1
|
Batool I, Fayyaz MH, Hameed A, Andrabi SMH, Kausar R, Shahzad M, Mubashir Y, Omur AD, Murtaza G, Ditta A, Hussain T. Quercetin in semen extender improves frozen-thawed spermatozoa quality and in-vivo fertility in crossbred Kamori goats. Front Vet Sci 2024; 11:1385642. [PMID: 38803803 PMCID: PMC11128684 DOI: 10.3389/fvets.2024.1385642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
This study investigated the antioxidant effect of quercetin-treated semen on frozen-thawed spermatozoa quality and in-vivo fertility in crossbred Kamori goats. In total, 32 ejaculates from four fertile bucks were diluted in Tris-based egg yolk extender with varying levels of quercetin (0, 1, 5, 10, and 15 μM). Qualified semen samples were pooled and frozen in French straws. The results revealed that the addition of quercetin in the semen extender increased (p < 0.05) frozen-thawed sperm total motility (TM), progressive motility (PM), rapid velocity (RV), average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and amplitude of lateral head (ALH) displacement in contrast to the control group. Quercetin supplementation had no effect on beat cross frequency (BCF), straightness (STR), and linearity (LIN) (p > 0.05). Quercetin showed significantly higher (p < 0.05) plasma membrane and acrosome integrity and viability (p < 0.05) of spermatozoa in contrast to the control group. Quercetin in the semen extender significantly increased (p < 0.05) superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and total antioxidant capacity (TAC) levels while reduced (p < 0.05) the contents of total oxidant status (TOS) and malondialdehyde (MDA), which were in contrast to the control group. Ultrasound results revealed that 24 out of 30 (80%) goats were found pregnant when semen was treated with 5 μM quercetin while the control group showed 18 out of 30 (60%) animals were pregnant. Thus, the study concluded that 5 μM quercetin-treated semen was found to be efficient, showed increased antioxidant status, and reduced oxidant production, leading to improved spermatozoa quality and in-vivo fertility in goats.
Collapse
Affiliation(s)
- Iqra Batool
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | | | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | | | - Rehana Kausar
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Shahzad
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Yasin Mubashir
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Ali Dogan Omur
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Ghulam Murtaza
- Livestock and Fisheries Department, Government of Sindh, Karachi, Pakistan
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
2
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
3
|
Kumar P, Bharti VK, Kumar K. Effect of short-term exposure to high-altitude hypoxic climate on feed-intake, blood glucose level and physiological responses of native and non-native goat. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:795-806. [PMID: 38374293 DOI: 10.1007/s00484-024-02624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
The exposure to high altitude and cold stress poses challenges in maintaining normal physiological standards and body homeostasis in non-native animals. To enhance our understanding of the physiology of native and non-native goats in high-altitude environments, we conducted a comparative study to examine the impact of natural hypoxic and cold stress conditions on their feed intake (FIT) and associated changes in physiological responses, including plasma glucose concentration (PGC). The study took place at an altitude of 3505.2 m above mean sea level and involved twenty-two healthy females from two different breeds of goats. This study was conducted over a period of 56 days after the arrival of non-native Black Bengal goats (BBN) and compared with native Changthangi (CHAN) goats. Both groups were extensively reared in a natural high-altitude and cold-stress environment in Leh, India, and were subjected to defined housing and management practices. The parameters evaluated included FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature. High altitudes had a significant (p < 0.05) impact on FIT, PGC, respiration rate, heart rate, pulse rate, and rectal temperature in BBN, whereas these parameters remained stable in CHAN throughout the study period. Additionally, the detrimental effects of high-altitude stress were more pronounced in non-native goats compared to native goats. These findings suggest that physiological responses in non-native goats tend to stabilize after an initial period of adverse effects in high-altitude environments. Based on the physiological responses and glucose concentration, it is recommended to pay special attention to the nutrition of non-native goats for up to the third week (21 days) after their arrival in high-altitude areas.
Collapse
Affiliation(s)
- Prabhat Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
- Indira Gandhi Institute of Medical Sciences (IGIMS), Patna, Bihar, India.
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India.
| | - Krishna Kumar
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, Ladakh UT, India
| |
Collapse
|
4
|
Khalique MA, Andrabi SMH, Majeed KA, Yousaf MS, Ahmad N, Tahir SK, Fayyaz MH, Haider MS, Naz SS, Qureshi IZ, Sulaiman S, Zaneb H, Rehman H. Cerium oxide nanoparticles improve the post-thaw quality and in-vivo fertility of Beetal buck spermatozoa. Theriogenology 2024; 214:166-172. [PMID: 37879286 DOI: 10.1016/j.theriogenology.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
The motility, health quality, and membrane disorders of spermatozoa are adversely affected during the process of semen cryopreservation due to the over-production of reactive oxygen species (ROS). Cerium oxide nanoparticles (CeO2NPs) possess properties to scavenge ROS either by mimicking specific antioxidants or by enhancing the activities of antioxidant enzymes. Therefore, we aimed at evaluating the effects of adding the CeO2NPs in the TRIS-citrate-yolk extender on in-vitro antioxidant enzyme activities, spermatozoa quality attributes, and in-vivo fertility of post-thaw Beetal buck spermatozoa. The CeO2NPs were prepared and characterized (UV-spectrophotometry, FTIR, and XRD). Semen samples, collected from bucks (n = 5), were distributed into five aliquots and diluted in an extender containing increasing concentrations of nanoparticles (0 μg/ml, called the control group, 25 μg/mL, 50 μg/mL, 75 μg/mL, and 100 μg/mL). At post-thaw, spermatozoa were evaluated for the above-mentioned attributes and the pregnancy rate by inseminating Beetal does (n = 252). Results demonstrated that CeO2NPs mitigated the detrimental effects of cryopreservation as ROS production and lipid peroxidation were lower (P < 0.001) in the 25, 50, and 75 μg/mL CeO2NPs-added groups compared to the control and 100 μg/ml CeO2NPs-added group. The addition of 25 μg/mL CeO2NPs improved (P < 0.001) the activities of superoxide dismutase, catalase, and peroxidase and the concentration of reduced glutathione (P < 0.001) compared to the other groups. In terms of sperm kinematics and velocity parameters, the groups added with the 25 and 50 μg/mL CeO2NPs exhibited higher total motility (P < 0.001), sperm progressive motility (P = 0.003), and rapid velocity (P < 0.001). The group added with the 50 μg/mL CeO2NPs had the highest (P = 0.04) average path velocity. The groups added with the 25 and 50 μg/mL CeO2NPs also exhibited higher plasma membrane integrity (P = 0.003), acrosomal integrity, and viability (P < 0.001) compared to the control group. The DNA integrity was also higher (P < 0.001) in all the CeO2NPs-added groups. The pregnancy rate was higher (P = 0.003) in the 25 (51.92 %) and 50 μg/mL CeO2NPs (58.33 %) groups compared to the other groups. Conclusively, our findings suggest that the inclusion of cerium oxide nanoparticles in the TRIS-citrate-yolk freezing extender can reduce the occurrence of cryopreservation-induced damages to Beetal's buck spermatozoa and ultimately enhance the pregnancy rate in does.
Collapse
Affiliation(s)
- Mubashir Ali Khalique
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan; Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | | | - Khalid Abdul Majeed
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Muhammad Shahbaz Yousaf
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Nisar Ahmad
- Department of Parasitology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Sajid Khan Tahir
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Muhammad Hammad Fayyaz
- Animal Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Muhammad Shafiq Haider
- Animal Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - Syeda Sohaila Naz
- Department of Nano-sciences and Technology, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Irfan Zia Qureshi
- Department of Zoology, Quaid-i-Azam University, Islamabad, 44000, Pakistan
| | - Sulaiman Sulaiman
- Department of Nano-sciences and Technology, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Hafsa Zaneb
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan.
| |
Collapse
|
5
|
Li Y, Qin S, Cui W, Zhao F, He M, Jiang Z. Progress on the roles of zinc in sperm cryopreservation. Theriogenology 2023; 211:134-141. [PMID: 37619526 DOI: 10.1016/j.theriogenology.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/06/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
One of the effective methods for the long-term preservation of mammalian genetic resources is the cryopreservation of semen. However, a number of parameters, including diluents, the rate of freezing and thawing, cryoprotectants, etc., can easily alter the survival of frozen-thawed sperm. Numerous studies have documented the addition of a variety of zinc compounds, to the diluents used to cryopreserve sperm. The primary objective of this review is to briefly describe that adding zinc to diluents as an antioxidant significantly enhances frozen-thawed sperm quality. Second, a summary of the present understanding of zinc's molecular mechanism on semen cryopreservation is provided. Thirdly, this study addresses that nanoparticles of zinc can offer suggestions for raising cryopreservation effectiveness.
Collapse
Affiliation(s)
- Yuanyou Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China.
| | - Shaoyu Qin
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China.
| | - Wenfei Cui
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China.
| | - Fan Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China.
| | - Meiling He
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhongliang Jiang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Li S, Ren J, Zhang W, Wang B, Ma Y, Su L, Dai Y, Liu G. Glutathione and selenium nanoparticles have a synergistic protective effect during cryopreservation of bull semen. Front Vet Sci 2023; 10:1093274. [PMID: 36876009 PMCID: PMC9978397 DOI: 10.3389/fvets.2023.1093274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction In the present study, the synergistic protective effect of co-supplementation of glutathione (GSH) with selenium nanoparticles (SeNPs) on the cryopreservation efficiency of bull semen was analyzed. Methods After collection, the ejaculates of Holstein bulls were subsequently diluted with a Tris extender buffer supplemented with different concentrations of SeNPs (0, 1, 2, and 4 μg/ml), followed by semen equilibration at 4°C and assessment of sperm viability and motility. Subsequently, the ejaculates of Holstein bulls were pooled, split into four equal groups, and diluted with a Tris extender buffer supplemented with basic extender (negative control group, NC group), 2 μg/ml SeNPs (SeNPs group), 4 mM GSH (GSH group), and 4 mM GSH plus 2 μg/ml SeNPs (GSH + SeNPs group). After cryopreservation, motility, viability, mitochondrial activity, plasma membrane integrity, acrosome integrity, concentration of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT), and ability of frozen-thawed sperm cells to support in vitro embryonic development were evaluated. Results and discussion No side effect of SeNPs concentrations applied in the current study on the motility and viability of equilibrated bull spermatozoa was found. Meanwhile, supplementation of SeNPs significantly promoted the motility and viability of equilibrated bull spermatozoa. Furthermore, the co-supplementation of GSH with SeNPs effectively protected bull spermatozoa from cryoinjury as expressed by promoting semen motility, viability, mitochondrial activity, plasma membrane integrity, and acrosome integrity. Finally, the enhanced antioxidant capacity and embryonic development potential in the frozen-thawed bull spermatozoa cryopreserved by co-supplementation of GSH with SeNPs further confirmed the synergistic protective effect of co-supplementation of GSH with SeNPs on the cryopreservation of bull semen.
Collapse
Affiliation(s)
- Shubin Li
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Yuzhen Ma
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Could metal exposure affect sperm parameters of domestic ruminants? a meta-analysis. Anim Reprod Sci 2022; 244:107050. [DOI: 10.1016/j.anireprosci.2022.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
8
|
Himanshu B, Arangasamy A, Sharanya JN, Soren N, Selvaraju S, Ghosh J, Backialakhmi S, Rani G, Ghosh S, Chouhan V, Kumar H, Bhatta R. Supplementation Effect of Dietary Flax Seed and Coconut Oil on Antioxidant Enzyme Activities, LPO, Seminal plasma protein profiling in adult ram. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
9
|
Mayasula VK, Arunachalam A, Sellappan S, Guvvala PR, Ghosh J. Organic Zinc and Copper Supplementation-Associated Changes in Gene Expression and Protein Profiles in Buck Spermatozoa. Biol Trace Elem Res 2022; 200:1626-1639. [PMID: 34235611 DOI: 10.1007/s12011-021-02796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
Mineral supplementation has greater impact on male reproduction; however, the mechanism of action has not been studied in detail. The present study was aimed to deal with the lacuna in mechanism of action of mineral supplementation on improvement in sperm characteristics. A group of 40 bucks (aged 5 months) were assigned to 10 groups (4 in each group) based on their body weight and fed with concentrate mixture: basal roughage (minimal diet) in equal proportion to all the bucks. Among the 10 groups, one was considered as control, without any additional mineral supplementation, and the remaining 9 were treatment groups (3 groups each in Zn, Cu, and Zn + Cu). In treatment groups, organic Zn was fed in three different doses as 20, 40, and 60 mg/kg DM; organic Cu was fed in three different doses as 12.5, 25, and 37.5 mg/kg DM; and organic Zn + Cu was combinedly supplied as 20 + 12.5, 40 + 25, and 60 + 37.5 based on their mg/kg DM for 8 months period. The neat semen samples were processed for spermatozoal gene (stress- NOS3, HSP70, HIF1A; fertility- MTF1, MTA1, TIMP2, TNFa, and EGFR) expression studies through qRT-PCR and protein profile changes through single- and two-dimensional gel electrophoresis. Significantly, the stress-responsive genes were downregulated, and fertility-related genes were upregulated in treatment groups. A significant correlation had been noticed among the genes studied: HIF1A with MTA1 (P < 0.05) and MTF1 with EGFR, TIMP2, TNFa, and NOS3 (P < 0.01) respectively. The organic Zn and Cu feeding modulated the expression of stress- and fertility-related genes and protein abundance, thereby improved the sperm characteristics.
Collapse
Affiliation(s)
- Venkata Krishnaiah Mayasula
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
- Department of Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Arangasamy Arunachalam
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India.
| | - Selvaraju Sellappan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Pushpa Rani Guvvala
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Jyotirmoy Ghosh
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| |
Collapse
|
10
|
Mayasula VK, Arunachalam A, Babatunde SA, Naidu SJ, Sellappana S, Krishnan BB, Rajendran US, Janardhan RI, Bhatta R. Trace minerals for improved performance: a review of Zn and Cu supplementation effects on male reproduction in goats. Trop Anim Health Prod 2021; 53:491. [PMID: 34596788 DOI: 10.1007/s11250-021-02943-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
Minerals are required in small amounts but play significant roles in many physiological functions related with growth, reproduction, and health of goats such as biochemical, molecular systems, and optimized enzymatic activities due to their roles as co-factors to metalloenzymes. Among them, zinc (Zn) and copper (Cu) are leading essential elements in goat nutrition, because of their role across several biological functions. The proportion of these minerals availability and absorption from the ingested feed is usually less, because of their complexities with un-degradable parts of feed resources. Hence, their exogenous supplementation is required for normal animal functions. On this background, this review presents findings associated with supplementation of these minerals in organic form as a way for improving the fertility of male goats with special focus on physico-chemical-kinetics of the semen for improving the application of reproductive technologies. This review emphasizes the organic sources of these minerals to replace the inorganic sources, based on their significance in improving semen qualities, antioxidant protection, and mediation of molecular activities. This review also discusses salient routes of Zn and Cu absorption and identifies the need for molecular exploration for positive outcomes with supplementation of these minerals as an area of the future goat nutrition-reproduction improvement strategy.
Collapse
Affiliation(s)
- Venkata K Mayasula
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
- Department of Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Arangasamy Arunachalam
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India.
| | - Sikiru A Babatunde
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
- DBT -TWAS, Federal University of Technology, Minna, 920626, Nigeria
| | - Sharanya J Naidu
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Selvaraju Sellappana
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Binsila B Krishnan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Umaya S Rajendran
- Bioenergetics and Environmental Sciences Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Reddy I Janardhan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Raghavendra Bhatta
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| |
Collapse
|
11
|
Organic mineral supplementation on differential protein profile of Osmanabadi bucks (Capra hircus). Reprod Biol 2021; 21:100533. [PMID: 34280724 DOI: 10.1016/j.repbio.2021.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 11/20/2022]
Abstract
The present study aimed to determine the differential protein profile of seminal plasma proteins of bucks supplemented with trace minerals. Forty bucks of uniform size and body weight were assigned as ten groups (n = 4). The control group (T1) was fed with the control diet (concentration mixture and roughages) whereas the remaining groups were supplemented the control diet with Zn20 mg (T2), Zn40 mg (T3), Zn60 mg (T4), Cu12.5 mg (T5), Cu25 mg (T6), Cu37.5 mg (T7), Zn20 mg + Cu12.5 mg (T8), Zn40 mg + Cu25 mg (T9), and Zn60 mg + Cu37.5 mg (T10) for eight months. Seminal plasma proteins from each group were subjected to two-dimensional electrophoresis and fifteen differential proteins were selected based on differential expression, subjected to identification using Nano-LC-MS/MS (LTQ-Qrbitrap-MS). The identified proteins were Triacylglycerol lipase, EGF like repeats and discoidin domains 3, Lipocalin, Iodothyronine deiodinase, Transcription factor AP2-delta, 60S ribosomal protein L13, IST1 factor associated with ESCRT-III, Lysozyme, Uncharacterized protein (BRI3-binding protein), Uncharacterized protein, Histone deacetylase 11, General transcription factor IIF subunit 2, Nudix hydrolase 6, Protein kinase cAMP-activated catalytic subunit beta and Elongin C. The organic Cu supplemented group is the better than the organic Zn and organic Zn + Cu supplemented groups.
Collapse
|
12
|
Effect of diluent sugars on capacitation status and acrosome reaction of spermatozoa in buck semen at refrigerated temperature. Trop Anim Health Prod 2020; 52:3409-3415. [PMID: 32918161 DOI: 10.1007/s11250-020-02374-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of the study was to explore the possibility of a better sugar suitable for storage of goat semen at refrigerated temperature. MATERIALS AND METHOD For this experiment, semen was collected from eight Jakhrana bucks maintained at Jakhrana unit, ICAR-CIRG, at twice a week interval using artificial vagina. Collected semen was preliminary evaluated, and better semen samples were pooled and divided into two parts. One part of the pooled semen was diluted in egg yolk, Tris, citric acid, and fructose diluter, whereas second part was diluted in egg yolk, Tris, citric acid, and glucose diluter. Then semen samples were kept in equilibration chamber for 4 h at 5 °C after proper dilution. Both the semen samples were evaluated for viability, motility, plasma membrane integrity, sperm abnormality, lipid peroxidation, acrosomal integrity, and capacitation status at 0 h, 24 h, 48 h, and 72 h after dilution. RESULTS Significantly (P < 0.05) higher motility was observed at 24 h in extender containing glucose as compared with extender containing fructose but motility was decreased at 48 h and 72 h. Number of capacitated sperm increased significantly (P < 0.05) and acrosomal integrity was decreased significantly (P < 0.05) at 72 h in extender containing glucose. The other parameters like viability and plasma membrane integrity were decreased significantly (P < 0.05) at 72 h and lipid peroxidation as well as sperm abnormality increased significantly (P < 0.05) in extender containing glucose. CONCLUSION From this study, it can be concluded that fructose is better diluent sugar for refrigerated storage of buck semen.
Collapse
|
13
|
Kumar P, Bharti VK, Mukesh M. Chemometric Analysis of Antioxidant and Mineral Elements in Colostrum of Native and Non-native Goat Breeds to Hypoxic Conditions at High Altitude. Biol Trace Elem Res 2020; 196:446-453. [PMID: 31667684 DOI: 10.1007/s12011-019-01940-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Colostrum of goat is a well-known nutritional source of animal product, which is attributed to innumerable nutritional properties. To enrich nutritional resources for understanding various nutritional values of animal product at high altitude, chemometric analysis of antioxidant and mineral element study was carried out by comparing antioxidants capacity, free radical scavenging activity, and certain mineral elements in colostrums of native and non-native goat breeds. Colostrum samples were collected from native Changthangi (CNG) and non-native Sirohi (SIRO) goat breeds, situated at naturally exposed high altitude of 3505.2 m above mean sea level. The antioxidant of samples was measured by ferric reducing ability of plasma (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) activity assay, and mineral elemental quantification of Fe, Mg, Mn, Zn, Co, Cu, K, Ca, B, Ni, and Cr was performed using ICP-OES. The values of FRAP, DPPH, and Fe, Mg, Mn, Zn, Co, Cu, K, and Ca in colostrums of native goat breed was significantly (p ≤ 0.05) higher than the non-native goat. These data conclude that high altitude native goat has more antioxidant and mineral elements in colostrum than non-native colostrum. This study could provide a basis for establishing the role of colostrum supplements as a natural source to strengthen the endurance to modalities for the survival of newborn kids of goat within the native high altitude environment. This is the first report of a comparative chemometric analysis of colostrums of goat species and can be utilized to characterize the nutritional aspect of animal product with unique antioxidant and mineral nutrients composition in colostrum of goat.
Collapse
Affiliation(s)
- Prabhat Kumar
- DRDO- Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, India.
| | - Vijay K Bharti
- DRDO- Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, India.
| | - M Mukesh
- ICAR - National Bureau of Animal Genetic Resources (NBAGR), Karnal, Haryana, India
| |
Collapse
|
14
|
Mayasula VK, Arunachalam A, Sellappan S, Guvvala PR, Naidu SJ, Dintaran P, Bhatta R. Organic Zn and Cu supplementation imprints on seminal plasma mineral, biochemical/ antioxidant activities and its relationship to spermatozoal characteristics in bucks. Reprod Biol 2020; 20:220-228. [PMID: 32156534 DOI: 10.1016/j.repbio.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/25/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
This experiment was conducted to study the effect of mineral supplementation on seminal plasma minerals level, biochemical constituents and total antioxidant capacity of Osmanabadi bucks. The study comprised of forty healthy bucks, aged five months were randomly assigned to ten groups (n = 4 per group). The control group was fed with a basal diet without any additional mineral supplementation. In addition to basal diet, treatment bucks were supplemented with three graded doses of organic Zinc (Zn) as 20, 40 and 60 mg/kg dry matter (DM); organic Copper (Cu) as 12.5, 25, 37.5 mg/ kg DM and combination of Zn + Cu as Zn20+Cu12.5, Zn40+Cu25, Zn60+Cu37.5 mg /kg DM basis respectively. Minerals were supplemented for 8 months and the separated seminal plasma used for analysis of minerals, biochemical profile, total antioxidant capacity (TAC), lipid peroxidation (LPO), and protein carbonylation (PC). In treatment groups, significantly lower LPO and PC were observed, except Zn60 and Zn60+Cu37.5, where higher malondialdehyde (MDA) (P < 0.05) formed. The TAC was relatively higher (P < 0.05) in Zn20, Zn40, Cu12.5 and Zn60+Cu37.5 than control. The minerals and biochemical parameters were significantly altered and positive relationship was observed among them. From this study, it was concluded that supplemented minerals changed the seminal plasma minerals profile (Zn- 7-13; Cu- 0.5-1.9 mg/L), reduced the stress (LPO and PC of control Vs treatment as 0.3 Vs 0.1 nmol/ml and 25.7 Vs 4.3 nmol protein carbonyl/mg protein), which improved the sperm quality in Zn40, all Cu treatments and Zn60+Cu37.5 groups respectively.
Collapse
Affiliation(s)
- Venkata Krishnaiah Mayasula
- Reproductive Physiology Lab, Animal Physiology Division, Indian Council of Agriculture Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, 560030, India; Department of Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Arangasamy Arunachalam
- Reproductive Physiology Lab, Animal Physiology Division, Indian Council of Agriculture Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, 560030, India.
| | - Selvaraju Sellappan
- Reproductive Physiology Lab, Animal Physiology Division, Indian Council of Agriculture Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, 560030, India
| | - Pushpa Rani Guvvala
- Reproductive Physiology Lab, Animal Physiology Division, Indian Council of Agriculture Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, 560030, India
| | - Sharanya Jeevendra Naidu
- Reproductive Physiology Lab, Animal Physiology Division, Indian Council of Agriculture Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, 560030, India
| | - Pal Dintaran
- Animal Nutrition Division, Indian Council of Agriculture Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, 560030, India
| | - Raghavendra Bhatta
- Director, Indian Council of Agriculture Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka, 560030, India
| |
Collapse
|
15
|
GANGWAR1 CHETNA, KUMAR RAVINDRA, KHARCHE SD, JINDAL SK, CHAUDHARY UB, MISHRA AK. Effect of azolla supplementation in feed on semen freezability in bucks. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i4.89138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was conducted to evaluate the effect of azolla supplementation on semen freezability in Barbari bucks. Ten adult Barbari bucks (2–4 years old) were selected, and divided into control and treatment group (5 bucks in each group) as per completely randomized design. Bucks of control group were fed with 400 g concentrate pellet/day along with 6–7 h grazing while bucks of treatment group were supplemented with 100 g fresh azolla along with 400 g concentrate pellet and 6–7 h grazing. Semen ejaculates (8) were collected from each buck of control and treatment groups after 60 days of azolla supplementation. Immediately after collection, semen samples were evaluated for colour, volume, density, mass motility, progressive motility, live sperm count, acrosomal integrity and hypo-osmotic swelling positive spermatozoa. Then semen samples were diluted with tris–citric acid fructose diluents having 6% (v/v) glycerol as cryoprotective agent and 10% (v/v) egg yolk. After equilibration, semen samples were filled in straws and vapour frozen for 10 min 4 cm above the liquid nitrogen and finally stored into liquid nitrogen container. Post thaw motility, live sperm count, abnormalities, acrosomal integrity and hypo-osmotic swelling test were conducted to check the effect of azolla feeding on the freezability. Post thaw motility, live sperm count, acrosomal integrity and hypo-osmotic swelling positive spermatozoa were significantly higher in treatment group. It could be concluded that dietary azolla supplementation to breeding bucks improved the quality and freezability of semen favouring the use in artificial insemination program.
Collapse
|
16
|
Venkata Krishnaiah M, Arangasamy A, Selvaraju S, Guvvala PR, Ramesh K. Organic Zn and Cu interaction impact on sexual behaviour, semen characteristics, hormones and spermatozoal gene expression in bucks (Capra hircus). Theriogenology 2019; 130:130-139. [PMID: 30889405 DOI: 10.1016/j.theriogenology.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 11/17/2022]
Abstract
The reproductive performance during the transition from prepubertal to pubertal stage was evaluated in Osmanabadi breed bucks supplemented with organic Zinc (Zn) and Copper (Cu). A total number of 40 bucks aged 20 weeks were randomly assigned to 10 groups (each n = 4). The control group was maintained with basal diet, without any additional mineral supplementation. The treatment groups were supplemented with graded doses of organic Zn (Zn 20 mg, Zn 40 mg and Zn 60 mg), Cu (Cu 12.5 mg, Cu 25 mg and Cu 37.5 mg) and a combination of Zn + Cu (Zn 20 mg + Cu 12.5 mg, Zn 40 mg + Cu 25 mg and Zn 60 mg + Cu 37.5 mg), respectively for a period of 26 weeks (up to the age of 46 weeks). Sexual behaviour and scrotal biometry were recorded periodically. Blood and semen samples were collected and processed for LH estimation in blood plasma, and testosterone, T3 and T4 hormones in the seminal plasma. The mounts with ejaculation were observed earlier (P < 0.05) in the treatment bucks (from 38th week of age) than the control group (43rd week onwards). A positive correlation was observed between blood plasma LH and testosterone with total mounts (r = 0.31, P < 0.05; r = 0.51, P < 0.01) and mounts without ejaculation (r = 0.40, P < 0.01; r = 0.52, P < 0.01). A negative correlation between T4 with sperm number per ejaculation (r = -0.31, P < 0.05) and sperm concentration (r = -0.35, P < 0.05) had been noticed. Different doses of minerals showed positive interaction (P < 0.05) with sperm functional and behavioural characteristics. The spermatozoal gene expression of ODF2 and ZCCHC6 were significantly influenced by the mineral supplementation in all doses. The ZCCHC6 gene expression was positively correlated with testosterone (r = 0.50, P < 0.001) and sperm number per ejaculation (r = 0.42, P < 0.001), and ODF2 gene with T3 hormone (r = 0.34, P < 0.05). The present study indicates that the diet supplemented with organic trace minerals cause intense sexual behaviour, enhancement in sperm number per ejaculate, total motility, spermatozoal genes expression and altered LH, testosterone and T4 hormones.
Collapse
Affiliation(s)
- M Venkata Krishnaiah
- Reproductive Physiology Lab, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India; Department of Biotechnology, Jain University, Bengaluru, Karnataka 560001, India
| | - A Arangasamy
- Reproductive Physiology Lab, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India.
| | - S Selvaraju
- Reproductive Physiology Lab, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - P R Guvvala
- Reproductive Physiology Lab, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - K Ramesh
- Department of Biotechnology, Jain University, Bengaluru, Karnataka 560001, India
| |
Collapse
|
17
|
Arangasamy A, Sharma RB, Hemalatha K, Venkata Krishnaiah M, Selvaraju S, Pushpa Rani G, Binsila BK, Soren NM, Reddy IJ, Ravindra JP, Bhatta R. Relationship of organic mineral supplementation and spermatozoa/white blood cells mRNA in goats. Anim Reprod Sci 2018; 197:296-304. [PMID: 30195944 DOI: 10.1016/j.anireprosci.2018.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/10/2023]
Abstract
The antioxidant properties and the protective role of organic zinc (Zn) and copper (Cu) in white blood cells (WBCs) and spermatozoa were analyzed through quantification of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 4 (GPx4) and nuclear factor erythroid 2-like 2 (NFE2L2) and correlations were determined with sperm functional characteristics in Osmanabadi bucks. Bucks (aged 5 months; n = 40) were divided into ten groups, and the dietary treatments comprised of a control and nine treatment groups as follows: organic Zn as Zn 20, Zn 40 and Zn 60, organic Cu as Cu 12.5, Cu 25, Cu 37.5 and combined organic Zn and Cu as Zn 20+Cu 12.5, Zn 40+Cu 25, Zn 60+Cu 37.5, respectively per kg dry matter for a period of 8 months. The blood (120 and 240 days) and semen (240 days: 40 × 4 = 160) samples were collected from 40 bucks. In WBCs: the relative abundance of mRNA for SOD1, CAT, GPx4, NFE2L2 was greater (P < 0.05) in (120 and 240 days) in majority of the mineral supplemented animals. In spermatozoa: the relative abundance of SOD1, NFE2L2, GPx4 and CAT mRNA was greater (P < 0.05) in selected treatment groups. The abundance of SOD1 mRNA in WBCs was positively correlated (P < 0.05) with sperm mass motility (r = 0.692, P = 0.027). The abundance of GPx4 mRNA was negatively correlated (P < 0.05) with type A sperm (straightness; STR) > 85% and amplitude of lateral head displacement (ALH) > 2.5 μm/ s) (r = -0.711, P = 0.021) and (P < 0.05) positively correlated with sperm viability (r = 0.669, P = 0.035). Organic Zn and Cu supplementation was associated with an increase in the expression of antioxidant defense enzyme genes in bucks.
Collapse
Affiliation(s)
- A Arangasamy
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India.
| | - Renu Balkrishan Sharma
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - K Hemalatha
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - M Venkata Krishnaiah
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - S Selvaraju
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - G Pushpa Rani
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - B K Binsila
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - N M Soren
- Animal Nutrition Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - I J Reddy
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - J P Ravindra
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - Raghavendra Bhatta
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| |
Collapse
|
18
|
Hemalatha K, Arangasamy A, Selvaraju S, Krishnaiah MV, Rani G, Mishra A, Soren N, Reddy I, Ravindra J. Effect of dietary supplementation of organic zinc and copper on in vitro semen fertility in goat. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|