1
|
Wu J, Wen L, Liu X, Li Q, Sun Z, Liang C, Xie F, Li X. Silybin: A Review of Its Targeted and Novel Agents for Treating Liver Diseases Based on Pathogenesis. Phytother Res 2024; 38:5713-5740. [PMID: 39310970 DOI: 10.1002/ptr.8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024]
Abstract
Liver disease represents a significant global public health concern. Silybin, derived from Silybum marianum, has been demonstrated to exhibit a range of beneficial properties, including anti-inflammatory, antioxidative, antifibrotic, antiviral, and cytoprotective effects. These attributes render it a promising candidate for the treatment of liver fibrosis, cirrhosis, liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and other liver conditions. Nevertheless, its low solubility and low bioavailability have emerged as significant limitations in its clinical application. To address these limitations, researchers have developed a number of silybin formulations. This study presents a comprehensive review of the results of research on silybin for the treatment of liver diseases in recent decades, with a particular focus on novel formulations based on the pathogenesis of the disease. These include approaches targeting the liver via the CD44 receptor, folic acid, vitamin A, and others. Furthermore, the study presents the findings of studies that have employed nanotechnology to enhance the low bioavailability and low solubility of silybin. This includes the use of nanoparticles, liposomes, and nanosuspensions. This study reviews the application of silybin preparations in the treatment of global liver diseases. However, further high-quality and more complete experimental studies are still required to gain a more comprehensive understanding of the efficacy and safety of these preparations. Finally, the study considers the issues that arise during the research of silybin formulations.
Collapse
Affiliation(s)
- Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Zeng C, Liu F, Huang Y, Liang Q, He X, Li L, Xie Y. Drosophila: An Important Model for Exploring the Pathways of Inflammatory Bowel Disease (IBD) in the Intestinal Tract. Int J Mol Sci 2024; 25:12742. [PMID: 39684456 DOI: 10.3390/ijms252312742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurring lifelong condition, the exact etiology of which remains obscure. However, an increasing corpus of research underscores the pivotal role of cellular signaling pathways in both the instigation and management of intestinal inflammation. Drosophila, owing to its prodigious offspring, abbreviated life cycle, and the conservation of signaling pathways with mammals, among other advantages, has become a model organism for IBD research. This review will expound on the feasibility of utilizing Drosophila as an IBD model, comparing its intestinal architecture with that of mammals, its inflammatory responses, and signaling pathways. Furthermore, it will deliberate on the role of natural products across various biological models of IBD pathways, elucidating the viability of fruit flies as IBD models and the modus operandi of cellular signaling pathways in the context of IBD.
Collapse
Affiliation(s)
- Chuisheng Zeng
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fengying Liu
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yuhan Huang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qianqian Liang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiaohong He
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Lingzhi Li
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Jinfeng Laboratory, Chongqing 400065, China
| | - Yongfang Xie
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
3
|
Tang M, Liang K, Duan W, Xia S, Shi D, Li E, Liu W, Wang Q. Reactive astrocytes promote tumor progression by up-regulating tumor protocadherin 1 expression in lung cancer brain metastasis. Biochem Biophys Res Commun 2024; 732:150431. [PMID: 39047401 DOI: 10.1016/j.bbrc.2024.150431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Brain metastasis (BM) is one of the main causes of death in patients with non-small cell lung carcinoma. The specific pathological processes of BM, which are inextricably linked to the brain tumor microenvironment, such as the abundance of astrocytes, lead to limited treatment options and poor prognosis. Reactive astrocytes are acquired in the BM; however, the underlying mechanisms remain unclear. This study aimed to explore the mechanisms by which astrocytes promote BM development. We determined the crucial role of reactive astrocytes in promoting the proliferation and migration of brain metastatic lung tumor cells by upregulating protocadherin 1 (PCDH1) expression in an in vitro co-culture model. The overexpression of PCDH1 was confirmed in clinical BM samples using immunohistochemical staining. Survival analysis indicated that high-PCDH1 expression was associated with poor survival in patients with lung adenocarcinoma. In vivo assays further showed that silence of PCDH1 effectively inhibited the tumor progression of brain metastases and prolonged the survival of animals. RNA sequencing has revealed that PCDH1 plays an important role in cell proliferation and adhesion. In conclusion, the present study revealed the promoting role of astrocytes in enhancing the aggressive phenotype of brain metastatic tumor cells by regulating the expression of PCDH1, which might be a biomarker for BM diagnosis and prognosis, suggesting the potential efficacy of targeting important astrocyte-tumor interactions in the treatment of patients with non-small cell lung carcinoma with BM.
Collapse
Affiliation(s)
- Mengyi Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kun Liang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenzhe Duan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shengkai Xia
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dongmei Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Encheng Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Wenwen Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China; Cancer Translational Medicine Research Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China; Cancer Translational Medicine Research Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Li C, Chen Q, Jiang C. Intelligent micelles for on-demand drug delivery targeting extracellular matrix of pancreatic cancer. J Control Release 2024; 373:879-889. [PMID: 39098554 DOI: 10.1016/j.jconrel.2024.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
As a key pathological feature of pancreatic ductal adenocarcinoma(PDAC), the dense extracellular matrix(ECM) limits the penetration of chemotherapy drugs and is involved in the formation of immunosuppressive microenvironment. Meanwhile, clinical practice has shown that the treatment strategy for ECM should consider its restriction of tumor cell metastasis, and the need for in-depth chemotherapy without destroying ECM is proposed. STAT3 inhibitors have been reported to regulate tumor microenvironment including interrupt the form of ECM. Therefore, we designed and established a micelle system MP@HA with in vivo targeting and responsive drug release function co-loading gemcitabine monophosphate and STAT3 inhibitor silibinin. The hyaluronic acid on the surface of the micelle can bind specifically to the CD44 molecule on the surface of tumor cells and help micelles accumulate at the tumor site. The nitroimidazole used to modify the polymeric skeleton can make the micellar structure collapse in response to hypoxia reduction conditions in the tumor environment, and release silibinin to widely regulate STAT3 molecules in the PDAC microenvironment. The polymer fragment attached with gemcitabine monophosphate can penetrate deep into PDAC tumors due to its small size and positive charge exposed, achieving deep chemotherapy. This research indicates a promising micelle system meeting complicated demands proposed in PDAC treatment to improve antitumor efficacy.
Collapse
Affiliation(s)
- Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.
| |
Collapse
|
5
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
6
|
Roca E, Colloca G, Lombardo F, Bellieni A, Cucinella A, Madonia G, Martinelli L, Damiani ME, Zampieri I, Santo A. The importance of integrated therapies on cancer: Silibinin, an old and new molecule. Oncotarget 2024; 15:345-353. [PMID: 38781107 PMCID: PMC11115268 DOI: 10.18632/oncotarget.28587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
In the landscape of cancer treatments, the efficacy of coadjuvant molecules remains a focus of attention for clinical research with the aim of reducing toxicity and achieving better outcomes. Most of the pathogenetic processes causing tumour development, neoplastic progression, ageing, and increased toxicity involve inflammation. Inflammatory mechanisms can progress through a variety of molecular patterns. As is well known, the ageing process is determined by pathological pathways very similar and often parallel to those that cause cancer development. Among these complex mechanisms, inflammation is currently much studied and is often referred to in the geriatric field as 'inflammaging'. In this context, treatments active in the management of inflammatory mechanisms could play a role as adjuvants to standard therapies. Among these emerging molecules, Silibinin has demonstrated its anti-inflammatory properties in different neoplastic types, also in combination with chemotherapeutic agents. Moreover, this molecule could represent a breakthrough in the management of age-related processes. Thus, Silibinin could be a valuable adjuvant to reduce drug-related toxicity and increase therapeutic potential. For this reason, the main aim of this review is to collect and analyse data presented in the literature on the use of Silibinin, to better understand the mechanisms of the functioning of this molecule and its possible therapeutic role.
Collapse
Affiliation(s)
- Elisa Roca
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Giuseppe Colloca
- Dipartimento di Scienze dell’invecchiamento, Neurologiche, Ortopediche e della testa-collo, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Fiorella Lombardo
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Andrea Bellieni
- Dipartimento di Scienze dell’invecchiamento, Neurologiche, Ortopediche e della testa-collo, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Alessandra Cucinella
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Giorgio Madonia
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Licia Martinelli
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Maria Elisa Damiani
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Ilaria Zampieri
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| | - Antonio Santo
- Oncologia Toracica - Lung Unit, Ospedale P. Pederzoli - Via Monte Baldo, Peschiera del Garda (VR), Italy
| |
Collapse
|
7
|
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res 2024; 38:2406-2447. [PMID: 38433568 DOI: 10.1002/ptr.8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that maintains normal tissues and cell signaling pathways. EGFR is overactivated and overexpressed in many malignancies, including breast, lung, pancreatic, and kidney. Further, the EGFR gene mutations and protein overexpression activate downstream signaling pathways in cancerous cells, stimulating the growth, survival, resistance to apoptosis, and progression of tumors. Anti-EGFR therapy is the potential approach for treating malignancies and has demonstrated clinical success in treating specific cancers. The recent report suggests most of the clinically used EGFR tyrosine kinase inhibitors developed resistance to the cancer cells. This perspective provides a brief overview of EGFR and its implications in cancer. We have summarized natural products-derived anticancer compounds with the mechanistic basis of tumor inhibition via the EGFR pathway. We propose that developing natural lead molecules into new anticancer agents has a bright future after clinical investigation.
Collapse
Affiliation(s)
- Rutuja Damare
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Liu C, Liu F, Nie D, Xiao Y, Wu W, Jia Y, Jin L, Qiao N, Cai K, Ru S, Liu X, Song Y, Xu J, Cao L, Gui S. Gut microbiota composition and metabolic characteristics in patients with Craniopharyngioma. BMC Cancer 2024; 24:521. [PMID: 38658858 PMCID: PMC11044453 DOI: 10.1186/s12885-024-12283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Emerging evidence suggests that the gut microbiota is associated with various intracranial neoplastic diseases. It has been observed that alterations in the gut microbiota are present in gliomas, meningiomas, and pituitary neuroendocrine tumors (Pit-NETs). However, the correlation between gut microbiota and craniopharyngioma (CP), a rare embryonic malformation tumor in the sellar region, has not been previously mentioned. Consequently, this study aimed to investigate the gut microbiota composition and metabolic patterns in CP patients, with the goal of identifying potential therapeutic approaches. METHODS We enrolled 15 medication-free and non-operated patients with CP and 15 healthy controls (HCs), conducting sequential metagenomic and metabolomic analyses on fecal samples to investigate changes in the gut microbiota of CP patients. RESULTS The composition of gut microbiota in patients with CP compared to HCs show significant discrepancies at both the genus and species levels. The CP group exhibits greater species diversity. And the metabolic patterns between the two groups vary markedly. CONCLUSIONS The gut microbiota composition and metabolic patterns in patients with CP differ significantly from the healthy population, presenting potential new therapeutic opportunities.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Fangzheng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Ding Nie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100071, China
| | - Youchao Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Ning Qiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Kefan Cai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Siming Ru
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Xin Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Yifan Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Jintian Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China.
| |
Collapse
|
9
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
10
|
Wang W, Zhai T, Luo P, Miao X, Wang J, Chen Y. Beneficial effects of silibinin on serum lipids, bile acids, and gut microbiota in methionine-choline-deficient diet-induced mice. Front Nutr 2023; 10:1257158. [PMID: 37867498 PMCID: PMC10587424 DOI: 10.3389/fnut.2023.1257158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background and purpose Silibinin (SIL) is a flavonoid lignin isolated from the fruit and seeds of silybum marianum that exhibits good therapeutic potential for NASH. However, the effects of SIL on serum lipids, bile acids (BAs), and gut microbiota (GM) in NASH mice remain unknown. The present work aimed to explore the beneficial effects of SIL supplementation on serum lipids, bile acids, and gut microbiota in MCD mice. Experimental approach After male C57BL/6 mice were fed with a methionine-choline deficient (MCD) diet and simultaneously gavaged with SIL (20 mg/kg. d) for 8 weeks, the pathological changes of liver tissue were observed by oil red O, haematoxylin-eosin, and Masson tricolor staining; the levels of serum AST and ALT, and liver TG and MDA were detected by assay kits; metabonomics and 16S rDNA sequencing were used to analyze the composition of serum lipids and BAs and the abundance of GM; and the mRNA expression levels of hepatic genes related to BAs homeostasis were detected by RT-qPCR. Results The results indicated that SIL treatment decreased the levels of 26 lipids (including four arachidonic acids, seven FFAs, 12 acyl carnitines, and three GPs) and two BAs (23-DCA, GLCA), while Dubosiella increased the levels of 10 lipids (including TxB3, PG16:0_18:1, Cer t18:0/24:0 and 7 TGs), five BAs (β-MCA, α-MCA, UDCA, 3-oxo-DCA and HCA), and two GMs (Verrucomicrobiota and Akkermansiaceae) of MCD mice, but had no significant effect on the mRNA expression of CYP7A1, CYP27A1, Bsep, Mrp2, Ntcp, or Oatp1b2. Therefore, influencing GM composition and then regulating the levels of serum lipids and BAs through enterohepatic axis should be an important mechanism of SIL-induced alleviative effect on MCD mice. More importantly, we found that SIL had a good coordination in regulating the abundance of GM and the contents of serum lipids and BAs in MCD mice, that is, when the abundance of probiotics was up-regulated, the content of beneficial unsaturated fatty acids in serum was up-regulated, while the serum levels of harmful lipids and BAs were down-regulated. Conclusion The alleviating effect of SIL on NASH may be closely related to the correction of intestinal bacteria disorder, serum bile acid, and lipid metabolic disturbance in mice.
Collapse
Affiliation(s)
- Wei Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Ting Zhai
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Ping Luo
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Xiaolei Miao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Junjun Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National and Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| |
Collapse
|
11
|
Yan L, Zhou J, Yuan L, Ye J, Zhao X, Ren G, Chen H. Silibinin alleviates intestinal inflammation via inhibiting JNK signaling in Drosophila. Front Pharmacol 2023; 14:1246960. [PMID: 37781701 PMCID: PMC10539474 DOI: 10.3389/fphar.2023.1246960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic relapsing intestinal inflammation that causes digestive system dysfunction. For years, researchers have been working to find more effective and safer therapeutic strategies to treat these diseases. Silibinin (SIL), a flavonoid compound extracted from the seeds of milk thistle plants, possesses multiple biological activities and is traditionally applied to treat liver diseases. SIL is also widely used in the treatment of a variety of inflammatory diseases attributed to its excellent antioxidant and anti-inflammatory effects. However, the efficacy of SIL against IBDs and its mechanisms remain unclear. In this study, using Drosophila melanogaster as a model organism, we found that SIL can effectively relieve intestinal inflammation caused by dextran sulfate sodium (DSS). Our results suggested that SIL supplementation can inhibit the overproliferation of intestinal stem cells (ISCs) induced by DSS, protect intestinal barrier function, acid-base balance, and intestinal excretion function, reduce intestinal reactive oxygen species (ROS) levels and inflammatory stress, and extend the lifespan of Drosophila. Furthermore, our study demonstrated that SIL ameliorates intestinal inflammation via modulating the c-Jun N-terminal kinase (JNK) signaling pathway in Drosophila. Our research aims to provide new insight into the treatment of IBDs.
Collapse
Affiliation(s)
- La Yan
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juanyu Zhou
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Yuan
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jinbao Ye
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Ren
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Jaradat NJ, Alshaer W, Hatmal M, Taha MO. Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning. RSC Adv 2023; 13:4623-4640. [PMID: 36760267 PMCID: PMC9896621 DOI: 10.1039/d2ra07007c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
STAT3 belongs to a family of seven vital transcription factors. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. In this work, we used multiple docked poses of STAT3 inhibitors to augment training data for machine learning QSAR modeling. Ligand-Receptor Contact Fingerprints and scoring values were implemented as descriptor variables. Escalating docking-scoring consensus levels were scanned against orthogonal machine learners, and the best learners (Random Forests and XGBoost) were coupled with genetic algorithm and Shapley additive explanations (SHAP) to identify critical descriptors that determine anti-STAT3 bioactivity to be translated into pharmacophore model(s). Two successful pharmacophores were deduced and subsequently used for in silico screening against the National Cancer Institute (NCI) database. A total of 26 hits were evaluated in vitro for their anti-STAT3 bioactivities. Out of which, three hits of novel chemotypes, showed cytotoxic IC50 values in the nanomolar range (35 nM to 6.7 μM). However, two are potent dihydrofolate reductase (DHFR) inhibitors and therefore should have significant indirect STAT3 inhibitory effects. The third hit (cytotoxic IC50 = 0.44 μM) is purely direct STAT3 inhibitor (devoid of DHFR activity) and caused, at its cytotoxic IC50, more than two-fold reduction in the expression of STAT3 downstream genes (c-Myc and Bcl-xL). The presented work indicates that the concept of data augmentation using multiple docked poses is a promising strategy for generating valid machine learning models capable of discriminating active from inactive compounds.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University P.O. Box 330127 Zarqa 13133 Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| |
Collapse
|
13
|
Jafari S, Heydarian S, Lai R, Mehdizadeh Aghdam E, Molavi O. Silibinin induces immunogenic cell death in cancer cells and enhances the induced immunogenicity by chemotherapy. BIOIMPACTS : BI 2023; 13:51-61. [PMID: 36816998 PMCID: PMC9923812 DOI: 10.34172/bi.2022.23698] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Silibinin is a natural flavonoid compound known to induce apoptosis in cancer cells. Despite silibinin's safety and efficacy as an anticancer drug, its effects on inducing immunogenic cell death (ICD) are largely unknown. Herein, we have evaluated the stimulating effects of silibinin on ICD in cancer cells treated with silibinin alone or in combination with chemotherapy. Methods: The anticancer effect of silibinin, alone or in combination with doxorubicin or oxaliplatin (OXP), was assessed using the MTT assay. Compusyn software was used to analyze the combination therapy data. Western blotting was conducted to examine the level of STAT3 activity. Flow cytometry was used to analyze calreticulin (CRT) and apoptosis. The heat shock protein (HSP70), high mobility group box protein1 (HMGB1), and IL-12 levels were assessed by ELISA. Results: Compared to the negative control groups, silibinin induced ICD in CT26 and B16F10 cells and significantly enhanced the induction of this type of cell death by doxorubicin, and these changes were allied with substantial increases in the level of damage-associated molecular patterns (DAMPs) including CRT, HSP70, and HMGB1. Furthermore, conditioned media from cancer cells exposed to silibinin and doxorubicin was found to stimulate IL-12 secretion in dendritic cells (DCs), suggesting the link of this treatment with the induction of Th1 response. Silibinin did not augment the ICD response induced by OXP. Conclusion: Our findings showed that silibinin can induce ICD and it potentiates the induction of this type of cell death induced by chemotherapy in cancer cells.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Heydarian
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Ommoleila Molavi,
| |
Collapse
|
14
|
Silibinin Overcomes EMT-Driven Lung Cancer Resistance to New-Generation ALK Inhibitors. Cancers (Basel) 2022; 14:cancers14246101. [PMID: 36551587 PMCID: PMC9777025 DOI: 10.3390/cancers14246101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) may drive the escape of ALK-rearranged non-small-cell lung cancer (NSCLC) tumors from ALK-tyrosine kinase inhibitors (TKIs). We investigated whether first-generation ALK-TKI therapy-induced EMT promotes cross-resistance to new-generation ALK-TKIs and whether this could be circumvented by the flavonolignan silibinin, an EMT inhibitor. ALK-rearranged NSCLC cells acquiring a bona fide EMT phenotype upon chronic exposure to the first-generation ALK-TKI crizotinib exhibited increased resistance to second-generation brigatinib and were fully refractory to third-generation lorlatinib. Such cross-resistance to new-generation ALK-TKIs, which was partially recapitulated upon chronic TGFβ stimulation, was less pronounced in ALK-rearranged NSCLC cells solely acquiring a partial/hybrid E/M transition state. Silibinin overcame EMT-induced resistance to brigatinib and lorlatinib and restored their efficacy involving the transforming growth factor-beta (TGFβ)/SMAD signaling pathway. Silibinin deactivated TGFβ-regulated SMAD2/3 phosphorylation and suppressed the transcriptional activation of genes under the control of SMAD binding elements. Computational modeling studies and kinase binding assays predicted a targeted inhibitory binding of silibinin to the ATP-binding pocket of TGFβ type-1 receptor 1 (TGFBR1) and TGFBR2 but solely at the two-digit micromolar range. A secretome profiling confirmed the ability of silibinin to normalize the augmented release of TGFβ into the extracellular fluid of ALK-TKIs-resistant NSCLC cells and reduce constitutive and inducible SMAD2/3 phosphorylation occurring in the presence of ALK-TKIs. In summary, the ab initio plasticity along the EMT spectrum may explain the propensity of ALK-rearranged NSCLC cells to acquire resistance to new-generation ALK-TKIs, a phenomenon that could be abrogated by the silibinin-driven attenuation of the TGFβ/SMAD signaling axis in mesenchymal ALK-rearranged NSCLC cells.
Collapse
|
15
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Hua Y, Yuan X, Shen YH, Wang J, Azeem W, Yang S, Gade A, Lellahi SM, Øyan AM, Ke X, Zhang WD, Kalland KH. Novel STAT3 Inhibitors Targeting STAT3 Dimerization by Binding to the STAT3 SH2 Domain. Front Pharmacol 2022; 13:836724. [PMID: 35712699 PMCID: PMC9196127 DOI: 10.3389/fphar.2022.836724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Our drug discovery model has identified two novel STAT3 SH2 domain inhibitors 323–1 and 323–2 (delavatine A stereoisomers) in a series of experiments. In silico computational modeling, drug affinity responsive target stability (DARTS), and fluorescence polarization (FP) assays altogether determined that 323–1 and 323–2 directly target the STAT3 SH2 domain and inhibited both phosphorylated and non-phosphorylated STAT3 dimerization. Computational docking predicted that compound 323s bind to three subpockets of the STAT3 SH2 domain. The 323s inhibition of STAT3 dimerization was more potent than the commercial STAT3 SH2 domain inhibitor S3I-201 in the co-immunoprecipitation assay, correlating with computational docking data. The fluorescence polarization assay further confirmed that the compound 323s target the STAT3 SH2 domain by competitively abrogating the interaction between STAT3 and the SH2-binding peptide GpYLPQTV. Compared with S3I-201, the 323 compounds exhibited stronger inhibition of STAT3 and reduced the level of IL-6-stimulated phosphorylation of STAT3 (Tyr705) in LNCaP cells over the phosphorylation of STAT1 (Tyr701) induced by IFN-ɣ in PC3 cells or the phosphorylation of STAT1 (Ser727) in DU145 cells. Both compounds downregulated STAT3 target genes MCL1 and cyclin D1. Thus, the two compounds are promising lead compounds for the treatment of cancers with hyper-activated STAT3.
Collapse
Affiliation(s)
- Yaping Hua
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- *Correspondence: Yaping Hua, ; Wei-dong Zhang, ; Karl-Henning Kalland,
| | - Xing Yuan
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yun-heng Shen
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Waqas Azeem
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Shuo Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Alexandra Gade
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Seyed Mohammad Lellahi
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anne Margrete Øyan
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xisong Ke
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yaping Hua, ; Wei-dong Zhang, ; Karl-Henning Kalland,
| | - Karl-Henning Kalland
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Yaping Hua, ; Wei-dong Zhang, ; Karl-Henning Kalland,
| |
Collapse
|
17
|
Qi Q, Sun Y, Yang Y, Liu Y. Circ_0000274 contributes to renal cell carcinoma progression by regulating miR-338-3p/NUCB2 axis and JAK1/STAT3 pathway. Transpl Immunol 2022; 74:101626. [DOI: 10.1016/j.trim.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
|
18
|
Javeed A, Ahmed M, Sajid AR, Sikandar A, Aslam M, Hassan TU, Dogar S, Nazir Z, Ji M, Li C. Comparative Assessment of Phytoconstituents, Antioxidant Activity and Chemical Analysis of Different Parts of Milk Thistle Silybum marianum L. Molecules 2022; 27:2641. [PMID: 35565993 PMCID: PMC9102823 DOI: 10.3390/molecules27092641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023] Open
Abstract
Silybum marianum L. is a therapeutic plant belonging to the family Asteraceae, which has exhibited silymarin, a principal component used to cure various physiochemical disorders. The study appraised the phytochemical analysis, antioxidant activity and chemical analysis of an extract from the seed, stem and leaves. Qualitative and quantitative phytochemical analysis was evaluated by the Folin-Ciocalteu reagent method and aluminum chloride colorimetric method, respectively. While the antioxidant activity was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and acetate buffer in ferric chloride (FRAP) assay, respectively, the chemical profile was evaluated by Gas Chromatography-Mass Spectrometry (GC-MS) assay. The study outcomes identified that alkaloids, glycosides, flavonoids, terpenoids, steroids and catcholic tannins were present in seed, stem and leaves extracts except for saponins and Gallic tannins. Whereas, phenols were absent only in seed extract. Quantitative analysis revealed the presence of phenols and flavonoids in appreciable amounts of 21.79 (GAE/g), 129.66 (QE/g) and 17.29 (GAE/g), 114.29 (QE/g) from the leaves and stem extract, respectively. Similarly, all extracts expressed reasonable DPPH inhibition (IC50) and FRAP reducing power such as 75.98, 72.39 and 63.21% and 46.60, 51.40 and 41.30 mmol/g from the seeds, stem and leaves extract, respectively. Additionally, chemical analysis revealed the existence of 6, 8 and 9 chemical compounds from the seeds, stem and leaves extract, respectively, corresponding to 99.95, 99.96 and 98.89% of the whole extract. The chemical compound, Dibutyl phthalate was reported from all extracts while, Hexadecanoic acid, methyl ester and Silane, (1,1-dimethylethyl), dimethyl (phenylmethoxy) were reported only from the seed and leaves extract. Moreover, Methyl stearate was also a major compound reported from all extracts except for seed extract. It is demonstrable that extracts from different parts of S. marianum possess significant antioxidant activity, as well as valuable chemical compounds accountable for therapeutic effects that might be incorporated as an alternative to synthetic chemical agents.
Collapse
Affiliation(s)
- Ansar Javeed
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China;
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Maqsood Ahmed
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (A.S.); (M.J.)
- Agriculture Department (Plant Protection) Pest Warning & Quality Control of Pesticides, Gujrat 50700, Pakistan;
| | - Allah Rakha Sajid
- Directorate General of Pest Warning and Quality Control of Pesticides, Lahore 42000, Pakistan; (A.R.S.); (M.A.); (T.u.H.); (Z.N.)
| | - Aatika Sikandar
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (A.S.); (M.J.)
| | - Muhammad Aslam
- Directorate General of Pest Warning and Quality Control of Pesticides, Lahore 42000, Pakistan; (A.R.S.); (M.A.); (T.u.H.); (Z.N.)
| | - Talfoor ul Hassan
- Directorate General of Pest Warning and Quality Control of Pesticides, Lahore 42000, Pakistan; (A.R.S.); (M.A.); (T.u.H.); (Z.N.)
| | - Samiullah Dogar
- Agriculture Department (Plant Protection) Pest Warning & Quality Control of Pesticides, Gujrat 50700, Pakistan;
| | - Zahid Nazir
- Directorate General of Pest Warning and Quality Control of Pesticides, Lahore 42000, Pakistan; (A.R.S.); (M.A.); (T.u.H.); (Z.N.)
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (M.A.); (A.S.); (M.J.)
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
19
|
Bai Y, Chen J, Hu W, Wang L, Wu Y, Yu S. Silibinin Therapy Improves Cholangiocarcinoma Outcomes by Regulating ERK/Mitochondrial Pathway. Front Pharmacol 2022; 13:847905. [PMID: 35401195 PMCID: PMC8983842 DOI: 10.3389/fphar.2022.847905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Silibinin is widely utilized drug in various cancer treatments, though its application in cholangiocarcinoma has not yet been explored. For the first time, we evaluated the anticancer potential and underlying molecular mechanism of silibinin in treatment of cholangiocarcinoma treatment. Methods: HuCCT-1 and CCLP-1 cells were chosen to be an in vitro study model and were exposed to various concentrations of silibinin for indicated times. Cell viability was evaluated by the cell counting kit-8 (CCK-8) assay and half maximal inhibitory (IC50) concentrations were calculated. Cell proliferation capacity was determined through the use of colony formation and 5-Ethynyl-2′- deoxyuridine (EdU) assays. Cell apoptosis and cycle arrest were assessed by Live/Dead staining assay and flow cytometry (FCM). The protein levels of extracellular regulated protein kinases (ERK)/mitochondrial apoptotic pathway were evaluated through western blotting (WB). Mitochondrial membrane potential changes were determined via 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1). A cholangiocarcinoma cell line xenograft model was used to assess the anti-tumor activity of silibinin in vivo. Results: Inhibition of the ERK protein by silibinin led to a significant decrease in mitochondrial membrane potential, which, in turn, caused Cytochrome C to be released from the mitochondria. The activation of downstream apoptotic pathways led to apoptosis of cholangiocarcinoma cells. In general, silibinin inhibited the growth of cholangiocarcinoma cell line xenograft tumors. Conclusions: Silibinin is able to inhibit cholangiocarcinoma through the ERK/mitochondrial apoptotic pathway, which makes silibinin a potential anti-tumor drug candidate for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Yang Bai
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiaqi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Weijian Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lei Wang
- Department of Urology Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| | - Shi’an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| |
Collapse
|
20
|
Chi MY, Zhang H, Wang YX, Sun XP, Yang QJ, Guo C. Silibinin Alleviates Muscle Atrophy Caused by Oxidative Stress Induced by Cisplatin through ERK/FoxO and JNK/FoxO Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5694223. [PMID: 35096269 PMCID: PMC8794676 DOI: 10.1155/2022/5694223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin (DDP), a widely used chemotherapeutic drug in cancer treatment, causes oxidative stress, resulting in cancer cachexia and skeletal muscle atrophy. This study investigated the effects and activity of silibinin (SLI) in reducing DDP-induced oxidative stress and skeletal muscle atrophy in vivo and in vitro. SLI alleviated weight loss, food intake, muscle wasting, adipose tissue depletion, and organ weight reduction induced by DDP and improved the reduction of grip force caused by DDP. SLI can attenuated the increase in reactive oxygen species (ROS) levels, the decrease in Nrf2 expression, the decrease in the fiber cross-sectional area, and changes in fiber type induced by DDP. SLI regulated the ERK/FoxO and JNK/FoxO pathways by downregulating the abnormal increase in ROS and Nrf2 expression in DDP-treated skeletal muscle and C2C12 myotube cells. Further, SLI inhibited the upregulation of MAFbx and Mstn, the downregulation of MyHC and MyoG, the increase in protein degradation, and the decrease of protein synthesis. The protective effects of SLI were reversed by cotreatment with JNK agonists and ERK inhibitors. These results suggest that SLI can reduce DDP-induced skeletal muscle atrophy by reducing oxidative stress and regulating ERK/FoxO and JNK/FoxO pathways.
Collapse
Affiliation(s)
- Meng-yi Chi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Hong Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-xian Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Xi-peng Sun
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Quan-jun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Cheng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Bosch-Barrera J, Roqué A, Teixidor E, Carmona-Garcia MC, Arbusà A, Brunet J, Martin-Castillo B, Cuyàs E, Verdura S, Menendez JA. Clinical Management of COVID-19 in Cancer Patients with the STAT3 Inhibitor Silibinin. Pharmaceuticals (Basel) 2021; 15:19. [PMID: 35056076 PMCID: PMC8778965 DOI: 10.3390/ph15010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pathophysiology is caused by a cascade of respiratory and multiorgan failures arising, at least in part, from the SARS-CoV-2-driven dysregulation of the master transcriptional factor STAT3. Pharmacological correction of STAT3 over-stimulation, which is at the root of acute respiratory distress syndrome (ARDS) and coagulopathy/thrombosis events, should be considered for treatment of severe COVID-19. In this perspective, we first review the current body of knowledge on the role of STAT3 in the pathogenesis of severe COVID-19. We then exemplify the potential clinical value of treating COVID-19 disease with STAT3 inhibitors by presenting the outcomes of two hospitalized patients with active cancer and COVID-19 receiving oral Legalon®-a nutraceutical containing the naturally occurring STAT3 inhibitor silibinin. Both patients, which were recruited to the clinical trial SIL-COVID19 (EudraCT number: 2020-001794-77) had SARS-CoV-2 bilateral interstitial pneumonia and a high COVID-GRAM score, and showed systemic proinflammatory responses in terms of lymphocytopenia and hypoalbuminemia. Both patients were predicted to be at high risk of critical COVID-19 illness in terms of intensive care unit admission, invasive ventilation, or death. In addition to physician's choice of best available therapy or supportive care, patients received 1050 mg/day Legalon® for 10 days without side-effects. Silibinin-treated cancer/COVID-19+ patients required only minimal oxygen support (2-4 L/min) during the episode, exhibited a sharp decline of the STAT3-regulated C-reactive protein, and demonstrated complete resolution of the pulmonary lesions. These findings might inspire future research to advance our knowledge and improve silibinin-based clinical interventions aimed to target STAT3-driven COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
| | - Ariadna Roqué
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
| | - Eduard Teixidor
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
| | | | - Aina Arbusà
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17003 Girona, Spain
- Catalan Institute of Oncology, IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Begoña Martin-Castillo
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
- Unit of Clinical Research, Catalan Institute of Oncology, 17007 Girona, Spain
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
| | - Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
| | - Javier A Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
| |
Collapse
|
22
|
Qi YS, Xie JB, Xie P, Duan Y, Ling YQ, Gu YL, Piao XL. Uncovering the anti-NSCLC effects and mechanisms of gypenosides by metabolomics and network pharmacology analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114506. [PMID: 34371113 DOI: 10.1016/j.jep.2021.114506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung cancer is the chief reason of cancer death worldwide, and non-small cell lung cancer (NSCLC) make up the majority of lung cancers. Gypenosides are the main active constituents from Gynostemma pentaphyllum. Previous studies showed that they were used to remedy many cancers. The effect of gypenosides on NSCLC has never been studied from the perspective of network pharmacology and metabolomics. The mechanism is still not clear and remains to be explored. AIM OF THE STUDY To explore the anti-NSCLC activity and mechanism of gypenosides in A549 cells. MATERIAL/METHODS Gypenosides of G. pentaphyllum were detected by HPLC-MS. The cytotoxicity was detected by MTT assay. The migration, cell cycle and apoptosis of gypenosides were studied by wound healing assay, JC-1 assay and flow cytometry. The mechanism of gypenosides on NSCLC was studied by metabolomics and network pharmacology. Some key proteins and pathways were further confirmed by Western blot. RESULTS Eleven gypenosides were detected by HPLC-MS. Gypenosides could suppress the proliferation of A549 cells, inhibit the migration of A549 cells, induce apoptosis and arrest cell cycle in G0/G1 phase. Metabolomics and network pharmacology approach revealed that gypenosides might affect 17 metabolite related proteins by acting on 9 candidate targets (STAT3, VEGFA, EGFR, MMP9, IL2, TYMS, FGF2, HPSE, LGALS3), thus resulting in the changes of two metabolites (uridine 5'-monophosphate, D-4'-Phosphopantothenate) and two metabolic pathways (pyrimidine metabolism; pantothenate and CoA biosynthesis). Western blotting indicated that gypenosides might inhibit A549 cells through MMP9, STAT3 and TYMS to indirectly affect the pathways of pyrimidine metabolism, pantothenate and CoA biosynthesis. CONCLUSIONS This study revealed that metabolomics combined with network pharmacology was conducive to understand the anti-NSCLC mechanism of gypenosides.
Collapse
Affiliation(s)
- Yan-Shuang Qi
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Jin-Bo Xie
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Peng Xie
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Yu Duan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Ya-Qin Ling
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Yu-Long Gu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Xiang-Lan Piao
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
23
|
Baksi R, Rana R, Nivsarkar M. Chemopreventive potential of plant-derived epigenetic inhibitors silibinin and quercetin: an involvement of apoptotic signaling cascade modulation. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00214-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Epigenetic deregulation of the cellular apoptotic mechanism is the common hallmark of cancer. Silibinin (SBN) and quercetin (QCT) are two bioflavonoids well known for their epigenetic inhibition property. The objective of the present study was to explore the preventive anti-cancer efficacy of the SBN and QCT in both in vitro as well as in vivo tumor xenograft model through regulating cellular apoptotic signaling pathway.
Results
SBN and QCT inhibited the growth of A549 and MDA-MB-468 cancer cells in the concentration dependent manner. The treatment caused significant (p < 0.05) reduction of the size and the number of colonies formed by the cancer cells. In vitro apoptosis assay using the fluorescence microscopy revealed that the treatment noticeably increased the percentage of apoptotic cells as compared to the untreated control. Dosing with SBN (200mg/kg), QCT (100mg/kg) alone and in combination was initiated in 3-week-old C57BL6 mice. Interestingly, the treatment prevented tumor progression significantly (p < 0.05) in adult mice without causing any toxicity. Furthermore, SBN and QCT triggered apoptosis via modulating p53 and Bcl2 gene expression and the SOD enzyme activity.
Conclusion
Daily oral intake of SBN and QCT alone and in combination from the very early stage of life might prevent tumor growth in adult mice through activating cellular apoptotic signaling cascade.
Collapse
|
24
|
Nikolskii AA, Shilovskiy IP, Barvinskaia ED, Korneev AV, Sundukova MS, Khaitov MR. Role of STAT3 Transcription Factor in Pathogenesis of Bronchial Asthma. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1489-1501. [PMID: 34906042 DOI: 10.1134/s0006297921110122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Bronchial asthma is a heterogeneous chronic inflammatory disease of airways. The studies of molecular and cellular mechanisms of bronchial asthma have established that a wide range of immune (T and B cells, eosinophils, neutrophils, macrophages, etc.) and structural (epithelial and endothelial) cells are involved in its pathogenesis. These cells are activated in response to external stimuli (bacteria, viruses, allergens, and other pollutants) and produce pro-inflammatory factors (cytokines, chemokines, metalloproteinases, etc.), which ultimately leads to the initiation of pathological processes in the lungs. Genes encoding transcription factors of the STAT family (signal transducer and activator of transcription), that includes seven representatives, are involved in the cell activation. Recent studies have shown that the transcription factor STAT3 plays an important role in the activation of the abovementioned cells, thus contributing to the development of asthma. In animal studies, selective inhibition of STAT3 significantly reduces the severity of lung inflammation, which indicates its potential as a therapeutic target. In this review, we describe the mechanisms of STAT3 activation and its role in polarization of Th2/Th17 cells and M2 macrophages, as well as in the dysfunction of endothelial cells, which ultimately leads to development of bronchial asthma symptoms, such as infiltration of neutrophils and eosinophils into the lungs, bronchial hyperreactivity, and the respiratory tract remodeling.
Collapse
Affiliation(s)
- Aleksandr A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Igor P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia.
| | - Ekaterina D Barvinskaia
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Artem V Korneev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Maria S Sundukova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| | - Musa R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, 115522, Russia
| |
Collapse
|
25
|
Tobeiha M, Rajabi A, Raisi A, Mohajeri M, Yazdi SM, Davoodvandi A, Aslanbeigi F, Vaziri M, Hamblin MR, Mirzaei H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed Pharmacother 2021; 144:112257. [PMID: 34688081 DOI: 10.1016/j.biopha.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahshad Mohajeri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - MohamadSadegh Vaziri
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
Addeo R. Silibinin: A New Opportunity for the Treatment of Brain Metastasis from Lung Cancer. J Exp Pharmacol 2021; 13:901-903. [PMID: 34611448 PMCID: PMC8487014 DOI: 10.2147/jep.s326871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Despite multimodal treatment, the prognosis of brain metastases (BM) remains limited, with a survival of only a few months. In this report, silibinin (or silybin), a natural polyphenolic flavonoid isolated from seed extracts of the herb milk thistle, is discussed as a potential therapeutic option for the treatment of BM. This molecule has an anticancer effect, blocking the migratory and invasive properties of neoplastic cells. This mechanism is focused on controlling the signal transducer and activator of transcription 3 (STAT3)-mediated pathway. STAT3 plays a major role in the growth of tumors and leads to metastasis, including BM. The promising but preliminary clinical results achieved by silibinin on lung cancer BM suggest new opportunities for combined treatment with radiotherapy and/or temozolomide, not just to limit severe neurological symptoms but also to control clinical progression of the disease.
Collapse
Affiliation(s)
- Raffaele Addeo
- U.O.C. Oncologia, "S. Giovanni di Dio" Hospital, ASLNA2NORD, Naples, 80027, Italy
| |
Collapse
|
27
|
Velmurugan BK, Lin JT, Mahalakshmi B, Lin CC, Chuang YC, Lo YS, Ho HY, Hsieh MJ, Chen MK. Dehydrocrenatidine inhibits head and neck cancer cells invasion and migration by modulating JNK1/2 and ERK1/2 pathway and decreases MMP-2 expression. ENVIRONMENTAL TOXICOLOGY 2021; 36:1848-1856. [PMID: 34076342 DOI: 10.1002/tox.23305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Head and neck cancer is associated with poor prognosis because of its highly metastatic nature. For the better management of head and neck cancer patients, it is very important to diagnose the cancer at an early stage, as well as to prevent the rapid spread of cancer either through direct invasion or lymphatic metastasis. In present study, the effect of dehydrocrenatidine, which is a beta-carboline alkaloid found in the medicinal plant Picrasma quassioides, on human head and neck cancer metastasis was investigated. The study results revealed the treatment of FaDu, SCC9, and SCC47 cells with 5, 10, and 20 μM of dehydrocrenatidine significantly decreased the motility, migration, and invasion of head and neck cancer cells. Moreover, the dehydrocrenatidine treatment significantly decreased the expression of MMP-2 and phosphorylation of ERK1/2 and JNK1/2. Additional experiments revealed that the cotreatment of dehydrocrenatidine with either ERK1/2 or JNK1/2 inhibitor caused further reduction in cancer cell motility and migration compared to that in dehydrocrenatidine treatment alone. Moreover, similar trend was observed in case of ERK1/2 and JNK1/2 phosphorylation and MMP-2 expression after the cotreatment. Taken together, the mechanism by which dehydrocrenatidine can decrease the phosphorylation of ERK1/2 and JNK1/2, follow decrease the expression of MMP-2 and inhibits head and neck cancer cells invasion and migration. This present study identifies dehydrocrenatidine as a potent antimetastatic agent that can be used clinically to improve head and neck cancer prognosis.
Collapse
Affiliation(s)
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - B Mahalakshmi
- Department of Research and Development, Vels Publishers, Tamilnadu, India
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
28
|
Bosch-Barrera J, Verdura S, Ruffinelli JC, Carcereny E, Sais E, Cuyàs E, Palmero R, Lopez-Bonet E, Hernández-Martínez A, Oliveras G, Buxó M, Izquierdo A, Morán T, Nadal E, Menendez JA. Silibinin Suppresses Tumor Cell-Intrinsic Resistance to Nintedanib and Enhances Its Clinical Activity in Lung Cancer. Cancers (Basel) 2021; 13:4168. [PMID: 34439322 PMCID: PMC8394850 DOI: 10.3390/cancers13164168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
The anti-angiogenic agent nintedanib has been shown to prolong overall and progression-free survival in patients with advanced non-small-cell lung cancer (NSCLC) who progress after first-line platinum-based chemotherapy and second-line immunotherapy. Here, we explored the molecular basis and the clinical benefit of incorporating the STAT3 inhibitor silibinin-a flavonolignan extracted from milk thistle-into nintedanib-based schedules in advanced NSCLC. First, we assessed the nature of the tumoricidal interaction between nintedanib and silibinin and the underlying relevance of STAT3 activation in a panel of human NSCLC cell lines. NSCLC cells with poorer cytotoxic responses to nintedanib exhibited a persistent, nintedanib-unresponsive activated STAT3 state, and deactivation by co-treatment with silibinin promoted synergistic cytotoxicity. Second, we tested whether silibinin could impact the lysosomal sequestration of nintedanib, a lung cancer cell-intrinsic mechanism of nintedanib resistance. Silibinin partially, but significantly, reduced the massive lysosomal entrapment of nintedanib occurring in nintedanib-refractory NSCLC cells, augmenting the ability of nintedanib to reach its intracellular targets. Third, we conducted a retrospective, observational multicenter study to determine the efficacy of incorporating an oral nutraceutical product containing silibinin in patients with NSCLC receiving a nintedanib/docetaxel combination in second- and further-line settings (n = 59). Overall response rate, defined as the combined rates of complete and partial responses, was significantly higher in the study cohort receiving silibinin supplementation (55%) than in the control cohort (22%, p = 0.011). Silibinin therapy was associated with a significantly longer time to treatment failure in multivariate analysis (hazard ratio 0.43, p = 0.013), despite the lack of overall survival benefit (hazard ratio 0.63, p = 0.190). Molecular mechanisms dictating the cancer cell-intrinsic responsiveness to nintedanib, such as STAT3 activation and lysosomal trapping, are amenable to pharmacological intervention with silibinin. A prospective, powered clinical trial is warranted to confirm the clinical relevance of these findings in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
- Department of Medical Sciences, Medical School, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - José Carlos Ruffinelli
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, 08908 L’Hospitalet de Llobregat, Spain; (J.C.R.); (R.P.); (E.N.)
| | - Enric Carcereny
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, 08916 Badalona, Spain; (E.C.); (T.M.)
- B-ARGO Group (Badalona Applied Research Group in Oncology), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Elia Sais
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - Ramon Palmero
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, 08908 L’Hospitalet de Llobregat, Spain; (J.C.R.); (R.P.); (E.N.)
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.L.-B.); (G.O.)
| | - Alejandro Hernández-Martínez
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
| | - Gloria Oliveras
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.L.-B.); (G.O.)
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - Angel Izquierdo
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
- Department of Medical Sciences, Medical School, University of Girona, 17003 Girona, Spain
- Hereditary Cancer Program, Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Catalan Institute of Oncology-Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, 08916 Badalona, Spain; (E.C.); (T.M.)
- B-ARGO Group (Badalona Applied Research Group in Oncology), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Ernest Nadal
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, 08908 L’Hospitalet de Llobregat, Spain; (J.C.R.); (R.P.); (E.N.)
| | - Javier A. Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17190 (Salt) Girona, Spain
| |
Collapse
|
29
|
Chavoshy F, Zadeh BSM, Tamaddon AM, Anbardar MH. Delivery and Anti-Psoriatic Effect of Silibinin-Loaded Polymeric Micelles: An Experimental Study in the Psoriatic Skin Model. Curr Drug Deliv 2021; 17:787-798. [PMID: 32703129 DOI: 10.2174/1567201817666200722141807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/27/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Psoriasis is an inflamed skin disorder associated with the activation of phosphorylation signals in keratinocytes, which leads to proliferation. Phosphorylation signal inhibitors, such as silibinin can inhibit cell proliferation. Unlike current psoriasis treatment approaches that are associated with dangerous side effects; natural components can introduce new trends in psoriasis treatment. The major problem in the topical treatment of psoriasis is drug localization through the psoriasis lesions. METHODS In this study, silibinin-loaded polymeric micelles prepared and characterized for drug loading and release and ex vivo permeation through psoriatic and normal mice skin. The optimized batch was used for the treatment of psoriasis lesions in the mice model. RESULTS The optimized batch demonstrated mean particle size 18.3 ± 2.1 nm, entrapment efficiency 75.8 ± 5.8%, and prolonged silibinin release. % Silibinin permeated through psoriatic skin after 48 treated by polymeric micelle and aqueous control was 80.35, and 92.6, respectively. Polymeric micelles increased silibinin localization in the psoriatic skin in comparison with control. In psoriatic skin after 7- 10 days treatment by silibinin- loaded polymeric micelle, there was no evidence of psoriasis and the histological evaluation showed no sign of psoriasis. Silibinin-loaded polymeric micelles reduced Psoriasis area index by more than 78% after 14 days. CONCLUSION It seems that polymeric micelles increased the effectiveness of silibinin by drug localization into the psoriatic plaque. Topical STAT- 3inhibitors can be introduced as a new strategy in psoriasis treatment.
Collapse
Affiliation(s)
- Fateme Chavoshy
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Center for
Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Sharif Makhmal Zadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Center for
Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmaceutics, Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, Shiraz University
of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
30
|
Treatment for liver cancer: From sorafenib to natural products. Eur J Med Chem 2021; 224:113690. [PMID: 34256124 DOI: 10.1016/j.ejmech.2021.113690] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, dietary carcinogens, and so forth. The current treatment modalities, including surgical resection and liver transplantation, have been found far from effective. Hence, there is an obvious critical need to develop alternative strategies for the treatment of it. In this review, we discuss the formation process and therapeutic targets of liver cancer. Currently, targeted therapy is limited to sorafenib, lenvatinib, regorafenib, ramucirumab and cabozantinib which leads to a survival benefit in patients, but on the other hand is hampered by the occurrence of drug resistance. Pleasingly and importantly, there are multiple natural products undergoing clinical evaluation in liver cancer, such as polyphenols like icaritin, resveratrol, and silybin, saponins including ginsenoside Rg3 and glycyrrhizinate, alkaloid containing irinotecan and berberine and inorganic compound arsenic trioxide at present. Preclinical and clinical studies have shown that these compounds inhibit liver cancer formation owing to the influence on the anti-viral, anti-inflammation, anti-oxidant, anti-angiogenesis and anti-metastasis activity. Furthermore, a series of small molecule derivatives inspired by the aforementioned compounds are designed and synthesized according to structure-activity relationship studies. Drug combination and novel type of drug-targeted delivery system thereof have been well developed. This article is ended by a perspective remark of futuristic development of natural product-based therapeutic regimen for liver cancer treatment. We expect that this review is an account for current status of natural products as promising anti-liver cancer treatments and should contribute to its understanding.
Collapse
|
31
|
Rugamba A, Kang DY, Sp N, Jo ES, Lee JM, Bae SW, Jang KJ. Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells. Cells 2021; 10:cells10071632. [PMID: 34209829 PMCID: PMC8307196 DOI: 10.3390/cells10071632] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- Alexis Rugamba
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
32
|
Verdura S, Cuyàs E, Ruiz-Torres V, Micol V, Joven J, Bosch-Barrera J, Menendez JA. Lung Cancer Management with Silibinin: A Historical and Translational Perspective. Pharmaceuticals (Basel) 2021; 14:ph14060559. [PMID: 34208282 PMCID: PMC8230811 DOI: 10.3390/ph14060559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023] Open
Abstract
The flavonolignan silibinin, the major bioactive component of the silymarin extract of Silybum marianum (milk thistle) seeds, is gaining traction as a novel anti-cancer therapeutic. Here, we review the historical developments that have laid the groundwork for the evaluation of silibinin as a chemopreventive and therapeutic agent in human lung cancer, including translational insights into its mechanism of action to control the aggressive behavior of lung carcinoma subtypes prone to metastasis. First, we summarize the evidence from chemically induced primary lung tumors supporting a role for silibinin in lung cancer prevention. Second, we reassess the preclinical and clinical evidence on the effectiveness of silibinin against drug resistance and brain metastasis traits of lung carcinomas. Third, we revisit the transcription factor STAT3 as a central tumor-cell intrinsic and microenvironmental target of silibinin in primary lung tumors and brain metastasis. Finally, by unraveling the selective vulnerability of silibinin-treated tumor cells to drugs using CRISPR-based chemosensitivity screenings (e.g., the hexosamine biosynthesis pathway inhibitor azaserine), we illustrate how the therapeutic use of silibinin against targetable weaknesses might be capitalized in specific lung cancer subtypes (e.g., KRAS/STK11 co-mutant tumors). Forthcoming studies should take up the challenge of developing silibinin and/or next-generation silibinin derivatives as novel lung cancer-preventive and therapeutic biomolecules.
Collapse
Affiliation(s)
- Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Verónica Ruiz-Torres
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Joaquim Bosch-Barrera
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona (UdG), 17003 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| | - Javier A. Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| |
Collapse
|
33
|
Huo M, Wang H, Li L, Tong Y, Hu C, Gu Y, Liu J, Yin T. Redox-sensitive hyaluronic acid-cholesterol nanovehicles potentiate efficient transmembrane internalization and controlled release for penetrated "full-line" inhibition of pre-metastatic initiation. J Control Release 2021; 336:89-104. [PMID: 34119559 DOI: 10.1016/j.jconrel.2021.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Metastatic breast cancer is a major cause of cancer-related mortality worldwide. The tumor-specific penetration and triggered drug release for "full-line" inhibition of pre-metastatic initiation are of essential importance in improving mortality rates. Here, a crosslinked, redox-sensitive amphiphilic conjugate (cHLC) was constructed with a combination of features, including hyaluronic acid (HA)-mediated tumor active targeting, lipoic acid (LA) core-crosslinking based bio-stability and reducibility, and lipid raft anchoring-promoted HA-mediated endocytosis through cholesterol (CHO) modification for the penetrated co-delivery of paclitaxel (PTX) and the multi-targeted anti-metastatic agent, silibinin (SB). Resultantly, the nanodrug (cHLC/(PTX + SB)) demonstrated enhanced tumor cytoplasm-selective rapid drug delivery in a 4T1 model both in vitro and in vivo. The released SB efficiently sensitized cells to PTX treatment and inhibited the whole process of pre-metastatic initiation including epithelial-to-mesenchymal transition (EMT), local and blood vessel invasion. The exquisite design of this delivery system provides a deep insight into enhancing focus accessibility of multi-targeted drugs for an efficient inhibition of tumor metastasis.
Collapse
Affiliation(s)
- Meirong Huo
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Honglan Wang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lingchao Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yuqing Tong
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chengxia Hu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
34
|
Zhou L, Liu J, Meng W, Zhang H, Chen B. Evaluation of Silibinin-Loaded Microbubbles Combined with Ultrasound in Ovarian Cancer Cells: Cytotoxicity and Mechanisms. Anticancer Agents Med Chem 2021; 22:1320-1327. [PMID: 34102993 DOI: 10.2174/1871520621666210608101649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The anticancer activity of silibinin (SB) has been demonstrated in various cancer cell types. However, its low solubility and poor bioavailability limit its clinical potential in biomedical applications. Microbubbles in combination with ultrasound are promising vehicles for local drug delivery. OBJECTIVE The present study determined the antitumour effects and molecular mechanism of silibinin-loaded microbubbles (SBMBs) in combination with ultrasound on ovarian cancer in vitro. METHODS SBMBs were prepared using mechanical vibration. The viability of A2780 cells was determined using the MTT assay. Flow cytometry was performed to detect cell apoptosis and the cell cycle. The expression of receptor tyrosine kinase (RTK)-associated downstream proteins was detected using multiplex assays and Western blots. RESULTS The present study designed and synthesized SBMBs. SBMBs in combination with ultrasound decreased A2780 cell viability in a dose- and time-dependent manner. The half maximal inhibitory concentration (IC50) showed that the cytotoxicity of the SBMBs was approximately 1.5 times greater than that of the SB in A2780 cells. SBMBs in combination with ultrasound resulted in significantly higher apoptosis efficiency compared to the SB group, and the SBMB population of cells was arrested in the G1/G0 phase. Further experiments demonstrated that SBMBs decreased the expression of signal transducer and activator of transcription 3 (STAT3), Ak strain transforming (AKT), and extracellular signal-regulated kinase (Erk) and had a greater effect than SB in A2780 cells. Inhibitors of AKT, Erk and STAT3 promoted the cytotoxicity of SBMBs. CONCLUSION SBMBs in combination with ultrasound may enhance the cytotoxicity efficiency of SB via the promotion of apoptosis and cell cycle arrest in ovarian cancer cells and the inactivation of the STAT3, AKT and Erk signalling pathways.
Collapse
Affiliation(s)
- Liguang Zhou
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Liu
- Department of Cardiology, Taishan Sanatorium of Shandong Province, Taian, China
| | - Wen Meng
- Outpatient Department, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bo Chen
- Department of Thyroid Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
35
|
Binienda A, Ziolkowska S, Pluciennik E. The Anticancer Properties of Silibinin: Its Molecular Mechanism and Therapeutic Effect in Breast Cancer. Anticancer Agents Med Chem 2021; 20:1787-1796. [PMID: 31858905 DOI: 10.2174/1871520620666191220142741] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Silibinin (SB), the main component of Silymarin (SM), is a natural substance obtained from the seeds of the milk thistle. SM contains up to 70% of SB as two isoforms: A and B. It has an antioxidant and anti-inflammatory effect on hepatocytes and is known to inhibit cell proliferation, induce apoptosis, and curb angiogenesis. SB has demonstrated activity against many cancers, such as skin, liver, lung, bladder, and breast carcinomas. METHODS This review presents current knowledge of the use of SM in breast cancer, this being one of the most common types of cancer in women. It describes selected molecular mechanisms of the action of SM; for example, although SB influences both Estrogen Receptors (ER), α and β, it has opposite effects on the two. Its action on ERα influences the PI3K/AKT/mTOR and RAS/ERK signaling pathways, while by up-regulating ERβ, it increases the numbers of apoptotic cells. In addition, ERα is involved in SB-induced autophagy, while ERβ is not. Interestingly, SB also inhibits metastasis by suppressing TGF-β2 expression, thus suppressing Epithelial to Mesenchymal Transition (EMT). It also influences migration and invasive potential via the Jak2/STAT3 pathway. RESULTS SB may be a promising enhancement of BC treatment: when combined with chemotherapeutic drugs such as carboplatin, cisplatin, and doxorubicin, the combination exerts a synergistic effect against cancer cells. This may be of value when treating aggressive types of mammary carcinoma. CONCLUSION Summarizing, SB inhibits proliferation, induces apoptosis, and restrains metastasis via several mechanisms. It is possible to combine SB with different anticancer drugs, an approach that represents a promising therapeutic strategy for patients suffering from BC.
Collapse
Affiliation(s)
- Agata Binienda
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Sylwia Ziolkowska
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Elzbieta Pluciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
36
|
Zhao TJ, Zhu N, Shi YN, Wang YX, Zhang CJ, Deng CF, Liao DF, Qin L. Targeting HDL in tumor microenvironment: New hope for cancer therapy. J Cell Physiol 2021; 236:7853-7873. [PMID: 34018609 DOI: 10.1002/jcp.30412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that plasma HDL-C levels are closely related to the risk of prostate cancer, breast cancer, and other malignancies. As one of the key carriers of cholesterol regulation, high-density lipoprotein (HDL) plays an important role in tumorigenesis and cancer development through anti-inflammation, antioxidation, immune-modulation, and mediating cholesterol transportation in cancer cells and noncancer cells. In addition, the occurrence and progression of cancer are closely related to the alteration of the tumor microenvironment (TME). Cancer cells synthesize and secrete a variety of cytokines and other factors to promote the reprogramming of surrounding cells and shape the microenvironment suitable for cancer survival. By analyzing the effect of HDL on the infiltrating immune cells in the TME, as well as the relationship between HDL and tumor-associated angiogenesis, it is suggested that a moderate increase in the level of HDL in vivo with consequent improvement of the function of HDL in the TME and induction of intracellular cholesterol efflux may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Xiang Wang
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chan-Juan Zhang
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
37
|
Tolomeo M, Cascio A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int J Mol Sci 2021; 22:ijms22020603. [PMID: 33435349 PMCID: PMC7826746 DOI: 10.3390/ijms22020603] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) 3 is one of the most complex regulators of transcription. Constitutive activation of STAT3 has been reported in many types of tumors and depends on mechanisms such as hyperactivation of receptors for pro-oncogenic cytokines and growth factors, loss of negative regulation, and excessive cytokine stimulation. In contrast, somatic STAT3 mutations are less frequent in cancer. Several oncogenic targets of STAT3 have been recently identified such as c-myc, c-Jun, PLK-1, Pim1/2, Bcl-2, VEGF, bFGF, and Cten, and inhibitors of STAT3 have been developed for cancer prevention and treatment. However, despite the oncogenic role of STAT3 having been widely demonstrated, an increasing amount of data indicate that STAT3 functions are multifaced and not easy to classify. In fact, the specific cellular role of STAT3 seems to be determined by the integration of multiple signals, by the oncogenic environment, and by the alternative splicing into two distinct isoforms, STAT3α and STAT3β. On the basis of these different conditions, STAT3 can act both as a potent tumor promoter or tumor suppressor factor. This implies that the therapies based on STAT3 modulators should be performed considering the pleiotropic functions of this transcription factor and tailored to the specific tumor type.
Collapse
|
38
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
39
|
Hangül C, Karaüzüm SB, Akkol EK, Demir-Dora D, Çetin Z, Saygılı Eİ, Evcili G, Sobarzo-Sánchez E. Promising Perspective to Facioscapulohumeral Muscular Dystrophy Treatment: Nutraceuticals and Phytochemicals. Curr Neuropharmacol 2021; 19:2276-2295. [PMID: 34315378 PMCID: PMC9185762 DOI: 10.2174/1570159x19666210726151924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 12/03/2022] Open
Abstract
Facioscapulohumeral Muscular Dystrophy (FSHD) is in the top three list of all dystrophies with an approximate 1:8000 incidence. It is not a life-threatening disease; however, the progression of the disease extends over being wheelchair bound. Despite some drug trials continuing, including DUX4 inhibition, TGF-ß inhibition and resokine which promote healthier muscle, there is not an applicable treatment option for FSHD today. Still, there is a need for new agents to heal, stop or at least slow down muscle wasting. Current FSHD studies involving nutraceuticals as vitamin C, vitamin E, coenzyme Q10, zinc, selenium, and phytochemicals as curcumin or genistein, daidzein flavonoids provide promising treatment strategies. In this review, we present the clinical and molecular nature of FSHD and focus on nutraceuticals and phytochemicals that may alleviate FSHD. In the light of the association of impaired pathophysiological FSHD pathways with nutraceuticals and phytochemicals according to the literature, we present both studied and novel approaches that can contribute to FSHD treatment.
Collapse
Affiliation(s)
| | | | - Esra Küpeli Akkol
- Address correspondence to this author at the Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey; E-mail:
| | | | | | | | | | | |
Collapse
|
40
|
Kaipa JM, Starkuviene V, Erfle H, Eils R, Gladilin E. Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells. PeerJ 2020; 8:e10373. [PMID: 33362957 PMCID: PMC7749657 DOI: 10.7717/peerj.10373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
Collapse
Affiliation(s)
- Jagan Mohan Kaipa
- Helmholtz Center for Infection Research, Braunschweig, Germany.,BioQuant, University Heidelberg, Heidelberg, Germany.,Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, University Heidelberg, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Science Center, Vilnius, Lithuania
| | - Holger Erfle
- BioQuant, University Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Evgeny Gladilin
- BioQuant, University Heidelberg, Heidelberg, Germany.,Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany.,Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
41
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
42
|
Wu S, Li X, Chai H, Feng L, Li W, Li H. Downregulation of N-myc Interactor Promotes Cervical Cancer Cells Growth by Activating Stat3 Signaling. Cell Biochem Biophys 2020; 79:103-111. [PMID: 33106998 DOI: 10.1007/s12013-020-00943-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
N-myc interactor (NMI), a member of the oncogene Myc family, has been reported to be closely related to the development of cancer. However, the character of NMI in cervical carcinoma has not been reported. Herein, we found that downregulation of NMI protein not only promoted the proliferation, migration, and invasion of HeLa cells, but also decreased their expression of Caspase-3 and Caspase-9. Silencing NMI promotes the epithelial-mesenchymal transition of human cervical carcinoma HeLa cells by upregulating N-cadherin, vimentin, and downregulating E-cadherin. Further investigation illustrated the downregulation of NMI can activate the STAT3 signaling pathway. In conclusion, we found that the downregulation of NMI plays an important role in the progression of cervical cancer, and may served as a novel therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Songbin Wu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
- Shenzhen Key Laboratory of Pain Medicine, Nanshan Hospital, Shenzhen, China
| | - Xiaotian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Huizi Chai
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Linyuan Feng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Wenjing Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Mashhadi Akbar Boojar M, Mashhadi Akbar Boojar M, Golmohammad S. Overview of Silibinin anti-tumor effects. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
45
|
Bojňanská T, Vollmannová A, Musilová J. Milk thistle flour effect on dough rheological properties. POTRAVINARSTVO 2020. [DOI: 10.5219/1365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of the addition of partially defatted milk thistle seed flour was studied by analyzing the rheological properties of dough in order to further exploit the functionality of partially defatted milk thistle flour in bakery products. The rheological properties of dough were monitored using Mixolab 2 (Chopin Technologies, France). A rheofermentometer F4 (Chopin Technologies, France) was used to check the dough fermentation, and for the baking trials wheat flour, rye flour, and milk thistle flour were kept in the portion: 50:50:0 (control flour); 50:45:5; 50:40:10 and 50:35:15. The addition of different milk thistle flour in the mixtures resulted in a difference in the viscoelastic properties of the dough. The results showed a weakening of the gluten network in all trial mixtures evaluated. The dough development time values of the control flour were 1.20 min, while an addition of milk thistle flour in portions of 5, 10, and 15% increased these values to 1.30 min, 1.90 min, and 2,80 min, respectively. In addition to higher dough development time values, all trial mixtures exhibited also higher stability (5.07 min; 6.25 min and 8.03 min), when compared to the control flour (4.63 min). The trial mixture with 15% milk thistle flour had different characteristics of gelatinization and retrogradation. The rheofermentometer measured the dough characteristics during proofing, and the trial mixtures with the addition of MTF had a retention volume at approximately the same level as the control flour (WRF). The Volscan profiler was used to determine the bread volume and other parameters. All breads had high volume and specific volume values and can be rated as good, with good porosity and ratio. Mixtures containing 5%, 10% and 15% milk thistle flour added to wheat flour + rye flour maintained rheological parameters within the recommended limits for good technological behavior and, consequently, good quality of bakery products. From all of the above data, it can be stated that, with regard to their baking characteristics, these flour mixtures fall into the category of flours suitable for bakery products.
Collapse
|
46
|
Liang Y, Zhang T, Zhang J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol Res 2020; 161:105164. [PMID: 32846211 DOI: 10.1016/j.phrs.2020.105164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR), also known as ErbB-1/HER-1, plays a key role in the regulation of the cell proliferation, migration, differentiation, and survival. Since the constitutive activation or overexpression of EGFR is nearly found in various cancers, the applications focused on EGFR are the most widely used in the clinical level, including the therapeutic drugs of targeting EGFR, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs).Over the past decades, the compounds from natural sources have been a productive source of novel drugs, especially in both discovery and development of anti-tumor drugs by targeting the EGFR pathways as the TKIs. This work presents a review of the compounds from natural sources as potential EGFR-TKIs involved in the regulation of cancer. Moreover, high-throughput drug screening of EGFR-TKIs from the natural compounds has also been summarized.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
47
|
Tang J, Wang D, Lu J, Zhou X. MiR-125b participates in the occurrence of preeclampsia by regulating the migration and invasion of extravillous trophoblastic cells through STAT3 signaling pathway. J Recept Signal Transduct Res 2020; 41:202-208. [PMID: 32787544 DOI: 10.1080/10799893.2020.1806318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preeclampsia (PE) is a major risk factor for maternal and fetal mortality. Studies showed that microRNAs (miRNAs) play important roles in PE, and are closely related to extra-villous trophoblastic proliferation and invasion. The current study determined miR-125b expression in PE patients, and explored the role of miR-125b in the occurrence and development of PE and its possible mechanism, aiming to provide a novel basis for the diagnosis and treatment of PE. The level of miR-125b in serum derived from pregnant women was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, invasion and migration of HTR-8/SVneo were determined by Cell Counting Kit-8 (CCK-8), Transwell and scratch assay, respectively. The target gene of miR-125b was predicted by Targetscan, and verified by luciferase reporter assay. The expressions of related proteins were determined by Western Blotting. The miR-125b level in the serum of PE patients was up-regulated as compared with normal pregnant women, and high level of miR-125b reduced cell proliferation, inhibited invasion and migration of HTR-8/SVneo as well as the expressions of STAT3, p-STAT3 and SOCS3, while low level of miR-125b produced the opposite results. STAT3 was predicted as the target gene of miR-125b, and the high level of miR-125b inhibited STAT3 signaling pathway. High expression of miR-125b may be involved in the occurrence of PE through inhibiting STAT3 pathway to inhibit the migration and invasion of extra-villous trophoblastic cells.
Collapse
Affiliation(s)
- Jiani Tang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Dan Wang
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Jing Lu
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| | - Xiaoyu Zhou
- Department of Obstetrics, Changzhou Second People's Hospital, Changzhou, China
| |
Collapse
|
48
|
Liu W, Ji Y, Sun Y, Si L, Fu J, Hayashi T, Onodera S, Ikejima T. Estrogen receptors participate in silibinin-caused nuclear translocation of apoptosis-inducing factor in human breast cancer MCF-7 cells. Arch Biochem Biophys 2020; 689:108458. [DOI: 10.1016/j.abb.2020.108458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
|
49
|
Yang CY, Tsao CH, Hsieh CC, Lin CK, Lin CS, Li YH, Chang WC, Cheng JC, Lin GJ, Sytwu HK, Wang YL, Chen YW. Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS One 2020; 15:e0236101. [PMID: 32678829 PMCID: PMC7367477 DOI: 10.1371/journal.pone.0236101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of histone demethylase Jumonji-C domain-containing protein 5 (JMJD5) has been identified as a great effect on tumorigenesis. Silibinin is a commonly used anti-hepatotoxic drug and exhibits anticancer effect in various cancers. However, the antitumor mechanism between silibinin and JMJD5 in oral squamous cell carcinoma (OSCC) remains unclear. In this study, the clinical significance of JMJD5 on OSCC patients was assessed through tissue microarray. Furthermore, mice bearing patient-derived tumor xenografts (PDTXs) and tongue cancer cell lines were treated with silibinin and evaluated for tumor growth and JMJD5 expression. High expression of JMJD5 in oral cancer was significantly associated with tumor size (P = 0.0241), cervical node metastasis (P = 0.0001) and clinical stage (P = 0.0002), was associated with worse survival rate compared with that of the total cohort (P = 0.0002). Collectively the data indicate that JMJD5 expression may be suitable for detection of unfavorable prognosis in OSCC patients, based in part on its apparent role as a marker of metastasis. In addition, silibinin inhibits cancer growth in vitro and in PDTX models. Furthermore, metastasis-associated protein 1 (MTA1) could regulate the expression for JMJD5 and had a positive correlation with JMJD5. Moreover, silibinin could downregulate JMJD5 and MTA1 in oral cancer. Present study thus identifies that JMJD5 might be an essential prognostic indicator and therapeutic target against OSCC progression. In addition, silibinin is a potential candidate among novel chemotherapeutic agents or adjuvants for modulating JMJD5 in OSCC, through a mechanism likely involving MTA1/JMJD5 axis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Prognosis
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Silybin/pharmacology
- Survival Rate
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Cheng-Chih Hsieh
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, Taipei, Taiwan, R.O.C
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Yu-Hsuan Li
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Wei-Chin Chang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Jen-Chen Cheng
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, R.O.C
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan, R.O.C
| | - Yin-Lai Wang
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
50
|
Micale N, Citarella A, Molonia MS, Speciale A, Cimino F, Saija A, Cristani M. Hydrogels for the Delivery of Plant-Derived (Poly)Phenols. Molecules 2020; 25:E3254. [PMID: 32708833 PMCID: PMC7397257 DOI: 10.3390/molecules25143254] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
This review deals with hydrogels as soft and biocompatible vehicles for the delivery of plant-derived (poly)phenols, compounds with low general toxicity and an extraordinary and partially unexplored wide range of biological properties, whose use presents some major issues due to their poor bioavailability and water solubility. Hydrogels are composed of polymeric networks which are able to absorb large amounts of water or biological fluids while retaining their three-dimensional structure. Apart from this primary swelling capacity, hydrogels may be easily tailored in their properties according to the chemical structure of the polymeric component in order to obtain smart delivery systems that can be responsive to various internal/external stimuli. The functionalization of the polymeric component of hydrogels may also be widely exploited to facilitate the incorporation of bioactive compounds with different physicochemical properties into the system. Several prototype hydrogel systems have been designed for effective polyphenol delivery and potential employment in the treatment of human diseases. Therefore, the inherent features of hydrogels have been the focus of considerable research efforts over the past few decades. Herein, we review the most recent advances in (poly)phenol-loaded hydrogels by analyzing them primarily from the therapeutic perspective and highlighting the innovative aspects in terms of design and chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (A.C.); (M.S.M.); (A.S.); (F.C.); (M.C.)
| | | |
Collapse
|