1
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Kito S. Fertilization and developmental competence of in vitro fertilized embryos from C57BL/6J mice of different ages and the impact of vitrification. J Reprod Dev 2024; 70:405-410. [PMID: 39462550 DOI: 10.1262/jrd.2024-082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Prepubertal animals are often preferred as sources of oocytes for assisted reproductive technologies (ARTs) in laboratory mice, but the normality and developmental competence of these oocytes remain controversial. This study systematically examined in vitro fertilization competence, embryo development, and fetal development after embryo transfer (ET) using oocytes from C57BL/6J mice aged 3 to 10 weeks. Oocytes were collected from superovulated females, fertilized, and cultured in vitro for 96 h or transferred at 2-cell stage to recipient females. Additionally, fetal development was compared between unfrozen and frozen-thawed in vitro-fertilized 2-cell embryos across different age groups. The number of ovulated oocytes per animal decreased with age, while the percentage of morphologically normal oocytes was highest in 3-week-old mice (99%) compared to older ages (70-86%, P < 0.05). Although fertilization percentages were consistently high (≥ 97%), blastocyst development in vitro, the nuclear counts of blastocysts and fetal development after ET were lowest for embryos from 3-week-old mice. Development of frozen-thawed embryos to fetuses was significantly reduced compared to unfrozen embryos in all age groups, except for those from 10-week-old mice. These findings suggest that oocytes from prepubertal mice, particularly from 3-week-old mice, are less developmentally competent than those from older mice. Therefore, the age of animals for oocyte source should be carefully considered based on the specific requirements of the research or ART applications.
Collapse
Affiliation(s)
- Seiji Kito
- Center of Animal Research and Education, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Ventura C, Bondioli E, de Vita R, Rigotti G, Morigi F, Scarpellini F, Di Fede F, Nanni-Costa A, Melandri D. Autologous Cryopreserved Adipose Tissue Using an Innovative Technique: An In Vitro Biological Characterization. Aesthet Surg J 2024; 45:NP16-NP24. [PMID: 39302643 DOI: 10.1093/asj/sjae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Utilization of autologous adipose tissue transplantation in plastic and orthopedic surgery such as breast reconstruction and intra-articular injection has become an attractive surgical treatment with satisfactory clinical outcomes. Nevertheless, repeated liposuctions necessary to harvest fatty tissue, normally performed with sedation or general anesthesia, may represent a noteworthy concern. OBJECTIVES The aim of this study was to demonstrate through an in vitro characterization the validity of the surgical option of cryopreserved autologous adipose tissue harvested in a single shot for repeated graft transfer in breast reconstruction without impairment of cell viability and sterility. METHODS Adipose tissue was collected by standard liposuction from patients who needed numerous fat grafting procedures for breast reconstruction. According to an innovative and patented cryopreservation method, autologous adipose tissue was subsequently fractioned in a sterile bag system and frozen at the RER Tissue Bank of the Emilia Romagna Region. Each graft was evaluated for sterility and cell viability immediately after harvesting, and 1, 3, 6, 12, and preliminarily 18 months after cryopreservation and thawing. RESULTS In vitro results showed that after processing, middle-term and long-term cryopreservation, and subsequent thawing, autologous cryopreserved adipose tissue retained absence of bacterial contamination, high cellular viability, and unmodified histomorphological properties, thereby ensuring maintenance of the stromal vascular niche and the filling properties in different multistep surgical procedures. CONCLUSIONS In vitro study and sterility assessment showed that autologous cryopreserved adipose tissue grafting is a safe procedure, making it possible to avoid multiple liposuction surgery. No impairment of sterility, cell viability, or morphology was observed over time.
Collapse
|
4
|
Shin A, Choi SR, Yim JH, Chung EJ, Nam SW, Burns BP, Jeon YJ, Kim BS. Synergistic Effect of Polyglycerol and DMSO for Long-Term Cryopreservation of Stichococcus Species. Biomacromolecules 2024. [PMID: 39643586 DOI: 10.1021/acs.biomac.4c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Herein, we present a significant advancement in long-term cryopreservation techniques for microalgae Stichococcus species using a combination of linear polyglycerol (linPG) and dimethyl sulfoxide (DMSO). The technique was tested on three Stichococcus species: Stichococcus bacillaris, Stichococcus deasonii, and Stichococcus minor, which showed long-term viability and recovery rates superior to those when treated with a traditional cryoprotectant only. While DMSO alone enabled high cell recovery rates for all species after 1 week of cryopreservation, the rates for some of them dropped below 50% after 26 weeks of cryopreservation. Treating the cells with a combination of linPG and DMSO raised the recovery rates for all three Stichococcus species to above 92% after long-term cryopreservation. Our findings indicate that linPG in combination with DMSO offers a synergistic and effective solution for maintaining cell integrity and functionality during long-term cryopreservation of microalgae.
Collapse
Affiliation(s)
- Aram Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Ryeol Choi
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea
| | - Jun Ho Yim
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea
| | - Eu Jin Chung
- Freshwater Bioresources Culture Collection, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Seung Won Nam
- Freshwater Bioresources Culture Collection, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Brendan P Burns
- School of Biotechnology & Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Viana JVDS, Oliveira LRMD, Rodrigues LLV, Moura YBF, Pereira ABM, Alves PV, Silva HVR, Pereira AF. No synergistic effect of extracellular cryoprotectants with dimethyl sulfoxide in the conservation of northern tiger cat fibroblasts. Cryobiology 2024; 118:105169. [PMID: 39577602 DOI: 10.1016/j.cryobiol.2024.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The success of somatic cell cryobanks is dependent on establishing reproducible cryopreservation methodologies. We supposed that associated extracellular cryoprotectants (sucrose and L-proline) with 2.5 or 10 % dimethyl sulfoxide (Me2SO) could guarantee better northern tiger cat cells quality rates after thawing when compared to Me2SO alone. Therefore, we evaluated the effects of sucrose or L-proline with 2.5 or 10 % Me2SO on the cryopreservation of northern tiger cat fibroblasts. Somatic cells were also cryopreserved with 2.5 % or 10 % Me2SO alone. All cells were analyzed for morphology, membrane integrity, proliferative activity, metabolism, apoptosis classification, reactive oxygen species (ROS) levels, and mitochondrial membrane potential (ΔΨm). Regardless of the cryoprotective solution, cryopreservation did not affect morphology, membrane integrity after culture, proliferative activity, and metabolism (P > 0.05). However, immediately after thawing, 2.5 % Me2SO with L-proline and 10 % Me2SO promoted higher rates of membrane integrity when compared to the other cryopreserved groups (P < 0.05). Interestingly, cells cryopreserved with 10 % Me2SO maintained ROS levels similar to non-cryopreserved cells (P > 0.05). However, the percentage of viable cells evaluated by apoptosis classification was reduced when using 10 % Me2SO with L-proline compared to non-cryopreserved groups (P < 0.05). Additionally, ΔΨm was altered in all cryopreserved groups (P < 0.05). In summary, sucrose and L-proline were less effective in cryopreservation of northern tiger cat fibroblasts in the presence of 2.5 % or 10 % Me2SO. Also, 10 % Me2SO appears to be the most suitable cryoprotectant for the formation of cryobanks of this species.
Collapse
Affiliation(s)
- João Vitor da Silva Viana
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, RN, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu X, Zhang L, Li H, Yang J, Zhang L. The Inhibition of Interfacial Ice Formation and Stress Accumulation with Zwitterionic Betaine and Trehalose for High-Efficiency Skin Cryopreservation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0520. [PMID: 39545039 PMCID: PMC11561590 DOI: 10.34133/research.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024]
Abstract
Cryopreservation is a promising technique for the long-term storage of skin. However, the formation of ice crystals during cryopreservation unavoidably damages skin structure and functionality. Currently, the lack of thorough and systematic investigation into the internal mechanisms of skin cryoinjury obstructs the advancement of cryopreservation technology. In this study, we identified 3 primary contributors to skin cryoinjury: interfacial ice nucleation, stress accumulation, and thermal stress escalation. We emphasized the paramount role of interfacial ice nucleation in provoking ice growth within the skin during the cooling process. This progress subsequently leads to stress accumulation within the skin. During the rewarming process, the brittleness of skin, previously subjected to freezing, experienced a marked increase in thermal stress due to ice recrystallization. Based on these insights, we developed a novel zwitterionic betaine-based solution formulation designed for cryopreservation skin. This cryoprotective agent formulation exhibited superior capability in lowering ice nucleation temperatures and inhibiting ice formation at interfaces, while also facilitating the growth of smooth and rounded ice crystals compared to sharp-edged and cornered crystals formed in aqueous solutions. As a result, we successfully achieved prolonged cryopreservation of the skin for at least 6 months, while preserving 98.7% of structural integrity and 94.7% of Young's modulus. This work provides valuable insights into the mechanisms of ice crystal damage during organ cryopreservation and profoundly impacts the field of organ transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Xinmeng Liu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Liming Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Haoyue Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
7
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
8
|
Zhang M, Ma X, Han Y, Wang Z, Jia Z, Chen D, Qiao Z, Gao X, Zhao C, Shen Y. Optimal conditions for cryopreservation by vitrification of largemouth bass (Micropterus salmoides) embryos. Anim Reprod Sci 2024; 270:107613. [PMID: 39342692 DOI: 10.1016/j.anireprosci.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The largemouth bass (Micropterus salmoides) is one of the important freshwater aquaculture species in the world. However, due to limitations on introduction scale, high-density farming, inbreeding, and species hybridization, the germplasm resources of largemouth bass face threats such as degradation and susceptibility to diseases. Therefore, it is urgent to conduct research on the conservation of its original and good germplasm resources. We optimized the conditions of cryopreservation to vitrify and revive largemouth bass embryos, including the mixing ratio of cryoprotectants, embryo stage, equilibration step and temperature, and washing regent. The results showed that the least toxic single, binary, and ternary mixed permeating cryoprotectants were PG, PM (PG: MeOH = 2:1), and PMD (PM: DMSO = 3:1), respectively. The least toxic non-permeating cryoprotectant was 5 % glucose. The optimal vitrification solution selected was PMDG (30 % PMD + 5 % glucose) with an 80.67 % survival rate of embryos. Embryos at the heartbeat stage exhibited strong tolerance to the PMDG solution, which is the optimal embryo stage for cryopreservation. During the equilibration process, either the five-step equilibration method or pre-cooling the cryoprotectant to 4°C could reduce its toxicity. During the washing process, a 0.125 mol·L-1 sucrose solution yielded the best results. Based on the optimized conditions, 650 embryos at the heartbeat stage were subjected to cryopreservation by vitrification, resulting in a total of 350 intact transparent eggs, two of which hatched successfully. The results provide a reference for further improving the efficiency of cryopreservation by vitrification of largemouth bass and other fish species.
Collapse
Affiliation(s)
- Meng Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China; Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066200, China
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yuqing Han
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zerui Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhilin Jia
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Dongcai Chen
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhigang Qiao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Xiaotian Gao
- Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066200, China
| | - Chunlong Zhao
- Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066200, China
| | - Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China; Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
9
|
Fang WH, Vangsness CT. Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. J Clin Med 2024; 13:6577. [PMID: 39518716 PMCID: PMC11546119 DOI: 10.3390/jcm13216577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The biological products used in orthopedics include musculoskeletal allografts-such as bones, tendons, ligaments, and cartilage-as well as biological therapies. Musculoskeletal allografts support the body's healing process by utilizing preserved and sterilized donor tissue. These allografts are becoming increasingly common in surgical practice, allowing patients to avoid more invasive procedures and the risks associated with donor site morbidity. Bone grafting is one of the most frequently used procedures in orthopedics and traumatology. Biologic approaches aim to improve clinical outcomes by enhancing the body's natural healing capacity and reducing inflammation. They serve as an alternative to surgical interventions. While preliminary results from animal studies and small-scale clinical trials have been promising, the field of biologics still lacks robust clinical evidence supporting their efficacy. Biological therapies include PRP (platelet-rich plasma), mesenchymal stem cells (MSCs)/stromal cells/progenitor cells, bone marrow stem/stromal cells (BMSCs), adipose stem/stromal cells/progenitor cells (ASCs), cord blood (CB), and extracellular vesicles (EVs), including exosomes. The proper preservation and storage of these cellular therapies are essential for future use. Preservation techniques include cryopreservation, vitrification, lyophilization, and the use of cryoprotective agents (CPAs). The most commonly used CPA is DMSO (dimethyl sulfoxide). The highest success rates and post-thaw viability have been achieved by preserving PRP with a rate-controlled freezer using 6% DMSO and storing other cellular treatments using a rate-controlled freezer with 5% or 10% DMSO as the CPA. Extracellular vesicles (EVs) have shown the best results when lyophilized with 50 mM or 4% trehalose to prevent aggregation and stored at room temperature.
Collapse
Affiliation(s)
- William H. Fang
- Department of Orthopedic Surgery, Valley Health Systems, 620 Shadow Lane, Las Vegas, NV 89106, USA
| | - C. Thomas Vangsness
- Department of Orthopedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Urbán-Duarte D, Tomita S, Sakai H, Sezutsu H, Álvarez-Gallardo H, Kainoh Y, Furukawa S, Uchino K. Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation. Int J Mol Sci 2024; 25:11396. [PMID: 39518950 PMCID: PMC11546613 DOI: 10.3390/ijms252111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The permeation of cryoprotectants into insect embryos is critical for successful cryopreservation. However, the permeability of silkworm embryos to cryoprotectants and the effects of cryopreservation remain poorly studied. In this study, we evaluated the permeability and toxicity of four cryoprotective agents (CPAs) as well as the vitrification effect on the viability of silkworm embryos. Among the four CPAs, propylene glycol (PG) showed the best permeability. Ethylene glycol (EG) and PG were the least toxic CPAs, but glycerol (GLY) and dimethyl sulfoxide (DMSO) were more toxic. Moreover, we examined several factors including the kind and the concentration of CPAs, exposure time, embryonic stage, and silkworm strains. Embryos at the earlier phases of stage 25 were more tolerant to vitrification using EG. We found that over 21% of embryos treated with EG at the early 2 phase of stage 25: 163 h after egg laying (AEL) developed and progressed to serosa ingestion after vitrification and rewarming. The result was the same in other strains as well. Our results are valuable for the development of new cryopreservation protocols of silkworm embryos.
Collapse
Affiliation(s)
- David Urbán-Duarte
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco 47600, Mexico;
| | - Shuichiro Tomita
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| | - Horacio Álvarez-Gallardo
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco 47600, Mexico;
| | - Yooichi Kainoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan; (Y.K.); (S.F.)
| | - Seiichi Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan; (Y.K.); (S.F.)
| | - Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| |
Collapse
|
11
|
Delgado-Bermúdez A. Insights into crucial molecules and protein channels involved in pig sperm cryopreservation. Anim Reprod Sci 2024; 269:107547. [PMID: 38981798 DOI: 10.1016/j.anireprosci.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Cryopreservation is the most efficient procedure for long-term preservation of mammalian sperm; however, its use is not currently dominant for boar sperm before its use for artificial insemination. In fact, freezing and thawing have an extensive detrimental effect on sperm function and lead to impaired fertility. The present work summarises the basis of the structural and functional impact of cryopreservation on pig sperm that have been extensively studied in recent decades, as well as the molecular alterations in sperm that are related to this damage. The wide variety of mechanisms underlying the consequences of alterations in expression levels and structural modifications of sperm proteins with diverse functions is detailed. Moreover, the use of cryotolerance biomarkers as predictors of the potential resilience of a sperm sample to the cryopreservation process is also discussed. Regarding the proteins that have been identified to be relevant during the cryopreservation process, they are classified according to the functions they carry out in sperm, including antioxidant function, plasma membrane protection, sperm motility regulation, chromatin structure, metabolism and mitochondrial function, heat-shock response, premature capacitation and sperm-oocyte binding and fusion. Special reference is made to the relevance of sperm membrane channels, as their function is crucial for boar sperm to withstand osmotic shock during cryopreservation. Finally, potential aims for future research on cryodamage and cryotolerance are proposed, which might be crucial to minimise the side-effects of cryopreservation and to make it a more advantageous strategy for boar sperm preservation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain.
| |
Collapse
|
12
|
Mohamed HM, Sundar P, Ridwan NAA, Cheong AJ, Mohamad Salleh NA, Sulaiman N, Mh Busra F, Maarof M. Optimisation of cryopreservation conditions, including storage duration and revival methods, for the viability of human primary cells. BMC Mol Cell Biol 2024; 25:20. [PMID: 39350017 PMCID: PMC11441136 DOI: 10.1186/s12860-024-00516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cryopreservation is a crucial procedure for safeguarding cells or other biological constructs, showcasing considerable potential for applications in tissue engineering and regenerative medicine. AIMS This study aimed to evaluate the effectiveness of different cryopreservation conditions on human cells viability. METHODS A set of cryopreserved data from Department of Tissue Engineering and Regenerative Medicine (DTERM) cell bank were analyse for cells attachment after 24 h being revived. The revived cells were analysed based on different cryopreservation conditions which includes cell types (skin keratinocytes and fibroblasts, respiratory epithelial, bone marrow mesenchymal stem cell (MSC); cryo mediums (FBS + 10% DMSO; commercial medium); storage durations (0 to > 24 months) and locations (tank 1-2; box 1-5), and revival methods (direct; indirect methods). Human dermal fibroblasts (HDF) were then cultured, cryopreserved in different cryo mediums (HPL + 10% DMSO; FBS + 10% DMSO; Cryostor) and stored for 1 and 3 months. The HDFs were revived using either direct or indirect method and cell number, viability and protein expression analysis were compared. RESULTS In the analysis cell cryopreserved data; fibroblast cells; FBS + 10% DMSO cryo medium; storage duration of 0-6 months; direct cell revival; storage in vapor phase of cryo tank; had the highest number of vials with optimal cell attachment after 24 h revived. HDFs cryopreserved in FBS + 10% DMSO for 1 and 3 months with both revival methods, showed optimal live cell numbers and viability above 80%, higher than other cryo medium groups. Morphologically, the fibroblasts were able to retain their phenotype with positive expression of Ki67 and Col-1. HDFs cryopreserved in FBS + 10% DMSO at 3 months showed significantly higher expression of Ki67 (97.3% ± 4.62) with the indirect revival method, while Col-1 expression (100%) was significantly higher at both 1 and 3 months compared to other groups. CONCLUSION In conclusion, fibroblasts were able to retain their characteristics after various cryopreservation conditions with a slight decrease in viability that may be due to the thermal-cycling effect. However, further investigation on the longer cryopreservation periods should be conducted for other types of cells and cryo mediums to achieve optimal cryopreservation outcomes.
Collapse
Affiliation(s)
- Hafiz Muhaymin Mohamed
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Piraveenraj Sundar
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nur Aisyah Ahmad Ridwan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Ai Jia Cheong
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nur Atiqah Mohamad Salleh
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nadiah Sulaiman
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Fauzi Mh Busra
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia.
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
13
|
Liu S, Han Z, Ye Z, Jiang M, Etheridge ML, Bischof JC, Yin Y. Magnetic-Nanorod-Mediated Nanowarming with Uniform and Rate-Regulated Heating. NANO LETTERS 2024; 24:11567-11572. [PMID: 39230046 DOI: 10.1021/acs.nanolett.4c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Rewarming cryopreserved samples requires fast heating to avoid devitrification, a challenge previously attempted by magnetic nanoparticle-mediated hyperthermia. Here, we introduce Fe3O4@SiO2 nanorods as the heating elements to manipulate the heating profile to ensure safe rewarming and address the issue of uneven heating due to inhomogeneous particle distribution. The magnetic anisotropy of the nanorods allows their prealignment in the cryoprotective agent (CPA) during cooling and promotes subsequent rapid rewarming in an alternating magnetic field with the same orientation to prevent devitrification. More importantly, applying an orthogonal static magnetic field at a later stage could decelerate heating, effectively mitigating local overheating and reducing CPA toxicity. Furthermore, this orientational configuration offers more substantial heating deceleration in areas of initially higher heating rates, therefore reducing temperature variations across the sample. The efficacy of this method in regulating heating rate and improving rewarming uniformity has been validated using both gel and porcine artery models.
Collapse
Affiliation(s)
- Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Minhan Jiang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael L Etheridge
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
15
|
Zeng L, Yuan S, He L, Sun Z, Wei J. Ice crystals and oxidative stress affect the viability of Areca catechu seeds following cryopreservation. Heliyon 2024; 10:e36970. [PMID: 39281446 PMCID: PMC11399682 DOI: 10.1016/j.heliyon.2024.e36970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
This study aimed to examine the effects of ice crystals and oxidative stress on seed viability in the context of cryopreservation, with the ultimate goal of identifying potential solutions to address the persistently low regeneration rate observed in recalcitrant medicinal plant seeds following cryopreservation. Using differential scanning calorimetry technology alongside seeds germination at different moisture levels after cryopreservation helped determine the best moisture content and freezing process for Areca catechu seeds. Seeds with 17-21 % moisture content and treated with PVS2 vitrification solution showed higher survival rates after cryopreservation. The oxidative markers of A. catechu seed embryos exhibited alterations due to vitrification freezing. However, there was no substantial association between seed viability and oxidative markers, such as reactive oxygen species (ROS), suggesting that oxidative damage mediated by ROS is not the primary factor contributing to the diminished viability of A. catechu seeds following cryopreservation. The inclusion of vitamin E, reduced glutathione (GSH), and 2-nitrobenzoic acid in the vitrification cryoprotectant achieved some improvement in seed viability of approximately 10 times, with GSH exhibiting the most pronounced optimizing effect.
Collapse
Affiliation(s)
- Lin Zeng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Sumei Yuan
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Liu He
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Zheng Sun
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
16
|
Warren MT, Biggs CI, Bissoyi A, Gibson MI, Sosso GC. Data-driven discovery of potent small molecule ice recrystallisation inhibitors. Nat Commun 2024; 15:8082. [PMID: 39278938 PMCID: PMC11402961 DOI: 10.1038/s41467-024-52266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Controlling the formation and growth of ice is essential to successfully cryopreserve cells, tissues and biologics. Current efforts to identify materials capable of modulating ice growth are guided by iterative changes and human intuition, with a major focus on proteins and polymers. With limited data, the discovery pipeline is constrained by a poor understanding of the mechanisms and the underlying structure-activity relationships. In this work, this barrier is overcome by constructing machine learning models capable of predicting the ice recrystallisation inhibition activity of small molecules. We generate a new dataset via experimental measurements of ice growth, then harness predictive models combining state-of-the-art descriptors with domain-specific features derived from molecular simulations. The models accurately identify potent small molecule ice recrystallisation inhibitors within a commercial compound library. Identified hits can also mitigate cellular damage during transient warming events in cryopreserved red blood cells, demonstrating how data-driven approaches can be used to discover innovative cryoprotectants and enable next-generation cryopreservation solutions for the cold chain.
Collapse
Affiliation(s)
- Matthew T Warren
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Institute of Cancer Research, London, UK
| | | | - Akalabya Bissoyi
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, UK.
- Warwick Medical School, University of Warwick, Coventry, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
17
|
Fuenteslópez CV, Gray M, Bahcevanci S, Martin A, Smith CAB, Coussios C, Cui Z, Ye H, Patrulea V. Mesenchymal stem cell cryopreservation with cavitation-mediated trehalose treatment. COMMUNICATIONS ENGINEERING 2024; 3:129. [PMID: 39251849 PMCID: PMC11385975 DOI: 10.1038/s44172-024-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Dimethylsulfoxide (DMSO) has conventionally been used for cell cryopreservation both in research and in clinical applications, but has long-term cytotoxic effects. Trehalose, a natural disaccharide, has been proposed as a non-toxic cryoprotectant. However, the lack of specific cell membrane transporter receptors inhibits transmembrane transport and severely limits its cryoprotective capability. This research presents a method to successfully deliver trehalose into mesenchymal stem cells (MSCs) using ultrasound in the presence of microbubbles. The optimised trehalose concentration was shown to be able to not only preserve membrane integrity and cell viability but also the multipotency of MSCs, which are essential for stem cell therapy. Confocal imaging revealed that rhodamine-labelled trehalose was transported into cells rather than simply attached to the membrane. Additionally, the membranes were successfully preserved in lyophilised cells. This study demonstrates that ultrasonication with microbubbles facilitated trehalose delivery, offering promising cryoprotective capability without the cytotoxicity associated with DMSO-based methods.
Collapse
Affiliation(s)
- Carla V Fuenteslópez
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Simge Bahcevanci
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Alexander Martin
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Viorica Patrulea
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Rosero J, Pessoa GP, Carvalho GB, López LS, Dos Santos SCA, Bressan FF, Yasui GS. Primordial germ cells of Astyanax altiparanae, isolated and recovered intact after vitrification: A preliminary study for potential cryopreservation of Neotropical fish germplasm. Cryobiology 2024; 116:104929. [PMID: 38871206 DOI: 10.1016/j.cryobiol.2024.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Primordial germ cells (PGCs) constitute an important cell lineage that directly impacts genetic dissemination and species conservation through the creation of cryobanks. In order to advance the field of animal genetic cryopreservation, this work aimed to recover intact PGCs cryopreserved in embryonic tissues during the segmentation phase for subsequent in vitro maintenance, using the yellow-tailed tetra (Astyanax altiparanae) as a model organism. For this, a total of 202 embryos were distributed in two experiments. In the first experiment, embryos in the segmentation phase were dissociated, and isolated PGCs were maintained in vitro. They were visualized using gfp-Pm-ddx4 3'UTR labeling. The second experiment aimed to vitrify PGCs using 3 cryoprotective agents or CPAs (dimethyl sulfoxide, ethylene glycol, and 1,2 propanediol) at 3 molarities (2, 3, and 4 M). The toxicity, somatic cell viability, and recovery of intact PGCs were evaluated. After cryopreservation and thawing, 2 M ethylene glycol produced intact PGCs and somatic cells (44 ± 11.52 % and 42.35 ± 0.33 %, respectively) post-thaw. The recovery of PGCs from frozen embryonic tissues was not possible without the use of CPAs. Thus, the vitrification of PGCs from an important developmental model and Neotropical species such as A. altiparanae was achieved, and the process of isolating and maintaining PGCs in a culture medium was successful. Therefore, to ensure the maintenance of genetic diversity, PGCs obtained during embryonic development in the segmentation phase between 25 and 28 somites were stored through vitrification for future applications in the reconstitution of species through germinal chimerism.
Collapse
Affiliation(s)
- Jenyffer Rosero
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Gabriella Braga Carvalho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | - Lucia Suárez López
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - George Shigueki Yasui
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil; Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Aquatic Biodiversity, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
19
|
Johnson L, Bryant SJ, Lei P, Roan C, Marks DC, Bryant G. A deep eutectic solvent is an effective cryoprotective agent for platelets. Cryobiology 2024; 116:104913. [PMID: 38815783 DOI: 10.1016/j.cryobiol.2024.104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The most widely used method of platelet cryopreservation requires the addition of dimethyl sulfoxide (DMSO; Me2SO) as a cryoprotective agent (CPA) and pre-freeze removal of Me2SO before freezing to mitigate toxicity. However, alternative CPAs such as deep eutectic solvents (DES), which are less toxic could simplify this process. The aim of this study was to determine the effectiveness of a Proline-Glycerol (Prol-Gly 1:3) DES as a platelet CPA. Platelets were cryopreserved at -80 °C using 10 % Prol-Gly 1:3 (DES; n = 6), or in the absence of a cryoprotectant (no CPA; n = 6). Platelets were also cryopreserved according to the gold-standard blood-banking method using 5.5 % Me2SO (n = 6), with centrifugation and pre-freeze removal of the excess Me2SO. Platelet quality was assessed by flow cytometry and thromboelastography (TEG). Post-thaw recovery was similar between the three groups. The abundance of labile platelet glycoproteins GPIbα and GPVI were highest in the DES group, however, markers of activation (CD62P and annexin-V) were also higher in this group. In terms of function, the strength of the clot (maximum amplitude; TEG) and extent of clot retraction was better with DES platelets compared to no CPA, but lower than Me2SO platelets. DES provides a cryoprotective advantage to platelets when compared to no CPA. Importantly, when compared to Me2SO platelets, most quality parameters were similar in DES platelets. The major advantage with using a DES is biocompatibility, therefore it does not need to be removed prior to transfusion. This greatly simplifies the freezing and thawing process, avoiding the toxic effects of Me2SO.
Collapse
Affiliation(s)
- Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia.
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Pearl Lei
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
| | - Christopher Roan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, NSW, Australia; Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| |
Collapse
|
20
|
Wang S, Mueller D, Chen P, Pan G, Wilson M, Sun S, Chen Z, Lee T, Damon B, Hepfer RG, Hill C, Kern MJ, Pullen WM, Wu Y, Brockbank KGM, Yao H. Viable Vitreous Grafts of Whole Porcine Menisci for Transplant in the Knee and Temporomandibular Joints. Adv Healthc Mater 2024; 13:e2303706. [PMID: 38523366 PMCID: PMC11368656 DOI: 10.1002/adhm.202303706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The shortage of suitable donor meniscus grafts from the knee and temporomandibular joint (TMJ) impedes treatments for millions of patients. Vitrification offers a promising solution by transitioning these tissues into a vitreous state at cryogenic temperatures, protecting them from ice crystal damage using high concentrations of cryoprotectant agents (CPAs). However, vitrification's success is hindered for larger tissues (>3 mL) due to challenges in CPA penetration. Dense avascular meniscus tissues require extended CPA exposure for adequate penetration; however, prolonged exposure becomes cytotoxic. Balancing penetration and reducing cell toxicity is required. To overcome this hurdle, a simulation-based optimization approach is developed by combining computational modeling with microcomputed tomography (µCT) imaging to predict 3D CPA distributions within tissues over time accurately. This approach minimizes CPA exposure time, resulting in 85% viability in 4-mL meniscal specimens, 70% in 10-mL whole knee menisci, and 85% in 15-mL whole TMJ menisci (i.e., TMJ disc) post-vitrification, outperforming slow-freezing methods (20%-40%), in a pig model. The extracellular matrix (ECM) structure and biomechanical strength of vitreous tissues remain largely intact. Vitreous meniscus grafts demonstrate clinical-level viability (≥70%), closely resembling the material properties of native tissues, with long-term availability for transplantation. The enhanced vitrification technology opens new possibilities for other avascular grafts.
Collapse
Affiliation(s)
- Shangping Wang
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Dustin Mueller
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peng Chen
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Ge Pan
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Marshall Wilson
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Shuchun Sun
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Zhenzhen Chen
- Tissue Testing Technologies LLC, North Charleston, SC, 29406, USA
| | - Thomas Lee
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Brooke Damon
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - R Glenn Hepfer
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Cherice Hill
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael J Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - William M Pullen
- Department of Orthopaedics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
- Department of Orthopaedics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kelvin G M Brockbank
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
- Tissue Testing Technologies LLC, North Charleston, SC, 29406, USA
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Orthopaedics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
21
|
Nuytten G, De Geest BG, De Beer T. Relevance of controlled cooling and freezing phases in T-cell cryopreservation. Cryobiology 2024; 116:104907. [PMID: 38768801 DOI: 10.1016/j.cryobiol.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
When cells are cryopreserved, they go through a freezing process with several distinct phases (i.e., cooling until nucleation, ice nucleation, ice crystal growth and cooling to a final temperature). Conventional cell freezing approaches often employ a single cooling rate to describe and optimize the entire freezing process, which neglects its complexity and does not provide insight into the effects of the different freezing phases. The aim of this work was to elucidate the impact of each freezing phase by varying different process parameters per phase. Hereto, spin freezing was used to freeze Jurkat T cells in either a Me2SO-based or Me2SO-free formulation. The cooling rates before ice nucleation and after total ice crystallization impacted cell viability, resulting in viability ranging from 26.7% to 52.8% for the Me2SO-free formulation, and 22.5%-42.6% for the Me2SO-based formulation. Interestingly, the degree of supercooling upon nucleation did not exhibit a significant effect on cell viability in this work. However, the rate of ice crystal formation emerged as a crucial factor, with viability ranging from 2.4% to 53.2% for the Me2SO-free formulation, and 0.3%-53.2% for the Me2SO-based formulation, depending on the freezing rate. A morphological study of the cells post-cryopreservation was performed using confocal microscopy, and it was found that cytoskeleton integrity and cell volume were impacted, depending on the formulation-process parameter combination. These findings underscore the importance of scrutinizing all cooling and freezing phases, as each phase impacted post-thaw viability in a distinct way, depending of the specific formulation used.
Collapse
Affiliation(s)
- Gust Nuytten
- Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Thomas De Beer
- Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| |
Collapse
|
22
|
Alkali IM, Colombo M, De Iorio T, Piotrowska A, Rodak O, Kulus MJ, Niżański W, Dziegiel P, Luvoni GC. Vitrification of feline ovarian tissue: Comparison of protocols based on equilibration time and temperature. Theriogenology 2024; 224:163-173. [PMID: 38776704 DOI: 10.1016/j.theriogenology.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Global contraction of biodiversity pushed most members of Felidae into threatened or endangered list except the domestic cat (Felis catus) thence preferred as the best model for conservation studies. One of the emerging conservation strategies is vitrification of ovarian tissue which is field-friendly but not yet standardized. Thus, our main goal was to establish a suitable vitrification protocol for feline ovarian tissue in field condition. Feline ovarian tissue fragments were punched with biopsy punch (1.5 mm diameter) and divided into 4 groups. Group 1 was fresh control (Fr), while the other three were exposed to 3 vitrification protocols (VIT_CT, VIT_RT1 and VIT_RT2). VIT_CT involved two step equilibrations in solutions containing dimethyl sulfoxide (DMSO) and ethylene glycol (EG) for 10 min each at 4 °C. VIT_RT1 involved three step equilibration in solutions containing DMSO, EG, polyvinylpyrrolidone and sucrose for 14 min in total at room temperature, while in VIT_RT2 all conditions remained the same as in VIT_RT1 except equilibration timing which was reduced by half. After vitrification and warming, fragments were morphologically evaluated and then cultured for six days. Subsequently, follicular morphology, cellular proliferation (expression of Ki-67, MCM-7) and apoptosis (expression of caspase-3) were evaluated, and data obtained were analysed using generalised linear mixed model and chi square tests. Proportions of intact follicles were higher in Fr (P = 0.0001) and VIT_RT2 (P = 0.0383) in comparison to the other protocols both post warming and after the six-day culture. Generally, most follicles remained at primordial state which was confirmed by the low expression of Ki-67, MCM-7 markers. In conclusion, VIT_RT2 protocol, which has lower equilibration time at room temperature has proven superior thus recommended for vitrification of feline ovarian tissue.
Collapse
Affiliation(s)
- Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Department of Theriogenology, University of Maiduguri, Maiduguri, Nigeria.
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| | - Teresina De Iorio
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Research Center "Zootechny and Aquaculture", Via Salaria, 31, 00015, Monterotondo, RM, Italy.
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Olga Rodak
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Michał Jerzy Kulus
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wrocław, Poland.
| | - Wojciech Niżański
- Department of Reproduction and Clinic for Farm Animals, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 49, 50-366, Wrocław, Poland.
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| |
Collapse
|
23
|
Manning L. Responsible innovation: Mitigating the food safety aspects of cultured meat production. J Food Sci 2024; 89:4638-4659. [PMID: 38980973 DOI: 10.1111/1750-3841.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
There is much interest in cultured (cultivated) meat as a potential solution to concerns over the ecological and environmental footprint of food production, especially from animal-derived food products. The aim of this critical review is to undertake a structured analysis of existing literature to (i) identify the range of materials that could be used within the cultured meat process; (ii) explore the potential biological and chemical food safety issues that arise; (iii) identify the known and also novel aspects of the food safety hazard portfolio that will inform hazard analysis and risk assessment approaches, and (iv) position a responsible innovation framework that can be utilized to mitigate food safety concerns with specific emphasis on cultured meat. Although a number of potential food safety hazards are identified that need to be considered within a food safety plan, further research is required to validate and verify that these food safety hazards have been suitably controlled and, where possible, eliminated. The responsible innovation framework developed herein, which extends beyond hazard analysis and traditional risk assessment approaches, can be applied in multiple contexts, including this use case of cultured meat production.
Collapse
Affiliation(s)
- Louise Manning
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, UK
| |
Collapse
|
24
|
Liu L, Wang Z, Wang M, Zhao G. Quantitative Analysis of Ice Crystal Growth During Freezing of Dimethyl Sulfoxide Solutions Under Alternating Current Electric Fields. Biopreserv Biobank 2024; 22:383-394. [PMID: 38011517 DOI: 10.1089/bio.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
During cryopreservation, the growth of ice crystals can cause mechanical damage to samples, which is one of the important factors limiting the quality of preserved samples. To enhance the preservation quality of biological samples, scholars have tried various engineering methods. Among them, an electric field is an essential factor affecting solution freezing. Dimethyl sulfoxide, as a commonly used cryoprotectant, can cause mechanical damage to cells due to ice crystals even when freezing at the optimal freezing rate. Water is a strongly polar dielectric material, and the applied alternating current (AC) electric field will affect the water freezing performance. Therefore, a quantitative study of ice crystal nucleation and growth during freezing of dimethyl sulfoxide solutions under different AC electric field conditions is needed to try to reduce ice crystal damage. We created a liquid-film device to approximate the ice crystal growth process as a two-dimensional image. The frequency of the AC voltage was set from 0 to 50 kHz. We measured the supercooling of the dimethyl sulfoxide solution under AC electric field conditions. As an objective and accurate quantitative analysis of the ice crystal growth process, we propose a Dilated Convolutional Segmentation Transformer for semantic segmentation of ice crystal images. It is concluded that the average area and the growth rate of single ice crystals decrease with increasing electric field frequency at a certain concentration of dimethyl sulfoxide solution. Lower concentrations of dimethyl sulfoxide solution in combination with an AC electric field can achieve similar ice suppression effects as when higher concentrations of dimethyl sulfoxide solution act alone. We believe that AC electric fields are expected to be an aid to cryopreservation and provide some theoretical basis and experimental foundation for its development.
Collapse
Affiliation(s)
- Liting Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Zirui Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Menghan Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
Alkali IM, Colombo M, Luvoni GC. Melatonin reduces oxidative stress and improves follicular morphology in feline (Felis catus) vitrified ovarian tissue. Theriogenology 2024; 224:58-67. [PMID: 38749260 DOI: 10.1016/j.theriogenology.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Ovarian tissue vitrification is associated with multiple events that promote accumulation of ROS (reactive oxygen species) which culminate in follicular apoptosis. Thus, this study was aimed at evaluating the role of melatonin in vitrification and culture of feline (Felis catus) ovarian tissue. In phase 1, domestic cat ovaries were fragmented into equal circular pieces of 1.5 mm diameter by 1 mm thickness and divided into four groups (fresh control and 3 treatments). The treatments were exposed to vitrification solutions supplemented with melatonin at 0 M, 10-9 M, and 10-7 M, then vitrified-warmed, histologically evaluated and assayed for ROS. Consequently, phase 2 experiment was designed wherein ovarian fragments were divided into two groups. One group was exposed to vitrification solution without melatonin and the other with 10-7 M melatonin supplementation, then vitrified-warmed and cultured for ten days with fresh ovarian fragments as control prior to assessment for histology, immunohistochemistry (Ki-67, MCM-7 and caspase-3) and ROS. Concentration of ROS was lower (p = 0.0009) in 10-7 M supplemented group in addition to higher proportion of grade 1 follicles. After culture, proportions of intact and activated follicles were higher (p < 0.05) in melatonin supplemented group evidenced by higher expression of Ki-67 and MCM-7. Follicular apoptosis was lower in melatonin supplemented group. In conclusion, melatonin at 10-7 M concentration preserved follicular morphological integrity while reducing ROS concentration in vitrified-warmed feline ovarian tissue. It has also promoted the follicular viability and activation with reduced apoptosis during in vitro culture of vitrified-warmed feline ovarian tissue.
Collapse
Affiliation(s)
- Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Department of Theriogenology, University of Maiduguri, Maiduguri, Nigeria.
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| |
Collapse
|
26
|
Mashouf P, Tabibzadeh N, Kuraoka S, Oishi H, Morizane R. Cryopreservation of human kidney organoids. Cell Mol Life Sci 2024; 81:306. [PMID: 39023560 PMCID: PMC11335230 DOI: 10.1007/s00018-024-05352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Recent advances in stem cell research have led to the creation of organoids, miniature replicas of human organs, offering innovative avenues for studying diseases. Kidney organoids, with their ability to replicate complex renal structures, provide a novel platform for investigating kidney diseases and assessing drug efficacy, albeit hindered by labor-intensive generation and batch variations, highlighting the need for tailored cryopreservation methods to enable widespread utilization. Here, we evaluated cryopreservation strategies for kidney organoids by contrasting slow-freezing and vitrification methods. 118 kidney organoids were categorized into five conditions. Control organoids followed standard culture, while two slow-freezing groups used 10% DMSO (SF1) or commercial freezing media (SF2). Vitrification involved V1 (20% DMSO, 20% Ethylene Glycol with sucrose) and V2 (15% DMSO, 15% Ethylene Glycol). Assessment of viability, functionality, and structural integrity post-thawing revealed notable differences. Vitrification, particularly V1, exhibited superior viability (91% for V1, 26% for V2, 79% for SF1, and 83% for SF2 compared to 99.4% in controls). 3D imaging highlighted distinct nephron segments among groups, emphasizing V1's efficacy in preserving both podocytes and tubules in kidney organoids. Cisplatin-induced injury revealed a significant reduction in regenerative capacities in organoids cryopreserved by flow-freezing methods, while the V1 method did not show statistical significance compared to the unfrozen controls. This study underscores vitrification, especially with high concentrations of cryoprotectants, as an effective approach for maintaining kidney organoid viability and structure during cryopreservation, offering practical approaches for kidney organoid research.
Collapse
Affiliation(s)
- Parham Mashouf
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Nahid Tabibzadeh
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Shohei Kuraoka
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Haruka Oishi
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Boston, MA, 02129, USA
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Boston, MA, 02129, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA.
| |
Collapse
|
27
|
Yang T, Zhang Y, Guo L, Li D, Liu A, Bilal M, Xie C, Yang R, Gu Z, Jiang D, Wang P. Antifreeze Polysaccharides from Wheat Bran: The Structural Characterization and Antifreeze Mechanism. Biomacromolecules 2024; 25:3877-3892. [PMID: 38388358 DOI: 10.1021/acs.biomac.3c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Exploring a novel natural cryoprotectant and understanding its antifreeze mechanism allows the rational design of future sustainable antifreeze analogues. In this study, various antifreeze polysaccharides were isolated from wheat bran, and the antifreeze activity was comparatively studied in relation to the molecular structure. The antifreeze mechanism was further revealed based on the interactions of polysaccharides and water molecules through dynamic simulation analysis. The antifreeze polysaccharides showed distinct ice recrystallization inhibition activity, and structural analysis suggested that the polysaccharides were arabinoxylan, featuring a xylan backbone with a majority of Araf and minor fractions of Manp, Galp, and Glcp involved in the side chain. The antifreeze arabinoxylan, characterized by lower molecular weight, less branching, and more flexible conformation, could weaken the hydrogen bonding of the surrounding water molecules more evidently, thus retarding the transformation of water molecules into the ordered ice structure.
Collapse
Affiliation(s)
- Tao Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yining Zhang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Anqi Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Bilal
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| |
Collapse
|
28
|
Landecker H. Cell freezing and the biology of inexorability: on cryoprotectants and chemical time. BIOSOCIETIES 2024; 19:635-655. [PMID: 39552728 PMCID: PMC11564080 DOI: 10.1057/s41292-024-00331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 11/19/2024]
Abstract
What can't freezing hold still? This article surveys the history of substances used to protect cells and organisms from freezing damage, known as cryoprotectants. Dimethyl sulfoxide (DMSO) has since 1959 been the most widely used of these agents in cryopreservation. Here, its evolution from pulp and paper waste byproduct to wonder drug to all-but-invisible routine element of freezing protocols is used to trace the direct arc from protection to toxicity in theories of how and why cryoprotectants work, from the 1960s to today. The power of these agents to simultaneously protect and degrade is shown to reside in manipulation of chemical time via hydrogen bonding and electron exchange, thereby reframing freezing as a highly active and transformational process. Countering long-held assumptions about cryopreservation as an operation of stasis after which the thawed entity is the same as it was before, this article details recent demonstrations of effects of cryoprotectant exposure that are nonlethal but nonetheless profoundly impactful within scientific and therapeutic practices that depend on freezing infrastructures. Understanding the operationalization of chemical time in the case of cryoprotectants is broadly relevant to other modern technologies dedicated to shifting how material things exist and persist in human historical time.
Collapse
Affiliation(s)
- Hannah Landecker
- Department of Sociology, Institute for Society and Genetics, University of California Los Angeles, 264 Haines Hall, Box 91551, Los Angeles, CA 90095-1551 USA
| |
Collapse
|
29
|
Nagel M, Pence V, Ballesteros D, Lambardi M, Popova E, Panis B. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:797-824. [PMID: 38211950 DOI: 10.1146/annurev-arplant-070623-103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud-freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.
Collapse
Affiliation(s)
- Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany;
| | - Valerie Pence
- Lindner Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, Cincinnati, Ohio, USA
| | - Daniel Ballesteros
- Department of Botany and Geology, Universitat de València, Burjassot, Spain
- Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, United Kingdom
| | - Maurizio Lambardi
- Institute of BioEconomy (IBE), National Research Council (CNR), Florence, Italy
| | - Elena Popova
- Department of Cell Biology and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Bart Panis
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Shin DY, Park JS, Lee HS, Shim W, Jin L, Lee KW, Park JB, Kim DH, Kim JH. The effect of hydroxyethyl starch as a cryopreservation agent during freezing of mouse pancreatic islets. Biochem Biophys Rep 2024; 38:101658. [PMID: 38362049 PMCID: PMC10867579 DOI: 10.1016/j.bbrep.2024.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Islet transplantation is the most effective treatment strategy for type 1 diabetes. Long-term storage at ultralow temperatures can be used to prepare sufficient islets of good quality for transplantation. For freezing islets, dimethyl sulfoxide (DMSO) is a commonly used penetrating cryoprotective agent (CPA). However, the toxicity of DMSO is a major obstacle to cell cryopreservation. Hydroxyethyl starch (HES) has been proposed as an alternative CPA. To investigate the effects of two types of nonpermeating CPA, we compared 4 % HES 130 and HES 200 to 10 % DMSO in terms of mouse islet yield, viability, and glucose-stimulated insulin secretion (GSIS). After one day of culture, islets were cryopreserved in each solution. After three days of cryopreservation, islet recovery was significantly higher in the HES 130 and HES 200 groups than in the DMSO group. Islet viability in the HES 200 group was also significantly higher than that in the DMSO group on Day 1 and Day 3. Stimulation indices determined by GSIS were higher in the HES 130 and 200 groups than in the DMSO group on Day 3. After three days of cryopreservation, HES 130 and HES 200 both reduced the expression of apoptosis- and necrosis-associated proteins and promoted the survival of islets. In conclusion, the use of HES as a CPA improved the survival and insulin secretion of cryopreserved islets compared with the use of a conventional CPA.
Collapse
Affiliation(s)
- Du Yeon Shin
- Transplantation Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Graduate School, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Jae Suh Park
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
| | - Han-Sin Lee
- R&D Center, Cellstormer, Suwon-si, Gyeonggi-do, 16677, Republic of Korea
| | - Wooyoung Shim
- R&D Center, Cellstormer, Suwon-si, Gyeonggi-do, 16677, Republic of Korea
| | - Lauren Jin
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
| | - Kyo Won Lee
- Transplantation Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae Berm Park
- Transplantation Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Graduate School, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Dong Hyun Kim
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
| | - Jae Hyeon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Graduate School, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
| |
Collapse
|
31
|
Patel M, Vernon B, Jeong B. Low-Molecular-Weight PEGs for Cryopreservation of Stem Cell Spheroids. Biomater Res 2024; 28:0037. [PMID: 38845843 PMCID: PMC11156479 DOI: 10.34133/bmr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/05/2024] [Indexed: 06/09/2024] Open
Abstract
Stem cell spheroids (SCSs) are a valuable tool in stem cell research and regenerative medicine. SCSs provide a platform for stem cell behavior in a more biologically relevant context with enhanced cell-cell communications. In this study, we investigated the recovery of SCSs after cryopreservation at -196 °C for 7 days. Prior to cryopreservation, the SCSs were preincubated for 0 h (no preincubation), 2 h, 4 h, and 6 h at 37 °C in the presence of low-molecular-weight poly(ethylene glycol) (PEG) with molecular weights of 200, 400, and 600 Da. The recovery rate of SCSs was markedly affected by both the PEG molecular weight and the preincubation time. Specifically, when SCSs were preincubated with a PEG200 solution for 2 to 6 h, it significantly enhanced the recovery rate of the SCSs. Internalization of PEG200 through simple diffusion into the SCSs may be the cryoprotective mechanism. The PEG200 diffuses into the SCSs, which not only suppresses osmotic pressure development inside the cell but also inhibits ice formation. The recovered SCSs demonstrated both fusibility and capabilities for proliferation and differentiation comparable to SCSs recovered after dimethyl sulfoxide 10% cryopreservation. This study indicates that PEG200 serves as an effective cryoprotectant for SCSs. A simple preincubation procedure in the presence of the polymer greatly improves the recovery rate of SCSs from cryopreservation.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience,
Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Brent Vernon
- School of Biological and Health Systems Engineering,
Arizona State University, Tempe, AZ 85287-9709, USA
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience,
Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
32
|
Buick E, Mead A, Alhubaysh A, Bou Assi P, Das P, Dayus J, Turner M, Kowalski L, Murray J, Renshaw D, Farnaud S. CellShip: An Ambient Temperature Transport and Short-Term Storage Medium for Mammalian Cell Cultures. Biopreserv Biobank 2024; 22:275-285. [PMID: 38150708 DOI: 10.1089/bio.2023.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Cell culture is a critical platform for numerous research and industrial processes. However, methods for transporting cells are largely limited to cryopreservation, which is logistically challenging, requires the use of potentially cytotoxic cryopreservatives, and can result in poor cell recovery. Development of a transport media that can be used at ambient temperatures would alleviate these issues. In this study, we describe a novel transportation medium for mammalian cells. Five commonly used cell lines, (HEK293, CHO, HepG2, K562, and Jurkat) were successfully shipped and stored for a minimum of 72 hours and up to 96 hours at ambient temperature, after which, cells were recovered into standard culture conditions. Viability (%) and cell numbers, were examined, before, following the transport/storage period and following the recovery period. In all experiments, cell numbers returned to pretransport/storage concentration within 24-48 hours recovery. Imaging data indicated that HepG2 cells were fully adherent and had established typical growth morphology following 48 hours recovery, which was not seen in cells recovered from cryopreservation. Following recovery, Jurkat cells that had been subjected to a 96 hours transport/storage period, demonstrated a 1.93-fold increase compared with the starting cell number with >95% cell viability. We conclude that CellShip® may represent a viable method for the transportation of mammalian cells for multiple downstream applications in the Life Sciences research sector.
Collapse
Affiliation(s)
- Emma Buick
- Life Science Production, Bedford, United Kingdom
- Center of Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Andrew Mead
- Comparative Biomedical Sciences, The Royal Veterinary College (RVC), London, United Kingdom
| | | | | | - Parijat Das
- Life Science Production, Bedford, United Kingdom
| | - James Dayus
- Center of Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
- Faculty of Health and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Mark Turner
- Center of Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Lukasz Kowalski
- Life Science Production, Bedford, United Kingdom
- Center of Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Jenny Murray
- Life Science Production, Bedford, United Kingdom
| | - Derek Renshaw
- Center of Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Sebastien Farnaud
- Center of Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
33
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
34
|
Mazur A, Ayyadevara S, Mainali N, Patchett S, Uden M, Roa RI, Fahy GM, Shmookler Reis RJ. Model biological systems demonstrate the inducibility of pathways that strongly reduce cryoprotectant toxicity. Cryobiology 2024; 115:104881. [PMID: 38437899 DOI: 10.1016/j.cryobiol.2024.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cryoprotectant toxicity is a limiting factor for the cryopreservation of many living systems. We were moved to address this problem by the potential of organ vitrification to relieve the severe shortage of viable donor organs available for human transplantation. The M22 vitrification solution is presently the only solution that has enabled the vitrification and subsequent transplantation with survival of large mammalian organs, but its toxicity remains an obstacle to organ stockpiling for transplantation. We therefore undertook a series of exploratory studies to identify potential pretreatment interventions that might reduce the toxic effects of M22. Hormesis, in which a living system becomes more resistant to toxic stress after prior subtoxic exposure to a related stress, was investigated as a potential remedy for M22 toxicity in yeast, in the nematode worm C. elegans, and in mouse kidney slices. In yeast, heat shock pretreatment increased survival by 18-fold after exposure to formamide and by over 9-fold after exposure to M22 at 30 °C; at 0 °C and with two-step addition, treatment with 90% M22 resulted in 100% yeast survival. In nematodes, surveying a panel of pretreatment interventions revealed 3 that conferred nearly total protection from acute whole-worm M22-induced damage. One of these protective pretreatments (exposure to hydrogen peroxide) was applied to mouse kidney slices in vitro and was found to strongly protect nuclear and plasma membrane integrity in both cortical and medullary renal cells exposed to 75-100% M22 at room temperature for 40 min. These studies demonstrate for the first time that endogenous cellular defenses, conserved from yeast to mammals, can be marshalled to substantially ameliorate the toxic effects of one of the most toxic single cryoprotectants and the toxicity of the most concentrated vitrification solution so far described for whole organs.
Collapse
Affiliation(s)
- Anna Mazur
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA
| | - Srinivas Ayyadevara
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock AR, 72205, USA
| | - Nirjal Mainali
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA
| | - Stephanie Patchett
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Uden
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Roberto I Roa
- 21st Century Medicine, Inc., Fontana, CA, 92336, USA
| | | | - Robert J Shmookler Reis
- Dept. of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR, 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock AR, 72205, USA.
| |
Collapse
|
35
|
Ruiz-Matus S, Goldstein P. On the universality of viscosity in supersaturated binary aqueous sugar solutions: Cryopreservation by vitrification. Cryobiology 2024; 115:104886. [PMID: 38555011 DOI: 10.1016/j.cryobiol.2024.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Nowadays, the physical nature of supersaturated binary aqueous sugar solutions in the vicinity of the glass transition represents a very important issue due to their biological applications in cryopreservation of cells and tissues, food science and stabilization and storage of nano genetic drugs. We present the construction of the Supplemented Phase Diagram and the non-equilibrium nature of the undersaturated-supersaturated kinetic transition. The description of its thermodynamic nature is achieved through the study of behavior of their viscosity as temperature is lowered and concentration increased. In this work, we find a universal character for the viscosities of several sugar water solutions.
Collapse
Affiliation(s)
- Soledad Ruiz-Matus
- Department of Physics, Faculty of Science, National Autonomous University of México, 04510, Coyoacán, Ciudad de México, Mexico.
| | - Patricia Goldstein
- Department of Physics, Faculty of Science, National Autonomous University of México, 04510, Coyoacán, Ciudad de México, Mexico.
| |
Collapse
|
36
|
Wowk B, Phan J, Pagotan R, Galvez E, Fahy GM. 27 MHz constant field dielectric warming of kidneys cryopreserved by vitrification. Cryobiology 2024; 115:104893. [PMID: 38609033 DOI: 10.1016/j.cryobiol.2024.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Organs cryopreserved by vitrification are exposed to the lowest possible concentration of cryoprotectants for the least time necessary to successfully avoid ice formation. Faster cooling and warming rates enable lower concentrations and perfusion times, reducing toxicity. Since warming rates necessary to avoid ice formation during recovery from vitrification are typically faster than cooling rates necessary for vitrification, warming speed is a major determining factor for successful vitrification. Dielectric warming uses an oscillating electric field to directly heat water and cryoprotectant molecules inside organs to achieve warming that's faster and more uniform than can be achieved by heat conduction from the organ surface. This work studied 27 MHz dielectric warming of rabbit kidneys perfused with M22 vitrification solution. The 27 MHz frequency was chosen because its long wavelength and penetration depth are suitable for human organs, because it had an anticipated favorable temperature of maximum dielectric absorption in M22, and because it's an allocated frequency for industrial and amateur use with inexpensive amplifiers available. Previously vitrified kidneys were warmed from -100 °C by placement in a 27 MHz electric field formed between parallel capacitor plates in a resonant circuit. Power was varied during warming to maintain constant electric field amplitude between the plates. Maximum power absorption occurred near -70 °C, with a peak warming rate near 150 °C/min in 50 mL total volume with approximately 500 W power. After some optimization, it was possible to warm ∼13 g vitrified kidneys with unprecedentedly little injury from medullary ice formation and a favorable serum creatinine trend after transplant. Distinct behaviors of power absorption and system tuning observed as a function of temperature during warming are promising for non-invasive thermometry and future automated control of the warming process at even faster rates with user-defined temperature dependence.
Collapse
Affiliation(s)
- Brian Wowk
- 21st Century Medicine, Inc, 14960 Hilton Drive, Fontana, CA, 92336, USA.
| | - John Phan
- 21st Century Medicine, Inc, 14960 Hilton Drive, Fontana, CA, 92336, USA
| | - Roberto Pagotan
- 21st Century Medicine, Inc, 14960 Hilton Drive, Fontana, CA, 92336, USA
| | - Erika Galvez
- 21st Century Medicine, Inc, 14960 Hilton Drive, Fontana, CA, 92336, USA
| | - Gregory M Fahy
- 21st Century Medicine, Inc, 14960 Hilton Drive, Fontana, CA, 92336, USA
| |
Collapse
|
37
|
Oggianu M, Mameli V, Hernández-Rodríguez MA, Monni N, Souto M, Brites CD, Cannas C, Manna F, Quochi F, Cadoni E, Masciocchi N, Carneiro Neto AN, Carlos LD, Mercuri ML. Insights into Nd III to Yb III Energy Transfer and Its Implications in Luminescence Thermometry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3452-3463. [PMID: 38617804 PMCID: PMC11008107 DOI: 10.1021/acs.chemmater.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII → YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we demonstrate that the NdIII [2H11/2 → 4I15/2] → YbIII [2F7/2 → 2F5/2] pathway, previously overlooked, dominates energy transfer due to superior energy resonance and J-level selection rule compatibility. This finding upends the conventional focus on the NdIII [4F3/2 → 4I11/2] → YbIII [2F7/2 → 2F5/2] transition pathway. We characterized Nd0.890Yb0.110(BTC)(H2O)6 as a promising cryogenic NIR thermometry system and employed our novel energy transfer understanding to perform simulations, yielding theoretical thermometric parameters and sensitivities for diverse Nd:Yb ratios. Strikingly, experimental thermometric data closely matched the theoretical predictions, validating our revised model. This novel perspective on NdIII → YbIII energy transfer holds general applicability for the NdIII/YbIII pair, unveiling an important spectroscopic feature with broad implications for energy transfer-driven materials design.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Valentina Mameli
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Miguel A. Hernández-Rodríguez
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Noemi Monni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Manuel Souto
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carlos D.S. Brites
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carla Cannas
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Fabio Manna
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
| | - Francesco Quochi
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
- Dipartimento
di Fisica, Università degli Studi
di Cagliari, Complesso Universitario di Monserrato, Monserrato I-09042, Italy
| | - Enzo Cadoni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
| | - Norberto Masciocchi
- Dipartimento
di Scienza e Alta Tecnologia & To.Sca.Lab., Università degli Studi dell, via Valleggio 11, Como 22100, Italy
| | - Albano N. Carneiro Neto
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Luís D. Carlos
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Laura Mercuri
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| |
Collapse
|
38
|
Morita K, Yashiro T, Aoi T, Imamura R, Ohtake T, Yoshizaki N, Maruyama T. Microplate-Based Cryopreservation of Adherent-Cultured Human Cell Lines Using Amino Acids and Proteins. ACS Biomater Sci Eng 2024; 10:2442-2450. [PMID: 38530812 DOI: 10.1021/acsbiomaterials.3c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
With the progression of regenerative medicine and cell therapy, the importance of cryopreservation techniques for cultured cells continues to rise. Traditional cryoprotectants, such as dimethyl sulfoxide and glycerol, are effective in cryopreserving suspended cells, but they do not demonstrate sufficient efficacy for two-dimensional (2D)-cultured cells. In the past decade, small molecules and polymers have been studied as cryoprotectants. Some L-amino acids have been reported to be natural and biocompatible cryoprotectants. However, the cryoprotective effects of D-amino acids have not been investigated for such organized cells. In the present study, the cryoprotective effects of D- and L-amino acids and previously reported cryoprotectants were assessed using HepG2 cells cultured on a microplate without suspending the cells. d-Proline had the highest cryoprotective effect on 2D-cultured cells. The composition of the cell-freezing solution and freezing conditions were then optimized. The d-proline-containing cell-freezing solution also effectively worked for other cell lines. To minimize the amount of animal-derived components, fetal bovine serum in the cell freezing solution was substituted with bovine serum albumin and StemFit (a commercial supplement for stem cell induction). Further investigations on the mechanism of cryopreservation suggested that d-proline protected enzymes essential for cell survival from freeze-induced damage. In conclusion, an effective and xeno-free cell-freezing solution was produced using d-proline combined with dimethyl sulfoxide and StemFit for 2D-cultured cells.
Collapse
Affiliation(s)
- Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomoko Yashiro
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Aoi
- Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuou-ku, Kobe 650-0017, Japan
| | - Ryutaro Imamura
- Medical Materials Development, New Business Development Department, Corporate R&D Division, NOF Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tomoyuki Ohtake
- Medical Materials Development, New Business Development Department, Corporate R&D Division, NOF Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Norihiro Yoshizaki
- Medical Materials Development, New Business Development Department, Corporate R&D Division, NOF Corporation, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
39
|
Gil-Chinchilla JI, Bueno C, Martínez CM, Ferrández-Múrtula A, García-Hernández AM, Blanquer M, Molina-Molina M, Zapata AG, Sackstein R, Moraleda JM, García-Bernal D. Optimizing cryopreservation conditions for use of fucosylated human mesenchymal stromal cells in anti-inflammatory/immunomodulatory therapeutics. Front Immunol 2024; 15:1385691. [PMID: 38605955 PMCID: PMC11007032 DOI: 10.3389/fimmu.2024.1385691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Carlos Bueno
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Carlos M. Martínez
- Experimental Pathology Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia, Murcia, Spain
| | - Ana Ferrández-Múrtula
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Ana M. García-Hernández
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Miguel Blanquer
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Medicine, University of Murcia, Murcia, Spain
| | - Mar Molina-Molina
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | - Robert Sackstein
- Department of Translational Medicine, and the Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Medicine, University of Murcia, Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, University of Murcia and Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Biochemistry, Molecular Biology, and Immunology, University of Murcia, Murcia, Spain
| |
Collapse
|
40
|
Valentini CG, Pellegrino C, Teofili L. Pros and Cons of Cryopreserving Allogeneic Stem Cell Products. Cells 2024; 13:552. [PMID: 38534396 DOI: 10.3390/cells13060552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The COVID-19 pandemic has precipitously changed the practice of transplanting fresh allografts. The safety measures adopted during the pandemic prompted the near-universal graft cryopreservation. However, the influence of cryopreserving allogeneic grafts on long-term transplant outcomes has emerged only in the most recent literature. In this review, the basic principles of cell cryopreservation are revised and the effects of cryopreservation on the different graft components are carefully reexamined. Finally, a literature revision on studies comparing transplant outcomes in patients receiving cryopreserved and fresh grafts is illustrated.
Collapse
Affiliation(s)
- Caterina Giovanna Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Claudio Pellegrino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luciana Teofili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
41
|
Sahu S, Garg A, Saini R, Debnath A. Interface Water Assists in Dimethyl Sulfoxide Crossing and Poration in Model Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5764-5775. [PMID: 38445595 DOI: 10.1021/acs.langmuir.3c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Understanding the mechanism of transport and pore formation by a commonly used cryoprotectant, dimethyl sulfoxide (DMSO), across cell membranes is fundamentally crucial for drug delivery and cryopreservation. To shed light on the mechanism and thermodynamics of pore formation and crossing behavior of DMSO, extensive all-atom molecular dynamics simulations of 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) bilayers are performed at various concentrations of DMSO at a temperature above the physiological temperature. Our results unveil that DMSO partially depletes water from the interface and positions itself between lipid heads without full dehydration. This induces a larger area per headgroup, increased disorder, and enhanced fluidity without any disintegration even at the highest DMSO concentration studied. The enhanced disorder fosters local fluctuations at the interface that nucleate dynamic and transient pores. The potential of mean force (PMF) of DMSO crossing is derived from two types of biased simulations: a single DMSO pulling using the umbrella sampling technique and a cylindrical pore formation using the recently developed chain reaction coordinate method. In both cases, DMSO crossing encounters a barrier attributed to unfavorable polar nonpolar interactions between DMSO and lipid tails. As the DMSO concentration increases, the barrier height reduces along with the faster lateral and perpendicular diffusion of DMSO suggesting favorable permeation. Our findings suggest that the energy required for pore formation decreases when water assists in the formation of DMSO pores. Although DMSO displaces water from the interface toward the far interface region without complete dehydration, the presence of interface water diminishes pore formation free energy. The existence of interface water leads to the formation of a two-dimensional percolated water-DMSO structure at the interface, which is absent otherwise. Overall, these insights into the mechanism of DMSO crossing and pore formation in the bilayer will contribute to understanding cryoprotectant behavior under supercooled conditions in the future.
Collapse
Affiliation(s)
- Samapika Sahu
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Avinash Garg
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Renu Saini
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
42
|
Ashrafi E, Radisic M, Elliott JAW. Systematic cryopreservation study of cardiac myoblasts in suspension. PLoS One 2024; 19:e0295131. [PMID: 38446773 PMCID: PMC10917286 DOI: 10.1371/journal.pone.0295131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/15/2023] [Indexed: 03/08/2024] Open
Abstract
H9c2 myoblasts are a cell line derived from embryonic rat heart tissue and demonstrate the ability to differentiate to cardiac myotubes upon reduction of the serum concentration (from 10% to 1%) and addition of all-trans retinoic acid in the growth medium. H9c2 cells are increasingly being used as an easy-to-culture proxy for some functions of cardiomyocytes. The cryobiology of cardiac cells including H9c2 myoblasts has not been studied as extensively as that of some cell types. Consequently, it is important to characterize the cryobiological response and systematically develop well-optimized cryopreservation protocols for H9c2 cells to have optimal and consistent viability and functionality after thaw for high quality studies with this cell type. In this work, an interrupted slow cooling protocol (graded freezing) was applied to characterize H9c2 response throughout the cooling profile. Important factors that affect the cell response were examined, and final protocols that provided the highest post-thaw viability are reported. One protocol uses the common cryoprotectant dimethyl sulfoxide combined with hydroxyethyl starch, which will be suitable for applications in which the presence of dimethyl sulfoxide is not an issue; and the other protocol uses glycerol as a substitute when there is a desire to avoid dimethyl sulfoxide. Both protocols achieved comparable post-thaw viabilities (higher than 80%) based on SYTO 13/GelRed flow cytometry results. H9c2 cells cryopreserved by either protocol showed ability to differentiate to cardiac myotubes comparable to fresh (unfrozen) H9c2 cells, and their differentiation to cardiac myotubes was confirmed with i) change in cell morphology, ii) expression of cardiac marker troponin I, and iii) increase in mitochondrial mass.
Collapse
Affiliation(s)
- Elham Ashrafi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Janet A. W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Peters MC, Kruithof BPT, Bouten CVC, Voets IK, van den Bogaerdt A, Goumans MJ, van Wijk A. Preservation of human heart valves for replacement in children with heart valve disease: past, present and future. Cell Tissue Bank 2024; 25:67-85. [PMID: 36725733 PMCID: PMC10902036 DOI: 10.1007/s10561-023-10076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Valvular heart disease affects 30% of the new-borns with congenital heart disease. Valve replacement of semilunar valves by mechanical, bioprosthetic or donor allograft valves is the main treatment approach. However, none of the replacements provides a viable valve that can grow and/or adapt with the growth of the child leading to re-operation throughout life. In this study, we review the impact of donor valve preservation on moving towards a more viable valve alternative for valve replacements in children or young adults.
Collapse
Affiliation(s)
- M C Peters
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - B P T Kruithof
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - A van den Bogaerdt
- Heart Valve Department, ETB-BISLIFE Multi Tissue Center, 2333 BD, Beverwijk, The Netherlands
| | - M J Goumans
- Department of Cardiovascular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - A van Wijk
- Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
44
|
Uhlmannsiek L, Shen H, Eylers H, Martinsson G, Sieme H, Wolkers WF, Oldenhof H. Preserving frozen stallion sperm on dry ice using polymers that modulate ice crystalization kinetics. Cryobiology 2024; 114:104852. [PMID: 38295927 DOI: 10.1016/j.cryobiol.2024.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
Cryopreserved semen is routinely shipped in liquid nitrogen. Dry ice could serve as an alternative coolant, however, frozen storage above liquid nitrogen temperatures (LN2, -196 °C) may negatively affect shelf-life and cryosurvival. In this study, we determined critical temperatures for storage of cryopreserved stallion sperm. We evaluated: (i) effects of cooling samples to different subzero temperatures (-10 °C to -80 °C) prior to storing in LN2, (ii) stability at different storage temperatures (i.e., in LN2, dry ice, -80 °C and -20 °C freezers, 5 °C refrigerator), and (iii) sperm cryosurvival during storage on dry ice (i.e., when kept below -70 °C and during warming). Furthermore, (iv) we analyzed if addition of synthetic polymers (PVP-40, Ficoll-70) modulates ice crystallization kinetics and improves stability of cryopreserved specimens. Sperm motility and membrane intactness were taken as measures of cryosurvival, and an artificial insemination trial was performed to confirm fertilizing capacity. We found that adding PVP-40 or Ficoll-70 to formulations containing glycerol reduced ice crystal sizes and growth during annealing. Post-thaw sperm viability data indicated that samples need to be cooled below -40 °C before they can be safely plunged and stored in LN2. No negative effects of relocating specimens from dry ice to LN2 and vice versa became apparent. However, sample warming above -50 °C during transport in dry ice should be avoided to ensure preservation of viability and fertility. Moreover, addition of PVP-40 or Ficoll-70 was found to increase sperm cryosurvival, especially under non-ideal storage conditions where ice recrystallization may occur.
Collapse
Affiliation(s)
- Laura Uhlmannsiek
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; National Stud of Lower Saxony, Celle, Germany
| | - Hang Shen
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Heinke Eylers
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany.
| |
Collapse
|
45
|
Lee S, Joo Y, Lee EJ, Byeon Y, Kim JH, Pyo KH, Kim YS, Lim SM, Kilbride P, Iyer RK, Li M, French MC, Lee JY, Kang J, Byun H, Cho BC. Successful expansion and cryopreservation of human natural killer cell line NK-92 for clinical manufacturing. PLoS One 2024; 19:e0294857. [PMID: 38394177 PMCID: PMC10889882 DOI: 10.1371/journal.pone.0294857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/08/2023] [Indexed: 02/25/2024] Open
Abstract
Natural killer (NK) cells have recently shown renewed promise as therapeutic cells for use in treating hematologic cancer indications. Despite this promise, NK cell manufacturing workflows remain largely manual, open, and disconnected, and depend on feeders, as well as outdated unit operations or processes, often utilizing research-grade reagents. Successful scale-up of NK cells critically depends on the availability and performance of nutrient-rich expansion media and cryopreservation conditions that are conducive to high cell viability and recovery post-thaw. In this paper we used Cytiva hardware and media to expand the NK92 cell line in a model process that is suitable for GMP and clinical manufacturing of NK cells. We tested a range of cryopreservation factors including cooling rate, a range of DMSO-containing and DMSO-free cryoprotectants, ice nucleation, and cell density. Higher post-thaw recovery was seen in cryobags over cryovials cooled in identical conditions, and cooling rates of 1°C/min or 2°C/min optimal for cryopreservation in DMSO-containing and DMSO-free cryoprotectants respectively. Higher cell densities of 5x107 cells/ml gave higher post-thaw viability than those cryopreserved at either 1x106 or 5x106 cells/ml. This enabled us to automate, close and connect unit operations within the workflow while demonstrating superior expansion and cryopreservation of NK92 cells. Cellular outputs and performance were conducive to clinical dosing regimens, serving as a proof-of-concept for future clinical and commercial manufacturing.
Collapse
Affiliation(s)
- Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yunjoo Joo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Youngseon Byeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Young Seob Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Peter Kilbride
- Global Life Sciences Solutions, Cambridge, United Kingdom
| | - Rohin K. Iyer
- Global Life Sciences Solutions USA LLC 100 Results Way, Marlborough, MA, United States of America
| | - Mingming Li
- Global Life Sciences Solutions Singapore Pte. Ltd., HarbourFront Center, Singapore, Singapore
| | - Mandy C. French
- Global Life Sciences Technologies (Shanghai) Co., Ltd., Shanghai Municipality, Shanghai, China
| | - Jung-Yub Lee
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Jeeheon Kang
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Hyesin Byun
- Global Life Sciences Solutions Korea Limited 5F, Gangnam-gu, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Takekiyo T, Yamada S, Uto T, Nakayama M, Hirata T, Ishizaki T, Kuroda K, Yoshimura Y. Protein Cryoprotectant Ability of the Aqueous Zwitterionic Solution. J Phys Chem B 2024; 128:526-535. [PMID: 38176060 DOI: 10.1021/acs.jpcb.3c05614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Protein cryopreservation is important for the long-term storage of unstable proteins. Recently, we found that N-acetylglucosaminyltransferase-V (GnT-V) can be cryopreserved in a deep freezer without temperature control using a dilute binary aqueous solution of 3-(1-(2-(2-methoxyethoxy)ethyl)imidazol-3-io)butane-1-carboxylate (OE2imC3C) [10 wt %, mole fraction of solute (x) = 7.75 × 10-3], an artificial zwitterion. However, it is unclear which solvent properties are required in these media to preserve unstable proteins, such as GnT-V. In this study, we investigated the melting phenomena and solution structure of dilute binary aqueous OE2imC3C solutions [x = 0-2.96 × 10-2 (0-30 wt %)] using differential scanning calorimetry (DSC) and Raman and Fourier transform infrared (FTIR) spectroscopies combined with molecular dynamics (MD) simulation to compare the cryoprotectant ability of OE2imC3C with two general cryoprotectants (CPAs), glycerol and dimethyl sulfoxide. DSC results indicated that aqueous OE2imC3C solutions can be melted at lower temperatures with less energy than the control CPA solution, with increasing x, primarily due to OE2imC3C having a higher content of unfrozen water molecules. Moreover, Raman and FTIR results showed that the high content of unfrozen water molecules in aqueous OE2imC3C solutions was due to the hydration around the ionic parts (the COO- group and imidazolium ring) and the OCH2CH2O segment. In addition, the MD simulation results showed that there were fewer structured water molecules around the OCH2CH2O segment than the hydration water molecules around the ionic parts. These solvent properties suggest that dilute aqueous OE2imC3C solutions are effective in preventing freezing, even in a deep freezer. Therefore, this medium has the potential to act as a novel cryoprotectant for proteins in biotechnology and biomedical fields.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Shuto Yamada
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Takuya Uto
- Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki 889-2192, Japan
| | - Masaharu Nakayama
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| | - Tetsuya Hirata
- Department of Biochemistry, Duke University, School of Medicine, Durham, North Carolina 27710, United States
| | - Takeru Ishizaki
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kosuke Kuroda
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
47
|
Brock MT, Morrison HG, Maignien L, Weinig C. Impacts of sample handling and storage conditions on archiving physiologically active soil microbial communities. FEMS Microbiol Lett 2024; 371:fnae044. [PMID: 38866716 DOI: 10.1093/femsle/fnae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Soil microbial communities are fundamental to ecosystem processes and plant growth, yet community composition is seasonally and successionally dynamic, which interferes with long-term iterative experimentation of plant-microbe interactions. We explore how soil sample handling (e.g. filtering) and sample storage conditions impact the ability to revive the original, physiologically active, soil microbial community. We obtained soil from agricultural fields in Montana and Oklahoma, USA and samples were sieved to 2 mm or filtered to 45 µm. Sieved and filtered soil samples were archived at -20°C or -80°C for 50 days and revived for 2 or 7 days. We extracted DNA and the more transient RNA pools from control and treatment samples and characterized microbial communities using 16S amplicon sequencing. Filtration and storage treatments significantly altered soil microbial communities, impacting both species richness and community composition. Storing sieved soil at -20°C did not alter species richness and resulted in the least disruption to the microbial community composition in comparison to nonarchived controls as characterized by RNA pools from soils of both sites. Filtration significantly altered composition but not species richness. Archiving sieved soil at -20°C could allow for long-term and repeated experimentation on preserved physiologically active microbial communities.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
| | - Loïs Maignien
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
- Laboratory of Microbiology of Extreme Environments, UMR 6197 - CNRS-Ifremer-UBO, Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale (UBO), Technopole Brest-Iroise, 4 rue Dumont d'Urville, 29280 Plouzané, France
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Program in Ecology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| |
Collapse
|
48
|
Lomba L, García CB, Benito L, Sangüesa E, Santander S, Zuriaga E. Advances in Cryopreservatives: Exploring Safer Alternatives. ACS Biomater Sci Eng 2024; 10:178-190. [PMID: 38141007 DOI: 10.1021/acsbiomaterials.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cryopreservation of cells, tissues, and organs is widely used in the biomedical and research world. There are different cryopreservatives that are used for this process; however, many of them, such as DMSO, are used despite the problems they present, mainly due to the toxicity it presents to certain types of samples. The aim of this Review is to highlight the different types of substances used in the cryopreservation process. It has been shown that some of these substances are well-known, as in the case of the families of alcohols, sugars, sulfoxides, etc. However, in recent years, other compounds have appeared, such as ionic liquids, deep eutectic solvents, or certain polymers, which open the door to new cryopreservation methods and are also less toxic to frozen samples.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Lucía Benito
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Estela Sangüesa
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, Campus of Huesca, 22002 Huesca, Spain
| | - Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
49
|
Marton HL, Bhatt A, Sagona AP, Kilbride P, Gibson MI. Screening of Hydrophilic Polymers Reveals Broad Activity in Protecting Phages during Cryopreservation. Biomacromolecules 2024; 25:413-424. [PMID: 38124388 PMCID: PMC10777348 DOI: 10.1021/acs.biomac.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Bacteriophages have many biotechnological and therapeutic applications, but as with other biologics, cryopreservation is essential for storage and distribution. Macromolecular cryoprotectants are emerging for a range of biologics, but the chemical space for polymer-mediated phage cryopreservation has not been explored. Here we screen the cryoprotective effect of a panel of polymers against five distinct phages, showing that nearly all the tested polymers provide a benefit. Exceptions were poly(methacrylic acid) and poly(acrylic acid), which can inhibit phage-infection with bacteria, making post-thaw recovery challenging to assess. A particular benefit of a polymeric cryopreservation formulation is that the polymers do not function as carbon sources for the phage hosts (bacteria) and hence do not interfere with post-thaw measurements. This work shows that phages are amenable to protection with hydrophilic polymers and opens up new opportunities for advanced formulations for future phage therapies and to take advantage of the additional functionality brought by the polymers.
Collapse
Affiliation(s)
- Huba L. Marton
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Apoorva Bhatt
- School
of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Institute
of Microbiology and Infection, University
of Birmingham, Birmingham, B15 2TT, United
Kingdom
| | - Antonia P. Sagona
- School
of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Peter Kilbride
- Asymptote,
Cytiva, Chivers Way, Cambridge CB24 9BZ, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess
Street, Manchester, M1
7DN, United Kingdom
| |
Collapse
|
50
|
Nascimento C, Saraiva MVA, Pereira VM, de Brito DCC, de Aguiar FLN, Alves BG, Roballo KCS, de Figueiredo JR, Ambrósio CE, Rodrigues APR. Addition of synthetic polymer in the freezing solution of mesenchymal stem cells from equine adipose tissue as a future perspective for reducing of DMSO concentration. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2023; 45:e002523. [PMID: 38162818 PMCID: PMC10756151 DOI: 10.29374/2527-2179.bjvm002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
The regenerative therapies with stem cells (SC) has been increased by the cryopreservation, permitting cell storage for extended periods. However, the permeating cryoprotectant agents (CPAs) such as dimethylsulfoxide (DMSO) can cause severe adverse effects. Therefore, this study evaluated equine mesenchymal stem cells derived from adipose tissue (eAT-MSCs) in fresh (Control) or after slow freezing (SF) in different freezing solutions (FS). The FS comprise DMSO and non-permeating CPAs [Trehalose (T) and the SuperCool X-1000 (X)] in association or not, totalizing seven different FS: (DMSO; T; X; DMSO+T; DMSO+X; T+X, and DMSO+T+X). Before and after cryopreservation were evaluated, viability, colony forming unit (CFU), and cellular differentiation capacity. After freezing-thawing, the viability of the eAT-MSCs reduced (P< 0.05) in all treatments compared to the control. However, the viability of frozen eAT-MSCs in DMSO (80.3 ± 0.6) was superior (P<0.05) to the other FS. Regarding CFU, no difference (P>0.05) was observed between fresh and frozen cells. After freezing-thawing, the eAT-MSCs showed osteogenic, chondrogenic, and adipogenic lineages differentiation potential. Nonetheless, despite the significative reduction in the osteogenic differentiation capacity between fresh and frozen cells, no differences (P > 0.05) were observed among FS. Furthermore, the number of chondrogenic differentiation cells frozen in DMSO+X solution reduced (P<0.05) comparing to the control, without differ (P>0.05) to the other FS. The adipogenic differentiation did not differ (P>0.05) among treatments. In conclusion, although these findings confirm the success of DMSO to cryopreserve eAT-MSCs, the Super Cool X-1000 could be a promise to reduce the DMSO concentration in a FS.
Collapse
Affiliation(s)
- Cátia Nascimento
- Veterinarian, MSc. Laboratório de Manipulação de Oócitos e Folículos Pré-Antrais Ovarianos (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brazil;
| | | | - Vitoria Mattos Pereira
- Veterinarian, MSc. Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, SP, Brazil;
| | | | | | - Benner Geraldo Alves
- Veterinarian, DSc. Laboratório de Biologia da Reprodução, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil;
| | - Kelly Cristine Santos Roballo
- Veterinarian, DSc. Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, SP, Brazil;
| | - José Ricardo de Figueiredo
- Veterinarian, DSc. LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brazil;
| | - Carlos Eduardo Ambrósio
- Veterinarian, DSc. Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, SP, Brazil;
| | - Ana Paula Ribeiro Rodrigues
- Veterinarian, DSc. LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|