1
|
Singh DP, Gopinath P. Tragacanth gum-based nano-nutraceuticals synthesis by encapsulation of beetroot juice and Ocimum basilicum leaves for micronutrient deficient population. Int J Biol Macromol 2023; 253:127502. [PMID: 37863139 DOI: 10.1016/j.ijbiomac.2023.127502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Micronutrient deficiencies, such as iron, folic acid, and vitamins C and D, are currently prevalent due to inadequate consumption of natural food sources, namely raw vegetables and fruits. This deficiency is compounded by the growing reliance on synthetic nutraceuticals and processed food, which exhibit poor absorbency within the gastrointestinal tract. Scientific studies consistently indicate that naturally prepared whole foods are superior in terms of nutrient absorption compared to processed and synthetic supplements. To address this issue, we utilized FDA-approved tragacanth gum (TG) in the synthesis of nano-nutraceuticals by encapsulating beetroot juice and ball-milled sweet basil (Ocimum basilicum). TG, in its micro or macro form, possesses the remarkable ability to form hydrogels capable of absorbing water up to 50 times its weight. However, the hydrogel-forming property diminishes when TG is reduced to the nanoscale. We effectively exploited these properties to facilitate the synthesis of nano-nutraceuticals. The procedure involved encapsulating beetroot juice and sweet basil nanopowder using TG hydrogel, followed by freeze-drying. Subsequently, the freeze-dried encapsulated TG composite was subjected to ball-milling to achieve the desired nano-nutraceuticals. These nano-nutraceuticals naturally contain essential nutrients such as iron, folic acid, ascorbic acid, chlorophyll, niacin, and sugars, without the need for chemical processing or preservatives.
Collapse
Affiliation(s)
- Dravin Pratap Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - P Gopinath
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Carvalho F, Lahlou RA, Pires P, Salgado M, Silva LR. Natural Functional Beverages as an Approach to Manage Diabetes. Int J Mol Sci 2023; 24:16977. [PMID: 38069300 PMCID: PMC10707707 DOI: 10.3390/ijms242316977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetes mellitus is a chronic disease, commonly associated with unhealthy habits and obesity, and it is becoming a serious health issue worldwide. As a result, new approaches to treat diabetes are required, and a movement towards more natural approaches is emerging. Consuming fruit and vegetables is advised to prevent diabetes since they contain several bioactive compounds. A simple and effective strategy to include them in the diets of diabetic and obese people is through beverages. This review aims to report the anti-diabetic potentials of different vegetable and fruit beverages. These functional beverages demonstrated in vitro potential to inhibit α-glucosidase and α-amylase enzymes and to improve glucose uptake. In vivo, beverage consumption showed a reduction of blood glucose, increase of insulin tolerance, improvement of lipid profile, control of obesity, and reduction of oxidative stress. This suggests the potential of vegetable- and fruit-based functional beverages to be used as a natural innovative therapy for the management of diabetes.
Collapse
Affiliation(s)
- Filomena Carvalho
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Radhia Aitfella Lahlou
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Paula Pires
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Manuel Salgado
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
| | - Luís R. Silva
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (F.C.); (R.A.L.); (P.P.); (M.S.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|
3
|
Liu Q, Chiavaroli L, Ayoub-Charette S, Ahmed A, Khan TA, Au-Yeung F, Lee D, Cheung A, Zurbau A, Choo VL, Mejia SB, de Souza RJ, Wolever TMS, Leiter LA, Kendall CWC, Jenkins DJA, Sievenpiper JL. Fructose-containing food sources and blood pressure: A systematic review and meta-analysis of controlled feeding trials. PLoS One 2023; 18:e0264802. [PMID: 37582096 PMCID: PMC10427023 DOI: 10.1371/journal.pone.0264802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
Whether food source or energy mediates the effect of fructose-containing sugars on blood pressure (BP) is unclear. We conducted a systematic review and meta-analysis of the effect of different food sources of fructose-containing sugars at different levels of energy control on BP. We searched MEDLINE, Embase and the Cochrane Library through June 2021 for controlled trials ≥7-days. We prespecified 4 trial designs: substitution (energy matched substitution of sugars); addition (excess energy from sugars added); subtraction (excess energy from sugars subtracted); and ad libitum (energy from sugars freely replaced). Outcomes were systolic and diastolic BP. Independent reviewers extracted data. GRADE assessed the certainty of evidence. We included 93 reports (147 trial comparisons, N = 5,213) assessing 12 different food sources across 4 energy control levels in adults with and without hypertension or at risk for hypertension. Total fructose-containing sugars had no effect in substitution, subtraction, or ad libitum trials but decreased systolic and diastolic BP in addition trials (P<0.05). There was evidence of interaction/influence by food source: fruit and 100% fruit juice decreased and mixed sources (with sugar-sweetened beverages [SSBs]) increased BP in addition trials and the removal of SSBs (linear dose response gradient) and mixed sources (with SSBs) decreased BP in subtraction trials. The certainty of evidence was generally moderate. Food source and energy control appear to mediate the effect of fructose-containing sugars on BP. The evidence provides a good indication that fruit and 100% fruit juice at low doses (up to or less than the public health threshold of ~10% E) lead to small, but important reductions in BP, while the addition of excess energy of mixed sources (with SSBs) at high doses (up to 23%) leads to moderate increases and their removal or the removal of SSBs alone (up to ~20% E) leads to small, but important decreases in BP in adults with and without hypertension or at risk for hypertension. Trial registration: Clinicaltrials.gov: NCT02716870.
Collapse
Affiliation(s)
- Qi Liu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Tauseef A. Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Fei Au-Yeung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada
| | - Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Annette Cheung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada
| | - Vivian L. Choo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Russell J. de Souza
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, Ontario, Canada
| | - Thomas M. S. Wolever
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada
| | - Lawrence A. Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Cyril W. C. Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David J. A. Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Chiavaroli L, Cheung A, Ayoub-Charette S, Ahmed A, Lee D, Au-Yeung F, Qi X, Back S, McGlynn N, Ha V, Lai E, Khan TA, Blanco Mejia S, Zurbau A, Choo VL, de Souza RJ, Wolever TM, Leiter LA, Kendall CW, Jenkins DJ, Sievenpiper JL. Important food sources of fructose-containing sugars and adiposity: A systematic review and meta-analysis of controlled feeding trials. Am J Clin Nutr 2023; 117:741-765. [PMID: 36842451 DOI: 10.1016/j.ajcnut.2023.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Sugar-sweetened beverages (SSBs) providing excess energy increase adiposity. The effect of other food sources of sugars at different energy control levels is unclear. OBJECTIVES To determine the effect of food sources of fructose-containing sugars by energy control on adiposity. METHODS In this systematic review and meta-analysis, MEDLINE, Embase, and Cochrane Library were searched through April 2022 for controlled trials ≥2 wk. We prespecified 4 trial designs by energy control: substitution (energy-matched replacement of sugars), addition (energy from sugars added), subtraction (energy from sugars subtracted), and ad libitum (energy from sugars freely replaced). Independent authors extracted data. The primary outcome was body weight. Secondary outcomes included other adiposity measures. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. RESULTS We included 169 trials (255 trial comparisons, n = 10,357) assessing 14 food sources at 4 energy control levels over a median 12 wk. Total fructose-containing sugars increased body weight (MD: 0.28 kg; 95% CI: 0.06, 0.50 kg; PMD = 0.011) in addition trials and decreased body weight (MD: -0.96 kg; 95% CI: -1.78, -0.14 kg; PMD = 0.022) in subtraction trials with no effect in substitution or ad libitum trials. There was interaction/influence by food sources on body weight: substitution trials [fruits decreased; added nutritive sweeteners and mixed sources (with SSBs) increased]; addition trials [dried fruits, honey, fruits (≤10%E), and 100% fruit juice (≤10%E) decreased; SSBs, fruit drink, and mixed sources (with SSBs) increased]; subtraction trials [removal of mixed sources (with SSBs) decreased]; and ad libitum trials [mixed sources (with/without SSBs) increased]. GRADE scores were generally moderate. Results were similar across secondary outcomes. CONCLUSIONS Energy control and food sources mediate the effect of fructose-containing sugars on adiposity. The evidence provides a good indication that excess energy from sugars (particularly SSBs at high doses ≥20%E or 100 g/d) increase adiposity, whereas their removal decrease adiposity. Most other food sources had no effect, with some showing decreases (particularly fruits at lower doses ≤10%E or 50 g/d). This trial was registered at clinicaltrials.gov as NCT02558920 (https://clinicaltrials.gov/ct2/show/NCT02558920).
Collapse
Affiliation(s)
- Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Annette Cheung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fei Au-Yeung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - XinYe Qi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Songhee Back
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Néma McGlynn
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Vanessa Ha
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ethan Lai
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada
| | - Vivian L Choo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Russell J de Souza
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, Ontario, Canada
| | - Thomas Ms Wolever
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lawrence A Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Cyril Wc Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David Ja Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Singh DP, Packirisamy G. Applications of nanotechnology to combat the problems associated with modern food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:479-487. [PMID: 35870139 DOI: 10.1002/jsfa.12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, modern lifestyle diseases (LSD) such as cancer, diabetes, hypertension, cardiovascular and thyroid disease are commonly seen among people of different age groups. One of the root causes of this LSD is the type of food that we are eating. Staple crops like rice, sugarcane, vegetables and wheat are grown with the application of agrochemicals (e.g., glyphosate), traces of which are found in our food; after that, it gets ultra-processed in factories; e.g., chips and snacks are fried using saturated fats (trans fat); sugar and wheat (derivatives bread, buns, cookies) are processed using toxic chemicals (bleaching agents). As a result, the nutritional value of food is compromised due to low dietary fiber content and synthetic additives - e.g., sucralose (artificial sweetener) - which promotes inflammation and weakens our immune system, causing our body to become sensitive to microbial infection and many other LSDs. To strengthen the immune system, people start taking synthetically prepared supplements and drugs for a prolonged time, which further deteriorates the body organs and their normal function; e.g., prolonged medication for hypothyroidism poses a risk of heart attack and joint pain. Nanotechnology solves the above problems in the food, nutraceuticals and agriculture sectors. Nanotechnology-based naturally processed products such as nano-nutraceuticals, nanofood, nanofertilizers and nanopesticides will benefit our health. They possess desirable properties such as high bioavailability, targeted delivery, least processing and sustained release. With the help of nanotechnology, we can get nutritional and agrochemical-free food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dravin Pratap Singh
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Wronka M, Krzemińska J, Młynarska E, Rysz J, Franczyk B. The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes. Int J Mol Sci 2022; 23:ijms232415743. [PMID: 36555387 PMCID: PMC9778895 DOI: 10.3390/ijms232415743] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes is considered a new pandemic of the modern world, and the number of sufferers is steadily increasing. Sustained hyperglycemia promotes the production of free radicals and leads to persistent, low-grade inflammation. Oxidative stress causes mitochondrial destruction, which along with activation of the hexosamine pathway, nuclear factor-κB (Nf-κb), p38 mitogen-activated protein kinase (p38 MAPK), c-jun NH2 terminal kinase/stress-activated protein kinase (JNK/SAPK) or toll-like receptors (TLRs), leads to pancreatic β-cell dysfunction. However, there is also the protective mechanism that counteracts oxidative stress and inflammation in diabetes, mitophagy, which is a mitochondrial autophagy. An important part of the strategy to control diabetes is to lead a healthy lifestyle based on, among other things, regular physical activity, giving up smoking, eating a balanced diet containing ingredients with antioxidant potential, including vegetables and fruits, and using hypoglycemic pharmacotherapy. Tobacco smoke is a recognized modifiable risk factor for many diseases including diabetes, and it has been shown that the risk of the disease increases in proportion to the intensity of smoking. Physical activity as another component of therapy can effectively reduce glucose fluctuations, and high intensity interval exercise appears to have the most beneficial effect. A proper diet not only increases cellular sensitivity to insulin, but is also able to reduce inflammation and oxidative stress. Pharmacotherapy for diabetes can also affect oxidative stress and inflammation. Some oral drugs, such as metformin, pioglitazone, vildagliptin, liraglutide, and exenatide, cause a reduction in markers of oxidative stress and/or inflammation, while the new drug Imeglimin reverses pancreatic β-cell dysfunction. In studies of sitagliptin, vildagliptin and exenatide, beneficial effects on oxidative stress and inflammation were achieved by, among other things, reducing glycemic excursions. For insulin therapy, no corresponding correlation was observed. Insulin did not reduce oxidative stress parameters. There was no correlation between glucose variability and oxidative stress in patients on insulin therapy. The data used in this study were obtained by searching PubMed online databases, taking into account recent studies.
Collapse
Affiliation(s)
- Magdalena Wronka
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julia Krzemińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
- Correspondence: ; Tel.: +48-(042)-6393750
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
7
|
Wu J, Hong X, Wang C, Qi S, Ye Q, Qin Z, Zhou H, Li C, Wang W, Zhou N. Joint associations of fresh fruit intake and physical activity with glycaemic control among adult patients with diabetes: a cross-sectional study. BMJ Open 2022; 12:e056776. [PMID: 35197353 PMCID: PMC8867333 DOI: 10.1136/bmjopen-2021-056776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To investigate the joint associations of fresh fruit intake and physical activity with glycaemic control in adult patients with diabetes mellitus (DM). DESIGN It was an observational study involving adult patients with DM through a face-to-face questionnaire survey, physical measurements and laboratory examinations. Data were analysed by introducing a generalised linear mixed model, and a significant difference was set at p<0.05. SETTING Nanjing, Jiangsu, China. PARTICIPANTS A total of 5663 adult patients with DM from the 2017 Nanjing Chronic Disease and Risk Factor Surveillance were recruited. RESULTS Based on the food frequency questionnaire, fresh fruit intake was classified as 'not eat', '1~99 g/day' and '≥100 g/day'. Physical activity level was calculated based on the data of Global Physical Activity Questionnaire and classified into insufficient physical activity (<600 MET-min/week) and sufficient physical activity (≥600 MET-min/week). The likelihood of glycaemic control in adult patients with DM with fresh fruit intake ≥100 g/day was 37.8% (OR: 1.378; 95% CI: 1.209 to 1.571) higher than those with fresh fruit intake <100 g/day, which was 26% (OR: 1.260; 95% CI: 1.124 to 1.412) higher in adult patients with DM with sufficient physical activity than those with insufficient physical activity. Adult patients with DM with fresh fruit intake ≥100 g/day and sufficient physical activity presented the greatest likelihood of glycaemic control (OR: 1.758; 95% CI: 1.471 to 2.102) compared with those with both fresh fruit intake <100 g/day and insufficient physical activity. CONCLUSIONS Fresh fruit intake ≥100 g/day combined with sufficient physical activity is associated with a significantly higher likelihood of glycaemic control in adult patients with DM.
Collapse
Affiliation(s)
- Jie Wu
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Xin Hong
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Chenchen Wang
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Shengxiang Qi
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Qing Ye
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Zhenzhen Qin
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Hairong Zhou
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Chao Li
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
- Department of Epidemiology and Biostatistics, Nanjing Medical University, Nanjing, China
| | - Weiwei Wang
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Nan Zhou
- Non-communicable Disease Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
8
|
Ashor AW, Al-Rammahi TMM, Abdulrazzaq VM, Siervo M. Adherence to a healthy dietary pattern is associated with greater anti-oxidant capacity and improved glycemic control in Iraqi patients with Type 2 Diabetes. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Healthy dietary patterns are typically associated with improved metabolic and cardiovascular health in population-based cohorts. This study aims to investigate whether a healthy dietary score, derived from UK Diabetes and Diet Questionnaire (UKDDQ), is significantly associated with measures of metabolic health and nutritional status in patients with T2DM. METHODS: This cross-sectional study included 85 patients with T2DM (age: 51.7±9.4, BMI: 30.6±5.3) and 20 healthy volunteers (age: 48.4±8.6, BMI: 29.5±5) recruited from the Al-Hassan Diabetes and Endocrinology Specialized Center, Karbala, Iraq. Body weight, height and body mass index (BMI) and resting clinic blood pressure were measured. All participants completed the UKDDQ to assess the quality of the diet. Metabolic and nutritional biomarkers were measured in fasting blood samples. A composite nutritional heathy index score (CNHI-score) based on the sum of z-scores for plasma vitamin A, C and E concentrations was derived. RESULTS: In patients with T2DM the UKDDQ score was associated with lower fasting blood glucose (FBG) (r = –0.33; P < 0.01), hemoglobin A1C (r = –0.49; P < 0.001), total cholesterol (TC) (r = –0.26; P = 0.02) concentrations. In patients with T2DM, the CNHI-score significantly associated with UKDDQ (r = 0.43; P < 0.001). In addition, a higher CNHI-score was associated with FBG (r = –0.61; P < 0.001), HbA1C (r = –0.83; P < 0.001), TC (r = –0.30; P < 0.01) and triglyceride (r = –0.30; P < 0.01) concentrations. CONCLUSIONS: A healthy diet is associated with a higher concentration of anti-oxidant vitamins and better glycemic and lipid profile in healthy subjects and in patients with T2DM.
Collapse
Affiliation(s)
- Ammar Waham Ashor
- Department of Internal Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
- Natioanl Diabetes Center, Mustansiriyah University, Baghdad, Iraq
| | | | | | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen’s Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
9
|
Dedov II, Shestakova MV, Mayorov AY, Shamkhalova MS, Sukhareva OY, Galstyan GR, Tokmakova AY, Nikonova TV, Surkova EV, Kononenko IV, Egorova DN, Ibragimova LI, Shestakova EA, Klefortova II, Sklyanik IA, Yarek-Martynova IY, Severina AS, Martynov SA, Vikulova OK, Kalashnikov VY, Bondarenko IZ, Gomova IS, Starostina EG, Ametov AS, Antsiferov MB, Bardymova TP, Bondar IA, Valeeva FV, Demidova TY, Mkrtumyan AM, Petunina NA, Ruyatkina LA, Suplotova LA, Ushakova OV, Khalimov YS. Diabetes mellitus type 2 in adults. DIABETES MELLITUS 2020. [DOI: 10.14341/dm12507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tatiana P. Bardymova
- Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the Russian Medical Academy of Continuing Professional Education
| | | | | | | | - Ashot M. Mkrtumyan
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov
| | - Nina A. Petunina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | | |
Collapse
|
10
|
Paun G, Neagu E, Albu C, Savin S, Radu GL. In Vitro Evaluation of Antidiabetic and Anti-Inflammatory Activities of Polyphenolic-Rich Extracts from Anchusa officinalis and Melilotus officinalis. ACS OMEGA 2020; 5:13014-13022. [PMID: 32548486 PMCID: PMC7288582 DOI: 10.1021/acsomega.0c00929] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 05/06/2023]
Abstract
This study was focused on the phytochemical composition and biological activities of Anchusa officinalis and Melilotus officinalis polyphenolic-rich extracts obtained by nanofiltration. The high-performance liquid chromatography-mass spectrometry analysis showed that chlorogenic acid and rosmarinic acid were the main phenolic acids in both extracts. The main flavonoid compound from A. officinalis extracts is luteolin, whereas rutin and isoquercitrin are the main flavonoids in M. officinalis. M. officinalis polyphenolic-rich extract had the highest α-amylase (from hog pancreas) inhibitory activity (IC50 = 1.30 ± 0.06 μg/mL) and α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity (IC50 = 92.18 ± 1.92 μg/mL). However, both extracts presented a significant α-glucosidase inhibitory activity. Furthermore, the hyaluronidase inhibition of polyphenolic-rich extracts also proved to be stronger (IC50 = 11.8 ± 0.1 μg/mL for M. officinalis and 36.5 ± 0.2 μg/mL for A. officinalis), but there was moderate or low lipoxygenase inhibition. The studies on the fibroblast cell line demonstrated that both A. officinalis and M. officinalis polyphenolic-rich extracts possess the cytotoxic effect at a concentration higher than 500 μg/mL. The experimental data suggest that both extracts are promising candidates for the development of natural antidiabetic and anti-inflammatory food supplements.
Collapse
|
11
|
Onaolapo AY, Onaolapo OJ. Nutraceuticals and Diet-based Phytochemicals in Type 2 Diabetes Mellitus: From Whole Food to Components with Defined Roles and Mechanisms. Curr Diabetes Rev 2019; 16:12-25. [PMID: 30378500 DOI: 10.2174/1573399814666181031103930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Over the past decades, the development and use of an array of prescription medications have considerably improved the clinical management of type 2 diabetes mellitus and the quality of life of patients. However, as our knowledge of the associated risk factors and approaches to its management increases, the increasing roles of diet and the composition of the diet in the etiology and successful management of diabetes mellitus are being illuminated. Presently, a lot of attention is being given to nutraceuticals and certain phytochemicals that are integral parts of the human diet. It is believed that a clearer understanding of their roles may be crucial to 'non-invasive' or minimallyintrusive management, with regards to daily living of patients. In this review, an overview of nutraceutical components and phytochemicals that may be of benefit, or had been known to be beneficial in diabetes mellitus is given. Also, how the roles of such dietary components are evolving in the management of this disorder is highlighted. Lastly, the obstacles that need to be overcome before nutraceuticals can be considered as options for the clinical management of diabetes mellitus areconsidered. CONCLUSION Despite studies that demonstrate their efficacy, no nutraceutical or food-derived compound has been formally adopted as a direct replacement for any class of antidiabetic drugs.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Behavioural Neuroscience/Neuropharmacology Unit, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
12
|
Choo VL, Viguiliouk E, Blanco Mejia S, Cozma AI, Khan TA, Ha V, Wolever TMS, Leiter LA, Vuksan V, Kendall CWC, de Souza RJ, Jenkins DJA, Sievenpiper JL. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ 2018; 363:k4644. [PMID: 30463844 PMCID: PMC6247175 DOI: 10.1136/bmj.k4644] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess the effect of different food sources of fructose-containing sugars on glycaemic control at different levels of energy control. DESIGN Systematic review and meta-analysis of controlled intervention studies. DATA SOURCES Medine, Embase, and the Cochrane Library up to 25 April 2018. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Controlled intervention studies of at least seven days' duration and assessing the effect of different food sources of fructose-containing sugars on glycaemic control in people with and without diabetes were included. Four study designs were prespecified on the basis of energy control: substitution studies (sugars in energy matched comparisons with other macronutrients), addition studies (excess energy from sugars added to diets), subtraction studies (energy from sugars subtracted from diets), and ad libitum studies (sugars freely replaced by other macronutrients without control for energy). Outcomes were glycated haemoglobin (HbA1c), fasting blood glucose, and fasting blood glucose insulin. DATA EXTRACTION AND SYNTHESIS Four independent reviewers extracted relevant data and assessed risk of bias. Data were pooled by random effects models and overall certainty of the evidence assessed by the GRADE approach (grading of recommendations assessment, development, and evaluation). RESULTS 155 study comparisons (n=5086) were included. Total fructose-containing sugars had no harmful effect on any outcome in substitution or subtraction studies, with a decrease seen in HbA1c in substitution studies (mean difference -0.22% (95% confidence interval to -0.35% to -0.08%), -25.9 mmol/mol (-27.3 to -24.4)), but a harmful effect was seen on fasting insulin in addition studies (4.68 pmol/L (1.40 to 7.96)) and ad libitum studies (7.24 pmol/L (0.47 to 14.00)). There was interaction by food source, with specific food sources showing beneficial effects (fruit and fruit juice) or harmful effects (sweetened milk and mixed sources) in substitution studies and harmful effects (sugars-sweetened beverages and fruit juice) in addition studies on at least one outcome. Most of the evidence was low quality. CONCLUSIONS Energy control and food source appear to mediate the effect of fructose-containing sugars on glycaemic control. Although most food sources of these sugars (especially fruit) do not have a harmful effect in energy matched substitutions with other macronutrients, several food sources of fructose-containing sugars (especially sugars-sweetened beverages) adding excess energy to diets have harmful effects. However, certainty in these estimates is low, and more high quality randomised controlled trials are needed. STUDY REGISTRATION Clinicaltrials.gov (NCT02716870).
Collapse
Affiliation(s)
- Vivian L Choo
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Undergraduate Medical Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Effie Viguiliouk
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sonia Blanco Mejia
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Adrian I Cozma
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tauseef A Khan
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Ha
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Undergraduate Medical Education, School of Medicine, Queen's University, Kingston, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Thomas M S Wolever
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - Lawrence A Leiter
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - Vladimir Vuksan
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - Cyril W C Kendall
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Russell J de Souza
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - David J A Jenkins
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| | - John L Sievenpiper
- Toronto 3D (Diet, Digestive Tract, and Disease) Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
13
|
Ismael DS. Phenolic content and antioxidant activity of variety grapes from kurdistan Iraq. POTRAVINARSTVO 2018. [DOI: 10.5219/979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was carried out to determine the amount of total phenols, total flavonoid and antioxidant activity of 7 grape cultivars grown in Kurdistan rejoin of Iraq. The results showed that total phenols, flavonoid and antioxidant activity in the berries varied among the investigated cultivars. Total phenolic content, total flavonoid content ranged from 112.77 to 249.19 mg GAE/100g FW, 584.23 to 288.55 mg of rutin equivalents/100 g of (fresh sample) respectly and antioxidant capacity value ranged from 41.79 to 92.30%. Tahlik cultivar had the highest value of antioxidant capacity, flavonoid and total phenolic content. The lowest total phenolic, flavonoid content and the lowest value of antioxidant capacity were found in Abhar cultivar. Present results showed statistically significant correlations with the free radical scavenging activity. There was a very strong positive correlation (R² =1, p <0.05) between the antioxidant activity and total phenolic content and a strong positive correlation (R² =0.9735, p <0.05) between the antioxidant activity and total flavonoid content.
Collapse
|
14
|
Sievenpiper JL, Chan CB, Dworatzek PD, Freeze C, Williams SL. Nutrition Therapy. Can J Diabetes 2018; 42 Suppl 1:S64-S79. [DOI: 10.1016/j.jcjd.2017.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 02/07/2023]
|
15
|
Du H, Li L, Bennett D, Guo Y, Turnbull I, Yang L, Bragg F, Bian Z, Chen Y, Chen J, Millwood IY, Sansome S, Ma L, Huang Y, Zhang N, Zheng X, Sun Q, Key TJ, Collins R, Peto R, Chen Z. Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: A 7-y prospective study of 0.5 million Chinese adults. PLoS Med 2017; 14:e1002279. [PMID: 28399126 PMCID: PMC5388466 DOI: 10.1371/journal.pmed.1002279] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the well-recognised health benefits of fresh fruit consumption, substantial uncertainties remain about its potential effects on incident diabetes and, among those with diabetes, on risks of death and major vascular complications. METHODS AND FINDINGS Between June 2004 and July 2008, the nationwide China Kadoorie Biobank study recruited 0.5 million adults aged 30-79 (mean 51) y from ten diverse localities across China. During ~7 y of follow-up, 9,504 new diabetes cases were recorded among 482,591 participants without prevalent (previously diagnosed or screen-detected) diabetes at baseline, with an overall incidence rate of 2.8 per 1,000 person-years. Among 30,300 (5.9%) participants who had diabetes at baseline, 3,389 deaths occurred (overall mortality rate 16.5 per 1,000), along with 9,746 cases of macrovascular disease and 1,345 cases of microvascular disease. Cox regression yielded adjusted hazard ratios (HRs) associating each disease outcome with self-reported fresh fruit consumption, adjusting for potential confounders such as age, sex, region, socio-economic status, other lifestyle factors, body mass index, and family history of diabetes. Overall, 18.8% of participants reported consuming fresh fruit daily, and 6.4% never/rarely (non-consumers), with the proportion of non-consumers about three times higher in individuals with previously diagnosed diabetes (18.9%) than in those with screen-detected diabetes (6.7%) or no diabetes (6.0%). Among those without diabetes at baseline, higher fruit consumption was associated with significantly lower risk of developing diabetes (adjusted HR = 0.88 [95% CI 0.83-0.93] for daily versus non-consumers, p < 0.001, corresponding to a 0.2% difference in 5-y absolute risk), with a clear dose-response relationship. Among those with baseline diabetes, higher fruit consumption was associated with lower risks of all-cause mortality (adjusted HR = 0.83 [95% CI 0.74-0.93] per 100 g/d) and microvascular (0.72 [0.61-0.87]) and macrovascular (0.87 [0.82-0.93]) complications (p < 0.001), with similar HRs in individuals with previously diagnosed and screen-detected diabetes; estimated differences in 5-y absolute risk between daily and non-consumers were 1.9%, 1.1%, and 5.4%, respectively. The main limitation of this study was that, owing to its observational nature, we could not fully exclude the effects of residual confounding. CONCLUSION In this large epidemiological study in Chinese adults, higher fresh fruit consumption was associated with significantly lower risk of diabetes and, among diabetic individuals, lower risks of death and development of major vascular complications.
Collapse
Affiliation(s)
- Huaidong Du
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Chinese Academy of Medical Sciences, Beijing, China
| | - Derrick Bennett
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Iain Turnbull
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ling Yang
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Fiona Bragg
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Chen
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Iona Y. Millwood
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sam Sansome
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Liangcai Ma
- Noncommunicable Disease Prevention and Control Department, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Ying Huang
- Noncommunicable Disease Prevention and Control Department, Guangxi Center for Disease Control and Prevention, Nanning, China
| | - Ningmei Zhang
- Noncommunicable Disease Prevention and Control Department, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Xiangyang Zheng
- Noncommunicable Disease Prevention and Control Department, Meilan Center for Disease Control and Prevention, Haikou, China
| | - Qiang Sun
- Pengzhou Center for Disease Control and Prevention, Pengzhou, China
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Richard Peto
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
16
|
Tey SL, Lee DEM, Henry CJ. Fruit form Influences Postprandial Glycemic Response in Elderly and Young Adults. J Nutr Health Aging 2017; 21:887-891. [PMID: 28972240 DOI: 10.1007/s12603-017-0880-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This study compared the effects of consuming different forms (bite size, puree) and two fruit types (guava, papaya) on glycemic response (GR) in elderly and young adults. DESIGN This study was conducted using a randomized, crossover design. PARTICIPANTS Nineteen healthy participants (9 elderly, 10 young adults) were recruited from the general public in Singapore. INTERVENTION Participants consumed glucose (reference food) on three occasions and test fruits (guava bites, guava puree, papaya bites, and papaya puree) on one occasion each. MEASUREMENTS Blood glucose was analyzed prior to consuming the test food, at 15, 30, 45, 60, 90 and 120 minutes after food consumption. RESULTS The incremental area under the blood glucose response curve (iAUC) over 120 minutes for all the treatments was significantly lower than glucose (all P < 0.001). All fruit forms and types studied were low glycemic index (GI) (guava bites: 29; papaya bites: 38; papaya puree: 42; guava puree: 47), albeit a significant difference in GI between the treatments was found (P = 0.003). Elderly exhibited significantly greater GR than young participants (P = 0.019). CONCLUSION Although fruit form influences GR in the elderly and young adults, all fruit types and forms studied were found to be low GI. This study indicates that fruits are a valuable source of nutrient irrespective of the form of delivery in elderly and young adults. This study was registered at www.anzctr.org.au as ACTRN12614000655640.
Collapse
Affiliation(s)
- S L Tey
- Professor Christiani Jeyakumar Henry, Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore,
| | | | | |
Collapse
|
17
|
Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis 2016; 26:285-292. [PMID: 27036849 DOI: 10.1016/j.numecd.2016.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
Abstract
AIMS The possible link between hyperglycaemia-induced oxidative stress (OxS) and diabetic complications is suggested by many in vitro studies. However, not much attention has been paid to the clinical evidence supporting this hypothesis, as well as to their possible therapeutic implications. DATA SYNTHESIS Some prospective studies show a direct correlation between an increase in OxS biomarkers and the appearance of diabetes complications. This is consistent with the evidence that any acute increase of glycaemia, particularly post-prandial, and hypoglycaemia causes endothelial dysfunction and inflammation, through the generation of an OxS. However, the detection of free radicals is difficult as they are highly reactive molecules with a short half-life. Instead, the metabolites of OxS are measured. Interventional trials with supplemented antioxidants have failed to show any beneficial effects. Conversely, natural foods show very promising results. CONCLUSIONS The "new antioxidant" approach includes the possibility of controlling free radical production and increasing intracellular antioxidant defence, a concept different from the old one, when antioxidant activities implied scavenging the free radicals already produced. A synergistic action in this respect could convincingly be obtained with a balanced 'Mediterranean Diet' (MedD) type. Early intensive glucose control is still the best strategy to avoid OxS and its associated diabetes complications.
Collapse
Affiliation(s)
- A Ceriello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomèdica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Barcelona, Spain.
| | - R Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | - S Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy.
| |
Collapse
|
18
|
Antioxidants and Cardiovascular Risk Factors. Diseases 2016; 4:diseases4010011. [PMID: 28933391 PMCID: PMC5456308 DOI: 10.3390/diseases4010011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD), the world’s primary cause of death and disability, represents a global health problem and involves a great public financial commitment in terms of both inability to work and pharmaceutical costs. CVD is characterized by a cluster of disorders, associated with complex interactions between multiple risk factors. The early identification of high cardiovascular risk subjects is one of the main targets of primary prevention in order to reduce the adverse impact of modifiable factors, from lifestyle changes to pharmacological treatments. The cardioprotective effect of food antioxidants is well known. Indeed, a diet rich in fruits and vegetables results in an increase in serum antioxidant capacity and a decrease in oxidative stress. In contrast, studies on antioxidant supplementation, even those that are numerically significant, have revealed no clear benefit in prevention and therapy of CVD. Both short- and long-term clinical trials have failed to consistently support cardioprotective effects of supplemental antioxidant intake. The aim of this review is to evaluate the antioxidant effects on the main cardiovascular risk factors including hypertension, dyslipidemia, diabetes.
Collapse
|
19
|
|
20
|
Lifestyle advice follow-up improve glycemic control, redox and inflammatory status in patients with type 2 diabetes. J Diabetes Metab Disord 2014; 13:122. [PMID: 25551102 PMCID: PMC4279685 DOI: 10.1186/s40200-014-0122-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The dietary composition associated to physical activity could play a significant role in improving insulin sensitivity and reducing risk of diabetes and its complications. This study was designed to investigate whether glycemic control, redox and inflammatory status impairments in patients with type 2 diabetes (T2D), were improved after 90 (d90) and 180 (d180) days follow-up of nutritional advices. METHODS Patients with T2D (n = 85) aged of 50 ± 8 years (Female/Male, 45/40), treated with oral antidiabetics (OAD) alone, with a body mass index (BMI) of 26 ± 2, were recruited. At the beginning of the study (d0), patients were instructed to follow-up nutritional advices adapted to T2D, and 30 to 45 min of walking per day. Assays were realized at d90 and d180 of follow-up. Data were compared by student 't' test and Pearson's correlation coefficients were determined between biochemical parameters and nutritional advices follow-up. RESULTS Reduced glycated haemoglobin (HbA1c), glucose and total cholesterol (TC) were noted in patients with T2D, at d90 and d180 compared to d0. Thiobarbituric acid reactive substances (TBARS) and hydroperoxyde levels were lower at d90 and d180 than d0. Serum nitric oxide (NO) was decreased at d180 compared to d0 and d90. In erythrocytes, superoxide dismutase (SOD) activity increased by 7% at d180 vs d0. Moreover, activity of glutathione peroxidase (GPx) enhanced (P < 0.05), whereas that of glutathione reductase (GRed) decreased (P < 0.001) at d90 vs d0. Resistin values were lower at d180 than d0 and d90 (P < 0.001). A progressive decrease in tumor necrosis factor-α (TNF-α) was observed at d90 and d180 vs d0. CONCLUSION Nutritional advices associated to physical activity improve glycemic control, serum TC, redox and inflammatory status in T2D, in particular after 3 months of counseling. However, these results need to be supported with a longer dietary treatment and more rigorous control during the follow-up.
Collapse
|
21
|
Mirmiran P, Bahadoran Z, Azizi F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J Diabetes 2014; 5:267-281. [PMID: 24936248 PMCID: PMC4058731 DOI: 10.4239/wjd.v5.i3.267] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/11/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes is a complicated metabolic disorder with both short- and long-term undesirable complications. In recent years, there has been growing evidence that functional foods and their bioactive compounds, due to their biological properties, may be used as complementary treatment for type 2 diabetes mellitus. In this review, we have highlighted various functional foods as missing part of medical nutrition therapy in diabetic patients. Several in vitro, animal models and some human studies, have demonstrated that functional foods and nutraceuticals may improve postprandial hyperglycemia and adipose tissue metabolism modulate carbohydrate and lipid metabolism. Functional foods may also improve dyslipidemia and insulin resistance, and attenuate oxidative stress and inflammatory processes and subsequently could prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. In conclusion available data indicate that a functional foods-based diet may be a novel and comprehensive dietary approach for management of type 2 diabetes.
Collapse
|
22
|
Anhê FF, Desjardins Y, Pilon G, Dudonné S, Genovese MI, Lajolo FM, Marette A. Polyphenols and type 2 diabetes: A prospective review. PHARMANUTRITION 2013. [DOI: 10.1016/j.phanu.2013.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|