1
|
Huang C, Jiang Y, Bao Q, Wang L, Tang L, Liu Y, Yang L. Study on the differential hepatotoxicity of raw polygonum multiflorum and polygonum multiflorum praeparata and its mechanism. BMC Complement Med Ther 2024; 24:161. [PMID: 38632548 PMCID: PMC11022370 DOI: 10.1186/s12906-024-04463-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Polygonum multiflorum (PM), a widely used traditional Chinese medicine herb, is divided into two forms, namely raw polygonum multiflorum (RPM) and polygonum multiflorum praeparata (PMP), according to the processing procedure. Emerging data has revealed the differential hepatotoxicity of RPM and PMP, however, its potential mechanism is still unclear. METHODS In our study, we investigated the differential hepatotoxicity of RPM and PMP exerted in C57BL/6 mice. First, sera were collected for biochemical analysis and HE staining was applied to examine the morphological alternation of the liver. Then we treated L02 cells with 5 mg / mL of RPM or PMP. The CCK8 and EdU assays were utilized to observe the viability and proliferation of L02 cells. RNA sequencing was performed to explore the expression profile of L02 cells. Western blotting was performed to detect the expression level of ferroptosis-related protein. Flow cytometry was used to evaluate ROS accumulation. RESULTS In our study, a significant elevation in serum ALT, AST and TBIL levels was investigated in the RMP group, while no significant differences were observed in the PMP group, compared to that of the CON group. HE staining showed punctate necrosis, inflammatory cell infiltration and structural destruction can be observed in the RPM group, which can be significantly attenuated after processing. In addition, we also found RPM could decrease the viability and proliferation capacity of L02 cells, which can be reversed by ferroptosis inhibitor. RNA sequencing data revealed the adverse effect of PM exerted on the liver is closely associated with ferroptosis. Western blotting assay uncovered the protein level of GPX4, HO-1 and FTL was sharply decreased, while the ROS content was dramatically elevated in L02 cells treated with RPM, which can be partially restored after processing. CONCLUSIONS The hepatotoxicity induced by RPM was significantly lower than the PMP, and its potential mechanism is associated with ferroptosis.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
- Institute of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 69 Jiefang Western Road, Changsha City, 410000, Hunan, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 69 Jiefang Western Road, Changsha City, 410000, Hunan, China
| | - Qing Bao
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
| | - Lu Wang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
| | - Lin Tang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China
| | - Yanjuan Liu
- Institute of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 69 Jiefang Western Road, Changsha City, 410000, Hunan, China.
| | - Lei Yang
- Department of Preparations, the First Hospital of Hunan University of Chinese Medicine, Changsha City, China.
| |
Collapse
|
2
|
Zhang T, Xie Y, Li T, Deng Y, Wan Q, Bai T, Zhang Q, Cai Z, Chen M, Zhang J. Phytochemical analysis and hepatotoxicity assessment of braised Polygoni Multiflori Radix (Wen-He-Shou-Wu). Biomed Chromatogr 2024; 38:e5768. [PMID: 38087457 DOI: 10.1002/bmc.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 01/26/2024]
Abstract
Polygoni Multiflori Radix (PMR) is a medicinal herb commonly used in China and Eastern Asia. Recently, the discovery of hepatotoxicity in PMR has received considerable attention from scientists. Processing is a traditional Chinese medicine technique used for the effective reduction of toxicity. One uncommon technique is the braising method-also known as 'Wen-Fa' in Chinese-which is used to prepare tonics or poisonous medications. Braised PMR (BPMR)-also known as 'Wen-He-Shou-Wu'-is one of the processed products of the braising method. However, the non-volatile components of BPMR have not been identified and examined in detail, and therefore, the hepatotoxic advantage of BPMR remains unknown. In this study, we compared the microscopic characteristics of different samples in powder form using scanning electron microscopy (SEM), investigated the non-volatile components, assessed the effects of different processed PMR products on the liver, and compared the differences between BPMR and PMR Praeparata recorded in the Chinese Pharmacopoeia (2020 edition). We found that the hepatotoxicity of BPMR was dramatically decreased, which may be related to an increase in polysaccharide content and a decrease in toxic substances. The present study provides an important foundation for future investigations of the processing mechanisms of BPMR.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yating Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaling Deng
- Department of Pharmacy, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Quan Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tingting Bai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qing Zhang
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Zhongxi Cai
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Mingxia Chen
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
- Beijing Scrianen Pharmaceutical Co., Ltd., Beijing, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Zhao L, Zheng L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules 2023; 28:8139. [PMID: 38138627 PMCID: PMC10745977 DOI: 10.3390/molecules28248139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Anthraquinones are bioactive natural products, which are often found in medicinal herbs. These compounds exert antioxidant-related pharmacological actions including neuroprotective effects, anti-inflammation, anticancer, hepatoprotective effects and anti-aging, etc. Considering the benefits from their pharmacological use, recently, there was an upsurge in the development and utilization of anthraquinones as reactive oxygen species (ROS) regulators. In this review, a deep discussion was carried out on their antioxidant activities and the structure-activity relationships. The antioxidant mechanisms and the chemistry behind the antioxidant activities of both natural and synthesized compounds were furtherly explored and demonstrated. Due to the specific chemical activity of ROS, antioxidants are essential for human health. Therefore, the development of reagents that regulate the imbalance between ROS formation and elimination should be more extensive and rational, and the exploration of antioxidant mechanisms of anthraquinones may provide new therapeutic tools and ideas for various diseases mediated by ROS.
Collapse
Affiliation(s)
- Lihua Zhao
- Tianjin Renai College, Tianjin 301636, China;
| | - Lin Zheng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Zhu C, Wang XY, Zhao J, Long B, Xiao X, Pan LY, Yuan TF, Chen JH. Effect of transdermal drug delivery therapy on anxiety symptoms in schizophrenic patients. Front Neurosci 2023; 17:1177214. [PMID: 37360162 PMCID: PMC10289061 DOI: 10.3389/fnins.2023.1177214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To evaluate the efficacy and safety of transdermal drug delivery therapy for schizophrenia with anxiety symptoms. Methods A total of 80 schizophrenic patients (34 males and 56 females) with comorbid anxiety disorders were randomly assigned to the treatment group (n = 40) and the control group (n = 40) with 6 weeks of follow-up. The patients in the treatment group received the standard antipsychotic drug treatment along with transdermal drug delivery therapy. The evaluation of the patients included the Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD-17), and treatment emergent symptom scale (TESS) at baseline, 3 weeks, and 6 weeks after transdermal drug delivery therapy. The Positive and Negative Symptom Scale (PANSS) was assessed at baseline and after 6 weeks of treatment. Results After 3 and 6 weeks of treatment, the HAMA scale scores in the treatment group were lower than those in the control group (p < 0.001). However, there were no significant differences in the HAMD-17 scale scores, PANSS total scores, and subscale scores between the two groups (p > 0.05). Additionally, no significant differences in adverse effects were observed between the two groups during the intervention period (p > 0.05). After 6 weeks of penetration therapy, there was a low negative correlation between total disease duration and the change in HAMA scale score (pretreatment-posttreatment) in the treatment group. Conclusion Combined traditional Chinese medicine directed penetration therapy can improve the anxiety symptoms of patients with schizophrenia and has a safe profile.
Collapse
Affiliation(s)
- Cuifang Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Xin-Yue Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Bin Long
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Xudong Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Ling-Yi Pan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| |
Collapse
|
5
|
Shouhui Tongbian Capsules induce regression of inflammation to improve intestinal barrier in mice with constipation by targeted binding to Prkaa1: With no obvious toxicity. Biomed Pharmacother 2023; 161:114495. [PMID: 36906969 DOI: 10.1016/j.biopha.2023.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Constipation arising from the poor bowel movement is a rife enteric health problem. Shouhui Tongbian Capsule (SHTB) is a traditional Chinese medicine (TCM) which effectively improve the symptoms of constipation. However, the mechanism has not been fully evaluated. The purpose of this study was to evaluate the effect of SHTB on the symptoms and intestinal barrier of mice with constipation. Our data showed that SHTB effectively improved the constipation induced by diphenoxylate, which was confirmed by shorter first defecation time, higher internal propulsion rate and fecal water content. Additionally, SHTB improved the intestinal barrier function, which was manifested by inhibiting the leakage of Evans blue in intestinal tissues and increasing the expression of occludin and ZO-1. SHTB inhibited NLRP3 inflammasome signaling pathway and TLR4/NF-κB signaling pathway, reduced the number of proinflammatory cell subsets and increased the number of immunosuppressive cell subsets to relieve inflammation. The photochemically induced reaction coupling system combined with cellular thermal shift assay and central carbon metabolomics technology confirmed that SHTB activated AMPKα through targeted binding to Prkaa1 to regulate Glycolysis/Gluconeogenesis and Pentose Phosphate Pathway, and finally inhibited intestinal inflammation. Finally, no obvious toxicity related to SHTB was found in a repeated drug administration toxicity test for consecutive 13 weeks. Collectively, we reported SHTB as a TCM targeting Prkaa1 for anti-inflammation to improve intestinal barrier in mice with constipation. These findings broaden our knowledge of Prkaa1 as a druggable target protein for inflammation inhibition, and open a new avenue to novel therapy strategy for constipation injury.
Collapse
|
6
|
Fontana RJ, Liou I, Reuben A, Suzuki A, Fiel MI, Lee W, Navarro V. AASLD practice guidance on drug, herbal, and dietary supplement-induced liver injury. Hepatology 2023; 77:1036-1065. [PMID: 35899384 PMCID: PMC9936988 DOI: 10.1002/hep.32689] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Iris Liou
- University of Washington, Seattle, Washington, USA
| | - Adrian Reuben
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - M. Isabel Fiel
- Department of Pathology, Mount Sinai School of Medicine, New York City, New York, USA
| | - William Lee
- Division of Gastroenterology, University of Texas Southwestern, Dallas, Texas, USA
| | - Victor Navarro
- Department of Medicine, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Dai Y, Jia Z, Fang C, Zhu M, Yan X, Zhang Y, Wu H, Feng M, Liu L, Huang B, Li Y, Liu J, Xiao H. Polygoni Multiflori Radix interferes with bile acid metabolism homeostasis by inhibiting Fxr transcription, leading to cholestasis. Front Pharmacol 2023; 14:1099935. [PMID: 36950015 PMCID: PMC10025474 DOI: 10.3389/fphar.2023.1099935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Objective: To explore the possible mechanisms of cholestasis induced by Polygoni Multiflori Radix (PM). Methods: Low and high doses of water extract of PM were given to mice by gavage for 8 weeks. The serum biochemical indexes of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamyltransferase (GGT) alkaline phosphatase (ALP) and so on were detected in the second, fourth, sixth, and eighth weeks after administration. At the end of the eighth week of administration, the bile acid metabolic profiles of liver and bile were screened by high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS). Liver pathological changes were observed by hematoxylin and eosin staining. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA transcription of the target genes and Western blotting (WB) was used to the detect target protein expression. Results: Biochemical tests results showed the values of ALP and GGT were two and three times greater than the normal values respectively, and the value of R was less than 2. Histopathology also showed that PM caused lymphocyte infiltration, a small amount of hepatocyte necrosis and nuclear fragmentation in mouse liver. The proliferation of bile duct epithelial cells was observed in the high group. These results indicated that PM may lead to cholestatic liver injury. HPLC-QQQ-MS/MS analysis with the multivariate statistical analysis revealed significant alterations of individual bile acids in liver and gallbladder as compared to those of the control group. RT-qPCR showed that the transcription of Fxr, Shp, Bsep, Bacs, Mdr2, and Ugt1a1 were downregulated and that of Cyp7a1, Mrp3, and Cyp3a11 was significantly upregulated in the treatment group. WB demonstrated that PM also markedly downregulated the protein expression of FXR, BSEP, and MDR2, and upregulated CYP7A1. Conclusion: PM inhibited the expression of FXR, which reduced the expression of MDR2 and BSEP, leading to the obstruction of bile acids outflow, and increased the expression of CYP7A1, resulting in an increase of intrahepatic bile acid synthesis, which can lead to cholestasis.
Collapse
Affiliation(s)
- Yihang Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
| | - Cong Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meixia Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoning Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- Beijing Academy of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Hongbin Xiao,
| |
Collapse
|
8
|
Jia Z, Liu L, Fang C, Pan M, Cong S, Guo Z, Yang X, Liu J, Li Y, Xiao H. A Network-Pharmacology-Combined Integrated Pharmacokinetic Strategy to Investigate the Mechanism of Potential Liver Injury due to Polygonum multiflorum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238592. [PMID: 36500685 PMCID: PMC9740939 DOI: 10.3390/molecules27238592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Polygonum multiflorum (PM) has been used as a tonic and anti-aging remedy for centuries in Asian countries. However, its application in the clinic has been hindered by its potential to cause liver injury and the lack of investigations into this mechanism. Here, we established a strategy using a network pharmacological technique combined with integrated pharmacokinetics to provide an applicable approach for addressing this issue. A fast and sensitive HPLC-QQQ-MS method was developed for the simultaneous quantification of five effective compounds (trans-2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside, emodin-8-O-β-d-glucoside, physcion-8-O-β-d-glucoside, aloe-emodin and emodin). The method was fully validated in terms of specificity, linearity, accuracy, precision, extraction recovery, matrix effects, and stability. The lower limits of quantification were 0.125-0.500 ng/mL. This well-validated method was successfully applied to an integrated pharmacokinetic study of PM extract in rats. The network pharmacological technique was used to evaluate the potential liver injury due to the five absorbed components. Through pathway enrichment analysis, it was found that potential liver injury is primarily associated with PI3K-Akt, MAPK, Rap1, and Ras signaling pathways. In brief, the combined strategy might be valuable in revealing the mechanism of potential liver injury due to PM.
Collapse
Affiliation(s)
- Zhixin Jia
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Lirong Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Cong Fang
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Mingxia Pan
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Shiyu Cong
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Zhonghui Guo
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Xiaoqin Yang
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Hongbin Xiao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, China
- Correspondence: ; Tel.: +86-010-53911883
| |
Collapse
|
9
|
Jia Z, Liu L, Liu J, Fang C, Pan M, Zhang J, Li Y, Xian Z, Xiao H. Assessing potential liver injury induced by Polygonum multiflorum using potential biomarkers via targeted sphingolipidomics. PHARMACEUTICAL BIOLOGY 2022; 60:1578-1590. [PMID: 35949191 PMCID: PMC9377235 DOI: 10.1080/13880209.2022.2099908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Polygonum multiflorum Thunb. (Polygonaceae) (PM) can cause potential liver injury which is typical in traditional Chinese medicines (TCMs)-induced hepatotoxicity. The mechanism involved are unclear and there are no sensitive evaluation indicators. OBJECTIVE To assess PM-induced liver injury, identify sensitive assessment indicators, and screen for new biomarkers using sphingolipidomics. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were randomly divided into four groups (control, model with low-, middle- and high-dose groups, n = 6 each). Rats in the three model groups were given different doses of PM (i.g., low/middle/high dose, 2.7/8.1/16.2 g/kg) for four months. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and liver were quantitatively analyzed. Fixed liver tissue sections were stained with haematoxylin and eosin and examined under a light microscope. The targeted sphingolipidomic analysis of plasma was performed using high-performance liquid chromatography tandem mass spectrometry. RESULTS The maximal tolerable dose (MTD) of PM administered intragastrically to mice was 51 g/kg. Sphingolipid profiling of normal and PM-induced liver injury SD rats revealed three potential biomarkers: ceramide (Cer) (d18:1/24:1), dihydroceramide (d18:1/18:0)-1-phosphate (dhCer (d18:1/18:0)-1P) and Cer (d18:1/26:1), at 867.3-1349, 383.4-1527, and 540.5-658.7 ng/mL, respectively. A criterion for the ratio of Cer (d18:1/24:1) and Cer (d18:1/26:1) was suggested and verified, with a normal range of 1.343-2.368 (with 95% confidence interval) in plasma. CONCLUSIONS Three potential biomarkers and one criterion for potential liver injury caused by PM that may be more sensitive than ALT and AST were found.
Collapse
Affiliation(s)
- Zhixin Jia
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Fang
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Mingxia Pan
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Zhong Xian
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Jiang HY, Gao HY, Li J, Zhou TY, Wang ST, Yang JB, Hao RR, Pang F, Wei F, Liu ZG, Kuang L, Ma SC, He JM, Jin HT. Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115630. [PMID: 35987407 DOI: 10.1016/j.jep.2022.115630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liver toxicity of Reynoutria multiflora (Thunb.) Moldenke. (Polygonaceae) (Polygonum multiflorum Thunb, PM) has always attracted much attention, but the related toxicity materials and mechanisms have not been elucidated due to multi-component and multi-target characteristics. In previous hepatotoxicity screening, different components of PM were first evaluated and the hepatotoxicity of component D [95% ethanol (EtOH) elution] in a 70% EtOH extract of PM (PM-D) showed the highest hepatotoxicity. Furthermore, the main components of PM-D were identified and their hepatotoxicity was evaluated based on a zebrafish embryo model. However, the hepatotoxicity mechanism of PM-D is unknown. AIM OF THE STUDY This work is to explore the hepatotoxicity mechanisms of PM-D by integrating network toxicology and spatially resolved metabolomics strategy. MATERIALS AND METHODS A hepatotoxicity interaction network of PM-D was constructed based on toxicity target prediction for eight key toxic ingredients and a hepatotoxicity target collection. Then the key signaling pathways were enriched, and molecular docking verification was implemented to evaluate the ability of toxic ingredients to bind to the core targets. The pathological changes of liver tissues and serum biochemical assays of mice were used to evaluate the liver injury effect of mice with oral administration of PM-D. Furthermore, spatially resolved metabolomics was used to visualize significant differences in metabolic profiles in mice after drug administration, to screen hepatotoxicity-related biomarkers and analyze metabolic pathways. RESULTS The contents of four key toxic compounds in PM-D were detected. Network toxicology identified 30 potential targets of liver toxicity of PM-D. GO and KEGG enrichment analyses indicated that the hepatotoxicity of PM-D involved multiple biological activities, including cellular response to endogenous stimulus, organonitrogen compound metabolic process, regulation of the apoptotic process, regulation of kinase, regulation of reactive oxygen species metabolic process and signaling pathways including PI3K-Akt, AMPK, MAPK, mTOR, Ras and HIF-1. The molecular docking confirmed the high binding activity of 8 key toxic ingredients with 10 core targets, including mTOR, PIK3CA, AKT1, and EGFR. The high distribution of metabolites of PM-D in the liver of administrated mice was recognized by mass spectrometry imaging. Spatially resolved metabolomics results revealed significant changes in metabolic profiles after PM-D administration, and metabolites such as taurine, taurocholic acid, adenosine, and acyl-carnitines were associated with PM-D-induced liver injury. Enrichment analyses of metabolic pathways revealed tht linolenic acid and linoleic acid metabolism, carnitine synthesis, oxidation of branched-chain fatty acids, and six other metabolic pathways were significantly changed. Comprehensive analysis revealed that the hepatotoxicity caused by PM-D was closely related to cholestasis, mitochondrial damage, oxidative stress and energy metabolism, and lipid metabolism disorders. CONCLUSIONS In this study, the hepatotoxicity mechanisms of PM-D were comprehensively identified through an integrated spatially resolved metabolomics and network toxicology strategy, providing a theoretical foundation for the toxicity mechanisms of PM and its safe clinical application.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui-Yu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian-Yu Zhou
- College of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Shu-Ting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Rui-Rui Hao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Gang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China.
| | - Jiu-Ming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| | - Hong-Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, China.
| |
Collapse
|
11
|
Tillmann HL, Suzuki A, Merz M, Hermann R, Rockey DC. A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT). PLoS One 2022; 17:e0271304. [PMID: 36174069 PMCID: PMC9521919 DOI: 10.1371/journal.pone.0271304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background and aims
We hypothesized that a drug’s clinical signature (or phenotype) of liver injury can be assessed and used to quantitatively develop a computer-assisted DILI causality assessment-tool (DILI-CAT). Therefore, we evaluated drug-specific DILI-phenotypes for amoxicillin-clavulanate (AMX/CLA), cefazolin, cyproterone, and Polygonum multiflorum using data from published case series, to develop DILI-CAT scores for each drug.
Methods
Drug specific phenotypes were made up of the following three clinical features: (1) latency, (2) R-value, and (3) AST/ALT ratio. A point allocation system was developed with points allocated depending on the variance from the norm (or “core”) for the 3 variables in published datasets.
Results
The four drugs had significantly different phenotypes based on latency, R-value, and AST/ALT ratio. The median cyproterone latency was 150 days versus < 43 days for the other three drugs (median: 26 for AMX/CLA, 20 for cefazolin, and 20 for Polygonum multiflorum; p<0.001). The R-value for the four drugs was also significantly different among drugs (cyproterone [median 12.4] and Polygonum multiflorum [median 10.9]) from AMX/CLA [median 1.44] and cefazolin [median 1.57; p<0.001]). DILI-CAT scores effectively separated cyproterone and Polygonum multiflorum from AMX/CLA and cefazolin, respectively (p<0.001). As expected, because of phenotypic overlap, AMX/CLA and cefazolin could not be well differentiated.
Conclusions
DILI-CAT is a data-driven, diagnostic tool built to define drug-specific phenotypes for DILI adjudication. The data provide proof of principle that a drug-specific, data-driven causality assessment tool can be developed for different drugs and raise the possibility that such a process could enhance causality assessment methods.
Collapse
Affiliation(s)
- Hans L. Tillmann
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University, Greenville, NC, United States of America
- Greenville VA Health Care Center, Greenville, NC, United States of America
- * E-mail:
| | - Ayako Suzuki
- Duke University Medical Center, Durham, NC, United States of America
- Durham VA Medical Center, Durham, NC, United States of America
| | - Michael Merz
- AstraZeneca, independent consultant, Freiburg, Germany
| | | | - Don C. Rockey
- Digestive Disease Research Center, Medical University South Carolina, Charleston, SC, United States of America
| |
Collapse
|
12
|
Li D, Lyu Y, Song Q, Lai YS, Zuo Z. Idiosyncratic liver injury induced by bolus combination treatment with emodin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside in rats. Front Pharmacol 2022; 13:1017741. [PMID: 36225587 PMCID: PMC9549410 DOI: 10.3389/fphar.2022.1017741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Polygoni Multiflori Radix (PMR) is a commonly used traditional Chinese medicine in clinical practice, while adverse effects of hepatotoxicity related to PMR have been frequently reported. The clinical case reports indicated that PMR hepatotoxicity could occur under both overdose medication/long-term exposure and low doses with short-duration (idiosyncratic) conditions. The combination treatment with emodin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG), two major PMR components, was reported to contribute to PMR hepatotoxicity after long-term treatment. However, the role of the combination treatment of these two components in PMR-induced idiosyncratic liver injury has not been clearly clarified. In this study, the LPS-mediated inflammatory stress model rats were adopted to explore the idiosyncratic liver injury induced by the bolus combination treatment with emodin and TSG. After a bolus oral administration with TSG (165 mg/kg), emodin (5 mg/kg) or their combination in both normal and LPS-mediated inflammatory stress model rats, the systemic/hepatic concentrations of emodin, emodin glucuronides and bile acids were determined; the hepatotoxicity assessments were conducted via monitoring histopathological changes and liver injury biomarkers (ALT and AST). Moreover, the protein expressions of bile acid homeostasis- and apoptosis-related proteins were examined. No liver damage was observed in the normal rats after a bolus dose with the individual or combination treatment, while the bolus combination treatment with emodin and TSG induced liver injury in the LPS-mediated inflammatory stress model rats, evidenced by the elevated plasma levels of alanine aminotransferase (∼66%) and aspartate aminotransferase (∼72%) accompanied by severe inflammatory cell infiltration and apoptotic hepatocytes in liver tissue. Moreover, such combination treatment at a bolus dose in the LPS-mediated inflammatory stress model rats could significantly elevate the hepatic TBA levels by about 45% via up-regulating the hepatic protein expression levels of bile acid synthesis enzymes and inhibiting that of bile acid efflux transporters and the expression levels of apoptosis-related proteins. Our study for the first time proved the major contribution of the combination treatment with emodin and TSG in PMR-induced idiosyncratic liver injury.
Collapse
|
13
|
Li D, Lyu Y, Zhao J, Ji X, Zhang Y, Zuo Z. Accumulation of the Major Components from Polygoni Multiflori Radix in Liver and Kidney after Its Long-Term Oral Administrations in Rats. PLANTA MEDICA 2022; 88:950-959. [PMID: 34521133 DOI: 10.1055/a-1585-5991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Polygoni Multiflori Radix (PMR) has been widely used as a tonic and an anti-aging remedy for centuries, the extensively reported hepatotoxicity and potential kidney toxicity hindered its safe use in clinical practice. To better understand its toxicokinetics, the current study was proposed, aiming to evaluate the biodistributions of the major PMR components including 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG), emodin, emodin-8-O-β-D-glucopyranoside (EMG) and physcion as well as their corresponding glucuronides following bolus and multiple oral administrations of PMR to rats. Male Sprague-Dawley rats received a bolus dose or 21 days of oral administrations of PMR concentrated granules at 4.12 g/kg (equivalent to 20.6 g/kg raw material). Fifteen minutes after bolus dose or the last dose on day 21, rats were sacrificed and the blood, liver, and kidney were collected for the concentration determination of both parent form and glucuronides of TSG, emodin, EMG, and physcion by HPLC-MS/MS. Among all the tested analytes, TSG, EMG, EMG glucuronides in liver and TSG, EMG, as well as all the glucuronides of these analytes in the kidney demonstrated the most significant accumulation after multiple doses. Moreover, the levels of the parent analytes were all significantly higher in liver and kidney in comparison to their plasma levels. Strong tissue binding of all four analytes and accumulation of TSG, EMG, and EMG glucuronides in the liver and TSG, EMG, as well as the glucuronides of all four analytes in the kidney after multiple dosing of PMR were considered to be associated with its toxicity.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Yuanfeng Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Xiaoyu Ji
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| |
Collapse
|
14
|
2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside enhances the hepatotoxicity of emodin in vitro and in vivo. Toxicol Lett 2022; 365:74-85. [PMID: 35753641 DOI: 10.1016/j.toxlet.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022]
Abstract
Herb-induced liver injury results from the interplay between the herb and host with the herbal components serving as the major origin for hepatotoxicity. Although Polygoni Multiflori Radix (PMR) has been frequently reported to induce liver injury, contributions of its major components such as emodin, emodin-8-O-β-D-glucopyranoside, physcion and 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) towards its hepatotoxicity have not been clearly identified. Our initial cytotoxicity screenings of the major PMR components using rat hepatocytes identified emodin as the most toxic. Subsequently, the bile acid homeostasis-related mechanisms of emodin and its combination treatment with TSG in PMR-associated liver injury were explored in sandwich-cultured rat hepatocytes (SCRH) and verified in rats. In SCRH, emodin was found to be able to induce total bile acid accumulation in a dose-dependent manner. In both SCRH and rats, the presence of TSG significantly enhanced the hepatotoxicity of emodin via i) increasing its hepatic exposure by inhibiting its glucuronidation mediated metabolism; ii) enhancing its disruption on bile acid homeostasis through amplifying its inhibition on bile acid efflux transporters and its up-regulation on bile acids synthesis enzymes; iii) enhancing its apoptosis. Our study for the first time demonstrated the critical role of the combination treatment with emodin and TSG in PMR-induced liver injury.
Collapse
|
15
|
Kang L, Li D, Jiang X, Zhang Y, Pan M, Hu Y, Si L, Zhang Y, Huang J. Hepatotoxicity of the Major Anthraquinones Derived From Polygoni Multiflori Radix Based on Bile Acid Homeostasis. Front Pharmacol 2022; 13:878817. [PMID: 35662717 PMCID: PMC9157432 DOI: 10.3389/fphar.2022.878817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/22/2023] Open
Abstract
Polygoni Multiflori Radix (PMR), the dried root of Polygonum Multiflorum Thunb., has been widely used as traditional Chinese medicines in clinical practice for centuries. However, the frequently reported hepatotoxic adverse effects hindered its safe use in clinical practice. This study aims to explore the hepatotoxic effect of PMR extract and the major PMR derived anthraquinones including emodin, chrysophanol, and physcion in mice and the underlying mechanisms based on bile acid homeostasis. After consecutively treating the ICR mice with PMR extract or individual anthraquinones for 14 or 28 days, the liver function was evaluated by measuring serum enzymes levels and liver histological examination. The compositions of bile acids (BAs) in the bile, liver, and plasma were measured by LC-MS/MS, followed by Principal Component Analysis (PCA) and Partial Least Squares Discriminate Analysis (PLS-DA). Additionally, gene and protein expressions of BA efflux transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), were examined to investigate the underlying mechanisms. After 14-day administration, mild inflammatory cell infiltration in the liver was observed in the physcion- and PMR-treated groups, while it was found in all the treated groups after 28-day treatment. Physcion and PMR extract induced hepatic BA accumulation after 14-day treatment, but such accumulation was attenuated after 28-day treatment. Based on the PLS-DA results, physcion- and PMR-treated groups were partially overlapping and both groups showed a clear separation with the control group in the mouse liver. The expression of Bsep and Mrp2 in the physcion- and PMR-treated mouse liver was decreased after 14-day treatment, while the downregulation was abrogated after 28-day treatment. Our study, for the first time, demonstrated that both PMR extract and tested anthraquinones could alter the disposition of either the total or individual BAs in the mouse bile, liver, and plasma via regulating the BA efflux transporters and induce liver injury, which provide a theoretical basis for the quality control and safe use of PMR in practice.
Collapse
Affiliation(s)
- Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan, China.,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan, China
| | - Dan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Xin Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- College of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, China
| | - Minhong Pan
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Yixin Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqin Si
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| | - Jiangeng Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
DNA metabarcoding of fungal communities in Heshouwu (Polygonum multiflorum Thunb.). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Bai J, Chen W, Huang J, Su H, Zhang D, Xu W, Zhang J, Huang Z, Qiu X. Transformation of Stilbene Glucosides From Reynoutria multiflora During Processing. Front Pharmacol 2022; 13:757490. [PMID: 35548344 PMCID: PMC9082504 DOI: 10.3389/fphar.2022.757490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
The root of Reynoutria multiflora Thunb. Moldenke (RM, syn.: Polygonum multiflorum Thunb.) has been widely used in TCM clinical practice for centuries. The raw R. multiflora (RRM) should be processed before use, in order to reduce toxicity and increase efficiency. However, the content of trans-2, 3, 5, 4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside (trans-THSG), which is considered to be the main medicinal ingredient, decreases in this process. In order to understand the changes of stilbene glycosides raw R. multiflora (RRM) and processed R. multiflora (PRM), a simple and effective method was developed by ultra high performance liquid chromatography tandem quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UHPLC-Q-Exactive plus orbitrap MS/MS). The content and quantity of stilbene glycosideshave undergone tremendous changes during the process. Seven parent nucleus of stilbene glycosides and 55 substituents, including 5-HMF and a series of derivatives, were identified in PM. 146 stilbene glycosides were detected in RRM, The number of detected compounds increased from 198 to 219 as the processing time increased from 4 to 32 h. Among the detected compounds, 102 stilbene glycosides may be potential new compounds. And the changing trend of the compounds can be summarized in 3 forms: gradually increased, gradually decreased, first increased and then decreased or decreased first. The content of trans-THSG was indeed decreased during processing, as it was converted into a series of derivatives through the esterification reaction with small molecular compounds. The clarification of secondary metabolite group can provide a basis for the follow-up study on the mechanism of pharmacodynamics and toxicity of PM, and for screening of relevant quality markers.
Collapse
Affiliation(s)
- Junqi Bai
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Wanting Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juan Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - He Su
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Xu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
18
|
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022; 9:809952. [PMID: 35186957 PMCID: PMC8847224 DOI: 10.3389/fcell.2021.809952] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nrf2 and NF-κB are important regulators of the response to oxidative stress and inflammation in the body. Previous pharmacological and genetic studies have confirmed crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading to increased production of inflammatory factors, while NF-κB can affect the expression of downstream target genes by regulating the transcription and activity of Nrf2. At the same time, many therapeutic drug-induced organ toxicities, including hepatotoxicity, nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have received increasing attention from researchers in clinical practice. Drug-induced organ injury can destroy body function, reduce the patients’ quality of life, and even threaten the lives of patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury. There is substantial evidence that protective medications can alleviate drug-induced organ toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become increasingly important to explore the crosstalk mechanism between Nrf2 and NF-κB in drug-induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2 and NF-κB pathways and the important effects on adverse effects including toxic reactions and look forward to finding protective drugs that can target the crosstalk between the two.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Miao Yan,
| |
Collapse
|
19
|
Lin Y, Peng X, Xia B, Zhang Z, Li C, Wu P, Lin L, Liao D. Investigation of toxicity attenuation mechanism of tetrahydroxy stilbene glucoside in Polygonum multiflorum Thunb. by Ganoderma lucidum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114421. [PMID: 34271114 DOI: 10.1016/j.jep.2021.114421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The idiosyncratic hepatotoxicity of Polygonum multiflorum Thunb. (PM) has attracted great interest, and tetrahydroxy stilbene glucoside (TSG) was the main idiosyncratic hepatotoxicity constituent, but biological detoxification on idiosyncratic hepatotoxicity of PM was not well investigated. AIM OF THE STUDY This study aimed to illustrate biological detoxification mechanism on PM-induced idiosyncratic hepatotoxicity by Ganoderma lucidum (G. lucidum). MATERIALS AND METHODS G. lucidum was used for biological detoxification of tetrahydroxy stilbene glucoside (TSG)-induced idiosyncratic hepatotoxicity of PM. The TSG consumption and products formation were dynamically determined during transformation using high-performance liquid chromatography coupled with diode-array detection and electrospray ionization tandem mass spectrometry (HPLC-DAD-MSn). The transformation invertases (β-D-glucosidase and lignin peroxidase) were evaluated by using intracellular and extracellular distribution and activity assay. The key functions of lignin peroxidase (LiP) were studied by experiments of adding inhibitors and agonists. The entire TSG transformation process was confirmed in vitro simulated test. The cellular toxicity of TSG and the transformation products was detected by MTT. RESULTS A suitable biotransformation system of TSG was established with G. lucidum, then p-hydroxybenzaldehyde and 2,3,5-trihydroxybenzaldehyde can be found as transformation products of TSG. The transformation mechanism involves two extracellular enzymes, β-D-glucosidase and LiP. β-D-glucosidase can remove glycosylation of TSG firstly and then LiP can break the double bond of remaining glycosides. The toxicity of TSG after biotransformation by G. lucidum was attenuated. CONCLUSIONS This study would reveal a novel biological detoxification method for PM and explain degradation processes of TSG by enzymic methods.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Xi Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Chun Li
- China Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ping Wu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China.
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, College of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, People's Republic of China.
| |
Collapse
|
20
|
Zhai XR, Zou ZS, Wang JB, Xiao XH. Herb-Induced Liver Injury Related to Reynoutria multiflora (Thunb.) Moldenke: Risk Factors, Molecular and Mechanistic Specifics. Front Pharmacol 2021; 12:738577. [PMID: 34539416 PMCID: PMC8443768 DOI: 10.3389/fphar.2021.738577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal medicine is widely used in Asia as well as the west. Hepatotoxicity is one of the most severe side effects of herbal medicine which is an increasing concern around the world. Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb., PM) is the most common herb that can cause herb-induced liver injury (HILI). The recent scientific and technological advancements in clinical and basic research are paving the way for a better understanding of the molecular aspects of PM-related HILI (PM-HILI). This review provides an updated overview of the clinical characteristics, predisposing factors, hepatotoxic components, and molecular mechanisms of PM-HILI. It can also aid in a better understanding of HILI and help in further research on the same.
Collapse
Affiliation(s)
- Xing-Ran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Zheng-Sheng Zou
- Peking University 302 Clinical Medical School, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-He Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Bai J, Su H, Liang Y, Shi X, Huang J, Xu W, Zhang J, Gong L, Huang Z, Qiu X. Screening of Quality Markers During the Processing of Reynoutria multiflora Based on the UHPLC-Q-Exactive Plus Orbitrap MS/MS Metabolomic Method. Front Pharmacol 2021; 12:695560. [PMID: 34456722 PMCID: PMC8385779 DOI: 10.3389/fphar.2021.695560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The root of Reynoutria multiflora (Thunb.) Moldenke (syn: Polygonum multiflorum Thunb.) is a distinguished herb that has been popularly used in traditional Chinese medicine. The raw Reynoutria multiflora (RRM) should be processed by steaming before use, and the processing time is not specified in the processing specification. Our previous studies showed that the efficacy and toxicity of processed Reynoutria multiflora (PRM) at different processing times were inconsistent. A comprehensive identification method was established in this study to find a quality marker of raw Reynoutria multiflora (RRM) and processed Reynoutria multiflora (PRM) with different processing times. Metabolomics based on ultra-high-performance liquid chromatography tandem quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UHPLC-Q-Exactive plus orbitrap MS/MS) was used in this study. Using the CD.2 software processed database, multivariate statistical analysis methods coupled with cluster analysis and heatmap were implemented to distinguish between RRMs and PRMs with different processing times. The results showed that RRM and PRMs processed for 4, 8, 12, and 18 h cluster into group 1, and PRM processed for 24 and 32 h into group 2, indicating that it can effectively distinguish between the two groups and twenty potential markers, made the highest contributions to the observed chemical differences between two groups. Among them, tetrahydroxystilbene-O-hexoside-O-galloyl and sucrose can be used to identify PRM processed for 24 h. Therefore, the properties of RRM changed after 24 h of processing, and the quality markers were screened to distinguish RRM and PPM. It can also be used as an important control technology for the processing of RM, which has wide application prospects.
Collapse
Affiliation(s)
- Junqi Bai
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of Guangdong Provincial Medical Products Administration, Guangzhou, China
| | - He Su
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Youling Liang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xuhua Shi
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Juan Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Wen Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Lu Gong
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of Guangdong Provincial Medical Products Administration, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of Guangdong Provincial Medical Products Administration, Guangzhou, China.,Guangdong Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Teschke R, Eickhoff A, Schulze J, Danan G. Herb-induced liver injury (HILI) with 12,068 worldwide cases published with causality assessments by Roussel Uclaf Causality Assessment Method (RUCAM): an overview. Transl Gastroenterol Hepatol 2021; 6:51. [PMID: 34423172 PMCID: PMC8343418 DOI: 10.21037/tgh-20-149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Herbal products including herbal medicines are worldwide used in large amounts for treating minor ailments and for disease prevention. However, efficacy of most herbal products has rarely been well documented through randomized controlled trials in line with evidence-based medicine concepts, which could be used to estimate the benefit/risk ratio. Instead, much better documented are adverse reactions such as liver injury associated with the consumption of some herbal products, so called herb-induced liver injury (HILI), which represents a clinical challenge. In order to establish HILI as valid diagnosis, the use of a diagnostic algorithms such as Roussel Uclaf Causality Assessment Method (RUCAM) is widely recommended, although physicians in some countries are reluctant to use RUCAM for their HILI cases. This review on worldwide HILI and RUCAM, developed as part of the artificial intelligence ideas, reveals that China is the leading country with 24 publications on HILI cases that were all assessed for causality using RUCAM, followed by Korea with 15 reports, Germany with 9 reports, the US with 7 reports, and Spain with 6 reports, whereas the remaining countries provided less than 4 reports. The total number of assessed HILI cases is 12,068 worldwide derived from 80 publications but in each report HILI case numbers were variable in a range from 1 up to 6,971. This figure compares with 46,266 cases of drug-induced liver injury (DILI) published worldwide from 2014 to early 2019 also assessed for causality by RUCAM. The original version of RUCAM was validated and established in 1993 and updated in 2016 that should be used in future HILI cases. RUCAM is an objective, structured, and validated method, specifically designed for liver injury. It is a scoring system including case data elements to be assessed and scored individually to provide a final score in five causality gradings. Among the 11,404/12,068 HILI (94.5%) cases assessable for evaluation, causality gradings were highly probable in 4.2%, probable in 15.5%, possible in 70.3%, and unlikely or excluded in 10.0%. To improve the future reporting of RUCAM based HILI cases, recommendations include the strict adherence to instructions outlined in the updated RUCAM and, in particular, to follow prospective data collection on the cases to ensure completeness of case data. In conclusion, RUCAM can well be used to assess causality in suspected HILI cases, and additional efforts are now required to increase the quality of the reported cases.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Axel Eickhoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance consultancy, Paris, France
| |
Collapse
|
23
|
Ballotin VR, Bigarella LG, Brandão ABDM, Balbinot RA, Balbinot SS, Soldera J. Herb-induced liver injury: Systematic review and meta-analysis. World J Clin Cases 2021; 9:5490-5513. [PMID: 34307603 PMCID: PMC8281430 DOI: 10.12998/wjcc.v9.i20.5490] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of herbal supplements and alternative medicines has been increasing in the last decades. Despite popular belief that the consumption of natural products is harmless, herbs might cause injury to various organs, particularly to the liver, which is responsible for their metabolism in the form of herb-induced liver injury (HILI). AIM To identify herbal products associated with HILI and describe the type of lesion associated with each product. METHODS Studies were retrieved using Medical Subject Headings Descriptors combined with Boolean operators. Searches were run on the electronic databases Scopus, Web of Science, MEDLINE, BIREME, LILACS, Cochrane Library for Systematic Reviews, SciELO, Embase, and Opengray.eu. Languages were restricted to English, Spanish, and Portuguese. There was no date of publication restrictions. The reference lists of the studies retrieved were searched manually. To access causality, the Maria and Victorino System of Causality Assessment in Drug Induced Liver Injury was used. Simple descriptive analysis were used to summarize the results. RESULTS The search strategy retrieved 5918 references. In the final analysis, 446 references were included, with a total of 936 cases reported. We found 79 types of herbs or herbal compounds related to HILI. He-Shou-Wu, Green tea extract, Herbalife, kava kava, Greater celandine, multiple herbs, germander, hydroxycut, skullcap, kratom, Gynura segetum, garcinia cambogia, ma huang, chaparral, senna, and aloe vera were the most common supplements with HILI reported. Most of these patients had complete clinical recovery (82.8%). However, liver transplantation was necessary for 6.6% of these cases. Also, chronic liver disease and death were observed in 1.5% and 10.4% of the cases, respectively. CONCLUSION HILI is normally associated with a good prognosis, once the implied product is withdrawn. Nevertheless, it is paramount to raise awareness in the medical and non-medical community of the risks of the indiscriminate use of herbal products.
Collapse
Affiliation(s)
| | | | - Ajacio Bandeira de Mello Brandão
- Post-Graduate Program in Medicine, Division of Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-110, RS, Brazil
| | - Raul Angelo Balbinot
- Department of Clinical Gastroenterology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil
| | - Silvana Sartori Balbinot
- Department of Clinical Gastroenterology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil
| | - Jonathan Soldera
- Department of Clinical Gastroenterology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil
| |
Collapse
|
24
|
Ma N, Zhang Y, Sun L, Zhao Y, Ding Y, Zhang T. Comparative Studies on Multi-Component Pharmacokinetics of Polygonum multiflorum Thunb Extract After Oral Administration in Different Rat Models. Front Pharmacol 2021; 12:655332. [PMID: 34220500 PMCID: PMC8245786 DOI: 10.3389/fphar.2021.655332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
The clinical use of Polygonum multiflorum Thunb (PM) has been restricted or banned in many countries, due to its hepatotoxic adverse effects. Its toxicity research has become a hot topic. So far, the pharmacokinetic studies of PM, focusing on prototype compounds such as 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), emodin, and physcion, have been considered the main basis of pharmacodynamic material or of toxic effect. However, pharmacokinetic studies of its phase II metabolites have not yet been reported, mainly because the quantifications of such metabolites are difficult to do without the reference substance. In addition, pharmacokinetic studies on different pathological models treated with PM have also not been reported. On the other hand, toxic effects of PM have been reported in patients diagnosed with different liver pathologies. In the present work, a simultaneous quantitation method for eight prototypes components of PM and their five phase II metabolites has been performed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and used for the pharmacokinetic study of PM in two different liver pathological models in rats (normal, alpha-naphthylisothiocyanate (ANIT), and carbon tetrachloride (CCl4)). The results showed that the main blood-entering components of PM are TSG, emodin, physcion, emodin-8-O-β⁃D⁃glucoside (E-Glu), physcion-8-O-β⁃D⁃glucoside (P-Glu), aloe-emodin, gallic acid, resveratrol and catechin, among which TSG, emodin, and catechin were primary metabolized in phase II, while resveratrol was converted to all phase II metabolites, and the others were metabolized as drug prototypes. Meanwhile, their pharmacokinetic parameters in the different models also exhibited significant differences. For instance, the AUC (0-∞) values of the TSG prototype and its phase II metabolites were higher in the ANIT group, followed by CCl4 group and the normal group, while the AUC (0-∞) values of the emodin prototype and its phase II metabolites were higher in the CCl4 group. To further illustrate the reasons for the pharmacokinetic differences, bilirubin metabolizing enzymes and transporters in the liver were measured, and the correlations with the AUC of the main compounds were analyzed. TSG and aloe-emodin have significant negative correlations with UGT1A1, BSEP, OATP1A4, OCT1, NTCP, MRP2 and MDR1 (p < 0.01). These data suggest that when the expression of metabolic enzymes and transporters in the liver is inhibited, the exposure levels of some components of PM might be promoted in vivo.
Collapse
Affiliation(s)
- Ninghui Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zhao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chines Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
26
|
Yang JB, Gao HY, Song YF, Liu Y, Wang Q, Wang Y, Ma SC, Cheng XL, Wei F. Advances in Understanding the Metabolites and Metabolomics of Polygonum multiflorum Thunb: A Mini-review. Curr Drug Metab 2021; 22:165-172. [PMID: 33261537 DOI: 10.2174/1389200221666201201091345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/21/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The roots of Polygonum multiflorum (PM) are a well-known traditional Chinese medicine, widely used to treat a variety of conditions in Southeast Asia, South Korea, Japan and other countries. It is known that Polygoni Multiflori Radix Praeparata (PMRP) may enhance the efficacy and reduce the toxicity of PM. However, reports of adverse reactions, such as hepatotoxicity, caused by PM or PMRP, have continuously appeared around the world, which increased the known risks of the medication and gradually gained the extensive attention of many researchers. The chemical constituents of PM that cause hepatotoxicity have not been distinctly elucidated using the traditional phytochemical screening. Recently, with the rapid development of metabolomics, there has been a growing need to explore the potential hepatotoxic components and mechanisms of PM. METHODS The metabolites and metabolomics of PM were searched by the Web of Science, PubMed, Google scholar and some Chinese literature databases. RESULTS A brief description of metabolites and metabolomics of PM is followed by a discussion on the metabolite- induced toxicity in this review. More than 100 metabolites were tentatively identified and this will contribute to further understanding of the potential hepatotoxic components of PM. Meanwhile, some toxic compounds were identified and could be used as potential toxic markers of PM. CONCLUSION This review mainly outlines the metabolites and metabolomics of PM that have been identified in recent years. This study could help to clarify the potential hepatotoxic components and metabolic mechanisms of PM and provide a scientific reference for its safe clinical use in the future.
Collapse
Affiliation(s)
- Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Hui-Yu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yun-Fei Song
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xian-Long Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
27
|
Wei S, Ma W, Zhang B, Li W. NLRP3 Inflammasome: A Promising Therapeutic Target for Drug-Induced Toxicity. Front Cell Dev Biol 2021; 9:634607. [PMID: 33912556 PMCID: PMC8072389 DOI: 10.3389/fcell.2021.634607] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced toxicity, which impairs human organ function, is a serious problem during drug development that hinders the clinical use of many marketed drugs, and the underlying mechanisms are complicated. As a sensor of infections and external stimuli, nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a key role in the pathological process of various diseases. In this review, we specifically focused on the role of NLRP3 inflammasome in drug-induced diverse organ toxicities, especially the hepatotoxicity, nephrotoxicity, and cardiotoxicity. NLRP3 inflammasome is involved in the initiation and deterioration of drug-induced toxicity through multiple signaling pathways. Therapeutic strategies via inhibiting NLRP3 inflammasome for drug-induced toxicity have made significant progress, especially in the protective effects of the phytochemicals. Growing evidence collected in this review indicates that NLRP3 is a promising therapeutic target for drug-induced toxicity.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
28
|
Rao T, Liu YT, Zeng XC, Li CP, Ou-Yang DS. The hepatotoxicity of Polygonum multiflorum: The emerging role of the immune-mediated liver injury. Acta Pharmacol Sin 2021; 42:27-35. [PMID: 32123300 PMCID: PMC7921551 DOI: 10.1038/s41401-020-0360-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
| | - Ya-Ting Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Xiang-Chang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Chao-Peng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China.
| |
Collapse
|
29
|
Wu X, Zhang Y, Qiu J, Xu Y, Zhang J, Huang J, Bai J, Huang Z, Qiu X, Xu W. Lipidomics Analysis Indicates Disturbed Hepatocellular Lipid Metabolism in Reynoutria multiflora-Induced Idiosyncratic Liver Injury. Front Pharmacol 2020; 11:569144. [PMID: 33408629 PMCID: PMC7779765 DOI: 10.3389/fphar.2020.569144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The root of Reynoutria multiflora (Thunb.) Moldenke (syn.: Polygonum multiflorum Thunb., HSW) is a distinguished herb that has been popularly used in traditional Chinese medicine (TCM). Evidence of its potential side effect on liver injury has accumulated and received much attention. The objective of this study was to profile the metabolic characteristics of lipids in injured liver of rats induced by HSW and to find out potential lipid biomarkers of toxic consequence. A lipopolysaccharide (LPS)-induced rat model of idiosyncratic drug-induced liver injury (IDILI) was constructed and evident liver injury caused by HSW was confirmed based on the combination of biochemical, morphological, and functional tests. A lipidomics method was developed for the first time to investigate the alteration of lipid metabolism in HSW-induced IDILI rat liver by using ultra-high-performance liquid chromatography/Q-exactive Orbitrap mass spectrometry coupled with multivariate analysis. A total of 202 characterized lipids, including phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), sphingomyelin (SM), phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylserine (PS), phosphoglycerols (PG), and ceramide (Cer), were compared among groups of LPS and LPS + HSW. A total of 14 out 26 LPC, 22 out of 47 PC, 19 out of 29 LPE, 16 out of 36 PE, and 10 out of 15 PI species were increased in HSW-treated rat liver, which indicated that HSW may cause liver damage via interfering the phospholipid metabolism. The present work may assist lipid biomarker development of HSW-induced DILI and it also provide new insights into the relationships between phospholipid perturbation and herbal-induced idiosyncratic DILI.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yating Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China
| | - Juan Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junqi Bai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China
| |
Collapse
|
30
|
Overview of Pharmacokinetics and Liver Toxicities of Radix Polygoni Multiflori. Toxins (Basel) 2020; 12:toxins12110729. [PMID: 33233441 PMCID: PMC7700391 DOI: 10.3390/toxins12110729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Radix Polygoni Multiflori (RPM), a traditional Chinese medicine, has been used as a tonic and an anti-aging remedy for centuries. However, its safe and effective application in clinical practice could be hindered by its liver injury potential and lack of investigations on its hepatotoxicity mechanism. Our current review aims to provide a comprehensive overview and a critical assessment of the absorption, distribution, metabolism, excretion of RPM, and their relationships with its induced liver injury. Based on the well-reported intrinsic liver toxicity of emodin, one of the major components in RPM, it is concluded that its plasma and liver concentrations could attribute to RPM induced liver injury via metabolic enzymes alteration, hepatocyte apoptosis, bile acids homeostasis disruption, and inflammatory damage. Co-administered 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside in RPM and other drugs/herbs could further aggravate the hepatotoxicity of emodin via enhancing its absorption and inhibiting its metabolism. To ensure the safe clinical use of RPM, a better understanding of the toxicokinetics and effect of its co-occurring components or other co-administered drugs/herbs on the pharmacokinetics of emodin is warranted.
Collapse
|
31
|
Advances in the Study of the Potential Hepatotoxic Components and Mechanism of Polygonum multiflorum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6489648. [PMID: 33062019 PMCID: PMC7545463 DOI: 10.1155/2020/6489648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
The roots of Polygonum multiflorum (PM) (He Shou Wu in Chinese) are one of the most commonly used tonic traditional Chinese medicines (TCMs) in China. PM is traditionally valued for its antiaging, liver- and kidney-tonifying, and hair-blackening effects. However, an increasing number of hepatotoxicity cases induced by PM attract the attention of scholars worldwide. Thus far, the potential liver injury compounds and the mechanism are still uncertain. The aim of this review is to provide comprehensive information on the potential hepatotoxic components and mechanism of PM based on the scientific literature. Moreover, perspectives for future investigations of hepatotoxic components are discussed. This study will build a new foundation for further study on the hepatotoxic components and mechanism of PM.
Collapse
|
32
|
Teschke R, Danan G. Worldwide Use of RUCAM for Causality Assessment in 81,856 Idiosyncratic DILI and 14,029 HILI Cases Published 1993-Mid 2020: A Comprehensive Analysis. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E62. [PMID: 33003400 PMCID: PMC7600114 DOI: 10.3390/medicines7100062] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 04/12/2023]
Abstract
Background: A large number of idiosyncratic drug induced liver injury (iDILI) and herb induced liver injury(HILI) cases of variable quality has been published but some are a matter of concern if the cases were not evaluated for causality using a robust causality assessment method (CAM) such as RUCAM (Roussel Uclaf Causality Assessment Method) as diagnostiinjuryc algorithm. The purpose of this analysis was to evaluate the worldwide use of RUCAM in iDILI and HILI cases. Methods: The PubMed database (1993-30 June 2020) was searched for articles by using the following key terms: Roussel Uclaf Causality Assessment Method; RUCAM; Idiosyncratic drug induced liver injury; iDILI; Herb induced liver injury; HILI. Results: Considering reports published worldwide since 1993, our analysis showed the use of RUCAM for causality assessment in 95,885 cases of liver injury including 81,856 cases of idiosyncratic DILI and 14,029 cases of HILI. Among the top countries providing RUCAM based DILI cases were, in decreasing order, China, the US, Germany, Korea, and Italy, with China, Korea, Germany, India, and the US as the top countries for HILI. Conclusion: Since 1993 RUCAM is certainly the most widely used method to assess causality in IDILI and HILI. This should encourage practitioner, experts, and regulatory agencies to use it in order to reinforce their diagnosis and to take sound decisions.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, D-60590 Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, F-75020 Paris, France;
| |
Collapse
|
33
|
Li HY, Yang JB, Li WF, Qiu CX, Hu G, Wang ST, Song YF, Gao HY, Liu Y, Wang Q, Wang Y, Cheng XL, Wei F, Jin HT, Ma SC. In vivo hepatotoxicity screening of different extracts, components, and constituents of Polygoni Multiflori Thunb. in zebrafish (Danio rerio) larvae. Biomed Pharmacother 2020; 131:110524. [PMID: 33152900 DOI: 10.1016/j.biopha.2020.110524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022] Open
Abstract
Polygonum multiflorum Thunb. (PM) is a traditional Chinese medicine, commonly used to treat a variety of diseases. However, the hepatotoxicity associated with PM hampers its clinical application and development. In this study, we refined the zebrafish hepatotoxicity model with regard to the following endpoints: liver size, liver gray value, and the area of yolk sac. The levels of alanine aminotransferase, aspartate transaminase, albumin, and microRNAs-122 were evaluated to verify the model. Subsequently, this model was used to screen different extracts, components, and constituents of PM, including 70 % EtOH extracts of PM, four fractions from macroporous resin (components A, B, C, and D), and 19 compounds from component D. We found that emodin, chrysophanol, emodin-8-O-β-D-glucopyranoside, (cis)-emodin-emodin dianthrones, and (trans)-emodin-emodin dianthrones showed higher hepatotoxicity compared to other components in PM, whereas polyphenols showed lower hepatotoxicity. To the best of our knowledge, this study is the first to identify that dianthrones may account for the hepatotoxicity of PM. We believe that these findings will be helpful in regulating the hepatotoxicity of PM.
Collapse
Affiliation(s)
- Hong-Ying Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jian-Bo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wan-Fang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Cai-Xia Qiu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shu-Ting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yun-Fei Song
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Hui-Yu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yue Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xian-Long Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Hong-Tao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Union-Genius Pharmaceutical Technology Co. Ltd, Beijing, 100176, China.
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
34
|
Xiang H, Zuo J, Guo F, Dong D. What we already know about rhubarb: a comprehensive review. Chin Med 2020; 15:88. [PMID: 32863857 PMCID: PMC7448319 DOI: 10.1186/s13020-020-00370-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Rhubarb (also named Rhei or Dahuang), one of the most ancient and important herbs in traditional Chinese medicine (TCM), belongs to the Rheum L. genus from the Polygonaceae family, and its application can be traced back to 270 BC in "Shen Nong Ben Cao Jing". Rhubarb has long been used as an antibacterial, anti-inflammatory, anti-fibrotic and anticancer medicine in China. However, for a variety of reasons, such as origin, variety and processing methods, there are differences in the effective components of rhubarb, which eventually lead to decreased quality and poor efficacy. Additionally, although some papers have reviewed the relationship between the active ingredients of rhubarb and pharmacologic actions, most studies have concentrated on one or several aspects, although there has been great progress in rhubarb research in recent years. Therefore, this review aims to summarize recent studies on the geographic distribution, taxonomic identification, pharmacology, clinical applications and safety issues related to rhubarb and provide insights into the further development and application of rhubarb in the future.
Collapse
Affiliation(s)
- Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaxin Zuo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
35
|
Teschke R, Zhu Y, Jing J. Herb-induced Liver Injury in Asia and Current Role of RUCAM for Causality Assessment in 11,160 Published Cases. J Clin Transl Hepatol 2020; 8:200-214. [PMID: 32832401 PMCID: PMC7438347 DOI: 10.14218/jcth.2020.00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Herb-induced liver injuries (HILI) by traditional herbal medicines are particular challenges in Asian countries, with issues over the best approach to establish causality. The aim of the current analysis was to provide an overview on how causality was assessed in HILI cases from Asian countries and whether the Roussel Uclaf Causality Assessment Method (RUCAM) was the preferred diagnostic algorithm, as shown before in worldwide evaluated cases of drug-induced liver injury (DILI). Using the PubMed database, publications in English language were preferred to allow for reevaluation by peers. Overall 11,160 HILI cases have assessed causality using RUCAM and were published by first authors working in Asian countries. With 21 evaluable reports, most publications came from mainland China, with Hong Kong and Taiwan, followed by Korea (n=15), Singapore (n=2), and Japan (n=1), while other Asian countries were not contributory. Most publications provided case and RUCAM data of good quality. For better presentation of future cases, however, the following recommendations are given: (1) preference of prospective study design with use of the updated RUCAM version; (2) clear separation of HILI cohorts from those of other herbal products or DILI; (3) case series for epidemiology studies should contain many essential data, possibly also as supplementary material; (4) otherwise, preference of single case reports providing individual case data and RUCAM-based causality gradings, and applying liver test threshold values; and (5) publication in English language journals. In conclusion, China and Korea are top in presenting RUCAM-based HILI cases, other Asian countries are encouraged to follow.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
- Correspondence to: Rolf Teschke, Department of Internal Medicine II, Klinikum Hanau, Teaching Hospital of the Goethe University of Frankfurt/Main, Leimenstrasse 20, D-63450 Hanau, Germany. Tel: +49-6181-21859, Fax: +49-6181-2964211, E-mail:
| | - Yun Zhu
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Jing Jing
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| |
Collapse
|
36
|
Yan Y, Shi N, Han X, Li G, Wen B, Gao J. UPLC/MS/MS-Based Metabolomics Study of the Hepatotoxicity and Nephrotoxicity in Rats Induced by Polygonum multiflorum Thunb. ACS OMEGA 2020; 5:10489-10500. [PMID: 32426606 PMCID: PMC7227050 DOI: 10.1021/acsomega.0c00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Polygonum multiflorum Thunb. (PM) is one of the most frequently used natural products in China. Its hepatotoxicity has been proven and reported. However, chronic PM toxicity is a dynamic process, and a few studies have reported the long-term hepatotoxic mechanism of PM or its nephrotoxicity. To elucidate the mechanism of hepatotoxicity and nephrotoxicity induced by PM after different administration times, different samples from rats were systematically investigated by traditional biochemical analysis, histopathological observation, and nontargeted metabolomics. The concentrations of direct bilirubin (DBIL) at 4 weeks and total bile acid, DBIL, uric acid, and blood urea nitrogen at 8 weeks were significantly increased in the treatment group compared with those in the control group. Approximately, 12 metabolites and 24 proteins were considered as unique toxic biomarkers and targets. Metabolic pathway analysis showed that the primary pathways disrupted by PM were phenylalanine and tyrosine metabolism, which resulted in liver injury, accompanied by chronic kidney injury. As the administration time increased, the toxicity of PM gradually affected vitamin B6, bile acid, and bilirubin metabolism, leading to aggravated liver injury, abnormal biochemical indicators, and marked nephrotoxicity. Our results suggest that the hepatotoxicity and nephrotoxicity caused by PM are both dynamic processes that affect different metabolic pathways at different administration times, which indicated that PM-induced liver and kidney injury should be treated differently in the clinic according to the degree of injury.
Collapse
Affiliation(s)
- Yan Yan
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, P. R.
China
| | - Ning Shi
- Pharmaceutical
Department of Characteristic Medical Center, Strategic Support Force, Beijing 100101, P. R. China
| | - Xuyang Han
- Beijing
Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional
Chinese Medicine, Capital Medical University, Beijing 100010, P. R. China
| | - Guodong Li
- Beijing
University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing 100078, P. R.
China
| | - Binyu Wen
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing 100078, P. R.
China
| | - Jian Gao
- Beijing
University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing 100078, P. R.
China
| |
Collapse
|
37
|
Liu Y, Mapa MST, Sprando RL. Liver toxicity of anthraquinones: A combined in vitro cytotoxicity and in silico reverse dosimetry evaluation. Food Chem Toxicol 2020; 140:111313. [PMID: 32240702 DOI: 10.1016/j.fct.2020.111313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Anthraquinones are found in a variety of consumer products such as dietary supplements, traditional Chinese medicines, and drugs. Along with their widespread use, potential safety concerns have emerged, especially liver toxicity. Therefore, there is a need to conduct rapid and inexpensive safety assessment for anthraquinones due to a lack of animal and human toxicological data. Here, a combined in vitro cytotoxicity and in silico reverse dosimetry approach was adopted to consider the potential human liver toxicity of 16 anthraquinones and derivatives. First, cytotoxicity (EC50) in two human liver cell lines (HepG2/C3A and HuH-7) was measured under two conditions (single and repeated dosing, 72 h). Second, toxic doses (Dtox) required to yield plasma steady-state concentrations (Css) equal to in vitro EC50 values were predicted by reverse dosimetry simulation using a PBPK model. Finally, Dtox was compared to literature-derived estimated daily intake (EDI) of anthraquinones to assess safety. Among the 16 anthraquinones, rhein was identified as a potential hepatotoxicant due to a combination of cytotoxicity, plasma concentration, and daily intake level. These in vitro and in silico findings provide preliminary data and guidance for further animal and clinical studies to confirm liver toxicity of anthraquinones.
Collapse
Affiliation(s)
- Yitong Liu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA.
| | - Mapa S T Mapa
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
38
|
Effects of Different Processed Products of Polygonum multiflorum on the Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5235271. [PMID: 32215041 PMCID: PMC7085390 DOI: 10.1155/2020/5235271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Objective Based on in vitro and in vivo experimental studies, the changes of the main components of Polygonum multiflorum and different processed products and their effects on hepatotoxicity were investigated. Methods The components of different processed products of Polygonum multiflorum were determined by HPLC. The effects of processed products of different processing time periods on HepG2 cells were detected by using cell count kit-8 and the apoptosis method; the effects of different processed products on the mouse liver were detected by reverse transcription polymerase chain reaction and immunohistochemistry. Results With the extension of processing time, the contents of various chemical components in Polygonum multiflorum increased, while the content of stilbene glucoside decreased. The serum of Polygonum multiflorum group and different steaming time groups had obvious inhibitory effect on HepG2 cells. For normal mice, the toxicity of raw Polygonum multiflorum and processed products at different processing time periods had certain toxicity to liver and gradually decreased with the prolongation of processing time. For mice in the liver injury group, the therapeutic effect of raw Polygonum multiflorum and processed products at different processing time periods was not obvious, but there is a trend of treatment. Conclusion The content of the main components in Radix Polygonum multiflorum can be affected by processing time; stilbene glycoside may be the main component leading to liver injury. The degree of liver injury caused by Radix Polygonum multiflorum is negatively correlated with processing time.
Collapse
|
39
|
Zhao C, Wang M, Jia Z, Li E, Zhao X, Li F, Lin R. Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112440. [PMID: 31786445 DOI: 10.1016/j.jep.2019.112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Rhizoma Paridis, as a Traditional Chinese Medicine (TCM), has been used in clinic for thousands of years. Recently, the hepatic toxicity was reported in some published articles while its hepatotoxicity mechanisms have not been well established. Therefore, the present study was performed to determine the effect of Rhizoma Paridis treatment on the lipid deposition and metabolism, oxidative stress and mitochondrial dysfunction, and explore the underlying molecular mechanism through L02 cell, rat and zebrafish larvae. Rhizoma Paridis could diminish cell activity and cell proliferation, brought on cell apoptosis and elevated the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with the control group, as evaluated in cell cultures. Rhizoma Paridis could result in the change of the liver structure and the liver function in the rat model and zebrafish larvae. Our results showed that Rhizoma Paridis could increase hepatic lipid accumulation, which was similar to the previous study and probably exerted toxic effect through intensive fatty acid lipogenesis, inhibition of fat degradation. Meanwhile, this experiment highlighted the importance of the oxidative stress, mitochondrial dysfunction, ER function, and the inflammation response in Rhizoma Paridis-induced disorder of hepatic lipid metabolism, which proposed a novel mechanism for interpretation of Rhizoma Paridis exposure inducing the disorder of lipid metabolism in vertebrates. Furthermore, the result of this experiment suggested that the toxicity response of zebrafish larvae was similar to the conventional model with a significant advantage.
Collapse
Affiliation(s)
- Chongjun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Mingshuang Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhe Jia
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Erwen Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xia Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Farong Li
- Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
40
|
Liu Y, Zhan SP, Song L, Chen Y, Jia YT, Liu F, Sun FJ, Wang Q, Xia PY. Drug-Induced Liver Injury: Clinical and Etiologic Features at a Large Tertiary Teaching Hospital in China. Med Sci Monit 2020; 26:e919435. [PMID: 32172275 PMCID: PMC7094059 DOI: 10.12659/msm.919435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the epidemiological profile of drug-induced liver injury (DILI) in China, especially the western of China, it has rarely been studied. The aim of this study was to analyze the characteristics of DILI patients in a large tertiary teaching hospital at Chongqing, a municipality in western China. MATERIAL AND METHODS The medical records of hospitalized patients which diagnosed with DILI between January 2011 and December 2016 were searched retrospectively, and demographic, clinical data, and laboratory data were retrieved for analysis. RESULTS A total of 1811 patients had been diagnosed with DILI, accounting for 0.248% of the total admissions during the same period. Among the 1096 patients included in our analysis, DILI was caused by "medications" in 462 cases (42.15%), "herbs" in 391 cases (35.68%), and combined medications in 189 cases (17.24%). The profiles for each etiology were distinctive for age, sex, clinical features, laboratory features, and types and severity of DILI. CONCLUSIONS Our study provides a systematic etiological profile of DILI in Chinese patients, which can represent references for prevention, diagnosis and treatment, supporting and promoting efforts to ease the burden of this liver disease in China.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| | - Shi-Peng Zhan
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| | - Lin Song
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yonggang Chen
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yun-Tao Jia
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Fang Liu
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| | - Feng-Jun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| | - Pei-Yuan Xia
- Department of Pharmacy, Southwest Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|
41
|
Pan X, Zhou J, Chen Y, Xie X, Rao C, Liang J, Zhang Y, Peng C. Classification, hepatotoxic mechanisms, and targets of the risk ingredients in traditional Chinese medicine-induced liver injury. Toxicol Lett 2020; 323:48-56. [PMID: 32017980 DOI: 10.1016/j.toxlet.2020.01.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/29/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Traditional Chinese medicine (TCM) has become a crucial cause of drug-induced liver injury (DILI). Differ from chemical medicines, TCM feature more complex and mostly indefinite components. This review aimed to clarify the classification, underlying mechanisms and targets of the risk components in TCM-induced liver injury to further guide the secure application of TCM. Relevant studies or articles published on the PubMed database from January 2008 to December 2019 were searched. Based on the different chemical structures of the risk ingredients in TCM, they are divided into alkaloids, glycosides, toxic proteins, terpenoids and lactones, anthraquinones, and heavy metals. According to whether drug metabolism is activated or hepatocytes are directly attacked during TCM-induced liver injury, the high-risk substances can be classified into metabolic activation, non-metabolic activation, and mixed types. Mechanisms of the hepatotoxic ingredients in TCM-induced hepatotoxicity, including cytochrome P450 (CYP450) induction, mitochondrial dysfunction, oxidative damage, apoptosis, and idiosyncratic reaction, were also summarized. The targets involved in the risk ingredient-induced hepatocellular injury mainly include metabolic enzymes, nuclear receptors, transporters, and signaling pathways. Our periodic review and summary on the risk signals of TCM-induced liver injury must be beneficial to the integrated analysis on the multi-component, multi-target, and multi-effect characteristics of TCM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jie Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaofang Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jie Liang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ying Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
42
|
Liu Y, Wang W, Sun M, Ma B, Pang L, Du Y, Dong X, Yin X, Ni J. Polygonum multiflorum-Induced Liver Injury: Clinical Characteristics, Risk Factors, Material Basis, Action Mechanism and Current Challenges. Front Pharmacol 2019; 10:1467. [PMID: 31920657 PMCID: PMC6923272 DOI: 10.3389/fphar.2019.01467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Polygonum multiflorum Thunb. (PM), called Heshouwu in China, is a popular Chinese medicine in clinical practice. Several clinical studies have been conducted to evaluate the traditional therapeutic claims and to study the potential therapeutic activity of PM in dyslipidemia and neurodegenerative diseases, highlighting available clinical evidence. In recent years, reports on clinical adverse reactions of Raw Radix P. multiflorum (RPM) and P. multiflorum Praeparata (PMP) have been on the increase, especially with respect to liver injury. Most liver injury cases had been assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) in this paper. However, the components of PM responsible for the reported hepatotoxic effects have not yet been identified. Moreover, many of the reports are contradictory, while studies on the mechanism involved in PM-induced liver damage are not comprehensive. This study was aimed at reviewing the status of research on liver injury due to PM, including clinical characteristics, risk factors, material basis research and mechanism of action, with a view to understanding PM-induced hepatotoxicity, and taking reasonable and effective measures to prevent it. In short, quality control is still one of the major safety problems in TCM drug safety concerns. The model of safety monitoring and risk management of PM drugs is not yet developed. Indeed, the characteristics and risk factors associated with PM require both proper understanding and control of the risk by strengthening standardization of clinical applications, basic science research, quality control in manufacturing, active monitoring methodology and enhancement of international communication and cooperation. Measures should also be encouraged and implemented to promote healthy development of the TCM industry.
Collapse
Affiliation(s)
- Yi Liu
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Baorui Ma
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Linnuo Pang
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jian Ni
- Research Institute of Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Hepatotoxicity and mechanism study of chrysophanol-8-O-glucoside in vitro. Biomed Pharmacother 2019; 120:109531. [PMID: 31648163 DOI: 10.1016/j.biopha.2019.109531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 01/30/2023] Open
Abstract
To better understand the hepatotoxicity of anthraquinone glycosides, the hepatotoxicity of six anthraquinone glycosides was evaluated. The results show that chrysophanol-8-O-glucoside(C8G) has strong hepatotoxicity and can lead to increased LDH leakage and ROS, decreased GSH and MMP in L-02 hepatocytes. The results of C8G hepatotoxicity proteomics shows that, a total of 773 differentially expressed proteins were screened and analyzed using GO analysis and Pathway enrichment analysis. Our results show that C8G can lead to abnormal oxidative phosphorylation by inhibiting the function of mitochondrial complexes, resulting in decreased mitochondrial membrane potential (MMP), increased reactive oxygen species (ROS), and eventually resulting in mitochondrial damage and apoptosis. Western blot results verified the accuracy of quantitative proteomic results, and also evaluated the expression of Bax, caspase-3, -8, -9, Bcl-2, Cyt C in the mitochondria and cytosolic. The mitochondrial respiratory chain complexes activity assay result also confirmed that C8G could inhibit the activity of all mitochondrial complexes. The results of this study indicate that the hepatotoxicity mechanism of C8G is related to mitochondrial dysfunction, especially the mitochondrial complex function.
Collapse
|
44
|
Gong X, Liu M, Gong L, Li Y, Peng C. Study on hepatotoxicity of different dosages of Polygoni multiflori radix praeparata in rats by metabolomics based on UPLC-Q-TOF-MS. J Pharm Biomed Anal 2019; 175:112760. [DOI: 10.1016/j.jpba.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
|
45
|
Tang SW, Tang WH, Leonard BE. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature. World J Biol Psychiatry 2019. [PMID: 28649903 DOI: 10.1080/15622975.2017.1346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Herbs are frequently and concurrently used with prescribed drugs by patients worldwide. While clinical trials have found some herbs to be as useful as standard psychiatric drugs, most clinicians are unaware of their pharmacological mechanisms.Methods: We searched English language and other language literature with English abstracts listed in PubMed website, supplemented by additional through Google Scholar's free academic paper abstract website for publications on herbs, focussing on their clinical use in mental disorders, their neurobiology and their pharmacology.Results: A major reason for herbs remaining outside of mainstream psychiatry is that the terminology and concepts in herbal medicine are not familiar to psychiatrists in general. Many publications regarding the use of herbal medicine for psychiatric disorders are deficient in details regarding diagnosis, criteria for response and the neurobiology details compared with publications on standard psychotropic drugs. Nomenclature for herbal medicine is usually confusing and is not conducive to an easy understanding of their mode of action in psychiatric disorders.Conclusions: The recent neuroscience-based nomenclature (NbN) for psychotropics methodology would be a logical application to herbal medicine in facilitating a better understanding of the use of herbal medicine in psychiatry.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA, USA.,Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Wayne H Tang
- Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, Hong Kong.,Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
46
|
Influence Factors on the Hepatotoxicity of Polygoni Multiflori Radix. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5482896. [PMID: 31662776 PMCID: PMC6778938 DOI: 10.1155/2019/5482896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Background Chinese herbal medicine (CHM) with reported hepatotoxicity is identified, in which Polygoni Multiflori Radix (HSW) attracts most attention. According to the Traditional Chinese Medicine (TCM) theory, processing is believed to be able to reduce the toxicity of HSW, but in publications, both processed and unprocessed HSW are reported to cause liver injury. Methods This article reviews the case reports and experimental researches involving liver damage associated with HSW from the following aspects: clinical features, hepatic toxicity components, hepatotoxicity mechanism, and so on. Results HSW has hepatotoxicity in different degrees and even leads to death, and the reason is multioriginal. Conclusions People should be educated to have a broad understanding on ensuring drug use safety and lower drug-induced risks when taking HSW preparations.
Collapse
|
47
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
48
|
Tu C, He Q, Li CY, Niu M, Han ZX, Ge FL, Zhou YY, Zhang L, Wang XH, Zhu JX, Li RS, Song HB, Xiao XH, Wang JB. Susceptibility-Related Factor and Biomarkers of Dietary Supplement Polygonum multiflorum-Induced Liver Injury in Rats. Front Pharmacol 2019; 10:335. [PMID: 31024306 PMCID: PMC6459954 DOI: 10.3389/fphar.2019.00335] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Polygonum multiflorum [PM, synonym Reynoutria multiflora (Thunb.) Moldenke.], a well-known and commonly used Traditional Chinese Medicine and herbal dietary supplement for nourishing the kidney and liver, etc., has aroused wide concern for its reported potential hepatotoxicity. Previous clinical cases and experimental studies have suggested that mild immune stress (MIS) may be one of the susceptibility-related factors of idiosyncratic drug-induced liver injury (IDILI) caused by PM. In this paper, we found that the same dose of PM caused abnormal liver biochemical indicators and liver tissue damage in MIS model rats, while it did not result in liver injury in normal rats, further confirming that MIS is a susceptibility factor for PM-IDILI. Plasma chemokine/cytokine profiling indicated that the MIS model group was significantly different from the other groups, showing a significant upregulation of plasma chemokines, while the MIS/PM group showed upregulated expression of chemokines or pro-inflammatory cytokines. Liver histopathological examination indicated a small amount of inflammatory cytokine infiltration in the MIS group, but no hepatocyte injury, consistent with the plasma profiles of increased chemokines and unchanged inflammatory cytokines. Notably, metabolomics characterization showed that MIS caused reprogramming of these metabolic pathways (such as phenylalanine and glutamate pathways), which was associated with acute phase reactions and inflammatory responses. These results suggested that MIS may promote an immune response to the initial cellular injury induced by PM in the liver, and MIS-induced upregulation of chemokines and metabolic reprogramming may an important mechanism that mediates the susceptibility to PM-IDILI. Furthermore, via receiver operating characteristic (ROC) curves analysis, we identified 12 plasma cytokines (e.g., IP-10, MCP-1 and MIP-1α) and nine metabolomics biomarkers (e.g., L-Phenylalanine, Creatinine, and L-glutamine) with differential capabilities (all ROC AUC > 0.9) of identifying susceptibility model animals from normal ones, which might be of referable value for the clinical recognition of PM-IDILI susceptible individuals.
Collapse
Affiliation(s)
- Can Tu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qin He
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zi-Xin Han
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fei-Lin Ge
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuan-Yuan Zhou
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Le Zhang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jing-Xiao Zhu
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hai-Bo Song
- Center for Drug Reevaluation, China National Medical Product Administration, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
49
|
Lin L, Liu Y, Fu S, Qu C, Li H, Ni J. Inhibition of Mitochondrial Complex Function-The Hepatotoxicity Mechanism of Emodin Based on Quantitative Proteomic Analyses. Cells 2019; 8:cells8030263. [PMID: 30897821 PMCID: PMC6468815 DOI: 10.3390/cells8030263] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Emodin is the main component of traditional Chinese medicines including rhubarb, Polygonum multiflorum, and Polygonum cuspidatum. It has confirmed hepatotoxicity and may be the main causative agent of liver damage associated with the above-mentioned traditional Chinese medicines. However, current research does not explain the mechanism of emodin in hepatotoxicity. In this study, L02 cells were used as a model to study the mechanism of emodin-induced hepatocyte apoptosis using quantitative proteomics, and the results were verified by Western blot. A total of 662 differentially expressed proteins were discovered and analyzed using Gene Ontology (GO) and pathway enrichment analysis. The results show that the oxidative phosphorylation pathway is highly represented. Abnormalities in this pathway result in impaired mitochondrial function and represent mitochondrial damage. This result is consistent with mitochondria membrane potential measurements. Analysis of differentially expressed proteins revealed that emodin mainly affects oxidative phosphorylation pathways by inhibiting the function of the mitochondrial respiratory chain complexes; the mitochondrial respiratory chain complex activity assay result also confirmed that emodin could inhibit the activity of all mitochondrial complexes. This results in an increase in caspase-3, a decrease in mitochondrial membrane potential (MMP,) an increase in reactive oxygen species (ROS), and disorders in ATP synthesis, etc., eventually leading to mitochondrial damage and hepatocyte apoptosis in vitro.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Yuling Liu
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Sai Fu
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Changhai Qu
- School of Chinese material medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hui Li
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Jian Ni
- School of Chinese material medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
50
|
Quan Y, Gong L, He J, Zhou Y, Liu M, Cao Z, Li Y, Peng C. Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol Lett 2019; 306:66-79. [PMID: 30771440 DOI: 10.1016/j.toxlet.2019.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the hepatotoxic effect and its underlying mechanism of aloe emodin (AE). AE was docked with the targets of NF-κB inflammatory pathway and P53 apoptosis pathway respectively by using molecular docking technique. To verify the results of molecular docking and further investigate the hepatotoxicity mechanism of AE, the zebrafish Tg (fabp10: EGFP) was used as an animal model in vivo. The pathological sections of zebrafish liver were analyzed to observe the histopathological changes and Sudan black B was used to study whether there were inflammatory reactions in zebrafish liver or not. Then TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptotic signal of zebrafish liver cells, finally the mRNA expression levels as well as the protein expression levels of the targets in NF-κB and P53 pathways in zebrafish were measured by quantitative Real-Time PCR (qRT-PCR) and western blot. Molecular docking results showed that AE could successfully dock with all the targets of NF-κB and P53 pathways, and the docking scores of most of the targets were equal to or higher than that of the corresponding ligands. Pathological sections showed AE could cause zebrafish liver lesions and the result of Sudan black B staining revealed that AE blackened the liver of zebrafish with Sudan black B. Then TUNEL assay showed that a large number of dense apoptotic signals were observed in AE group, mainly distributed in the liver and yolk sac of zebrafish. The results of qRT-PCR and western blot showed that AE increased the mRNA and protein expression levels of pro-inflammatory and pro-apoptotic targets in NF-κB and P53 pathways. AE could activate the NF-κB inflammatory pathway and the P53 apoptosis pathway, and its hepatotoxic mechanism was related to activation of NF-κB-P53 inflammation-apoptosis pathways.
Collapse
Affiliation(s)
- Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Junlin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yimeng Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|