2021-2022) were conducted in which five late-season irrigation levels set according to the crop evapotranspiration rate were tested (T0: non-irrigation, T1: 33% ETc, T2: 75% ETc, T3: 100% ETc, T4: 125% ETc). The effects of the different irrigation levels on photosynthetic physiological indexes, 13C transfer allocation, water use efficiency (WUE), water productivity (WP), and the yield and economic benefit of sweet potato were studied. The results showed that late-season irrigation significantly increased the total chlorophyll content and net photosynthetic rate of functional leaves, in addition to promoting the accumulation of above-ground-source organic biomass (p < 0.05). The rate of 13C allocation, maximum accumulation rate (Vmax), and average accumulation rate (Vmean) of dry matter in storage root were significantly higher under T2 irrigation than under the other treatments (p < 0.05). This suggests that both non-irrigation (T0) and over-irrigation (T4) were not conducive to the transfer and allocation of photosynthetic products to storage roots in late-season sweet potato. However, moderate irrigation (T2) effectively promoted the source-sink balance, enhanced the source photosynthetic rate and stimulated the sink activity, such that more photosynthate was allocated to the storage sink. The results also showed that T2 irrigation treatments significantly increased yield, WUE and WP compared to T0 and T4 (p < 0.05), suggesting that moderate irrigation (T2) can significantly promote the potential of storage root production and field productivity. There was a close relationship between economic benefit and marketable sweet potato yield, and both were highest under T2 (p < 0.05), increasing by 36.1% and 59.9% compared with T0 over the two-year study period. In conclusion, irrigation of late-season sweet potato with 75% evapotranspiration (T2) can improve both the yield and production potential. Together, these results support the use of late-season water management in the production of sweet potato.
Collapse
Affiliation(s)
- Mingjing Zhou
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiming Sun
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shaoxia Wang
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Liu
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Huan Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Sheoran S, Kaur Y, Kumar S, Shukla S, Rakshit S, Kumar R. Recent Advances for Drought Stress Tolerance in Maize ( Zea mays L.): Present Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:872566. [PMID: 35707615 PMCID: PMC9189405 DOI: 10.3389/fpls.2022.872566] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
Drought stress has severely hampered maize production, affecting the livelihood and economics of millions of people worldwide. In the future, as a result of climate change, unpredictable weather events will become more frequent hence the implementation of adaptive strategies will be inevitable. Through utilizing different genetic and breeding approaches, efforts are in progress to develop the drought tolerance in maize. The recent approaches of genomics-assisted breeding, transcriptomics, proteomics, transgenics, and genome editing have fast-tracked enhancement for drought stress tolerance under laboratory and field conditions. Drought stress tolerance in maize could be considerably improved by combining omics technologies with novel breeding methods and high-throughput phenotyping (HTP). This review focuses on maize responses against drought, as well as novel breeding and system biology approaches applied to better understand drought tolerance mechanisms and the development of drought-tolerant maize cultivars. Researchers must disentangle the molecular and physiological bases of drought tolerance features in order to increase maize yield. Therefore, the integrated investments in field-based HTP, system biology, and sophisticated breeding methodologies are expected to help increase and stabilize maize production in the face of climate change.
Collapse
|
4
|
Shoaib M, Hussain S, Cheng X, Cui Y, Liu H, Chen Q, Ma M, Gu Y, Zhao K, Xiang Q, Zhou J, Liu J, Li S, Zou T, Yu X. Synergistic anti-oxidative effects of Pongamia pinnata against nickel mediated by Rhizobium pisi and Ochrobacterium pseudogrignonense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112244. [PMID: 33933891 DOI: 10.1016/j.ecoenv.2021.112244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Nickel is widely spread by different anthropogenic activities and shows toxicity for plant growth and development. Whether rhizobia symbiotically fix nitrogen can eliminate or reduce nickel toxic effect on plant or not is still unknown. This study was aimed to investigate the effect of different rhizobia genus inoculation on growth, nitrogen fixing ability, metal accumulation and enzymatic antioxidative balance of Pongamia pinnnaa. Inoculation with Rhizobium pisi and Ochrobacterium pseudogrignonense increased the all the growth parameters both in 0 and 40 mg/kg nickel as comparison with control. Only shoot length increased in presence of nitrogen as compared with no supply of nitrogen. Nitrogen content also increased both in rhizobia inoculation as compared to no nitrogen supply and non-inoculation control, respectively. Nickel uptake was higher in shoots and leaves but lower in roots in case of inoculation as compared to non-inoculation control. Rhizobia inoculation improved the plant antioxidant capacity by increasing the activity of enzymatic scavengers catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and ascorbate (GR). However, 40 mg/kg of nickel adding showed mostly effect on the activity CAT, SOD, POD in leaves. All the enzymatic activity showed a significant increase in absence of nitrogen supply as compared nitrogen supply. Our results suggested that rhizobia inoculation effectively mediated nickel stress for legume plants by increasing nitrogen supplement and inducing antioxidant capacity.
Collapse
Affiliation(s)
- Muhammad Shoaib
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, PR China
| | - Xiran Cheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu 610015, PR China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ting Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
5
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Wang J, Mao X, Wang R, Li A, Zhao G, Zhao J, Jing R. Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress. Sci Rep 2019; 9:141. [PMID: 30644420 PMCID: PMC6333785 DOI: 10.1038/s41598-018-37859-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022] Open
Abstract
Abiotic stress significantly impacts growth and yield of crop plants. It is imperative for crop improvement to discover and utilize stress-tolerant functional genes. In this study, genes responding to abiotic stresses, such as freezing, salt and osmotic stress, were screened from a cDNA yeast library that was constructed from the drought- and heat-tolerant wheat variety Hanxuan 10. After screening for surviving clones we isolated 7,249, 4,313 and 4,469 raw sequences, corresponding to 4,695, 2,641 and 2,771 genes following each treatment. Venn diagrams revealed 377 overlapping genes. GO analysis suggested that these genes were mainly involved in the metabolic and stress signal pathways. KEGG pathway enrichment analysis indicated that the isolated genes predominantly belonged to pathways concerning energy and metabolism. Overlapping gene TaPR-1-1 within the pathogenesis-related (PR) protein family was selected for detailed characterization. Although previous studies had shown that PR genes function during pathogen attack, our results demonstrated that TaPR-1-1 expression was also induced by freezing, salinity, and osmotic stresses. Overexpression in yeast and Arabidopsis showed that TaPR-1-1 conferred tolerance to these stresses. We concluded that screening cDNA yeast libraries following abiotic stress is an efficient way to identify stress-tolerance genes.
Collapse
Affiliation(s)
- Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruitong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Ateş Sönmezoğlu Ö, Terzi B. Characterization of some bread wheat genotypes using molecular markers for drought tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:159-166. [PMID: 29398847 PMCID: PMC5787123 DOI: 10.1007/s12298-017-0492-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.
Collapse
Affiliation(s)
- Özlem Ateş Sönmezoğlu
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Begüm Terzi
- Department of Bioengineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
8
|
Thu NBA, Nguyen QT, Hoang XLT, Thao NP, Tran LSP. Evaluation of drought tolerance of the Vietnamese soybean cultivars provides potential resources for soybean production and genetic engineering. BIOMED RESEARCH INTERNATIONAL 2014; 2014:809736. [PMID: 24804248 PMCID: PMC3997955 DOI: 10.1155/2014/809736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022]
Abstract
Drought is one of the greatest constraints to soybean production in many countries, including Vietnam. Although a wide variety of the newly produced cultivars have been produced recently in Vietnam through classical breeding to cope with water shortage, little knowledge of their molecular and physiological responses to drought has been discovered. This study was conducted to quickly evaluate drought tolerance of thirteen local soybean cultivars for selection of the best drought-tolerant cultivars for further field test. Differences in drought tolerance of cultivars were assessed by root and shoot lengths, relative water content, and drought-tolerant index under both normal and drought conditions. Our data demonstrated that DT51 is the strongest drought-tolerant genotype among all the tested cultivars, while the highest drought-sensitive phenotype was observed with MTD720. Thus, DT51 could be subjected to further yield tests in the field prior to suggesting it for use in production. Due to their contrasting drought-tolerant phenotypes, DT51 and MTD720 provide excellent genetic resources for further studies underlying mechanisms regulating drought responses and gene discovery. Our results provide vital information to support the effort of molecular breeding and genetic engineering to improve drought tolerance of soybean.
Collapse
Affiliation(s)
- Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Quang Thien Nguyen
- School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Xuan Lan Thi Hoang
- School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Phuong Thao
- School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
9
|
Alvarez S, Roy Choudhury S, Pandey S. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability. J Proteome Res 2014; 13:1688-701. [PMID: 24475748 DOI: 10.1021/pr401165b] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.
Collapse
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center , 975 North Warson Road, St. Louis, Missouri 63132, United States
| | | | | |
Collapse
|
10
|
Identification of Dreb 1 Genes Involved in Drought Tolerance in Wheat (Triticum L.). ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2013. [DOI: 10.1007/978-3-642-32034-7_117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Ruan CJ, Xu XX, Shao HB, Jaleel CA. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions. Crit Rev Biotechnol 2010; 30:192-9. [DOI: 10.3109/07388551003649062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|