1
|
Inuwa RF, Moss D, Quayle J, Swadi R. Epac activation reduces trans-endothelial migration of undifferentiated neuroblastoma cells and cellular differentiation with a CDK inhibitor further enhances Epac effect. PLoS One 2024; 19:e0304547. [PMID: 39495719 DOI: 10.1371/journal.pone.0304547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
Neuroblastoma (NB) is the most common solid extracranial neoplasm found in children and is derived from primitive sympathoadrenal neural precursor. The disease accounts for 15% of all cancer deaths in children. The mortality rate is high in patients presenting with a metastatic tumour even with extensive treatments. This signifies the need for further research towards the development of new additional therapies that can combat not only tumour growth but metastasis, especially amongst the high-risk groups. During metastasis, primary tumour cells become migratory and travel towards a capillary within the tumour. They then degrade the matrix surrounding the pericytes and endothelial cells traversing the endothelial barrier twice to establish a secondary. This led to the hypothesis that modulation of the endothelial cell junctional stability could have an influence on tumour metastasis. To test this hypothesis, agents that modulate endothelial permeability on NB cell line migration and invasion were assessed in vitro in a tissue culture model. The cAMP agonist and its antagonists were found to have no obvious effect on both SK-N-BE2C and SK-N-AS migration, invasion and proliferation. Next, NB cells were cocultured with HDMEC cells and live cell imaging was used to assess the effect of an Epac agonist on trans-endothelial cell migration of NB cells. Epac1 agonist remarkably reduced the trans-endothelial migration of both SK-N-BE2C and SK-N-AS cells. These results demonstrate that an Epac1 agonist may perhaps serve as an adjuvant to currently existing therapies for the high-risk NB patients.
Collapse
Affiliation(s)
- Rabiu Fage Inuwa
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Faculty of Basic Medical Sciences, Department of Anatomy, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Diana Moss
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - John Quayle
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- ALESS/ALESA Program, Center for Global Communication Strategies, Center for Global Education, University of Tokyo, Bunkyō, Japan
| | - Rasha Swadi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
2
|
Zheng M, Kumar A, Sharma V, Behl T, Sehgal A, Wal P, Shinde NV, Kawaduji BS, Kapoor A, Anwer MK, Gulati M, Shen B, Singla RK, Bungau SG. Revolutionizing pediatric neuroblastoma treatment: unraveling new molecular targets for precision interventions. Front Cell Dev Biol 2024; 12:1353860. [PMID: 38601081 PMCID: PMC11004261 DOI: 10.3389/fcell.2024.1353860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.
Collapse
Affiliation(s)
- Min Zheng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | | | | | - Anupriya Kapoor
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Çetin F, Kosba S, Abdik H, Bolat ZB. Synergistic anti-proliferative and apoptotic effect of NVP-BEZ235 and curcumin on human SH-SY5Y neuroblastoma cells. Med Oncol 2023; 41:11. [PMID: 38071672 DOI: 10.1007/s12032-023-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Neuroblastoma, a tumor of the sympathetic nervous system, is one of the most common tumors found in children. Most patients develop resistance to therapy and show poor prognosis, thus there is a need of novel therapeutic agents for the treatment of neuroblastoma. NVP-BEZ235 is a dual Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor that induces apoptosis and suppresses the growth of cancer. Curcumin acts as an anticancer agent in certain cancers. This study investigated the synergetic effect of NVP-BEZ235 and curcumin against neuroblastoma SH-SY5Y cell line. In the current study, the synergic effect of NVP-BEZ235 and curcumin in SH-SY5Y was examined in terms of the cell growth by cell viability and colony forming assay, cell cycle and apoptotic cell death by flow cytometry and mRNA expression levels by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). Curcumin, NVP-BEZ235 or a combination of both, showed cytotoxicity in a dose and time dependent manner in SH-SY5Y cells. 10 µM curcumin and 200 nM NVP-BEZ235 were chosen as combination therapy, as the combination index showed synergism. Colony forming assay showed decrease in cell growth in combination group. The cell cycle distribution for combination group demonstrated a decrease in G0/G1 phase at 48 h. Annexin V showed an anticancer effect in combination group when compared to control group. Moreover, qRT-PCR results showed a significant increase in caspase 3, caspase 7, Bax and p53 genes, while a decrease in Bcl-2 gene expression levels. These findings suggest that combination therapy of NVP-BEZ235 and curcumin may be a promising therapeutic candidate for treatment of neuroblastoma.
Collapse
Affiliation(s)
- Fadime Çetin
- Sabri Ulker R&D Center, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, Turkey
| | - Sifa Kosba
- Sabri Ulker R&D Center, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, Turkey
| | - Hüseyin Abdik
- Sabri Ulker R&D Center, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, 34303, Turkey
| | - Zeynep Busra Bolat
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Kucukcekmece, Istanbul, 34303, Turkey.
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences- Turkey, Istanbul, 34668, Turkey.
- Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, Uskudar, Istanbul, 34662, Turkey.
| |
Collapse
|
4
|
Sun SQ, Du FX, Zhang LH, Hao-Shi, Gu FY, Deng YL, Ji YZ. Prevention of STAT3-related pathway in SK-N-SH cells by natural product astaxanthin. BMC Complement Med Ther 2023; 23:430. [PMID: 38031104 PMCID: PMC10685499 DOI: 10.1186/s12906-023-04267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Neuroblastoma (NB) is the most common solid malignancy in children. Despite current intensive treatment, the long-term event-free survival rate is less than 50% in these patients. Thus, patients with NB urgently need more valid treatment strategies. Previous research has shown that STAT3 may be an effective target in high-risk NB patients. However, there are no effective inhibitors in clinical evaluation with low toxicity and few side effects. Astaxanthin is a safe and natural anticancer product. In this study, we investigated whether astaxanthin could exert antitumor effects in the SK-N-SH neuroblastoma cancer cell line. METHOD MTT and colony formation assays were used to determine the effect of astaxanthin on the proliferation and colony formation of SK-N-SH cells. Flow cytometry assays were used to detect the apoptosis of SK-N-SH cells. The migration and invasion ability of SK-N-SH cells were detected by migration and invasion assays. Western blot and RT-PCR were used to detect the protein and mRNA levels. Animal experiments were carried out and cell apoptosis in tissues were assessed using a TUNEL assay. RESULT We confirmed that astaxanthin repressed proliferation, clone formation ability, migration and invasion and induced apoptosis in SK-N-SH cells through the STAT3 pathway. Furthermore, the highest inhibitory effect was observed when astaxanthin was combined with si-STAT3. The reason for this may be that the combination of astaxanthin and si-STAT3 can lower STAT3 expression further than astaxanthin or si-STAT3 alone. CONCLUSION Astaxanthin can exert anti-tumor effect on SK-N-SH cells. The inhibitory effect was the higher when astaxanthin was combined with si-STAT3.
Collapse
Affiliation(s)
- Shao-Qian Sun
- School of Medical Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Feng-Xiang Du
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Li-Hua Zhang
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Hao-Shi
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Fu-Ying Gu
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Yu-Lin Deng
- School of Medical Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Yi-Zhi Ji
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China.
| |
Collapse
|
5
|
Scherer S, Mayer BFB, Dietzel M, Esser M, Warmann SW, Lang P, Schuhmann MU, Schmidt A, Fuchs J. The role of surgery in the treatment of neuroblastoma metastases at rare sites. J Cancer Res Clin Oncol 2023; 149:12913-12921. [PMID: 37466795 PMCID: PMC10587098 DOI: 10.1007/s00432-023-05147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Treatment of neuroblastoma metastases usually consists of chemotherapy and irradiation. However, in selected cases, surgical treatment is also indicated. In this study, we present three cases of patients with neuroblastoma metastases at rare sites that underwent surgery. MATERIALS AND METHODS We retrospectively analyzed data of patients who underwent surgery for neuroblastoma at our department of Pediatric Surgery and Pediatric Urology at the University Children's Hospital in Tuebingen and selected those patients who had surgery explicitly for a metastasis. RESULTS Between 2002 and 2020, 277 children underwent surgical treatment for neuroblastoma. Three cases with metastases at exceptional sites are presented here after therapy according to protocols. One patient had a penile metastasis and received surgery including a plastic reconstruction. The patient showed no signs of erectile or urinary dysfunction at follow-up. Another patient had a metastasis in the proximal ulna, which remained vital even after exhausted treatment after two relapses. Afterward there was no restriction of movement of the extremity. The third patient had, amongst others, metastases to the pancreatic body and to the liver. Both were surgically removed during primary tumor resection. This patient died after local tumor relapse. The other two patients showed no evidence of tumor relapse after a follow-up of 18 and 17 months, respectively. CONCLUSION Although children with neuroblastoma often present with metastases, there is no recommendation for surgical treatment other than diagnostic biopsies. In case of persistence of metastasis or after exhaustion of high-risk therapy, surgical resection must be considered.
Collapse
Affiliation(s)
- Simon Scherer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| | - Benjamin F B Mayer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Markus Dietzel
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Michael Esser
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Steven W Warmann
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Peter Lang
- Department of General Pediatrics, Hematology and Oncology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Andreas Schmidt
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Mendonza JJ, Reddy ST, Dutta H, Makani VKK, Uppuluri VM, Jain N, Bhadra MP. Retinoic acid and evernyl-based menadione-triazole hybrid cooperate to induce differentiation of neuroblastoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2651-2665. [PMID: 37097334 DOI: 10.1007/s00210-023-02489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Neuroblastoma arises when immature neural precursor cells do not mature into specialized cells. Although retinoic acid (RA), a pro-differentiation agent, improves the survival of low-grade neuroblastoma, resistance to retinoic acid is found in high-grade neuroblastoma patients. Histone deacetylases (HDAC) inhibitors induce differentiation and arrest the growth of cancer cells; however, HDAC inhibitors are FDA-approved mostly for liquid tumors. Therefore, combining histone deacetylase (HDAC) inhibitors and retinoic acid can be explored as a strategy to trigger the differentiation of neuroblastoma cells and to overcome resistance to retinoic acid. Based on this rationale, in this study, we linked evernyl group and menadione-triazole motifs to synthesize evernyl-based menadione-triazole hybrids and asked if the hybrids cooperate with retinoic acid to trigger the differentiation of neuroblastoma cells. To answer this question, we treated neuroblastoma cells using evernyl-based menadione-triazole hybrids (6a-6i) or RA or both and examined the differentiation of neuroblastoma cells. Among the hybrids, we found that compound 6b inhibits class-I HDAC activity, induces differentiation, and RA co-treatments increase 6b-induced differentiation of neuroblastoma cells. In addition, 6b reduces cell proliferation, induces expression of differentiation-specific microRNAs leading to N-Myc downregulation, and RA co-treatments enhance the 6b-induced effects. We observed that 6b and RA trigger a switch from glycolysis to oxidative phosphorylation, maintain mitochondrial polarization, and increase oxygen consumption rate. We conclude that in evernyl-based menadione-triazole hybrid, 6b cooperates with RA to induce differentiation of neuroblastoma cells. Based on our results, we suggest that combining RA and 6b can be pursued as therapy for neuroblastoma. Schematic representation of RA and 6b in inducing differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- Jolly Janette Mendonza
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srilakshmi Tirupathamma Reddy
- Center for Natural Products and Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana State, India
| | - Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkata Krishna Kanth Makani
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Venkata Mallavadhani Uppuluri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Center for Natural Products and Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana State, India.
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Manika Pal Bhadra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana State, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Babu VS, Radhamany PM, Surumi B, Jayakumaran Nair A. Novel studies on Isolation, purification and characterization of dibenzonitro compound from Glycosmis pentaphylla (Retz.) DC. and effect in downregulating neuronal cancers. Steroids 2023; 198:109270. [PMID: 37414238 DOI: 10.1016/j.steroids.2023.109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
To isolate Letrozole from Glycosmis pentaphylla (Retz.) DC. and to determine its effect on regulating the proliferation, cell cycle distribution, apoptosis and key mechanisms in human neuroblastoma cell lines. Letrozole was isolated through column chromatographic technique and its effect was checked on human neuroblastoma cell lines, IMR 32. The effects of Letrozole on cell viability were measured by MTT assay, and the cell cycle distribution was determined by flow cytometry. The expression changes in mRNA of proliferating cell nuclear antigen (PCNA), cyclin D1 and Bcl-xL were taken from real-time PCR analysis and the protein levels were detected by Western blotting. The results of the present study showed that Letrozole, isolated from leaves of G. pentaphylla could cause significant inhibitory effect on proliferation of IMR 32 cells in a dose dependent manner. Cell arrest was obtained at S phase with the treatment of Letrozole. Apart from this, the expression of PCNA, cyclin D1 and Bcl-xL were decreased both at mRNA and protein levels for the same treatment. Letrozole can inhibit proliferation, induce cell arrest and cause apoptosis in IMR 32 cell lines. The decreased expression of PCNA, cyclin D1 and Bcl-xL induced by Letrozole contributes to the above effects in vitro. This is the first report on the isolation of Letrozole from G. pentaphylla.
Collapse
Affiliation(s)
- Vinitha S Babu
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India.
| | - P M Radhamany
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - B Surumi
- Inter University Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| | - A Jayakumaran Nair
- Inter University Centre for Genomics and Gene Technology, Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695581, India
| |
Collapse
|
8
|
Bao W, Song Z, Wan H, Yu X, Chen Z, Jiang Y, Chen X, Le K. Model for predicting prognosis and immunotherapy based on CD +8 T cells infiltration in neuroblastoma. J Cancer Res Clin Oncol 2023; 149:9839-9855. [PMID: 37248319 DOI: 10.1007/s00432-023-04897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Neuroblastoma (NBL) is an extracranial malignant tumor in children deriving from the neural crest in the sympathetic nervous system. Although various immunotherapy interventions have made significant breakthroughs in many adult cancers, the efficacy of these immunotherapies was still limited in NBL. NBL has low immunogenicity which results in a lack of tumor-infiltrating T lymphocytes in the tumor microenvironment (TME). Moreover, tumor cells can wield many immune evasion strategies both in the TME and systemically to impede lymphocyte infiltration and activation. All these factors hamper the anti-tumor effects of CD8+ T cells during immunotherapy and the levels of infiltrating CD8+ T cells correlate with therapy response. MATERIALS AND METHODS In this study, we utilized multidimensional bioinformatic methods to establish a risk model based on CD8+ T cells -related genes (CD8+ TRGs). RESULTS We obtained 33 CD8+ TRGs with well-predictive ability for prognosis in both GSE49711 and E-MTAB-8248 cohorts. Then, 12 CD8+ TRGs including HK2, RP2, HPSE, ELL2, GFI1, SLC22A16, FCGR3A, CTSS, SH2D1A, RBP5, ATF5, and ADAM9 were finally identified for risk model construction and validation. This model revealed a stable performance in prognostic prediction of the overall survival (OS) and event-free survival (EFS) in patients with NBL. Additionally, our research indicated that the immune and stromal scores, immune-related pathways, immune cell infiltration, the expression of major histocompatibility complex (MHC) and immune checkpoint molecules, immunotherapy response, and drug susceptibility revealed significant differences between high and low-risk groups. CONCLUSIONS According to our analyses, the constructed CD8+ TRGs-based risk model may be promising for the clinical prediction of anti-tumor therapy responses and prognoses in NBL.
Collapse
Affiliation(s)
- Wei Bao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Zhiping Song
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Hao Wan
- Department of General Surgery, Jiangxi Provincial Children's Hospital, No.122 Yangming Road, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoping Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Zhaoyan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Yaqing Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Xiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China.
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China.
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong S.A.R., China.
| |
Collapse
|
9
|
Watanabe S, Suzuki T, Kondo Y, Naoe A, Uga N, Yasui T, Hara F, Tsuchiya T. Evaluation of Ki-67 as prognostic factor for pediatric neuroblastoma and the possibility of molecular-targeted drugs with VEGF and PDGFR. Minerva Pediatr (Torino) 2023; 75:561-566. [PMID: 30605998 DOI: 10.23736/s2724-5276.18.05444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is a pediatric malignant solid tumor characterized as refractory cancer with poor prognosis. The Mitosis-Karyorrhexis Index (MKI) is a prognostic factor but is prone to observer bias. The usefulness of MKI with Ki-67, as a marker of malignancy, was investigated. The efficacy of molecular-targeted therapeutic agents with fewer side effects in tumors has been studied. Molecular-targeted therapy targets include vascular endothelial growth factor (VEGF), involved in tumor angiogenesis; c-Kit, receptor of Kit/stem cells involved in tumor growth, vasculature, and lymphangiogenesis; platelet-derived growth factor receptor (PDGFR); and B-Raf proto-oncogene, serine/threonine kinase (BRAF), involved in the RAS protein-mediated mitogen-activated protein kinase pathway. Therefore, expression profiles of these factors and growth inhibitory effects of molecular-targeted drugs against NB were investigated. METHODS Ten frozen NB tissue samples collected from January 1993 to December 2017 were evaluated immunohistochemically for Ki-67 and VEGF. c-Kit, PDGFR, and BRAF expression levels were evaluated using enzyme-linked immunosorbent assays; relationships between these factors and clinicopathological parameters of NB were analyzed. RESULTS Eight patients with NB showed no amplification of MYCN (MYCN proto-oncogene, bHLH transcription factor). There were two cases of ganglioneuroblastoma (GNB). More NB cells were positive for Ki-67 than for GNB cells. VEGF expression was observed in all NB specimens and was stronger in stage IIB and higher. No BRAF or c-Kit activity was observed; PDGFR activity was greater in NB than in GNB (P=0.02). CONCLUSIONS Thus, Ki-67 may help evaluate NB malignancy. As the first therapy for NB prevents amplification of MYCN, agents targeting PDGFR as well as VGFG can inhibit NB cell proliferation.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan -
| | - Tatsuya Suzuki
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan
| | - Yasuhiro Kondo
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan
| | - Atsuki Naoe
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan
| | - Naoko Uga
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan
| | - Toshihiro Yasui
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan
| | - Fujio Hara
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan
| | - Tomonori Tsuchiya
- Department of Pediatric Surgery, Fujita Health University, Toyoake, Japan
| |
Collapse
|
10
|
Ahmad MH, Ghosh B, Rizvi MA, Ali M, Kaur L, Mondal AC. Neural crest cells development and neuroblastoma progression: Role of Wnt signaling. J Cell Physiol 2023; 238:306-328. [PMID: 36502519 DOI: 10.1002/jcp.30931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is one of the most common heterogeneous extracranial cancers in infancy that arises from neural crest (NC) cells of the sympathetic nervous system. The Wnt signaling pathway, both canonical and noncanonical pathway, is a highly conserved signaling pathway that regulates the development and differentiation of the NC cells during embryogenesis. Reports suggest that aberrant activation of Wnt ligands/receptors in Wnt signaling pathways promote progression and relapse of NB. Wnt signaling pathways regulate NC induction and migration in a similar manner; it regulates proliferation and metastasis of NB. Inhibiting the Wnt signaling pathway or its ligands/receptors induces apoptosis and abrogates proliferation and tumorigenicity in all major types of NB cells. Here, we comprehensively discuss the Wnt signaling pathway and its mechanisms in regulating the development of NC and NB pathogenesis. This review highlights the implications of aberrant Wnt signaling in the context of etiology, progression, and relapse of NB. We have also described emerging strategies for Wnt-based therapies against the progression of NB that will provide new insights into the development of Wnt-based therapeutic strategies for NB.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Balaram Ghosh
- Department of Clinical Pharmacology, Midnapore Medical College & Hospital, West Bengal, Medinipur, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali
- School of Life Sciences, Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Loveleena Kaur
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine (IIIM), Srinagar, India
| | - Amal Chandra Mondal
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Wang R, Zhang C, Li D, Yao Y. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development. Front Bioeng Biotechnol 2022; 10:1057913. [PMID: 36483772 PMCID: PMC9722735 DOI: 10.3389/fbioe.2022.1057913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 07/21/2023] Open
Abstract
The extracellular matrix interacts with cancer cells and is a key factor in the development of cancer. Traditional two-dimensional models cannot mimic the natural in situ environment of cancer tissues, whereas three-dimensional (3D) models such as spherical culture, bioprinting, and microfluidic approaches can achieve in vitro reproduction of certain structures and components of the tumor microenvironment, including simulation of the hypoxic environment of tumor tissue. However, the lack of a perfusable vascular network is a limitation of most 3D models. Solid tumor growth and metastasis require angiogenesis, and tumor models with microvascular networks have been developed to better understand underlying mechanisms. Tumor-on-a-chip technology combines the advantages of microfluidics and 3D cell culture technology for the simulation of tumor tissue complexity and characteristics. In this review, we summarize progress in constructing tumor-on-a-chip models with efficiently perfused vascular networks. We also discuss the applications of tumor-on-a-chip technology to studying the tumor microenvironment and drug development. Finally, we describe the creation of several common tumor models based on this technology to provide a deeper understanding and new insights into the design of vascularized cancer models. We believe that the tumor-on-a-chip approach is an important development that will provide further contributions to the field.
Collapse
Affiliation(s)
| | | | - Danxue Li
- *Correspondence: Danxue Li, ; Yang Yao,
| | - Yang Yao
- *Correspondence: Danxue Li, ; Yang Yao,
| |
Collapse
|
12
|
Przybyła W, Gjersvoll Paulsen KM, Mishra CK, Nygård S, Engebretsen S, Ruud E, Trøen G, Beiske K, Baumbusch LO. Whole exome sequencing of high-risk neuroblastoma identifies novel non-synonymous variants. PLoS One 2022; 17:e0273280. [PMID: 36037157 PMCID: PMC9423626 DOI: 10.1371/journal.pone.0273280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NBL), one of the main death-causing cancers in children, is known for its remarkable genetic heterogeneity and varied patient outcome spanning from spontaneous regression to widespread disease. Specific copy number variations and single gene rearrangements have been proven to be associated with biological behavior and prognosis; however, there is still an unmet need to enlarge the existing armamentarium of prognostic and therapeutic targets. We performed whole exome sequencing (WES) of samples from 18 primary tumors and six relapse samples originating from 18 NBL patients. Our cohort consists of 16 high-risk, one intermediate, and one very low risk patient. The obtained results confirmed known mutational hotspots in ALK and revealed other non-synonymous variants of NBL-related genes (TP53, DMD, ROS, LMO3, PRUNE2, ERBB3, and PHOX2B) and of genes cardinal for other cancers (KRAS, PIK3CA, and FLT3). Beyond, GOSeq analysis determined genes involved in biological adhesion, neurological cell-cell adhesion, JNK cascade, and immune response of cell surface signaling pathways. We were able to identify novel coding variants present in more than one patient in nine biologically relevant genes for NBL, including TMEM14B, TTN, FLG, RHBG, SHROOM3, UTRN, HLA-DRB1, OR6C68, and XIRP2. Our results may provide novel information about genes and signaling pathways relevant for the pathogenesis and clinical course in high-risk NBL.
Collapse
Affiliation(s)
- Weronika Przybyła
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Medical Faculty, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kirsti Marie Gjersvoll Paulsen
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Medical Faculty, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Charitra Kumar Mishra
- Bioinformatics Core Facility, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- ELIXIR-Norway, Institute of Informatics, University of Oslo, Oslo, Norway
| | - Ståle Nygård
- ELIXIR-Norway, Institute of Informatics, University of Oslo, Oslo, Norway
| | | | - Ellen Ruud
- Medical Faculty, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Paediatric Haematology and Oncology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Gunhild Trøen
- Department of Pathology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Klaus Beiske
- Medical Faculty, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Lars Oliver Baumbusch
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
13
|
Papadakis V, Kelaidi C, Zisaki K, Antoniadi K, Pitsoulakis G, Polychronopoulou S. Dinutuximab beta-related severe neurotoxicity: Resolution with the use of plasmapheresis. Pediatr Blood Cancer 2022; 69:e29465. [PMID: 34913569 DOI: 10.1002/pbc.29465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Kalliopi Zisaki
- Department of Blood Banking, Aghia Sophia Children's Hospital, Athens, Greece
| | - Kondylia Antoniadi
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Georgios Pitsoulakis
- Department of Tomography Imaging, Aghia Sophia Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
14
|
Abbas AA, Samkari AMN. High-Risk Neuroblastoma: Poor Outcomes Despite Aggressive Multimodal
Therapy. CURRENT CANCER THERAPY REVIEWS 2022. [DOI: 10.2174/1573394717666210805114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Neuroblastoma (NBL) is a highly malignant embryonal tumor that originates from the
primordial neural crest cells. NBL is the most common tumor in infants and the most common extracranial
solid tumor in children. The tumor is more commonly diagnosed in children of 1-4 years
of age. NBL is characterized by enigmatic clinical behavior that ranges from spontaneous regression
to an aggressive clinical course leading to frequent relapses and death. Based on the likelihood
of progression and relapse, the International Neuroblastoma Risk Group classification system categorized
NBL into very low risk, low risk, intermediate risk, and high risk (HR) groups. HR NBL is
defined based on the patient's age (> 18 months), disease metastasis, tumor histology, and MYCN
gene amplification. HR NBL is diagnosed in nearly 40% of patients, mainly those > 18 months of
age, and is associated with aggressive clinical behavior. Treatment strategies involve the use of intensive
chemotherapy (CTR), surgical resection, high dose CTR with hematopoietic stem cell support,
radiotherapy, biotherapy, and immunotherapy with Anti-ganglioside 2 monoclonal antibodies.
Although HR NBL is now better characterized and aggressive multimodal therapy is applied, the
outcomes of treatment are still poor, with overall survival and event-free survival of approximately
40% and 30% at 3-years, respectively. The short and long-term side effects of therapy are tremendous.
HR NBL carries a high mortality rate accounting for nearly 15% of pediatric cancer deaths.
However, most mortalities are attributed to the high frequency of disease relapse (50%) and disease
reactiveness to therapy (20%). Newer treatment strategies are therefore urgently needed. Recent
discoveries in the field of biology and molecular genetics of NBL have led to the identification
of several targets that can improve the treatment results. In this review, we discuss the different
aspects of the epidemiology, biology, clinical presentations, diagnosis, and treatment of HR
NBL, in addition to the recent developments in the management of the disease.
Collapse
Affiliation(s)
- Adil Abdelhamed Abbas
- College of Medicine King Saud bin Abdulaziz, University for Health Sciences Consultant Pediatric Hematology / Oncology
& BMT The Pediatric Hematology/Oncology Section Princess Nourah Oncology Centre King Abdulaziz Medical
City, Jeddah, Saudi Arabia
| | - Alaa Mohammed Noor Samkari
- College of Medicine King Saud bin Abdulaziz, University for Health Sciences Consultant
Anatomical Pathologist Department of Laboratory Medicine King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Pini N, Huo Z, Holland-Cunz S, Gros SJ. Increased Proliferation of Neuroblastoma Cells under Fructose Metabolism Can Be Measured by Isothermal Microcalorimetry. CHILDREN-BASEL 2021; 8:children8090784. [PMID: 34572216 PMCID: PMC8467942 DOI: 10.3390/children8090784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022]
Abstract
Neuroblastoma, like other cancer types, has an increased need for energy. This results in an increased thermogenic profile of the cells. How tumor cells optimize their energy efficiency has been discussed since Warburg described the fact that tumor cells prefer an anaerobic to an aerobic metabolism in the 1920s. An important question is how far the energy efficiency is influenced by the substrate. The aim of this study was to investigate how the metabolic activity of neuroblastoma cells is stimulated by addition of glucose or fructose to the medium and if this can be measured accurately by using isothermal microcalorimetry. Proliferation of Kelly and SH-EP Tet-21/N cells was determined in normal medium, in fructose-enriched, in glucose-enriched and in a fructose/glucose-enriched environment. Heat development of cells was measured by isothermal microcalorimetry. The addition of fructose, glucose or both to the medium led to increases in the metabolic activity of the cells, resulting in increased proliferation under the influence of fructose. These changes were reflected in an enhanced thermogenic profile, mirroring the results of the proliferation assay. The tested neuroblastoma cells prefer fructose metabolism over glucose metabolism, a quality that provides them with a survival benefit under unfavorable low oxygen and low nutrient supply when fructose is available. This can be quantified by measuring thermogenesis.
Collapse
Affiliation(s)
- Nicola Pini
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4021 Basel, Switzerland
| | - Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4021 Basel, Switzerland
| | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, Spitalstr. 33, 4031 Basel, Switzerland; (N.P.); (Z.H.); (S.H.-C.)
- Department of Clinical Research, University of Basel, Schanzenstrasse 55, 4021 Basel, Switzerland
- Correspondence:
| |
Collapse
|
16
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics identifies neuronal differentiation pathway networks activated by cathepsin inhibition treatment in neuroblastoma cells that are enhanced by concurrent 13-cis retinoic acid treatment. J Proteomics 2020; 232:104068. [PMID: 33278663 DOI: 10.1016/j.jprot.2020.104068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
17
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
18
|
Amoroso L, Castel V, Bisogno G, Casanova M, Marquez-Vega C, Chisholm JC, Doz F, Moreno L, Ruggiero A, Gerber NU, Fagioli F, Hingorani P, Melcón SG, Slepetis R, Chen N, le Bruchec Y, Simcock M, Vassal G. Phase II results from a phase I/II study to assess the safety and efficacy of weekly nab-paclitaxel in paediatric patients with recurrent or refractory solid tumours: A collaboration with the European Innovative Therapies for Children with Cancer Network. Eur J Cancer 2020; 135:89-97. [PMID: 32554315 DOI: 10.1016/j.ejca.2020.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The phase I component of a phase I/II study defined the recommended phase II dose and established the tolerability of nab-paclitaxel monotherapy in paediatric patients with recurrent or refractory solid tumours. The activity and safety of nab-paclitaxel monotherapy was further investigated in this phase II study. PATIENTS AND METHODS Paediatric patients with recurrent or refractory Ewing sarcoma, neuroblastoma or rhabdomyosarcoma received 240 mg/m2 of nab-paclitaxel on days 1, 8 and 15 of each 28-day cycle. The primary end-point was the overall response rate (ORR; complete response [CR] + partial response [PR]). Secondary end-points included duration of response, disease control rate (DCR; CR + PR + stable disease [SD]), progression-free survival, 1-year overall survival, safety and pharmacokinetics. RESULTS Forty-two patients were enrolled, 14 each with Ewing sarcoma, neuroblastoma and rhabdomyosarcoma. The ORRs were 0%, 0% and 7.1% (1 confirmed PR), respectively. The DCRs were 30.8% (4 SD), 7.1% (1 SD) and 7.1% (1 confirmed PR and 0 SD) in the Ewing sarcoma, neuroblastoma and rhabdomyosarcoma groups, respectively. The median progression-free survival was 13.0, 7.4 and 5.1 weeks, respectively, and the 1-year overall survival rates were 48%, 25% and 15%, respectively. The most common grade III/4IVadverse events were haematologic (neutropenia [50%] and anaemia [48%]), and grade III/IV peripheral neuropathy occurred in 2 patients (14%) in the rhabdomyosarcoma group. Pharmacokinetics analyses revealed that paclitaxel tissue distribution was both rapid and extensive. CONCLUSIONS In this phase II study, limited activity was observed; however, the safety of nab-paclitaxel in paediatric patients was confirmed. TRIAL REGISTRATION NCT01962103 and EudraCT 2013-000144-26.
Collapse
Affiliation(s)
| | - Victoria Castel
- Pediatric Hematology/Oncology Unit, University Hospital La Fe, Valencia, Spain
| | - Gianni Bisogno
- Hematology/Oncology Division, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | | | | | | | - François Doz
- Institut Curie and Paris Descartes University, Paris, France
| | - Lucas Moreno
- Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Hospital Universitario Vall D'Hebron, Barcelona, Spain
| | | | | | - Franca Fagioli
- Pediatric Oncology Department, Regina Margherita Children's Hospital, AOU Città della Salute e Della Scienza di Torino, Turin, Italy; Department of Public Health and Paediatric Sciences, University of Torino, Turin, Italy
| | - Pooja Hingorani
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Yvan le Bruchec
- Celgene International, A Bristol-Myers Squibb Company, Boudry, Switzerland
| | - Mathew Simcock
- Celgene International, A Bristol-Myers Squibb Company, Boudry, Switzerland
| | | |
Collapse
|
19
|
Martynov I, Klima-Frysch J, Schoenberger J. A scientometric analysis of neuroblastoma research. BMC Cancer 2020; 20:486. [PMID: 32471384 PMCID: PMC7260742 DOI: 10.1186/s12885-020-06974-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background Thousands of research articles on neuroblastoma have been published over the past few decades; however, the heterogeneity and variable quality of scholarly data may challenge scientists or clinicians to survey all of the available information. Hence, holistic measurement and analyzation of neuroblastoma-related literature with the help of sophisticated mathematical tools could provide deep insights into global research performance and the collaborative architectonical structure within the neuroblastoma scientific community. In this scientometric study, we aim to determine the extent of the scientific output related to neuroblastoma research between 1980 and 2018. Methods We applied novel scientometric tools, including Bibliometrix R package, biblioshiny, VOSviewer, and CiteSpace IV for comprehensive science mapping analysis of extensive bibliographic metadata, which was retrieved from the Web of ScienceTM Core Collection database. Results We demonstrate the enormous proliferation of neuroblastoma research during last the 38 years, including 12,435 documents published in 1828 academic journals by 36,908 authors from 86 different countries. These documents received a total of 316,017 citations with an average citation per document of 28.35 ± 7.7. We determine the proportion of highly cited and never cited papers, “occasional” and prolific authors and journals. Further, we show 12 (13.9%) of 86 countries were responsible for 80.4% of neuroblastoma-related research output. Conclusions These findings are crucial for researchers, clinicians, journal editors, and others working in neuroblastoma research to understand the strengths and potential gaps in the current literature and to plan future investments in data collection and science policy. This first scientometric study of global neuroblastoma research performance provides valuable insight into the scientific landscape, co-authorship network architecture, international collaboration, and interaction within the neuroblastoma community.
Collapse
Affiliation(s)
- Illya Martynov
- Department of Pediatric Surgery, University Hospital of Freiburg, Freiburg, Germany. .,Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany.
| | - Jessica Klima-Frysch
- Department of Pediatric Surgery, University Hospital of Freiburg, Freiburg, Germany
| | - Joachim Schoenberger
- Department of Pediatric Surgery, University Hospital of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Monitoring Immune Responses in Neuroblastoma Patients during Therapy. Cancers (Basel) 2020; 12:cancers12020519. [PMID: 32102342 PMCID: PMC7072382 DOI: 10.3390/cancers12020519] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NBL) is the most common extracranial solid tumor in childhood. Despite intense treatment, children with this high-risk disease have a poor prognosis. Immunotherapy showed a significant improvement in event-free survival in high-risk NBL patients receiving chimeric anti-GD2 in combination with cytokines and isotretinoin after myeloablative consolidation therapy. However, response to immunotherapy varies widely, and often therapy is stopped due to severe toxicities. Objective markers that help to predict which patients will respond or develop toxicity to a certain treatment are lacking. Immunotherapy guided via immune monitoring protocols will help to identify responders as early as possible, to decipher the immune response at play, and to adjust or develop new treatment strategies. In this review, we summarize recent studies investigating frequency and phenotype of immune cells in NBL patients prior and during current treatment protocols and highlight how these findings are related to clinical outcome. In addition, we discuss potential targets to improve immunogenicity and strategies that may help to improve therapy efficacy. We conclude that immune monitoring during therapy of NBL patients is essential to identify predictive biomarkers to guide patients towards effective treatment, with limited toxicities and optimal quality of life.
Collapse
|
21
|
Currò M, Ferlazzo N, Giunta ML, Montalto AS, Russo T, Arena S, Impellizzeri P, Caccamo D, Romeo C, Ientile R. Hypoxia-Dependent Expression of TG2 Isoforms in Neuroblastoma Cells as Consequence of Different MYCN Amplification Status. Int J Mol Sci 2020; 21:ijms21041364. [PMID: 32085516 PMCID: PMC7072980 DOI: 10.3390/ijms21041364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme and two isoforms, TG2-L and TG2-S, exerting opposite effects in the regulation of cell death and survival, have been revealed in cancer tissues. Notably, in cancer cells a hypoxic environment may stimulate tumor growth, invasion and metastasis. Here we aimed to characterize the role of TG2 isoforms in neuroblastoma cell fate under hypoxic conditions. The mRNA levels of TG2 isoforms, hypoxia-inducible factor (HIF)-1α, p16, cyclin D1 and B1, as well as markers of cell proliferation/death, DNA damage, and cell cycle were examined in SH-SY5Y (non-MYCN-amplified) and IMR-32 (MYCN-amplified) neuroblastoma cells in hypoxia/reoxygenation conditions. The exposure to hypoxia induced the up-regulation of HIF-1α in both cell lines. Hypoxic conditions caused the up-regulation of TG2-S and the reduction of cell viability/proliferation associated with DNA damage in SH-SY5Y cells, while in IMR-32 did not produce DNA damage, and increased the levels of both TG2 isoforms and proliferation markers. Different cell response to hypoxia can be mediated by TG2 isoforms in function of MYCN amplification status. A better understanding of the role of TG2 isoforms in neuroblastoma may open new venues in a diagnostic and therapeutic perspective.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Nadia Ferlazzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Maria Laura Giunta
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Angela Simona Montalto
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Tiziana Russo
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Salvatore Arena
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Pietro Impellizzeri
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
| | - Carmelo Romeo
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi,” University of Messina, 98125 Messina, Italy; (A.S.M.); (T.R.); (S.A.); (P.I.); (C.R.)
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (N.F.); (M.L.G.); (D.C.)
- Correspondence:
| |
Collapse
|
22
|
Durbas M, Pabisz P, Wawak K, Wiśniewska A, Boratyn E, Nowak I, Horwacik I, Woźnicka O, Rokita H. GD2 ganglioside-binding antibody 14G2a and specific aurora A kinase inhibitor MK-5108 induce autophagy in IMR-32 neuroblastoma cells. Apoptosis 2019; 23:492-511. [PMID: 30027525 PMCID: PMC6153511 DOI: 10.1007/s10495-018-1472-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The process of autophagy and its role in survival of human neuroblastoma cell cultures was studied upon addition of an anti-GD2 ganglioside (GD2) 14G2a mouse monoclonal antibody (14G2a mAb) and an aurora A kinase specific inhibitor, MK-5108. It was recently shown that combination of these agents significantly potentiates cytotoxicity against IMR-32 and CHP-134 neuroblastoma cells in vitro, as compared to the inhibitor used alone. In this study we gained mechanistic insights on autophagy in the observed cytotoxic effects exerted by both agents using cytotoxicity assays, RT-qPCR, immunoblotting, and autophagy detection methods. Enhancement of the autophagy process in the 14G2a mAb- and MK-5108-treated IMR-32 cells was documented by assessing autophagic flux. Application of a lysosomotropic agent-chloroquine (CQ) affected the 14G2a mAb- and MK-5108-stimulated autophagic flux. It is our conclusion that the 14G2a mAb (40 μg/ml) and MK-5108 inhibitor (0.1 μM) induce autophagy in IMR-32 cells. Moreover, the combinatorial treatment of IMR-32 cells with the 14G2a mAb and CQ significantly potentiates cytotoxic effect, as compared to CQ used alone. Most importantly, we showed that interfering with autophagy at its early and late step augments the 14G2a mAb-induced apoptosis, therefore we can conclude that inhibition of autophagy is the primary mechanism of the CQ-mediated sensitization to the 14G2a mAb-induced apoptosis. Although, there was no virtual stimulation of autophagy in the 14G2a mAb-treated CHP-134 neuroblastoma cells, we were able to show that PHLDA1 protein positively regulates autophagy and this process exists in a mutually exclusive manner with apoptosis in PHLDA1-silenced CHP-134 cells.
Collapse
Affiliation(s)
- Małgorzata Durbas
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Paweł Pabisz
- Departament of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Wawak
- Departament of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Aneta Wiśniewska
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Elżbieta Boratyn
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Iwona Nowak
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Faculty of Biology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Hanna Rokita
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
23
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics reveals novel differentiation proteins in neuroblastoma cells treated with 13-cis retinoic acid. J Proteomics 2019; 209:103491. [PMID: 31472280 DOI: 10.1016/j.jprot.2019.103491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Neuroblastoma, a cancer of the sympathetic nervous system, is the second most common pediatric cancer. A unique feature of neuroblastoma is remission in some patients due to spontaneous differentiation of metastatic tumors. 13-cis retinoic acid (13-cis RA) is currently used in the clinic to treat neuroblastoma due to its differentiation inducing effects. In this study, we used shotgun proteomics to identify proteins affected by 13-cis RA treatment in neuroblastoma SK-N-SH cells. Our results showed that 13-cis RA reduced proteins involved in extracellular matrix synthesis and organization and increased proteins involved in cell adhesion and neurofilament formation. These changes indicate that 13-cis RA induces tumor cell differentiation by decreasing extracellular matrix rigidity and increasing neurite overgrowth. Differentially-affected proteins identified in this study may be novel biomarkers of drug efficacy in the treatment of neuroblastoma. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of novel treatments. 13-cis retinoic acid is currently used in the clinic as a differentiation inducer. Here we have established a proteome map of SK-N-SH cells treated with 13-cis retinoic acid. Bioinformatic analysis revealed the involvement of development, differentiation, extracellular matrix assembly, collagen biosynthesis, and neurofilament bundle association. This proteome map provides information as to which proteins are important for differentiation and identifies networks that can be targeted by drugs to treat neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
24
|
Pastorino F, Brignole C, Di Paolo D, Perri P, Curnis F, Corti A, Ponzoni M. Overcoming Biological Barriers in Neuroblastoma Therapy: The Vascular Targeting Approach with Liposomal Drug Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804591. [PMID: 30706636 DOI: 10.1002/smll.201804591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Neuroblastoma is a rare pediatric cancer characterized by a wide clinical behavior and adverse outcome despite aggressive therapies. New approaches based on targeted drug delivery may improve efficacy and decrease toxicity of cancer therapy. Furthermore, nanotechnology offers additional potential developments for cancer imaging, diagnosis, and treatment. Following these lines, in the past years, innovative therapies based on the use of liposomes loaded with anticancer agents and functionalized with peptides capable of recognizing neuroblastoma cells and/or tumor-associated endothelial cells have been developed. Studies performed in experimental orthotopic models of human neuroblastoma have shown that targeted nanocarriers can be exploited for not only decreasing the systemic toxicity of the encapsulated anticancer drugs, but also increasing their tumor homing properties, enhancing tumor vascular permeability and perfusion (and, consequently, drug penetration), inducing tumor apoptosis, inhibiting angiogenesis, and reducing tumor glucose consumption. Furthermore, peptide-tagged liposomal formulations are proved to be more efficacious in inhibiting tumor growth and metastatic spreading of neuroblastoma than nontargeted liposomes. These findings, herein reviewed, pave the way for the design of novel targeted liposomal nanocarriers useful for multitargeting treatment of neuroblastoma.
Collapse
Affiliation(s)
- Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, IRCCS San Raffaele Scientific Institute, 16132, Milan, Italy
- Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
25
|
The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal 2019; 3:NS20180201. [PMID: 32269833 PMCID: PMC7104307 DOI: 10.1042/ns20180201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of early childhood; it accounts for approximately 8–10% of all childhood cancers and is the most common cancer in children in the first year of life. Patients in the high-risk group have a poor prognosis, with relapses being common and often refractory to drug treatment in those that survive. Moreover, the drug treatment itself can lead to a range of long-term sequelae. Therefore, there is a critical need to identify new therapeutics for NB. Isoliquiritigenin (ISLQ) is a naturally-occurring, dietary chalcone-type flavonoid with a range of biological effects that depend on the cell type and context. ISLQ has potential as an anticancer agent. Here we show that ISLQ has potent cytotoxic effects on SK-N-BE(2) and IMR-32 human NB cells, which carry amplification of the MYCN gene, the main prognostic marker of poor survival in NB. ISLQ was found to increase cellular reactive oxygen species (ROS). The cytotoxic effect of ISLQ was blocked by small molecule inhibitors of oxidative stress-induced cell death, and by the antioxidant N-acetyl-l-cysteine (NAC). Combined treatment of either SK-N-B-E(2) or IMR-32 cells with ISLQ and the anticancer agent cisplatin resulted in loss of cell viability that was greater than that induced by cisplatin alone. This study provides proof-of-principle that ISLQ is a potent cytotoxin for MYCN-amplified human NB cells. This is an important first step in rationalizing the further study of ISLQ as a potential adjunct therapy for high-risk NB.
Collapse
|
26
|
Kim W, Ryu J, Kim JE. CCAR2/DBC1 and Hsp60 Positively Regulate Expression of Survivin in Neuroblastoma Cells. Int J Mol Sci 2019; 20:ijms20010131. [PMID: 30609639 PMCID: PMC6337645 DOI: 10.3390/ijms20010131] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
CCAR2 (cell cycle and apoptosis regulator 2) controls a variety of cellular functions; however, its main function is to regulate cell survival and cell death in response to genotoxic and metabolic stresses. Recently, we reported that CCAR2 protects cells from apoptosis following mitochondrial stress, possibly by co-operating with Hsp60. However, it is not clear how CCAR2 and Hsp60 control cell survival and death. Here, we found that depleting CCAR2 and Hsp60 downregulated expression of survivin, a member of the inhibitor of apoptosis (IAP) family. Survivin expression in neuroblastoma tissues and human cancer cell lines correlated positively with expression of CCAR2 and Hsp60. Furthermore, high expression of CCAR2, Hsp60, and survivin was associated with poor survival of neuroblastoma patients. In summary, both CCAR2 and Hsp60 are required for expression of survivin, and both promote cancer cell survival, at least in part, by maintaining survivin expression. Therefore, CCAR2, Hsp60, and survivin are candidate tumor biomarkers and prognostic markers in neuroblastomas.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
27
|
Keyel ME, Reynolds CP. Spotlight on dinutuximab in the treatment of high-risk neuroblastoma: development and place in therapy. Biologics 2018; 13:1-12. [PMID: 30613134 PMCID: PMC6306059 DOI: 10.2147/btt.s114530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system which accounts for 8% of childhood cancers. Most NBs express high levels of the disialoganglioside GD2. Several antibodies have been developed to target GD2 on NB, including the human/mouse chimeric antibody ch14.18, known as dinutuximab. Dinutuximab used in combination with granulocyte-macrophage colony-stimulating factor, interleukin-2, and isotretinoin (13-cis-retinoic acid) has a US Food and Drug Administration (FDA)-registered indication for treating high-risk NB patients who achieved at least a partial response to prior first-line multi-agent, multimodality therapy. The FDA registration resulted from a prospective randomized trial assessing the benefit of adding dinutuximab + cytokines to post-myeloablative maintenance therapy for high-risk NB. Dinutuximab has also shown promising antitumor activity when combined with temozolomide and irinotecan in treating NB progressive disease. Clinical activity of dinutuximab and other GD2-targeted therapies relies on the presence of the GD2 antigen on NB cells. Some NBs have been reported as GD2 low or negative, and such tumor cells could be nonresponsive to anti-GD2 therapy. As dinutuximab relies on complement and effector cells to mediate NB killing, factors affecting those components of patient response may also decrease dinutuximab effectiveness. This review summarizes the development of GD2 antibody-targeted therapy, the use of dinutuximab in both up-front and salvage therapy for high-risk NB, and the potential mechanisms of resistance to dinutuximab.
Collapse
Affiliation(s)
| | - C Patrick Reynolds
- Cancer Center,
- Department of Pediatrics,
- Department of Internal Medicine,
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA,
| |
Collapse
|
28
|
Terzic T, Cordeau M, Herblot S, Teira P, Cournoyer S, Beaunoyer M, Peuchmaur M, Duval M, Sartelet H. Expression of Disialoganglioside (GD2) in Neuroblastic Tumors: A Prognostic Value for Patients Treated With Anti-GD2 Immunotherapy. Pediatr Dev Pathol 2018; 21:355-362. [PMID: 29067879 DOI: 10.1177/1093526617723972] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuroblastoma, a malignant neoplasm of the sympathetic nervous system, is one of the most aggressive pediatric cancers. Patients with stage IV high-risk neuroblastoma receive an intensive multimodal therapy ending with an immunotherapy based on a chimeric monoclonal antibody ch14.18. Although the use of ch14.18 monoclonal antibody has significantly increased the survival rate of high-risk neuroblastoma patients, about 33% of these patients still relapse and die from their disease. Ch14.18 targets the disialoganglioside, GD2, expressed on neuroblastic tumor (NT) cells. To better understand the causes of tumor relapse following ch14.18 immunotherapy, we have analyzed the expression of GD2 in 152 tumor samples from patients with NTs using immunohistochemical stainings. We observed GD2 expression in 146 of 152 samples (96%); however, the proportion of GD2-positive cells varied among samples. Interestingly, low percentage of GD2-positive cells before immunotherapy was associated with relapse in patients receiving ch14.18 immunotherapy. In addition, we demonstrated in vitro that the sensitivity of neuroblastoma cell lines to natural killer-mediated lysis was dependent on the proportion of GD2-positive cells, in the presence of ch14.18 antibody. In conclusion, our results indicate that the proportion of tumor cells expressing GD2 in NTs should be taken in consideration, as a prognostic marker, for high-risk neuroblastoma patients receiving anti-GD2 immunotherapy.
Collapse
Affiliation(s)
- Tatjana Terzic
- 1 Research Center, Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Martine Cordeau
- 1 Research Center, Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Sabine Herblot
- 1 Research Center, Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Pierre Teira
- 2 Department of Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Sonia Cournoyer
- 1 Research Center, Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Mona Beaunoyer
- 3 Department of Surgery, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Michel Peuchmaur
- 4 Department of Pathology, Centre Hospitalier Universitaire de Grenoble, Université Joseph Fourier, Grenoble, France
| | - Michel Duval
- 1 Research Center, Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Herve Sartelet
- 1 Research Center, Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada.,4 Department of Pathology, Centre Hospitalier Universitaire de Grenoble, Université Joseph Fourier, Grenoble, France
| |
Collapse
|
29
|
Moreno L, Casanova M, Chisholm JC, Berlanga P, Chastagner PB, Baruchel S, Amoroso L, Gallego Melcón S, Gerber NU, Bisogno G, Fagioli F, Geoerger B, Glade Bender JL, Aerts I, Bergeron C, Hingorani P, Elias I, Simcock M, Ferrara S, Le Bruchec Y, Slepetis R, Chen N, Vassal G. Phase I results of a phase I/II study of weekly nab-paclitaxel in paediatric patients with recurrent/refractory solid tumours: A collaboration with innovative therapies for children with cancer. Eur J Cancer 2018; 100:27-34. [PMID: 29936064 DOI: 10.1016/j.ejca.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND nab-Paclitaxel has demonstrated efficacy in adults with solid tumours and preclinical activity in paediatric solid tumour models. Results from phase I of a phase I/II study in paediatric patients with recurrent/refractory solid tumours treated with nab-paclitaxel are reported. PATIENTS AND METHODS Patients with recurrent/refractory extracranial solid tumours received nab-paclitaxel on days 1, 8 and 15 every 4 weeks at 120, 150, 180, 210, 240, or 270 mg/m2 (rolling-6 dose-escalation) to establish the maximum tolerated dose (MTD) and recommended phase II dose (RP2D). RESULTS Sixty-four patients were treated. Dose-limiting toxicities were grade 3 dizziness at 120 mg/m2 and grade 4 neutropenia >7 days at 270 mg/m2. The most frequent grade 3/4 adverse events were haematologic, including neutropenia (36%), leukopenia (36%) and lymphopenia (25%). Although the MTD was not reached, 270 mg/m2 was declared non-tolerable due to grade 3/4 toxicities during cycles 1-2 (neutropenia, n = 5/7; skin toxicity, n = 2/7; peripheral neuropathy, n = 1/7). Of 58 efficacy-evaluable patients, complete response occurred in one patient (2%; Ewing sarcoma) and partial responses in four patients (7%; rhabdomyosarcoma, Ewing sarcoma, renal tumour with pulmonary metastases [high-grade, malignant] and sarcoma not otherwise specified); all responses occurred at ≥210 mg/m2. Thirteen patients (22%) had stable disease (5 lasting ≥16 weeks) per RECIST. CONCLUSIONS nab-Paclitaxel 240 mg/m2 qw3/4 (nearly double the adult recommended monotherapy dose for this schedule in metastatic breast cancer) was selected as the RP2D based on the tolerability profile, pharmacokinetics and antitumour activity. Phase II is currently enrolling patients with recurrent/refractory neuroblastoma, rhabdomyosarcoma and Ewing sarcoma. CLINICALTRIALS.GOV: NCT01962103. EUDRACT 2013-000144-26.
Collapse
Affiliation(s)
- Lucas Moreno
- Hospital Infantil Universitario Niño Jesús, Madrid, Spain.
| | | | | | - Pablo Berlanga
- Unidad de Oncologia Pediatrica, Hospital Universitario I Politècnic La Fe, Valencia, Spain
| | | | | | | | | | | | - Gianni Bisogno
- Department of Pediatrics, Hematology/Oncology Division, Padova, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology Division, Regina Margherita, Torino, Italy
| | - Birgit Geoerger
- Gustave Roussy, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | | | - Isabelle Aerts
- Institut Curie, PSL Research University, Oncology Center SIREDO (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeid R, Lawlor MA, Poon E, Reyes JM, Fulciniti M, Lopez MA, Scott TG, Nabet B, Erb MA, Winter GE, Jacobson Z, Polaski DR, Karlin KL, Hirsch RA, Munshi NP, Westbrook TF, Chesler L, Lin CY, Bradner JE. Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat Genet 2018; 50:515-523. [PMID: 29379199 PMCID: PMC6310397 DOI: 10.1038/s41588-018-0044-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
Abstract
Amplification of the locus encoding the oncogenic transcription factor MYCN is a defining feature of high-risk neuroblastoma. Here we present the first dynamic chromatin and transcriptional landscape of MYCN perturbation in neuroblastoma. At oncogenic levels, MYCN associates with E-box binding motifs in an affinity-dependent manner, binding to strong canonical E-boxes at promoters and invading abundant weaker non-canonical E-boxes clustered at enhancers. Loss of MYCN leads to a global reduction in transcription, which is most pronounced at MYCN target genes with the greatest enhancer occupancy. These highly occupied MYCN target genes show tissue-specific expression and are linked to poor patient survival. The activity of genes with MYCN-occupied enhancers is dependent on the tissue-specific transcription factor TWIST1, which co-occupies enhancers with MYCN and is required for MYCN-dependent proliferation. These data implicate tissue-specific enhancers in defining often highly tumor-specific 'MYC target gene signatures' and identify disruption of the MYCN enhancer regulatory axis as a promising therapeutic strategy in neuroblastoma.
Collapse
Affiliation(s)
- Rhamy Zeid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jaime M Reyes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael A Lopez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Behnam Nabet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael A Erb
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Georg E Winter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zoe Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donald R Polaski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen L Karlin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rachel A Hirsch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nikhil P Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas F Westbrook
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Charles Y Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Novartis Institute for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
31
|
Aitken JF, Youlden DR, Moore AS, Baade PD, Ward LJ, Thursfield VJ, Valery PC, Green AC, Gupta S, Frazier AL. Assessing the feasibility and validity of the Toronto Childhood Cancer Stage Guidelines: a population-based registry study. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:173-179. [DOI: 10.1016/s2352-4642(18)30023-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
|
32
|
Qin W, Pei H, Qin R, Zhao R, Han J, Zhang Z, Dong K, Ren S, Gu J. Alteration of Serum IgG Galactosylation as a Potential Biomarker for Diagnosis of Neuroblastoma. J Cancer 2018; 9:906-913. [PMID: 29581769 PMCID: PMC5868155 DOI: 10.7150/jca.22014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Neuroblastoma (NB) is the most frequent pediatric malignant neoplasm that originates from embryonic neural crest cells. Urinary catecholamines in 24-h urine are most commonly analyzed for the diagnosis of neuroblastoma at good sensitivity; however, it is challenging to collect 24-h urine samples in a pediatric population. Therefore, development of more rapid, non-invasive and cost-effective tools for the diagnosis of NB remains needed. Serum immunoglobulin G (IgG) galactosylation have been found highly associated with adult cancers in our previous study. Methods: To explore the potential use of serum IgG galactosylation in aiding diagnosis of neuroblastoma, serum IgG galactosylation profiles of 26 neuroblastoma cases and 30 age-matched non-malignant controls were analyzed by MALDI MS. The alteration of IgG galactosylation in neuroblastoma patients was measured by a Gal-ratio formula: G0/(G1+G2×2), calculating the relative intensities of agalactosylated N-glycan (G0) vs mono-galactosyl N-glycan (G1) and digalactosyl N-glycan (G2). Results: The results showed that IgG Gal-ratios were significantly higher in neuroblastoma cases compared with non-malignant controls (p=5.0×10-4). And the Gal-ratio data generated sensitivity and specificity of 84.62% and 60.00%, combined with an AUC (area under the curve) of 0.80. Conclusions: The analysis of serum IgG galactosylation distribution may play a suggestive role for neuroblastoma diagnosis, or serve as a potential biomarker for NB diagnosis.
Collapse
Affiliation(s)
- Wenjun Qin
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Pei
- Department of Anesthesiology, Children's Hospital, Fudan University, Shanghai 201102, China
| | - Ruihuan Qin
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ran Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Jing Han
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zejian Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kuiran Dong
- Department of Oncology, Children's Hospital, Fudan University, Shanghai 201102, China
| | - Shifang Ren
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Shen X, Huang J, Liu G, Zhang H, Zhang X, Kong X, Du L. Matrine Inhibits Neuroblastoma Cell Proliferation and Migration by Enhancing Tribbles 3 Expression. Oncol Res 2018; 26:1133-1142. [PMID: 29386091 PMCID: PMC7844772 DOI: 10.3727/096504018x15168461629558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neuroblastoma is a major contributor of cancer-specific mortality. Although remarkable enhancement has been achieved in the treatment of neuroblastoma in patients with early stage disease, limited progress has been made in the treatment of patients with high-risk neuroblastoma. Thus, innovative approaches are required to achieve further improvements in neuroblastoma patient survival outcomes. The major alkaloid obtained from Sophora flavescens Ait, matrine, has been shown to counteract malignancy in various kinds of cancers. In the current study, we evaluated the effects of matrine on the migration and proliferation of neuroblastoma cells. Cell cycle analysis coupled with Transwell and wound healing experiments showed that matrine triggers G2/M cell cycle arrest and suppresses neuroblastoma migration. This effect of matrine is due to upregulation of TRB3 expression followed by inhibition of the PI3K/AKT activation. Consistent with the in vitro data, growth of xenograft cancer was also suppressed by matrine. Our results indicate that matrine inhibits neuroblastoma cell proliferation and migration by enhancing TRB3 expression, suggesting that matrine may serve as a promising agent for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Xiaowei Shen
- Department of General Surgery, the Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, P.R. China
| | - Jianping Huang
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Gang Liu
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hao Zhang
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiwei Zhang
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiancheng Kong
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Lei Du
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
34
|
Optimising the chick chorioallantoic membrane xenograft model of neuroblastoma for drug delivery. BMC Cancer 2018; 18:28. [PMID: 29301505 PMCID: PMC5755290 DOI: 10.1186/s12885-017-3978-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric cancer that despite multimodal therapy still has a poor outcome for many patients with high risk tumours. Retinoic acid (RA) promotes differentiation of some neuroblastoma tumours and cell lines, and is successfully used clinically, supporting the view that differentiation therapy is a promising strategy for treatment of neuroblastoma. To improve treatment of a wider range of tumour types, development and testing of novel differentiation agents is essential. New pre-clinical models are therefore required to test therapies in a rapid cost effective way in order to identify the most useful agents. METHODS As a proof of principle, differentiation upon ATRA treatment of two MYCN-amplified neuroblastoma cell lines, IMR32 and BE2C, was measured both in cell cultures and in tumours formed on the chick chorioallantoic membrane (CAM). Differentiation was assessed by 1) change in cell morphology, 2) reduction in cell proliferation using Ki67 staining and 3) changes in differentiation markers (STMN4 and ROBO2) and stem cell marker (KLF4). Results were compared to MLN8237, a classical Aurora Kinase A inhibitor. For the in vivo experiments, cells were implanted on the CAM at embryonic day 7 (E7), ATRA treatment was between E11 and E13 and tumours were analysed at E14. RESULTS Treatment of IMR32 and BE2C cells in vitro with 10 μM ATRA resulted in a change in cell morphology, a 65% decrease in cell proliferation, upregulation of STMN4 and ROBO2 and downregulation of KLF4. ATRA proved more effective than MLN8237 in these assays. In vivo, 100 μM ATRA repetitive treatment at E11, E12 and E13 promoted a change in expression of differentiation markers and reduced proliferation by 43% (p < 0.05). 40 μM ATRA treatment at E11 and E13 reduced proliferation by 37% (p < 0.05) and also changed cell morphology within the tumour. CONCLUSION Differentiation of neuroblastoma tumours formed on the chick CAM can be analysed by changes in cell morphology, proliferation and gene expression. The well-described effects of ATRA on neuroblastoma differentiation were recapitulated within 3 days in the chick embryo model, which therefore offers a rapid, cost effective model compliant with the 3Rs to select promising drugs for further preclinical analysis.
Collapse
|
35
|
Chen L, Alexe G, Dharia NV, Ross L, Iniguez AB, Conway AS, Wang EJ, Veschi V, Lam N, Qi J, Gustafson WC, Nasholm N, Vazquez F, Weir BA, Cowley GS, Ali LD, Pantel S, Jiang G, Harrington WF, Lee Y, Goodale A, Lubonja R, Krill-Burger JM, Meyers RM, Tsherniak A, Root DE, Bradner JE, Golub TR, Roberts CW, Hahn WC, Weiss WA, Thiele CJ, Stegmaier K. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 2017; 128:446-462. [PMID: 29202477 DOI: 10.1172/jci90793] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
Pharmacologically difficult targets, such as MYC transcription factors, represent a major challenge in cancer therapy. For the childhood cancer neuroblastoma, amplification of the oncogene MYCN is associated with high-risk disease and poor prognosis. Here, we deployed genome-scale CRISPR-Cas9 screening of MYCN-amplified neuroblastoma and found a preferential dependency on genes encoding the polycomb repressive complex 2 (PRC2) components EZH2, EED, and SUZ12. Genetic and pharmacological suppression of EZH2 inhibited neuroblastoma growth in vitro and in vivo. Moreover, compared with neuroblastomas without MYCN amplification, MYCN-amplified neuroblastomas expressed higher levels of EZH2. ChIP analysis showed that MYCN binds at the EZH2 promoter, thereby directly driving expression. Transcriptomic and epigenetic analysis, as well as genetic rescue experiments, revealed that EZH2 represses neuronal differentiation in neuroblastoma in a PRC2-dependent manner. Moreover, MYCN-amplified and high-risk primary tumors from patients with neuroblastoma exhibited strong repression of EZH2-regulated genes. Additionally, overexpression of IGFBP3, a direct EZH2 target, suppressed neuroblastoma growth in vitro and in vivo. We further observed strong synergy between histone deacetylase inhibitors and EZH2 inhibitors. Together, these observations demonstrate that MYCN upregulates EZH2, leading to inactivation of a tumor suppressor program in neuroblastoma, and support testing EZH2 inhibitors in patients with MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Liying Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emily Jue Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA
| | - Veronica Veschi
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Norris Lam
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - W Clay Gustafson
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Nicole Nasholm
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | | | | | | | - Levi D Ali
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Yenarae Lee
- Broad Institute, Cambridge, Massachusetts, USA
| | - Amy Goodale
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | | | | | - James E Bradner
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Todd R Golub
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Charles Wm Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William C Hahn
- Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - William A Weiss
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA.,Department of Neurology, Neurological Surgery, Brain Tumor Research Center, UCSF, San Francisco, California, USA
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Zhang D, Wang F, Pang Y, Ke XX, Zhu S, Zhao E, Zhang K, Chen L, Cui H. Down-regulation of CHERP inhibits neuroblastoma cell proliferation and induces apoptosis through ER stress induction. Oncotarget 2017; 8:80956-80970. [PMID: 29113358 PMCID: PMC5655253 DOI: 10.18632/oncotarget.20898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is a childhood tumor that is derived from the sympathetic nervous system. In recent years, great progress has been made in our understanding of neuroblastoma. However, applying theories to improve disease outcomes remains challenging. In this study, we observed that calcium homeostasis endoplasmic reticulum protein (CHERP) was involved in the maintenance of neuroblastoma cell proliferation and tumorigenicity. Moreover, elevated CHERP expression was positively correlated with poor patient survival, whereas low CHERP expression was predictive of better outcomes. Additional functional studies showed that CHERP knockdown inhibited neuroblastoma cell proliferation in vitro and resulted in defective tumorigenicity in vivo. Moreover, CHERP depletion suppressed neuroblastoma cell proliferation by inducing endoplasmic reticulum stress and cell apoptosis. Considering the functional roles of CHERP in neuroblastoma development and maintenance, CHERP might function as a novel therapeutic target for neuroblastoma patients.
Collapse
Affiliation(s)
- Dunke Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yi Pang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Xiao-xue Ke
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
37
|
Abstract
INTRODUCTION Current therapeutic approaches for high-risk neuroblastoma (HR-NB) include high-dose chemotherapy, surgery and radiotherapy; interventions that are associated with long and short-term toxicities. Effective immunotherapy holds particular promise for improving survival and quality of life by reducing exposure to cytotoxic agents. GD2, a surface glycolipid is the most common target for immunotherapy. Areas covered: We review the status of anti-GD2 immunotherapies currently in clinical use for neuroblastomas and novel GD2-targeted strategies in preclinical development. Expert commentary: Anti-GD2 monoclonal antibodies are associated with improved survival in patients in their first remission and are increasingly being used for chemorefractory and relapsed neuroblastoma. As protein engineering technology has become more accessible, newer antibody constructs are being tested. GD2 is also being targeted by natural killer cells and T-cells. Active immunity can be elicited by anti-GD2 vaccines. The rational combination of currently available and soon-to-emerge immunotherapeutic approaches, and their integration into conventional multimodality therapies will require further investigation to optimize their use for HR-NB.
Collapse
Affiliation(s)
- Sameer Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shakeel I. Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
38
|
Villasante A, Sakaguchi K, Kim J, Cheung N, Nakayama M, Parsa H, Okano T, Shimizu T, Vunjak-Novakovic G. Vascularized Tissue-Engineered Model for Studying Drug Resistance in Neuroblastoma. Am J Cancer Res 2017; 7:4099-4117. [PMID: 29158813 PMCID: PMC5695000 DOI: 10.7150/thno.20730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/11/2017] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma is a vascularized pediatric tumor derived from neural crest stem cells that displays vasculogenic mimicry and can express a number of stemness markers, such as SOX2 and NANOG. Tumor relapse is the major cause of succumbing to this disease, and properties attributed to cancer stem-like cells (CSLC), such as drug-resistance and cell plasticity, seem to be the key mechanisms. However, the lack of controllable models that recapitulate the features of human neuroblastoma limits our understanding of the process and impedes the development of new therapies. In response to these limitations, we engineered a perfusable, vascularized in vitro model of three-dimensional human neuroblastoma to study the effects of retinoid therapy on tumor vasculature and drug-resistance. METHODS The in vitro model of neuroblastoma was generated using cell-sheet engineering and cultured in a perfusion bioreactor. Firstly, we stacked three cell sheets containing SKNBE(2) neuroblastoma cells and HUVEC. Then, a vascular bed made of fibrin, collagen I and HUVEC cells was placed onto a collagen-gel base with 8 microchannels. After gelling, the stacked cell sheets were placed on the vascular bed and cultured in the perfusion bioreactor (perfusion rate: 0.5 mL/min) for 4 days. Neuroblastoma models were treated with 10μM isotretionin in single daily doses for 5 days. RESULTS The bioengineered model recapitulated vasculogenic mimicry (vessel-like structure formation and tumor-derived endothelial cells-TECs), and contained CSLC expressing SOX2 and NANOG. Treatment with Isotretinoin destabilized vascular networks but failed to target vasculogenic mimicry and augmented populations of CSLCs expressing high levels of SOX2. Our results suggest that CSLCs can transdifferentiate into drug resistant CD31+-TECs, and reveal the presence of an intermediate state STEC (stem tumor-derived endothelial cell) expressing both SOX2 and CD31. CONCLUSION Our results reveal some roles of SOX2 in drug resistance and tumor relapse, and suggest that SOX2 could be a therapeutic target in neuroblastoma.
Collapse
|
39
|
Bettinsoli P, Ferrari-Toninelli G, Bonini SA, Prandelli C, Memo M. Notch ligand Delta-like 1 as a novel molecular target in childhood neuroblastoma. BMC Cancer 2017; 17:352. [PMID: 28525978 PMCID: PMC5438559 DOI: 10.1186/s12885-017-3340-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuroblastoma is the most common extracranial solid malignancy in childhood, responsible for 15% of all pediatric cancer deaths. It is an heterogeneous disease that does not always respond to classical therapy; so the identification of new and specific molecular targets to improve existing therapy is needed. We have previously demonstrated the involvement of the Notch pathway in the onset and progression of neuroblastoma. In this study we further investigated the role of Notch signaling and identified Delta-like 1 (DLL1) as a novel molecular target in neuroblastoma cells with a high degree of MYCN amplification, which is a major oncogenic driver in neuroblastoma. The possibility to act on DLL1 expression levels by using microRNAs (miRNAs) was assessed. METHODS DLL1 mRNA and protein expression levels were measured in three different neuroblastoma cell lines using quantitative real-time PCR and Western Blot analysis, respectively. Activation of the Notch pathway as a result of increased levels of DLL1 was analyzed by Immunofluorescence and Western Blot methods. In silico tools revealed the possibility to act on DLL1 expression levels with miRNAs, in particular with the miRNA-34 family. Neuroblastoma cells were transfected with miRNA-34 family members, and the effect of miRNAs transfection on DLL1 mRNA expression levels, on cell differentiation, proliferation and apoptosis was measured. RESULTS In this study, the DLL1 ligand was identified as the Notch pathway component highly expressed in neuroblastoma cells with MYCN amplification. In silico analysis demonstrated that DLL1 is one of the targets of miRNA-34 family members that maps on chromosome regions that are frequently deregulated or deleted in neuroblastoma. We studied the possibility to use miRNAs to target DLL1. Among all miRNA-34 family members, miRNA-34b is able to significantly downregulate DLL1 mRNA expression levels, to arrest cell proliferation and to induce neuronal differentiation in malignant neuroblastoma cells. CONCLUSIONS Targeted therapies have emerged as new strategies for cancer treatment. This study identified the Notch ligand DLL1 as a novel and attractive molecular target in childhood neuroblastoma and its results could help to devise a targeted therapy using miRNAs.
Collapse
Affiliation(s)
- P Bettinsoli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Viale Europa, 11, Brescia, Italy.
| | - G Ferrari-Toninelli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Viale Europa, 11, Brescia, Italy
| | - S A Bonini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Viale Europa, 11, Brescia, Italy
| | - C Prandelli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Viale Europa, 11, Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Viale Europa, 11, Brescia, Italy
| |
Collapse
|
40
|
Hegarty SV, Togher KL, O'Leary E, Solger F, Sullivan AM, O'Keeffe GW. Romidepsin induces caspase-dependent cell death in human neuroblastoma cells. Neurosci Lett 2017; 653:12-18. [PMID: 28506690 DOI: 10.1016/j.neulet.2017.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
Neuroblastoma is the most common extracranial pediatric solid tumor, arising from the embryonic sympathoadrenal lineage of the neural crest, and is responsible for 15% of childhood cancer deaths. Although survival rates are good for some patients, those children diagnosed with high-risk neuroblastoma have survival rates as low as 35%. Thus, neuroblastoma remains a significant clinical challenge and the development of novel therapeutic strategies is essential. Given that there is widespread epigenetic dysregulation in neuroblastoma, epigenetic pharmacotherapy holds promise as a therapeutic approach. In recent years, histone deacetylase (HDAC) inhibitors, which cause selective activation of gene expression, have been shown to be potent chemotherapeutics for the treatment of a wide range of cancers. Here we examined the ability of the FDA-approved drug Romidepsin, a selective HDAC1/2 inhibitor, to act as a cytotoxic agent in neuroblastoma cells. Treatment with Romidepsin at concentrations in the low nanomolar range induced neuroblastoma cell death through caspase-dependent apoptosis. Romidepsin significantly increased histone acetylation, and significantly enhanced the cytotoxic effects of the cytotoxic agent 6-hydroxydopamine, which has been shown to induce cell death in neuroblastoma cells through increasing reactive oxygen species. Romidepsin was also more potent in MYCN-amplified neuroblastoma cells, which is an important prognostic marker of poor survival. This study has thus demonstrated that the FDA-approved chemotherapeutic drug Romidepsin has a potent caspase-dependent cytotoxic effect on neuroblastoma cells, whose effects enhance cell death induced by other cytotoxins, and suggests that Romidepsin may be a promising chemotherapeutic candidate for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Katie L Togher
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland; INFANT Centre, Cork University Maternity Hospital and UCC, Cork, Ireland
| | - Eimear O'Leary
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Franziska Solger
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork (UCC), Cork, Ireland; APC Microbiome Institute, UCC, Cork, Ireland; INFANT Centre, Cork University Maternity Hospital and UCC, Cork, Ireland.
| |
Collapse
|
41
|
Singhal SS, Singhal S, Singhal P, Singhal J, Horne D, Awasthi S. Didymin: an orally active citrus flavonoid for targeting neuroblastoma. Oncotarget 2017; 8:29428-29441. [PMID: 28187004 PMCID: PMC5438742 DOI: 10.18632/oncotarget.15204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma.
Collapse
Affiliation(s)
- Sharad S. Singhal
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, San Diego, CA, USA
| | | | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
42
|
Yang L, Huang M, Tan J, Hou J, He J, Wang F, Cui H, Yi L. Transcriptional co-activator with PDZ-binding motif overexpression promotes cell proliferation and transcriptional co-activator with PDZ-binding motif deficiency induces cell cycle arrest in neuroblastoma. Oncol Lett 2017; 13:4295-4301. [PMID: 28599430 PMCID: PMC5453012 DOI: 10.3892/ol.2017.6030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/02/2017] [Indexed: 01/07/2023] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) is a transcriptional co-activator which binds to a variety of transcription factors. An increasing number of studies have provided evidence that TAZ may be a positive regulator of cell proliferation and tumorigenesis. To reveal the underlying mechanisms by which TAZ controls these cellular processes, the present study used lentivirus expression system, flow cytometry, immunofluorescence and subcutaneous xenograft assays. The present study demonstrated that TAZ promoted and was indispensable for neuroblastoma cell proliferation and tumorigenesis. Additional mechanistic assays revealed that the downregulation of TAZ induced cell cycle arrest in the G1 phase, which may be mediated through the inhibition of cyclin E2 expression. These findings indicated that TAZ may serve as a potential neuroblastoma therapeutic target.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Juan Tan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Jiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
43
|
Singhal SS, Nagaprashantha L, Singhal P, Singhal S, Singhal J, Awasthi S, Horne D. RLIP76 Inhibition: A Promising Developmental Therapy for Neuroblastoma. Pharm Res 2017; 34:1673-1682. [PMID: 28386633 DOI: 10.1007/s11095-017-2154-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
Refractory and relapsed neuroblastoma (NB) present with significant challenges in clinical management. Though primary NBs largely with wild-type p53 respond well to interventions, dysfunctional signaling in the p53 pathways in a MYCN oncogene driven background is found in a number of children with NB. The p53-mutant NB is largely unresponsive to available therapies and p53-independent targeted therapeutics represents a vital need in pediatric oncology. We analyzed the findings on mercapturic acid pathway (MAP) transporter RLIP76, which has broad and critical effects on multiple pathways as essential for carcinogenesis, oxidative stress and drug-resistance, is over-expressed in NB. RLIP76 inhibition by antibodies or depletion by antisense causes apoptosis and sensitization to chemo-radiotherapy in many cancers. In addition, recent studies indicate that the interactions between p53, MYCN, and WNT regulate apoptosis resistance and protein ubiquitination. RLIP76 and p53 interact with each other and colocalize in NB cells. Targeted depletion/inhibition of RLIP76 causes apoptosis and tumor regression in NB irrespective of p53 status. In the present review, we discuss the mechanisms and the role of RLIP76 in oxidative stress, drug-resistance and clathrin-dependent endocytosis (CDE), and analyze the molecular basis for the role of RLIP76 targeted approaches in the context principal drivers of NB pathogenesis, progression and drug-resistance. The evidence from RLIP76 studies in other cancers, when taken in the context of our recent RLIP76 focused mechanistic studies in NB, provides strong basis for further characterization and development of RLIP76 targeted therapies for NB.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA.
| | - Lokesh Nagaprashantha
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Preeti Singhal
- University of Texas Health, San Antonio, Texas, 78229, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, California, 92092, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - David Horne
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| |
Collapse
|
44
|
Pajtler KW, Sadowski N, Ackermann S, Althoff K, Schönbeck K, Batzke K, Schäfers S, Odersky A, Heukamp L, Astrahantseff K, Künkele A, Deubzer HE, Schramm A, Sprüssel A, Thor T, Lindner S, Eggert A, Fischer M, Schulte JH. The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in preclinical neuroblastoma models. Oncotarget 2017; 8:6730-6741. [PMID: 28036269 PMCID: PMC5351666 DOI: 10.18632/oncotarget.14268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that promotes G2/M-phase transition, is expressed in elevated levels in high-risk neuroblastomas and correlates with unfavorable patient outcome. Recently, we and others have presented PLK1 as a potential drug target for neuroblastoma, and reported that the BI2536 PLK1 inhibitor showed antitumoral actvity in preclinical neuroblastoma models. Here we analyzed the effects of GSK461364, a competitive inhibitor for ATP binding to PLK1, on typical tumorigenic properties of preclinical in vitro and in vivo neuroblastoma models. GSK461364 treatment of neuroblastoma cell lines reduced cell viability and proliferative capacity, caused cell cycle arrest and massively induced apoptosis. These phenotypic consequences were induced by treatment in the low-dose nanomolar range, and were independent of MYCN copy number status. GSK461364 treatment strongly delayed established xenograft tumor growth in nude mice, and significantly increased survival time in the treatment group. These preclinical findings indicate PLK1 inhibitors may be effective for patients with high-risk or relapsed neuroblastomas with upregulated PLK1 and might be considered for entry into early phase clinical trials in pediatric patients.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Republic of Korea
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK Core Center Heidelberg), Germany
| | - Natalie Sadowski
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Sandra Ackermann
- Department of Pediatric Oncology and Hematology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Kerstin Schönbeck
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Katharina Batzke
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Simon Schäfers
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Andrea Odersky
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Lukas Heukamp
- NEO New Oncology, Cologne, Germany
- Institute for Hematopathology, Hamburg, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Annika Sprüssel
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
| | - Theresa Thor
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK Essen), Germany
- Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
- Berlin Institute of Health (BIH), Germany
- German Cancer Consortium (DKTK Berlin), Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Džinić T, Hartwig S, Lehr S, Dencher NA. Oxygen and differentiation status modulate the effect of X-ray irradiation on physiology and mitochondrial proteome of human neuroblastoma cells. Arch Physiol Biochem 2016; 122:257-265. [PMID: 27615280 DOI: 10.1080/13813455.2016.1218518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytotoxic effects, including oxidative stress, of low linear energy transfer (LET)-ionizing radiation are often underestimated and studies of their mechanisms using cell culture models are widely conducted with cells cultivated at atmospheric oxygen that does not match its physiological levels in body tissues. Also, cell differentiation status plays a role in the outcome of experiments. We compared effects of 2 Gy X-ray irradiation on the physiology and mitochondrial proteome of nondifferentiated and human neuroblastoma (SH-SY5Y) cells treated with retinoic acid cultivated at 21% and 5% O2. Irradiation did not affect the amount of subunits of OxPhos complexes and other non-OxPhos mitochondrial proteins, except for heat shock protein 70, which was increased depending on oxygen level and differentiation status. These two factors were proven to modulate mitochondrial membrane potential and the bioenergetic status of cells. We suggest, moreover, that oxygen plays a role in the differentiation of human SH-SY5Y cells.
Collapse
Affiliation(s)
- Tamara Džinić
- a Physical Biochemistry, Department of Chemistry , Technische Universität Darmstadt , Darmstadt , Germany
| | - Sonja Hartwig
- b Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research , Düsseldorf , Germany , and
- c German Center for Diabetes Research (DZD) , München , Neuherberg , Germany
| | - Stefan Lehr
- b Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research , Düsseldorf , Germany , and
- c German Center for Diabetes Research (DZD) , München , Neuherberg , Germany
| | - Norbert A Dencher
- a Physical Biochemistry, Department of Chemistry , Technische Universität Darmstadt , Darmstadt , Germany
| |
Collapse
|
46
|
Seong BKA, Fathers KE, Hallett R, Yung CK, Stein LD, Mouaaz S, Kee L, Hawkins CE, Irwin MS, Kaplan DR. A Metastatic Mouse Model Identifies Genes That Regulate Neuroblastoma Metastasis. Cancer Res 2016; 77:696-706. [PMID: 27899382 DOI: 10.1158/0008-5472.can-16-1502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/06/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
Abstract
Metastatic relapse is the major cause of death in pediatric neuroblastoma, where there remains a lack of therapies to target this stage of disease. To understand the molecular mechanisms mediating neuroblastoma metastasis, we developed a mouse model using intracardiac injection and in vivo selection to isolate malignant cell subpopulations with a higher propensity for metastasis to bone and the central nervous system. Gene expression profiling revealed primary and metastatic cells as two distinct cell populations defined by differential expression of 412 genes and of multiple pathways, including CADM1, SPHK1, and YAP/TAZ, whose expression independently predicted survival. In the metastatic subpopulations, a gene signature was defined (MET-75) that predicted survival of neuroblastoma patients with metastatic disease. Mechanistic investigations demonstrated causal roles for CADM1, SPHK1, and YAP/TAZ in mediating metastatic phenotypes in vitro and in vivo Notably, pharmacologic targeting of SPHK1 or YAP/TAZ was sufficient to inhibit neuroblastoma metastasis in vivo Overall, we identify gene expression signatures and candidate therapeutics that could improve the treatment of metastatic neuroblastoma. Cancer Res; 77(3); 696-706. ©2017 AACR.
Collapse
Affiliation(s)
- Bo Kyung A Seong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Kelly E Fathers
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Robin Hallett
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Christina K Yung
- Informatics and Bio-computing, Ontario Institute of Cancer Research, Toronto, Canada
| | - Lincoln D Stein
- Informatics and Bio-computing, Ontario Institute of Cancer Research, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Samar Mouaaz
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Lynn Kee
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Cynthia E Hawkins
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Meredith S Irwin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Wang XQ, Li ZN, Wang QM, Jin HY, Gao Z, Jin ZH. Lipid nano-bubble combined with ultrasound for anti-keloids therapy. J Liposome Res 2016; 28:5-13. [PMID: 27733083 DOI: 10.1080/08982104.2016.1239633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Keloids were characterized by excessive growth of fibrous tissues, and shared several pathological characteristics with cancer. They did put physical and emotional stress on patients in that keloids could badly change appearance of patients. N-(4-hydroxyphenyl) retinamide (4HPR) showed cytotoxic activity on a wide variety of invasive-growth cells. Our work was aim to prepare N-(4-hydroxyphenyl) retinamide-loaded lipid microbubbles (4HPR-LM) combined with ultrasound for anti-keloid therapy. 4HPR-loaded liposomes (4HPR-L) were first prepared by film evaporation method, and then 4HPR-LM were manufactured by mixing 4HPR-L and perfluoropentane (PFP) with ultrasonic cavitation method. The mean particle size and entrapment efficiency 4HPR-LM were 113 nm and 95%, respectively. The anti-keloids activity of 4HPR-LM was assessed with BALB/c nude mice bearing subcutaneous xenograft keloids model. 4HPR-LM, combined with ultrasound, could significantly induce apoptosis of keloid fibroblasts in vitro and inhibited growth of keloids in vivo. Thus, 4HPR-LM could be considered as a promising agent for anti-keloids therapy.
Collapse
Affiliation(s)
- Xiao Qing Wang
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China.,b Yanbian University Hospital , Yanji , China , and.,c Jining No.1 People's Hospital , Jining , China
| | - Zhou-Na Li
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China.,b Yanbian University Hospital , Yanji , China , and
| | - Qi-Ming Wang
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Hong-Yan Jin
- b Yanbian University Hospital , Yanji , China , and
| | - Zhonggao Gao
- a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Zhe-Hu Jin
- b Yanbian University Hospital , Yanji , China , and
| |
Collapse
|
48
|
A novel l-leucine modified Sol-Gel-Carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:870-878. [PMID: 27987784 DOI: 10.1016/j.msec.2016.10.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/14/2016] [Accepted: 10/30/2016] [Indexed: 11/23/2022]
Abstract
Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML-1 of homovanillic acid and 10-120μML-1 of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software.
Collapse
|
49
|
PPAR Gamma in Neuroblastoma: The Translational Perspectives of Hypoglycemic Drugs. PPAR Res 2016; 2016:3038164. [PMID: 27799938 PMCID: PMC5069360 DOI: 10.1155/2016/3038164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common and aggressive pediatric cancer, characterized by a remarkable phenotypic diversity and high malignancy. The heterogeneous clinical behavior, ranging from spontaneous remission to fatal metastatic disease, is attributable to NB biology and genetics. Despite major advances in therapies, NB is still associated with a high morbidity and mortality. Thus, novel diagnostic, prognostic, and therapeutic approaches are required, mainly to improve treatment outcomes of high-risk NB patients. Among neuroepithelial cancers, NB is the most studied tumor as far as PPAR ligands are concerned. PPAR ligands are endowed with antitumoral effects, mainly acting on cancer stem cells, and constitute a possible add-on therapy to antiblastic drugs, in particular for NB with unfavourable prognosis. While discussing clinical background, this review will provide a synopsis of the major studies about PPAR expression in NB, focusing on the potential beneficial effects of hypoglycemic drugs, thiazolidinediones and metformin, to reduce the occurrence of relapses as well as tumor regrowth in NB patients.
Collapse
|
50
|
Hashimoto O, Yoshida M, Koma YI, Yanai T, Hasegawa D, Kosaka Y, Nishimura N, Yokozaki H. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol 2016; 240:211-23. [PMID: 27425378 PMCID: PMC5095779 DOI: 10.1002/path.4769] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 12/31/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumour in children and is histologically classified by its Schwannian stromal cells. Although having fewer Schwannian stromal cells is generally associated with more aggressive phenotypes, the exact roles of other stromal cells (mainly macrophages and fibroblasts) are unclear. Here, we examined 41 cases of neuroblastoma using immunohistochemistry for the tumour-associated macrophage (TAM) markers CD68, CD163, and CD204, and a cancer-associated fibroblast (CAF) marker, alpha smooth muscle actin (αSMA). Each case was assigned to low/high groups on the basis of the number of TAMs or three groups on the basis of the αSMA-staining area for CAFs. Both the number of TAMs and the area of CAFs were significantly correlated with clinical stage, MYCN amplification, bone marrow metastasis, histological classification, histological type, and risk classification. Furthermore, TAM settled in the vicinity of the CAF area, suggesting their close interaction within the tumour microenvironment. We next determined the effects of conditioned medium of a neuroblastoma cell line (NBCM) on bone marrow-derived mesenchymal stem cells (BM-MSCs) and peripheral blood mononuclear cell (PBMC)-derived macrophages in vitro. The TAM markers CD163 and CD204 were significantly up-regulated in PBMC-derived macrophages treated with NBCM. The expression of αSMA by BM-MSCs was increased in NBCM-treated cells. Co-culturing with CAF-like BM-MSCs did not enhance the invasive ability but supported the proliferation of tumour cells, whereas tumour cells co-cultured with TAM-like macrophages had the opposite effect. Intriguingly, TAM-like macrophages enhanced not only the invasive abilities of tumour cells and BM-MSCs but also the proliferation of BM-MSCs. CXCL2 secreted from TAM-like macrophages plays an important role in tumour invasiveness. Taken together, these results indicate that PBMC-derived macrophages and BM-MSCs are recruited to a tumour site and activated into TAMs and CAFs, respectively, followed by the formation of favourable environments for neuroblastoma progression. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Okito Hashimoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makiko Yoshida
- Department of Pathology, Kobe Children's Hospital, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Yanai
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|