1
|
Yuda GPWC, Hanif N, Hermawan A. Computational Screening Using a Combination of Ligand-Based Machine Learning and Molecular Docking Methods for the Repurposing of Antivirals Targeting the SARS-CoV-2 Main Protease. Daru 2024; 32:47-65. [PMID: 37907683 PMCID: PMC11087449 DOI: 10.1007/s40199-023-00484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND COVID-19 is an infectious disease caused by SARS-CoV-2, a close relative of SARS-CoV. Several studies have searched for COVID-19 therapies. The topics of these works ranged from vaccine discovery to natural products targeting the SARS-CoV-2 main protease (Mpro), a potential therapeutic target due to its essential role in replication and conserved sequences. However, published research on this target is limited, presenting an opportunity for drug discovery and development. METHOD This study aims to repurpose 10692 drugs in DrugBank by using ligand-based virtual screening (LBVS) machine learning (ML) with Konstanz Information Miner (KNIME) to seek potential therapeutics based on Mpro inhibitors. The top candidate compounds, the native ligand (GC-376) of the Mpro inhibitor, and the positive control boceprevir were then subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) characterization, drug-likeness prediction, and molecular docking (MD). Protein-protein interaction (PPI) network analysis was added to provide accurate information about the Mpro regulatory network. RESULTS This study identified 3,166 compound candidates inhibiting Mpro. The random forest (RF) molecular access system ML model provided the highest confidence score of 0.95 (bromo-7-nitroindazole) and identified the top 22 candidate compounds. Subjecting the 22 candidate compounds, the native ligand GC-376, and boceprevir to further ADMET property characterization and drug-likeness predictions revealed that one compound had two violations of Lipinski's rule. Additional MD results showed that only five compounds had more negative binding energies than the native ligand (- 12.25 kcal/mol). Among these compounds, CCX-140 exhibited the lowest score of - 13.64 kcal/mol. Through literature analysis, six compound classes with potential activity for Mpro were discovered. They included benzopyrazole, azole, pyrazolopyrimidine, carboxylic acids and derivatives, benzene and substituted derivatives, and diazine. Four pathologies were also discovered on the basis of the Mpro PPI network. CONCLUSION Results demonstrated the efficiency of LBVS combined with MD. This combined strategy provided positive evidence showing that the top screened drugs, including CCX-140, which had the lowest MD score, can be reasonably advanced to the in vitro phase. This combined method may accelerate the discovery of therapies for novel or orphan diseases from existing drugs.
Collapse
Affiliation(s)
- Gusti Putu Wahyunanda Crista Yuda
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Naufa Hanif
- Master Student of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Dong Y, Sun R, Fu J, Huang R, Yao H, Wang J, Wang Y, Shen F. Effects of beta-blockers use on mortality of patients with acute respiratory distress syndrome: a retrospective cohort study. Front Physiol 2024; 15:1332571. [PMID: 38312313 PMCID: PMC10834676 DOI: 10.3389/fphys.2024.1332571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction: Acute respiratory distress syndrome (ARDS) remains a challenging disease with limited prevention and treatment options. The usage of beta-blockers may have potential benefits in different critical illnesses. This study aimed to investigate the correlation between beta-blocker therapy and mortality in patients with ARDS. Materials and methods: This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care (MIMIC) IV database and focused on patients diagnosed with ARDS. The primary outcome of the study was 30-day mortality. To account for confounding factors, a multivariable analysis was performed. Propensity score matching (PSM) was carried out on a 1:1 ratio. Robust assessments were conducted using inverse probability weighting (IPTW), standardized mortality ratio weighting (SMRW), pairwise algorithms (PA), and overlap weights (OW). Results: A total of 1,104 patients with ARDS were included in the study. Univariate and multivariate Cox regression analyses found that the 30-day mortality for 489 patients (23.7%) who received beta-blockers was significantly lower than the mortality rate of 615 patients (35.9%) who did not receive beta-blockers. After adjusting for potential confounders through PSM and propensity score, as well as utilizing IPTW, SMRW, PA, and OW, the results remained robust, with the hazard ratios (HR) ranging from 0.42 to 0.58 and all p-values < 0.001. Evaluation of the E-values indicated the robustness of the results even in the presence of unmeasured confounding. Conclusion: The findings suggest a potential association between beta-blocker usage and reduced mortality in critically ill patients with ARDS. However, further validation of this observation is needed through randomized controlled trials.
Collapse
Affiliation(s)
- Yukang Dong
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang, China
- Department of Emergency, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Run Sun
- Department of Emergency, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiangquan Fu
- Department of Emergency Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Rui Huang
- Department of Emergency Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Huan Yao
- Xiangya School of Nursing, Central South University, Changsha, Hunan, China
- Nursing Department, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jingni Wang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Ying Wang
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Feng Shen
- Department of Intensive Care Unit, Guizhou Medical University Affiliated Hospital, Guiyang, China
| |
Collapse
|
3
|
Kumar A, Hooda P, Puri A, Khatter R, S. Al-Dosari M, Sinha N, Parvez MK, Sehgal D. Methotrexate, an anti-inflammatory drug, inhibits Hepatitis E viral replication. J Enzyme Inhib Med Chem 2023; 38:2280500. [PMID: 37975328 PMCID: PMC11003484 DOI: 10.1080/14756366.2023.2280500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Hepatitis E Virus (HEV) is a positively oriented RNA virus having a 7.2 kb genome. HEV consists of three open reading frames (ORF1-3). Of these, ORF1 codes for the enzymes Methyltransferase (Mtase), Papain-like cysteine protease (PCP), RNA helicase, and RNA-dependent RNA polymerase (RdRp). Unavailability of a vaccine or effective drug against HEV and considering the side effects associated with the off-label use of ribavirin (RBV) and pegylated interferons, an alternative approach is required by the modulation of specific enzymes to prevent the infection. HEV helicase is involved in unwinding the double-stranded RNA, RNA processing, transcriptional regulation, and pre-mRNA processing. Therefore, we screened FDA-approved compounds from the ZINC15 database against the modelled 3D structure of HEV helicase and found that methotrexate and compound A (Pubchem ID BTB07890) inhibit the NTPase and dsRNA unwinding activity leading to inhibition of HEV RNA replication. This may be further authenticated by in vivo study.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Preeti Hooda
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Anindita Puri
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Radhika Khatter
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Neha Sinha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Deepak Sehgal
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| |
Collapse
|
4
|
Chauhan NR, Kundu S, Bal R, Chattopadhyay D, Sahu R, Mehto S, Yadav R, Krishna S, Jena KK, Satapathy S, Pv A, Murmu KC, Singh B, Patnaik S, Jena S, Harshan KH, Syed GH, Idris MM, Prasad P, Chauhan S. Transgenic mouse models support a protective role of type I IFN response in SARS-CoV-2 infection-related lung immunopathology and neuroinvasion. Cell Rep 2023; 42:113275. [PMID: 37874678 DOI: 10.1016/j.celrep.2023.113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Type I interferon (IFN-I) response is the first line of host defense against invading viruses. In the absence of definite mouse models, the role of IFN-I in SARS-CoV-2 infection remains perplexing. Here, we develop two mouse models, one with constitutively high IFN-I response (hACE2; Irgm1-/-) and the other with dampened IFN-I response (hACE2; Ifnar1-/-), to comprehend the role of IFN-I response. We report that hACE2; Irgm1-/- mice are resistant to lethal SARS-CoV-2 infection. In contrast, a severe SARS-CoV-2 infection along with immune cell infiltration, cytokine storm, and enhanced pathology is observed in the lungs and brain of hACE2; Ifnar1-/- mice. The hACE2; Irgm1-/-Ifnar1-/- double-knockout mice display loss of the protective phenotype observed in hACE2; Irgm1-/- mice, suggesting that heightened IFN-I response accounts for the observed immunity. Taking the results together, we demonstrate that IFN-I protects from lethal SARS-CoV-2 infection, and Irgm1 (IRGM) could be an excellent therapeutic target against SARS-CoV-2.
Collapse
Affiliation(s)
- Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India.
| | - Soumya Kundu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Diya Chattopadhyay
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Sameekshya Satapathy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Anusha Pv
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Bharati Singh
- Virus-Host Interactions Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Sarita Jena
- Experimental Animal Facility, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Gulam Hussain Syed
- Virus-Host Interactions Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Mohammed M Idris
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
| | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar 751023, India
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India.
| |
Collapse
|
5
|
Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. In vitro reconstitution of SARS-CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. Genes Dev 2023; 37:844-860. [PMID: 37821106 PMCID: PMC10620056 DOI: 10.1101/gad.350829.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on β-globin, EMCV IRES, and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nt downstream from the mRNA entrance, indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of the Nsp1 NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Yani Arhab
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
6
|
Mulgaonkar N, Wang H, Zhang J, Roundy CM, Tang W, Chaki SP, Pauvolid-Corrêa A, Hamer GL, Fernando S. Montelukast and Telmisartan as Inhibitors of SARS-CoV-2 Omicron Variant. Pharmaceutics 2023; 15:1891. [PMID: 37514075 PMCID: PMC10385313 DOI: 10.3390/pharmaceutics15071891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Earlier studies with montelukast (M) and telmisartan (T) have revealed their potential antiviral properties against SARS-CoV-2 wild-type (WT) but have not assessed their efficacy against emerging Variants of Concern (VOCs) such as Omicron. Our research fills this gap by investigating these drugs' impact on VOCs, a topic that current scientific literature has largely overlooked. We employed computational methodologies, including molecular mechanics and machine learning tools, to identify drugs that could potentially disrupt the SARS-CoV-2 spike RBD-ACE2 protein interaction. This led to the identification of two FDA-approved small molecule drugs, M and T, conventionally used for treating asthma and hypertension, respectively. Our study presents an additional potential use for these drugs as antivirals. Our results show that both M and T can inhibit not only the WT SARS-CoV-2 but also, in the case of M, the Omicron variant, without reaching cytotoxic concentrations. This novel finding fills an existing gap in the literature and introduces the possibility of repurposing these drugs for SARS-CoV-2 VOCs, an essential step in responding to the evolving global pandemic.
Collapse
Affiliation(s)
- Nirmitee Mulgaonkar
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| | - Haoqi Wang
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| | - Junrui Zhang
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| | | | - Wendy Tang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sankar Prasad Chaki
- Texas A&M Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX 77843, USA
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sandun Fernando
- Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Sinha A, Sangeet S, Roy S. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS OMEGA 2023; 8:23283-23304. [PMID: 37426203 PMCID: PMC10324094 DOI: 10.1021/acsomega.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Novel coronavirus (SARS-CoV-2) enters its host cell through a surface spike protein. The viral spike protein has undergone several modifications/mutations at the genomic level, through which it modulated its structure-function and passed through several variants of concern. Recent advances in high-resolution structure determination and multiscale imaging techniques, cost-effective next-generation sequencing, and development of new computational methods (including information theory, statistical methods, machine learning, and many other artificial intelligence-based techniques) have hugely contributed to the characterization of sequence, structure, function of spike proteins, and its different variants to understand viral pathogenesis, evolutions, and transmission. Laying on the foundation of the sequence-structure-function paradigm, this review summarizes not only the important findings on structure/function but also the structural dynamics of different spike components, highlighting the effects of mutations on them. As dynamic fluctuations of three-dimensional spike structure often provide important clues for functional modulation, quantifying time-dependent fluctuations of mutational events over spike structure and its genetic/amino acidic sequence helps identify alarming functional transitions having implications for enhanced fusogenicity and pathogenicity of the virus. Although these dynamic events are more difficult to capture than quantifying a static, average property, this review encompasses those challenging aspects of characterizing the evolutionary dynamics of spike sequence and structure and their implications for functions.
Collapse
|
8
|
Di Salvatore V, Crispino E, Maleki A, Nicotra G, Russo G, Pappalardo F. Computational identification of differentially-expressed genes as suggested novel COVID-19 biomarkers: A bioinformatics analysis of expression profiles. Comput Struct Biotechnol J 2023; 21:3339-3354. [PMID: 37347079 PMCID: PMC10259169 DOI: 10.1016/j.csbj.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
COVID-19 was declared a pandemic in March 2020, and since then, it has not stopped spreading like wildfire in almost every corner of the world, despite the many efforts made to stem its spread. SARS-CoV-2 has one of the biggest genomes among RNA viruses and presents unique characteristics that differentiate it from other coronaviruses, making it even more challenging to find a cure or vaccine that is efficient enough. This work aims, using RNA sequencing (RNA-Seq) data, to evaluate whether the expression of specific human genes in the host can vary in different grades of disease severity and to determine the molecular origins of the differences in response to SARS-CoV-2 infection in different patients. In addition to quantifying gene expression, data coming from RNA-Seq allow for the discovery of new transcripts, the identification of alternative splicing events, the detection of allele-specific expression, and the detection of post-transcriptional alterations. For this reason, we performed differential expression analysis on different expression profiles of COVID-19 patients, using RNA-Seq data coming from NCBI public repository, and we obtained the lists of all differentially expressed genes (DEGs) emerging from 7 experimental conditions. We performed a Gene Set Enrichment Analysis (GSEA) on these genes to find possible correlations between DEGs and known disease phenotypes. We mainly focused on DEGs coming out from the analysis of the contrasts involving severe conditions to infer any possible relation between a worsening of the clinical picture and an over-representation of specific genes. Based on the obtained results, this study indicates a small group of genes that result up-regulated in the severe form of the disease. EXOSC5, MESD, REXO2, and TRMT2A genes are not differentially expressed or not present in the other conditions, being for that reason, good biomarkers candidates for the severe form of COVID-19 disease. The use of specific over-expressed genes, whether up-regulated or down-regulated, which have an individual role in each different condition of COVID-19 as a biomarker, can assist in early diagnosis.
Collapse
Affiliation(s)
| | - Elena Crispino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Avisa Maleki
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Giulia Nicotra
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giulia Russo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Mimesis SRL, Catania, Italy
| | | |
Collapse
|
9
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
10
|
Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. In vitro reconstitution of SARS CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542379. [PMID: 37292671 PMCID: PMC10245999 DOI: 10.1101/2023.05.25.542379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on β-globin, EMCV IRES and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nucleotides downstream from the mRNA entrance indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of Nsp1-NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
11
|
Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: A systematic review of in vitro studies. J Virus Erad 2023:100327. [PMID: 37363132 PMCID: PMC10214743 DOI: 10.1016/j.jve.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The recent outbreak of SARS-CoV-2 significantly increased the need to find inhibitors that target the essential enzymes for virus replication in the host cells. This systematic review was conducted to identify potential inhibitors of SARS-CoV, MERS-CoV, and SARS-CoV-2 helicases that have been tested by in vitro methods. The inhibition mechanisms of these compounds were discussed in this review, in addition to their cytotoxic and viral infection protection properties. Methods The databases PUBMED/MEDLINE, EMBASE, SCOPUS, and Web of Science were searched using different combinations of the keywords "helicase", "nsp13", "inhibitors", "coronaviridae", "coronaviruses", "virus replication", "replication", and "antagonists and inhibitors". Results By the end of this search, a total of 6854 articles had been identified. Thirty-one articles were included in this review. These studies reported the inhibitory effects of 309 compounds on SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase activities measured by in vitro methods. Helicase inhibitors were categorized according to the type of coronavirus and the type of tested enzymatic activity, nature, approval, inhibition level, cytotoxicity, and viral infection protection effects. These inhibitors are classified according to the site of their interaction with the coronavirus helicases into four types: zinc-binding site inhibitors, nucleic acid binding site inhibitors, nucleotide-binding site inhibitors, and inhibitors with no clear interaction site. Conclusion Evidence from in vitro studies suggests that helicase inhibitors have a high potential as antiviral agents. Several helicase inhibitors tested in vitro showed good antiviral activities while maintaining moderate cytotoxicity. These inhibitors should be clinically investigated to determine their efficiency in treating different coronavirus infections, particularly COVID-19.
Collapse
Affiliation(s)
- Nimer Mehyar
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Wang Q, Chen G, He J, Li J, Xiong M, Su H, Li M, Hu H, Xu Y. Structure-Based Design of Potent Peptidomimetic Inhibitors Covalently Targeting SARS-CoV-2 Papain-like Protease. Int J Mol Sci 2023; 24:ijms24108633. [PMID: 37239980 DOI: 10.3390/ijms24108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a critical role in the proteolytic processing of viral polyproteins and the dysregulation of the host immune response, providing a promising therapeutic target. Here, we report the structure-guide design of novel peptidomimetic inhibitors covalently targeting SARS-CoV-2 PLpro. The resulting inhibitors demonstrate submicromolar potency in the enzymatic assay (IC50 = 0.23 μM) and significant inhibition of SARS-CoV-2 PLpro in the HEK293T cells using a cell-based protease assay (EC50 = 3.61 μM). Moreover, an X-ray crystal structure of SARS-CoV-2 PLpro in complex with compound 2 confirms the covalent binding of the inhibitor to the catalytic residue cysteine 111 (C111) and emphasizes the importance of interactions with tyrosine 268 (Y268). Together, our findings reveal a new scaffold of SARS-CoV-2 PLpro inhibitors and provide an attractive starting point for further optimization.
Collapse
Affiliation(s)
- Qian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guofeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiameng Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hangchen Hu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yechun Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
13
|
Ching WY, Adhikari P, Jawad B, Podgornik R. Towards Quantum-Chemical Level Calculations of SARS-CoV-2 Spike Protein Variants of Concern by First Principles Density Functional Theory. Biomedicines 2023; 11:517. [PMID: 36831053 PMCID: PMC9953097 DOI: 10.3390/biomedicines11020517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The spike protein (S-protein) is a crucial part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with its many domains responsible for binding, fusion, and host cell entry. In this review we use the density functional theory (DFT) calculations to analyze the atomic-scale interactions and investigate the consequences of mutations in S-protein domains. We specifically describe the key amino acids and functions of each domain, which are essential for structural stability as well as recognition and fusion processes with the host cell; in addition, we speculate on how mutations affect these properties. Such unprecedented large-scale ab initio calculations, with up to 5000 atoms in the system, are based on the novel concept of amino acid-amino acid-bond pair unit (AABPU) that allows for an alternative description of proteins, providing valuable information on partial charge, interatomic bonding and hydrogen bond (HB) formation. In general, our results show that the S-protein mutations for different variants foster an increased positive partial charge, alter the interatomic interactions, and disrupt the HB networks. We conclude by outlining a roadmap for future computational research of biomolecular virus-related systems.
Collapse
Affiliation(s)
- Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
14
|
Singh DD, Han I, Choi EH, Yadav DK. A Clinical Update on SARS-CoV-2: Pathology and Development of Potential Inhibitors. Curr Issues Mol Biol 2023; 45:400-433. [PMID: 36661514 PMCID: PMC9857284 DOI: 10.3390/cimb45010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome) is highly infectious and causes severe acute respiratory distress syndrome (SARD), immune suppression, and multi-organ failure. For SARS-CoV-2, only supportive treatment options are available, such as oxygen supportive therapy, ventilator support, antibiotics for secondary infections, mineral and fluid treatment, and a significant subset of repurposed effective drugs. Viral targeted inhibitors are the most suitable molecules, such as ACE2 (angiotensin-converting enzyme-2) and RBD (receptor-binding domain) protein-based inhibitors, inhibitors of host proteases, inhibitors of viral proteases 3CLpro (3C-like proteinase) and PLpro (papain-like protease), inhibitors of replicative enzymes, inhibitors of viral attachment of SARS-CoV-2 to the ACE2 receptor and TMPRSS2 (transmembrane serine proteinase 2), inhibitors of HR1 (Heptad Repeat 1)-HR2 (Heptad Repeat 2) interaction at the S2 protein of the coronavirus, etc. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Even with the tremendous progress made, creating effective drugs remains difficult. To develop COVID-19 treatment alternatives, clinical studies are examining a variety of therapy categories, including antibodies, antivirals, cell-based therapy, repurposed diagnostic medicines, and more. In this article, we discuss recent clinical updates on SARS-CoV-2 infection, clinical characteristics, diagnosis, immunopathology, the new emergence of variant, SARS-CoV-2, various approaches to drug development and treatment options. The development of therapies has been complicated by the global occurrence of many SARS-CoV-2 mutations. Discussion of this manuscript will provide new insight into drug pathophysiology and drug development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of R&D Center, Arontier Co., Seoul 06735, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| |
Collapse
|
15
|
Singh MB, Sharma R, Kumar D, Khanna P, Mansi, Khanna L, Kumar V, Kumari K, Gupta A, Chaudhary P, Kaushik N, Choi EH, Kaushik NK, Singh P. An understanding of coronavirus and exploring the molecular dynamics simulations to find promising candidates against the Mpro of nCoV to combat the COVID-19: A systematic review. J Infect Public Health 2022; 15:1326-1349. [PMID: 36288640 PMCID: PMC9579205 DOI: 10.1016/j.jiph.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
The first infection case of new coronavirus was reported at the end of 2019 and after then, the cases are reported in all nations across the world in a very short period. Further, the regular news of mutations in the virus has made life restricted with appropriate behavior. To date, a new strain (Omicron and its new subvariant Omicron XE) has brought fear amongst us due to a higher trajectory of increase in the number of cases. The researchers thus started giving attention to this viral infection and discovering drug-like candidates to cure the infections. Finding a drug for any viral infection is not an easy task and takes plenty of time. Therefore, computational chemistry/bioinformatics is followed to get promising molecules against viral infection. Molecular dynamics (MD) simulations are being explored to get drug candidates in a short period. The molecules are screened via molecular docking, which provides preliminary information which can be further verified by molecular dynamics (MD) simulations. To understand the change in structure, MD simulations generated several trajectories such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bonding, and radius of gyration for the main protease (Mpro) of the new coronavirus (nCoV) in the presence of small molecules. Additionally, change in free energy for the formation of complex of Mpro of nCoV with the small molecule can be determined by applying molecular mechanics with generalized born and surface area solvation (MM-GBSA). Thus, the promising molecules can be further explored for clinical trials to combat coronavirus disease-19 (COVID-19).
Collapse
Affiliation(s)
- Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Mansi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Vinod Kumar
- Special Centre for Nanoscience (SCNS), Jawaharlal Nehru University, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, New Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Preeti Chaudhary
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong-si 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| |
Collapse
|
16
|
Santillo E, Migale M. Beta receptor blocker therapy for the elderly in the COVID-19 era. World J Clin Cases 2022; 10:8088-8096. [PMID: 36159512 PMCID: PMC9403662 DOI: 10.12998/wjcc.v10.i23.8088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
When the coronavirus disease 2019 (COVID-19) pandemic spread globally from the Hubei region of China in December 2019, the impact on elderly people was particularly unfavorable. The mortality associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was highest in older individuals, in whom frailty and comorbidities increased susceptibility to severe forms of COVID-19. Unfortunately, in older patients, the course of COVID-19 was often characterized by significant cardiovascular complications, such as heart failure decompensation, arrhythmias, pericarditis, and myopericarditis. Ensuring that the elderly have adequate therapeutic coverage against known cardiovascular diseases and risk factors is particularly important in the COVID-19 era. Beta blockers are widely used for the treatment and prevention of cardiovascular disease. The clinical benefits of beta blockers have been confirmed in elderly patients, and in addition to their negative chronotropic effect, sympathetic inhibition and anti-inflammatory activity are theoretically of great benefit for the treatment of COVID-19 infection. Beta blockers have not been clearly shown to prevent SARS-CoV-2 infection, but there is evidence from published studies including elderly patients that beta blockers are associated with a more favorable clinical course of COVID-19 and reduced mortality. In this minireview, we summarize the most important evidence available in the literature on the usefulness of beta blocker therapy for older patients in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Elpidio Santillo
- Geriatric Rehabilitative Department, IRCCS-INRCA, Fermo 63900, Italy
| | - Monica Migale
- Geriatric Rehabilitative Department, IRCCS-INRCA, Fermo 63900, Italy
| |
Collapse
|
17
|
Singh B, Avula K, Chatterjee S, Datey A, Ghosh A, De S, Keshry SS, Ghosh S, Suryawanshi AR, Dash R, Senapati S, Beuria TK, Prasad P, Raghav S, Swain R, Parida A, Hussain Syed G, Chattopadhyay S. Isolation and Characterization of Five Severe Acute Respiratory Syndrome Coronavirus 2 Strains of Different Clades and Lineages Circulating in Eastern India. Front Microbiol 2022; 13:856913. [PMID: 35847066 PMCID: PMC9279865 DOI: 10.3389/fmicb.2022.856913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts, and rapid emergence of new variants urge for the establishment of research infrastructure to facilitate the rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, SARS-CoV-2 strains were isolated from patient swab samples collected during the first COVID-19 wave in Odisha, India. The viral isolates were adapted to in vitro cultures and further characterized to identify strain-specific variations in viral growth characteristics. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government-run vaccine drive in India. The major goal was to isolate and adapt SARS-CoV-2 viruses in cell culture with minimum modifications to facilitate research activities involved in the understanding of the molecular virology, host-virus interactions, drug discovery, and animal challenge models that eventually contribute toward the development of reliable therapeutics.
Collapse
Affiliation(s)
- Bharati Singh
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Kiran Avula
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Datey
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, India
| | | | | | | | | | | | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, India
| | | | | |
Collapse
|
18
|
Synergistic interactions of repurposed drugs that inhibit Nsp1, a major virulence factor for COVID-19. Sci Rep 2022; 12:10174. [PMID: 35715434 PMCID: PMC9204075 DOI: 10.1038/s41598-022-14194-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nsp1 is one of the first proteins expressed from the SARS-CoV-2 genome and is a major virulence factor for COVID-19. A rapid multiplexed assay for detecting the action of Nsp1 was developed in cultured lung cells. The assay is based on the acute cytopathic effects induced by Nsp1. Virtual screening was used to stratify compounds that interact with two functional Nsp1 sites: the RNA-binding groove and C-terminal helix-loop-helix region. Experimental screening focused on compounds that could be readily repurposed to treat COVID-19. Multiple synergistic combinations of compounds that significantly inhibited Nsp1 action were identified. Among the most promising combinations are Ponatinib, Rilpivirine, and Montelukast, which together, reversed the toxic effects of Nsp1 to the same extent as null mutations in the Nsp1 gene.
Collapse
|
19
|
Jamir E, Sarma H, Priyadarsinee L, Nagamani S, Kiewhuo K, Gaur AS, Rawal RK, Murugan NA, Subramanian V, Sastry GN. Applying polypharmacology approach for drug repurposing for SARS-CoV2. J CHEM SCI 2022; 134:57. [PMID: 35498548 PMCID: PMC9028909 DOI: 10.1007/s12039-022-02046-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Exploring the new therapeutic indications of known drugs for treating COVID-19, popularly known as drug repurposing, is emerging as a pragmatic approach especially owing to the mounting pressure to control the pandemic. Targeting multiple targets with a single drug by employing drug repurposing known as the polypharmacology approach may be an optimised strategy for the development of effective therapeutics. In this study, virtual screening has been carried out on seven popular SARS-CoV-2 targets (3CLpro, PLpro, RdRp (NSP12), NSP13, NSP14, NSP15, and NSP16). A total of 4015 approved drugs were screened against these targets. Four drugs namely venetoclax, tirilazad, acetyldigitoxin, and ledipasvir have been selected based on the docking score, ability to interact with four or more targets and having a reasonably good number of interactions with key residues in the targets. The MD simulations and MM-PBSA studies showed reasonable stability of protein-drug complexes and sustainability of key interactions between the drugs with their respective targets throughout the course of MD simulations. The identified four drug molecules were also compared with the known drugs namely elbasvir and nafamostat. While the study has provided a detailed account of the chosen protein-drug complexes, it has explored the nature of seven important targets of SARS-CoV-2 by evaluating the protein-drug complexation process in great detail.
Collapse
Affiliation(s)
- Esther Jamir
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kikrusenuo Kiewhuo
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anamika Singh Gaur
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ravindra K Rawal
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Natarajan Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Center for High Computing, CSIR- Central Leather Research Institute (CLRI), Chennai, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR – North East Institute of Science and Technology, Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
21
|
Piplani S, Singh P, Petrovsky N, Winkler DA. Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (Mpro) as Potential COVID-19 Therapies. Front Mol Biosci 2022; 9:781039. [PMID: 35359601 PMCID: PMC8964187 DOI: 10.3389/fmolb.2022.781039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
We urgently need to identify drugs to treat patients suffering from COVID-19 infection. Drugs rarely act at single molecular targets. Off-target effects are responsible for undesirable side effects and beneficial synergy between targets for specific illnesses. They have provided blockbuster drugs, e.g., Viagra for erectile dysfunction and Minoxidil for male pattern baldness. Existing drugs, those in clinical trials, and approved natural products constitute a rich resource of therapeutic agents that can be quickly repurposed, as they have already been assessed for safety in man. A key question is how to screen such compounds rapidly and efficiently for activity against new pandemic pathogens such as SARS-CoV-2. Here, we show how a fast and robust computational process can be used to screen large libraries of drugs and natural compounds to identify those that may inhibit the main protease of SARS-CoV-2. We show that the shortlist of 84 candidates with the strongest predicted binding affinities is highly enriched (≥25%) in compounds experimentally validated in vivo or in vitro to have activity in SARS-CoV-2. The top candidates also include drugs and natural products not previously identified as having COVID-19 activity, thereby providing leads for experimental validation. This predictive in silico screening pipeline will be valuable for repurposing existing drugs and discovering new drug candidates against other medically important pathogens relevant to future pandemics.
Collapse
Affiliation(s)
- Sakshi Piplani
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Puneet Singh
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| | - David A. Winkler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| |
Collapse
|
22
|
Urda L, Kreuter MH, Drewe J, Boonen G, Butterweck V, Klimkait T. The Petasites hybridus CO 2 Extract (Ze 339) Blocks SARS-CoV-2 Replication In Vitro. Viruses 2022; 14:v14010106. [PMID: 35062310 PMCID: PMC8781559 DOI: 10.3390/v14010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), has spread worldwide, affecting over 250 million people and resulting in over five million deaths. Antivirals that are effective are still limited. The antiviral activities of the Petasites hybdridus CO2 extract Ze 339 were previously reported. Thus, to assess the anti-SARS-CoV-2 activity of Ze 339 as well as isopetasin and neopetasin as major active compounds, a CPE and plaque reduction assay in Vero E6 cells was used for viral output. Antiviral effects were tested using the original virus (Wuhan) and the Delta variant of SARS-CoV-2. The antiviral drug remdesivir was used as control. Pre-treatment with Ze 339 in SARS-CoV-2-infected Vero E6 cells with either virus variant significantly inhibited virus replication with IC50 values of 0.10 and 0.40 μg/mL, respectively. The IC50 values obtained for isopetasin ranged between 0.37 and 0.88 μM for both virus variants, and that of remdesivir ranged between 1.53 and 2.37 μM. In conclusion, Ze 339 as well as the petasins potently inhibited SARS-CoV-2 replication in vitro of the Wuhan and Delta variants. Since time is of essence in finding effective treatments, clinical studies will have to demonstrate if Ze339 can become a therapeutic option to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Lorena Urda
- Department Biomedicine, University of Basel, Petersplatz 10, 4051 Basel, Switzerland
| | | | - Jürgen Drewe
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Georg Boonen
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Veronika Butterweck
- Medical Department, Max Zeller & Söhne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland
| | - Thomas Klimkait
- Department Biomedicine, University of Basel, Petersplatz 10, 4051 Basel, Switzerland
| |
Collapse
|
23
|
Laughlin ZT, Conn GL. Tuberactinomycin antibiotics: Biosynthesis, anti-mycobacterial action, and mechanisms of resistance. Front Microbiol 2022; 13:961921. [PMID: 36033858 PMCID: PMC9403184 DOI: 10.3389/fmicb.2022.961921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
The tuberactinomycins are a family of cyclic peptide ribosome-targeting antibiotics with a long history of use as essential second-line treatments for drug-resistant tuberculosis. Beginning with the identification of viomycin in the early 1950s, this mini-review briefly describes tuberactinomycin structures and biosynthesis, as well as their past and present application in the treatment of tuberculosis caused by infection with Mycobacterium tuberculosis. More recent studies are also discussed that have revealed details of tuberactinomycin action on the ribosome as well as resistance mechanisms that have emerged since their introduction into the clinic. Finally, future applications of these drugs are considered in the context of their recent removal from the World Health Organization's List of Essential Medicines.
Collapse
Affiliation(s)
- Zane T Laughlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA, United States
| |
Collapse
|
24
|
May BC, Gallivan KH. Levocetirizine and montelukast in the COVID-19 treatment paradigm. Int Immunopharmacol 2021; 103:108412. [PMID: 34942461 PMCID: PMC8673734 DOI: 10.1016/j.intimp.2021.108412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Levocetirizine, a third-generation antihistamine, and montelukast, a leukotriene receptor antagonist, exhibit remarkable synergistic anti-inflammatory activity across a spectrum of signaling proteins, cell adhesion molecules, and leukocytes. By targeting cellular protein activity, they are uniquely positioned to treat the symptoms of COVID-19. Clinical data to date with an associated six-month follow-up, suggests the combination therapy may prevent the progression of the disease from mild to moderate to severe, as well as prevent/treat many of the aspects of ‘Long COVID,’ thereby cost effectively reducing both morbidity and mortality. To investigate patient outcomes, 53 consecutive COVID-19 test (+) cases (ages 3–90) from a well-established, single-center practice in Boston, Massachusetts, between March – November 2020, were treated with levocetirizine and montelukast in addition to then existing protocols [2]. The data set was retrospectively reviewed. Thirty-four cases were considered mild (64%), 17 moderate (32%), and 2 (4%) severe. Several patients presented with significant comorbidities (obesity: n = 22, 41%; diabetes: n = 10, 19%; hypertension: n = 24, 45%). Among the cohort there were no exclusions, no intubations, and no deaths. The pilot study in Massachusetts encompassed the first COVID-19 wave which peaked on April 23, 2020 as well as the ascending portion of the second wave in the fall. During this period the average weekly COVID-19 case mortality rate (confirmed deaths/confirmed cases) varied considerably between 1 and 7.5% [37]. FDA has approved a multicenter, randomized, placebo-controlled, Phase 2 clinical trial design, replete with electronic diaries and laboratory metrics to explore scientific questions not addressed herein.
Collapse
Affiliation(s)
- Bruce Chandler May
- Inflammatory Response Research, Inc., 515 E. Micheltorena, Suite G, Santa Barbara, CA 93103, United States; Otolaryngology, Head & Neck Surgery, Cottage Health, 400 West Pueblo Street, Santa Barbara, CA 93105, United States.
| | - Kathleen Holly Gallivan
- Otolaryngology, Head & Neck Surgery, 100 Unicorn Park, Suite 102, Woburn, MA 01801, United States.
| |
Collapse
|
25
|
Pandolfi S, Chirumbolo S, Ricevuti G, Valdenassi L, Bjørklund G, Lysiuk R, Doşa MD, Lenchyk L, Fazio S. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality: Time for a suitable proposal. Basic Clin Pharmacol Toxicol 2021; 130:225-239. [PMID: 34811895 PMCID: PMC9011697 DOI: 10.1111/bcpt.13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
The COVID‐19 pandemic is a highly dramatic concern for mankind. In Italy, the pandemic exerted its major impact throughout the period of February to June 2020. To date, the awkward amount of more than 134,000 deaths has been reported. Yet, post‐mortem autopsy was performed on a very modest number of patients who died from COVID‐19 infection, leading to a first confirmation of an immune‐thrombosis of the lungs as the major COVID‐19 pathogenesis, likewise for SARS. Since then (June–August 2020), no targeted early therapy considering this pathogenetic issue was approached. The patients treated with early anti‐inflammatory, anti‐platelet, anticoagulant and antibiotic therapy confirmed that COVID‐19 was an endothelial inflammation with immuno‐thrombosis. Patients not treated or scarcely treated with the most proper and appropriate therapy and in the earliest, increased the hospitalization rate in the intensive care units and also mortality, due to immune‐thrombosis from the pulmonary capillary district and alveoli. The disease causes widespread endothelial inflammation, which can induce damage to various organs and systems. Therapy must be targeted in this consideration, and in this review, we demonstrate how early anti‐inflammatory therapy may treat endothelia inflammation and immune‐thrombosis caused by COVID‐19, by using drugs we are going to recommend in this paper.
Collapse
Affiliation(s)
- Sergio Pandolfi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy.,Unit of Neurosurgery, Villa Mafalda Health Clinics, Rome, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | | | - Luigi Valdenassi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Geir Bjørklund
- Department of Direction Board, Council for Nutritional an Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Radder SB, Melavanki R, Hiremath SM, Kusanur R, Khemalapure SS, Jeyaseelan SC. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR & UV-Vis), reactive (ELF, LOL, Fukui), drug likeness and molecular docking insights on novel 4-[3-(3-methoxy-phenyl)-3-oxo-propenyl]-benzonitrile by experimental and computational methods. Heliyon 2021; 7:e08429. [PMID: 34877424 PMCID: PMC8632848 DOI: 10.1016/j.heliyon.2021.e08429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
The spectroscopic analysis such as FT-IR, FT-Raman, UV-Vis and NMR are conducted for the synthesized molecule by both experimental and theoretical approach. The theoretical computations were achieved by DFT method with B3LYP functional and 6-311 ++ G (d, P) basis set. Firstly the geometrical parameters obtained by DFT are compared with the related experimental parameters. Experimental FT-IR and FT-Raman spectra of the title molecule have been acquired. The vibrational analysis is conducted and the assignments concerned to the observed bands are mentioned through the potential energy distribution (PED). The GIAO method was employed for theoretical NMR analysis and the results are compared with experimental chemical shifts. In accumulation to these analyses NLO, NBO, FMO and MEP analysis have been conducted to understand the nature of the molecule. ELF and LOL were performed. The drug likeness and molecular docking studies also conducted. The potency of inhibition of molecule against MPRO and PLPRO receptors has been performed using molecular docking studies.
Collapse
Affiliation(s)
- Shivaraj B. Radder
- Department of Physics, M S Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
- Affiliated to Visvesvaraya Technological University, Belgaum, 590018, Karnataka, India
| | - Raveendra Melavanki
- Department of Physics, M S Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
- Affiliated to Visvesvaraya Technological University, Belgaum, 590018, Karnataka, India
| | - Sudhir M. Hiremath
- Department of P.G. Studies in Physics, KLE Society's J.T. College, Gadag, 582101, Karnataka, India
| | - Raviraj. Kusanur
- Department of Chemistry, R.V. College of Engineering, Bangalore, 560059, Karnataka, India
| | - Seema S. Khemalapure
- P.G. Department of Studies and Research in Physics, KLE Society's P.C. Jabin Science College, Hubballi, 580031, Karnataka, India
| | | |
Collapse
|
27
|
Durdagi S, Avsar T, Orhan MD, Serhatli M, Balcioglu BK, Ozturk HU, Kayabolen A, Cetin Y, Aydinlik S, Bagci-Onder T, Tekin S, Demirci H, Guzel M, Akdemir A, Calis S, Oktay L, Tolu I, Butun YE, Erdemoglu E, Olkan A, Tokay N, Işık Ş, Ozcan A, Acar E, Buyukkilic S, Yumak Y. The neutralization effect of montelukaston SARS-CoV-2 is shown by multiscale in silicosimulations and combined in vitro studies. Mol Ther 2021; 30:963-974. [PMID: 34678509 PMCID: PMC8524809 DOI: 10.1016/j.ymthe.2021.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Serdar Durdagi
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Didem Orhan
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Serhatli
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Bertan Koray Balcioglu
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Hasan Umit Ozturk
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Alisan Kayabolen
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Yuksel Cetin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Seyma Aydinlik
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Saban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli; Department of Basic Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Hasan Demirci
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Calis
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34485 Istanbul, Turkey
| | - Lalehan Oktay
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Ilayda Tolu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Yasar Enes Butun
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ece Erdemoglu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Alpsu Olkan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Nurettin Tokay
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Şeyma Işık
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Aysenur Ozcan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Elif Acar
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sehriban Buyukkilic
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Yesim Yumak
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|