1
|
Yu H, Deng T, Liu H. Immunotherapy-induced microsatellite instability status shift in recurrent perihilar cholangiocarcinoma: A case report. Hum Vaccin Immunother 2025; 21:2471226. [PMID: 39996476 PMCID: PMC11864312 DOI: 10.1080/21645515.2025.2471226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
Immunotherapy revolutionized the treatment of biliary tract tumors and tumors with high microsatellite instability (MSI-H). This paper reports a 52-year-old woman with recurrent perihilar cholangiocarcinoma. The tumor was initially microsatellite stable (MSS) and proficient mismatch repair (pMMR) but shifted to MSI-H and deficient mismatch repair (dMMR) after combined immunotherapy. Following laparoscopic radical resection for jaundice, stage IV recurrence was diagnosed. Genetic testing revealed the MSS status. Subsequent treatment with camrelizumab and lenvatinib led to a partial response. Ovarian metastases, removed due to abdominal symptoms, exhibited dMMR and MSI-H. The mismatch in MSI status between the primary tumor and metastases suggests tumor heterogeneity and the influence of spatial or temporal factors. This shift can have important clinical significance since MSI-H is associated with significant responses to immune checkpoint inhibitors. MSI-H should be systematically tested in tumors and metastases to personalize treatments. MSI heterogeneity is not only rare but potentially has implications for treatment personalization and prognosis in patients with cholangiocarcinoma. This case highlights the dynamic changes in tumor characteristics during immunotherapy.
Collapse
Affiliation(s)
- Hailing Yu
- Department of Oncology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Tan Deng
- Department of Oncology, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hongbing Liu
- Department of Oncology, Xiangtan First People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Nakano Y, Nishikawa G, Degawa K, Moriyoshi K, Kuriyama K, Watanabe Y, Miyamoto S. A case of multiple advanced colon cancers with spontaneous regression of only one lesion after biopsy: a case report and literature review. Clin J Gastroenterol 2025; 18:393-398. [PMID: 40029573 DOI: 10.1007/s12328-025-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025]
Abstract
A 90-year-old man underwent a colonoscopy due to abdominal distension, revealing half-circumferential Type 2 advanced cancers in the ascending and transverse colon. No distant metastasis was detected, and 3 months later, laparoscopic extended right hemicolectomy was performed for both lesions. Pathological examination revealed ulcers and mucus retention in the ascending colon lesion without tumor components. A small number of signet ring cell-like tumor cells were found in the regional lymph node of the ascending colon, while well-to-moderately differentiated tubular adenocarcinoma was observed on the serosal surface in the transverse colon. Tumor regression was observed in the ascending colon cancer and lymph-node metastasis. Mismatch repair (MMR) protein immunostaining was conducted on biopsy tissues from both lesions. The ascending colon lesion showed weak positivity for MLH1, positivity for MSH2 and MSH6, and negativity for PMS2, indicating MMR deficiency, whereas the transverse colon lesion showed positivity for all of them, indicating MMR-proficient tumor. This is the first case report of multiple advanced colon cancers, where only one lesion exhibited spontaneous regression after biopsy, suggesting a potential link between MMR deficiency and the spontaneous regression of colorectal cancer.
Collapse
Affiliation(s)
- Yoshiko Nakano
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, Japan
| | - Gen Nishikawa
- Department of Surgery, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, Japan
| | - Kanako Degawa
- Department of Surgery, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, Japan
| | - Koki Moriyoshi
- Department of Diagnostic Pathology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, Japan
| | - Yasuhiro Watanabe
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-Cho, Fukakusa, Fushimi-Ku, Kyoto, Japan.
| |
Collapse
|
3
|
Junwei W, Xin C, Limei G, Fei L, Siyi L, Yao M, Lin H, Xiangchao S, Wei F, Xin Z. Mesenteric benign lymph node enlargement in colorectal cancer: Friend or foe? Transl Oncol 2025; 56:102368. [PMID: 40233503 PMCID: PMC12022693 DOI: 10.1016/j.tranon.2025.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/04/2025] [Accepted: 03/16/2025] [Indexed: 04/17/2025] Open
Abstract
INTRODUCTION Benign lymph node enlargement (BLNE) is common in colorectal cancer; however, few studies have investigated its influence on prognosis, clinicopathological features, and pathogenesis. METHODS A cohort study was conducted to analyze the clinicopathologic features and prognosis of colorectal cancer patients, categorized based on the presence or absence of BLNE. Given the correlation between lymph nodes and immune response, immunohistochemistry, transcriptome analysis, and exon sequencing were employed to further investigate the differences in the immune microenvironment of primary tumors. RESULTS Overall, 630 AJCC stage I/II patients were included in the study, with 131 in the BLNE group and 499 in the Non-BLNE (NBLNE) group. Patients in the BLNE group were found to have a significantly better disease-free survival (DFS) (hazard ratio [HR] 0.44, P = 0.016) and overall survival (OS) (HR 0.46, P = 0.011) than those in the NBLNE group. Pathologically, compared with the NBLNE group, the BLNE group had more mature tertiary lymphoid structures (66.7 % vs. 36.5 %, P = 0.002) and higher immunoscores (18.8 % vs. 2.1 %, P = 0.004) in primary tumor tissue. Also, transcriptome analysis showed that, compared with NBLNE, the genes upregulated in BLNE were enriched in immune-related pathways, such as adaptive immune response and immuno-regulatory interactions. Whole-exon sequencing analysis revealed a higher tumor mutation burden (TMB) in the BLNE group [6.03 (5.59, 7.59) vs. 5.33 (4.62, 6.34), P = 0.025]. CONCLUSION BLNE is positively associated with the prognosis of colorectal cancer, possibly because patients with BLNE have a stronger anti-tumor immune response.
Collapse
Affiliation(s)
- Wang Junwei
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China; Beijing Key Laboratory of Collaborative Innovation in Gastrointestinal Oncology, PR China
| | - Chen Xin
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China
| | - Guo Limei
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, PR China
| | - Li Fei
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China
| | - Lu Siyi
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China
| | - Ma Yao
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China
| | - Hsinyi Lin
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China
| | - Shi Xiangchao
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China.
| | - Fu Wei
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China.
| | - Zhou Xin
- Department of General Surgery, Peking University Third Hospital, PR China; Peking university third hospital cancer center, PR China; Beijing Key Laboratory of Collaborative Innovation in Gastrointestinal Oncology, PR China.
| |
Collapse
|
4
|
Maguire B, Kisakol B, Prehn JHM, Burke JP. SATB2 Expression Affects Chemotherapy Metabolism and Immune Checkpoint Gene Expression in Colorectal Cancer. Clin Colorectal Cancer 2025; 24:129-134.e7. [PMID: 39794188 DOI: 10.1016/j.clcc.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Special AT-rich binding protein-2 (SATB2) is a nuclear matrix associated protein regulating gene expression which is normally expressed in colonic tissue. Loss of SATB2 expression in colorectal cancer (CRC) has negative implications for prognosis and has been associated with chemotherapy resistance. Furthermore, recent evidence suggests SATB2 may influence immune checkpoint (IC) expression. We hypothesized that SATB2 expression may be associated with altered expression of chemotherapy resistance associated and IC genes. METHODS Clinicopathologic and gene expression data were extracted from The Cancer Genome Atlas PanCancer Atlas. SATB2 expression was compared by clinicopathologic characteristic and by using multivariate regression analysis to explore associations with chemotherapy and IC gene expression. RESULTS About 553 patients were included for analysis. Lower quartile SATB2 expression was associated with worse disease specific survival (P = .04). MSI (P < .001) and mucinous (P < .001) tumors were associated with reduced SATB2 expression independently. SATB2 varied by consensus molecular subtype (P < .001) and was lowest in CMS1. On multivariate analysis, SATB2 was negatively associated with 5-FU related metabolism genes, while more complex but significant relationships were seen with oxaliplatin and irinotecan related genes. Low SATB2 expression was associated with increased expression of PD-1, PD-L1, TIM-3 and CTLA-4 IC genes. CONCLUSION The positive prognostic influence of SATB2 expression is reaffirmed in this study. This effect may be explained by the negative association between SATB2 and 5-FU-resistance related gene expression. Enhanced IC gene expression in SATB2 low cases suggests a potential role for IC inhibition in this setting, but further study is required.
Collapse
Affiliation(s)
- Barry Maguire
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland; Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland; Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
5
|
Chen Y, Ding K, Zheng S, Gao S, Xu X, Wu H, Zhou F, Wang Y, Xu J, Wang C, Ling C, Xu J, Wang L, Wu Q, Giamas G, Chen G, Zhang J, Yi C, Ji J. Post-translational modifications in DNA damage repair: mechanisms underlying temozolomide resistance in glioblastoma. Oncogene 2025:10.1038/s41388-025-03454-5. [PMID: 40419791 DOI: 10.1038/s41388-025-03454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/04/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Temozolomide (TMZ) resistance is one of the critical factors contributing to the poor prognosis of glioblastoma (GBM). As a first-line chemotherapeutic agent for GBM, TMZ exerts its cytotoxic effects through DNA alkylation. However, its therapeutic efficacy is significantly compromised by enhanced DNA damage repair (DDR) mechanisms in GBM cells. Although several DDR-targeting drugs have been developed, their clinical outcomes remain suboptimal. Post-translational modifications (PTMs) in GBM cells play a pivotal role in maintaining the genomic stability of DDR mechanisms, including methylguanine-DNA methyltransferase-mediated repair, DNA mismatch repair dysfunction, base excision repair, and double-strand break repair. This review focuses on elucidating the regulatory roles of PTMs in the intrinsic mechanisms underlying TMZ resistance in GBM. Furthermore, we explore the feasibility of enhancing TMZ-induced cytotoxicity by targeting PTM-related enzymatic to disrupt key steps in PTM-mediated DDR pathways. By integrating current preclinical insights and clinical challenges, this work highlights the potential of modulating PTM-driven networks as a novel therapeutic strategy to overcome TMZ resistance and improve treatment outcomes for GBM patients.
Collapse
Affiliation(s)
- Yike Chen
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaikai Ding
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuyu Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Songting Gao
- Guali Branch of the First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Xiaohui Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Fengqi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jinfang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Chenhan Ling
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jing Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, UK
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Oncology Department of the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration Zhejiang University, Hangzhou, Zhejiang, China.
| | - Chenggang Yi
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianxiong Ji
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Boka HJ, Engel RM, Georges C, McMurrick PJ, Abud HE. Does side matter? Deciphering mechanisms that underpin side-dependent pathogenesis and therapy response in colorectal cancer. Mol Cancer 2025; 24:130. [PMID: 40312719 PMCID: PMC12046799 DOI: 10.1186/s12943-025-02327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Colorectal cancer (CRC) is stratified by heterogeneity between disease sites, with proximal right-sided CRC (RCRC) multifactorial in its distinction from distal left-sided CRC (LCRC). Notably, right-sided tumors are associated with aggressive disease characteristics which culminate in poor clinical outcomes for these patients. While factors such as mutational profile and patterns of metastasis have been suggested to contribute to differences in therapy response, the exact mechanisms through which RCRC resists effective treatment have yet to be elucidated. In response, recent analyzes, including those utilizing whole genome sequencing, transcriptional profiling, and single-cell analyses, have demonstrated that key molecular differences exist between disease sites, with differentially expressed genes spanning a diverse range of cellular functions. Here, we review and contextualize the most recent data on molecular biomarkers found to exhibit discordance between RCRC and LCRC, and highlight candidates for further investigation, including those which present promise for future clinical application. Given the present disparity in survival outcomes for RCRC patients, we expect the prognostic biomarkers presented in our review to be useful in establishing future directions for the side-specific treatment of CRC.
Collapse
Affiliation(s)
- Harrison J Boka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Christine Georges
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Paul J McMurrick
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia.
| |
Collapse
|
7
|
Liu X, Wan L, Zhao R, Chen S, Peng W, Yang F, Zhang H. Mismatch Repair Status and Clinico-radiological Feature-Based Model for Pre-treatment Evaluation of Perineural Invasion and Prognosis in Stage I-III Rectal Cancer. Acad Radiol 2025:S1076-6332(25)00299-5. [PMID: 40318973 DOI: 10.1016/j.acra.2025.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 05/07/2025]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a predictive model for the pre-treatment evaluation of perineural invasion (PNI) status and to examine its prognostic stratification effectiveness in patients with stage I-III rectal cancer (RC) based on mismatch repair (MMR) status, clinical data, and magnetic resonance imaging (MRI) evaluated features. MATERIALS AND METHODS This retrospective study included 815 patients with stage I-III RC who underwent MRI scans from January 2016 to November 2023 and were randomly assigned to the training and validation cohorts. MMR status, clinical data, and MRI-evaluated features associated with PNI status were identified as independent predictors for developing a predictive model by univariable and multivariable logistic regression analyses in the training cohort. The receiver operating characteristic curves and the area under the curves (AUCs) were utilized to evaluate the diagnostic performance of the prediction model in both the training and validation cohorts. The Kaplan-Meier survival curves and Cox proportional hazards regression analysis were utilized to evaluate the prognostic stratification value of the model in both the training and validation cohorts. RESULTS The predictive model developed with independent predictors, including deficient MMR (odds ratio [OR]=0.434, P=0.021), male gender (OR=1.578, P=0.013), MRI-evaluated tumor morphology (partly annular, OR=3.257, P<0.001; annular, OR=5.184, P<0.001), tumor stage (T3, OR=1.953, P=0.004; T4, OR=2.627, P=0.013), extramural vascular invasion (OR=1.736, P=0.041), tumor deposit (OR=3.902, P<0.001) and mesorectal fascia involvement (OR=2.679, P=0.023), achieved AUCs of 0.748 (95% confidence interval [CI]: 0.711-0.785, P<0.001) and 0.719 (95% CI: 0.640-0.798, P<0.001) in the training and validation cohorts, respectively. The Kaplan-Meier survival curves show effectively prognostic stratification for disease-free survival (DFS), distant metastasis-free survival (DMFS), and recurrence-free survival (RFS) between predicted PNI-positive and PNI-negative patients (both P<0.05). Cox regression analysis indicated that predicted PNI-positive status was a significant risk factor associated with inferior DFS and DMFS in both training and validation cohorts (both P<0.05). The predicted PNI-positive status was a significant risk factor associated with inferior RFS in the training cohort (P=0.002); however, no significant association was observed in the validation cohort (P=0.104). CONCLUSION The developed prediction model for evaluating the PNI status of RC prior to treatment showing acceptable performance and helping with prognostic stratification, which may assist in personalized treatment decisions.
Collapse
Affiliation(s)
- Xiangchun Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lijuan Wan
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Rui Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Shuang Chen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Wenjing Peng
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Fan Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Hongmei Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
8
|
Wankhede D, Halama N, Kloor M, Edelmann D, Brenner H, Hoffmeister M. Prognostic Value of CD8+ T Cells at the Invasive Margin Is Comparable to the Immune Score in Nonmetastatic Colorectal Cancer: A Prospective Multicentric Cohort Study. Clin Cancer Res 2025; 31:1711-1718. [PMID: 40293274 DOI: 10.1158/1078-0432.ccr-24-3275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/23/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE The Immunoscore predicts colorectal cancer prognosis but faces adoption barriers because of complex software and reimbursement issues. This study used open-source methods to explore a simplified prognostic model in nonmetastatic colorectal cancer by focusing on single T-cell markers. EXPERIMENTAL DESIGN A multicentric prospective cohort study in patients with nonmetastatic colorectal cancer assessed CD3+ and CD8+ tumor-infiltrating lymphocytes (TIL) in the invasive margin (IM) and tumor core (TC) using QuPath. An immune cell score (ICS), based on TIL densities (CD3-IM, CD8-IM, CD3-TC, and CD8-TC), was calculated similarly to the Immunoscore. A split sample approach (70:30) estimated adjusted HRs for cancer-specific survival in training and validation sets. Classification and regression tree analysis identified the most prognostic TIL, and its model was compared with an ICS model for performance (Brier score) and discrimination (concordance probability estimate). RESULTS Over a median follow-up of 9.0 years, 203 colorectal cancer-specific deaths occurred among 1,260 patients. Classification and regression tree-selected CD8-IM was the most prognostic TIL at a cutoff of 231 cells/mm2. Patients with high CD8-IM had better cancer-specific survival than low CD8-IM in both training (HR 0.58, 95% confidence interval, 0.40-0.84) and validation sets (HR 0.35, 95% confidence interval, 0.21-0.60). Brier scores of CD8-IM and ICS survival models were comparable in both training and validation cohorts, whereas the survival discrimination of CD8-IM slightly outperformed the ICS in the validation set (concordance probability estimate: CD8-IM: 0.748; ICS: 0.730). CONCLUSIONS CD8-IM alone provided prognostic information comparable with the ICS. Simplified, cost-effective TIL assessments could improve clinical translation and guide adjuvant therapy in early-stage colorectal cancer.
Collapse
Affiliation(s)
- Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Department of Translational Immunotherapy (D240), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Ye Z, Luo D, Chen F, Chen J, Shan Z, Weng J, Zhang Y, Li Q, Li X. Reassessing the Prognostic Value of Lymph Node Metastasis in Deficient Mismatch Repair Colorectal Cancer. Curr Oncol 2025; 32:254. [PMID: 40422513 DOI: 10.3390/curroncol32050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND In non-metastatic deficient mismatch repair (dMMR) colorectal cancer (CRC), traditional prognostic factors, such as pN staging, often fail to distinguish patient outcomes effectively. METHODS This retrospective study included a cohort of 792 dMMR CRC patients who underwent surgical treatment without neoadjuvant chemoradiotherapy or immunotherapy. Traditional prognostic factors were compared with lymph node-based models (NLN, LNR, LOODS) for their ability to predict overall survival (OS) and disease-free survival (DFS). RESULTS The study demonstrated that traditional factors, such as histologic type, differentiation, and vascular invasion, had limited predictive value in dMMR CRC. Furthermore, the pN stage failed to effectively distinguish between pN1 and pN2 for both OS (p = 0.219) and DFS (p = 0.095). Conversely, LOODS demonstrated superior performance over traditional pN staging in predicting both OS and DFS (p < 0.001). A prognostic model combining LOODS with age exhibited superior predictive performance compared with the traditional TN staging system. CONCLUSIONS LOODS was identified as a more effective independent prognostic factor compared with traditional pN staging, enabling more precise stratification of pN+ patients in non-metastatic dMMR CRC, highlighting its potential utility in guiding postoperative treatment and optimizing therapeutic strategies.
Collapse
Affiliation(s)
- Zilan Ye
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Fan Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Jiayu Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yu Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
| |
Collapse
|
10
|
Xu W, Li Y, Zeng Z, Guo G. Crosstalk of lactate metabolism-related subtypes, establishment of a prognostic signature and immune infiltration characteristics in colon adenocarcinoma. Sci Rep 2025; 15:14599. [PMID: 40287503 PMCID: PMC12033353 DOI: 10.1038/s41598-025-98735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Colon adenocarcinoma (COAD) is a common malignant tumor of digestive tract and lactate metabolism has been linked to tumor development and progression. In this study, we sought to investigate the influence of lactate metabolism-related genes (LRGs) prognosis. We also aimed to identify distinct LRG-related clusters and develop a risk signature for assessing patient prognosis, immunological characteristics, and response to therapy. We analyzed data from The Cancer Genome Atlas (TCGA) to reveal the expression and mutational features of LRGs in COAD patients. In the integrated TCGA and GSE39582 cohort, consensus clustering analysis was employed to classify patients into two distinct LRG-related clusters. Using differentially expressed genes (DRGs) from these two clusters, we established a LRG-related gene cluster and prognostic signature which was used to classify patients into high-risk and low-risk groups. An validation cohort was used to validate the predictive ability of risk signature and expression of 6 candidate LRGs was confirmed through quantitative real-time PCR (qRT-PCR). Nomograms were created to visually represent the clinical value of LRG-related signature. Furthermore, we extensively examined differences in immune cell infiltration, tumor mutational load (TMB), microsatellite instability (MSI) and drug sensitivity between two risk groups. Analysis of the integrated TCGA and GSE39582 cohorts revealed two distinct LRG-related clusters and gene clusters with significant differences in overall survival (OS) and tumor microenvironment. We developed a LRG-related signature comprising 6 candidate LRGs that reliably predicted OS and qRT-PCR validation confirmed the expression of LRGs. Based on the median risk score, patients were divided into low-risk and high-risk groups, with low-risk group showing better survival. Furthermore, patients in high-risk group were more sensitive to chemotherapy and associated with higher TMB, higher proportion of MSI-H. Our study provides a valuable method for guiding clinical management and personalized treatment of COAD patients, which offers new insights into individualized treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Wenwei Xu
- The Department of Gastrointestinal Surgery, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Yongjian Li
- The Department of Gastrointestinal Surgery, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Zhaoshang Zeng
- The Department of Gastrointestinal Surgery, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Guanjun Guo
- The Department of Gastrointestinal Surgery, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China.
| |
Collapse
|
11
|
Bovell AAN, Ncayiyana J, Ginindza TG. The Timeliness of Drug Therapy in Colorectal and Prostate Cancer in Antigua and Barbuda: The Role of Disease Stage. Healthcare (Basel) 2025; 13:915. [PMID: 40281864 PMCID: PMC12027291 DOI: 10.3390/healthcare13080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Colorectal and prostate cancers are significant public health problems for countries globally. In Antigua and Barbuda, where resources are limited, there is a need for both insight and evidence on the timeliness of drug therapy initiation for colorectal and prostate cancers as a way of improving disease management capabilities and prognostic outcomes for diagnosed cases. This study aimed to investigate whether the disease stage of colorectal and prostate cancers is a predictor of the time to drug therapy initiation for persons diagnosed with these cancers in Antigua and Barbuda from 2017 to 2021. Methods: This was a retrospective analytical study that utilized data, inclusive of the coronavirus disease 2019 effect, for colorectal and prostate cancer patients extracted from four study sites in Antigua and Barbuda to assess the relationship between disease stage and time to drug therapy initiation. Analyses were performed using polytomous multivariable logistic regression modelling. Results: Analyses showed that the final models for both cancers were significant (p < 0.05); however, disease stage was not a predictor of time to drug therapy initiation in either model. The ORs observed were 41.58 (95% CI: 0.78-2219.28) for colorectal cancer and 0.41 (95% CI: 0.11-1.44) for prostate cancer. Conclusions: Regarding both cancers, our findings demonstrate that disease stage alone is not a significant predictor of time to drug therapy initiation unless analysed alongside other essential patient characteristics in each respective model. Our findings are a useful reference that can be utilized by policymakers to improve treatment capabilities, including establishing a standardized care algorithm to optimize timeliness in administering drug treatment for these cancers in Antigua and Barbuda.
Collapse
Affiliation(s)
- Andre A. N. Bovell
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa; (J.N.); (T.G.G.)
| | - Jabulani Ncayiyana
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa; (J.N.); (T.G.G.)
| | - Themba G. Ginindza
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa; (J.N.); (T.G.G.)
- Cancer & Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
12
|
Wang X, Zhang Y, Fan G, Wu H, Qi X, Cui X, Zhou C. Case Report: A case of synchronous multiple early gastric cancer with a microsatellite instability-high phenotype. Front Oncol 2025; 15:1527495. [PMID: 40248200 PMCID: PMC12003148 DOI: 10.3389/fonc.2025.1527495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
Synchronous multiple early gastric cancer (SMEGC) is a relatively uncommon variant of early gastric cancer (EGC). In this report, we present a case of SMEGC accompanied by a microsatellite instability-high (MSI-H) phenotype. The patient was a 69-year-old man who presented to our hospital with abdominal pain. The endoscopic examination revealed two lesions. Both lesions were pathologically confirmed as EGC, then the patient subsequently underwent endoscopic submucosal dissection (ESD). Nine months post-procedure, the patient returned with recurrent abdominal pain, leading to the diagnosis of a new EGC. Immunohistochemical analysis demonstrated that all lesions exhibited an MSI-H phenotype and BRAF mutant expression, suggesting that these lesions are not associated with Lynch syndrome-related EGC. The case was ultimately diagnosed as SMEGC with an MSI-H phenotype. The current evidence and clinical experience suggest that patients with advanced MSI-H are likely to benefit from immunotherapy and should be considered for early systemic treatment with immunotherapy as a central component. At present, research studies on the molecular characteristics of SMEGC are limited, underscoring the importance of conducting comprehensive molecular diagnostics of each EGC patient, which could help clinicians thoroughly understand the lesion's characteristics.
Collapse
Affiliation(s)
- Xinshuo Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yifan Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangyan Fan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Honglei Wu
- Department of Gastroenterology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xing Qi
- Department of Gastroenterology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiujie Cui
- Department of Pathology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Wu P, Wen Z. ATM is associated with the prognosis of colorectal cancer: a systematic review. Front Oncol 2025; 15:1470939. [PMID: 40144209 PMCID: PMC11936800 DOI: 10.3389/fonc.2025.1470939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
Objective Chemosensitivity and radiosensitivity are associated with the prognosis of colorectal cancer, and the expression of the ataxia-telangiectasia mutated (ATM) protein plays an essential role in these processes. The present study examined the relationship between ATM expression and the survival outcomes of colorectal cancer patients and explored the underlying mechanism and promising therapeutic strategies. Method A search including medical subject headings (MeSH), free terms, and combined words was conducted using Pubmed, EMBASE, and Cochrane. Studies had to meet the inclusion criteria as well as include processes such as data extraction and quality evaluation. The survival outcomes were assessed using hazard ratio (HR) and 95% confidence interval (CI). Heterogeneity, and publication bias were analyzed, and a P value <0.05 was considered statistically significant. Results Nine studies with 2883 patients were included in the meta-analysis. Low ATM expression level was related to poor overall survival (HR=0.542, 95% CI=0.447-0.637; P=0.000). Disease-free, progression-free, and recurrence-free survival rates were lower in patients with low ATM expression than in those with high ATM expression. There was no significant difference between Stage I-II and Stage III-IV colorectal cancer patients [risk ratio (RR)=1.173, 95% CI=0.970-1.417, P=0.690]. Conclusions Low ATM expression level may be a marker of poor survival in colorectal cancer and contributes to resistance to therapy. Targeting related factors in these pathways to sensitize tumors to treatment is a potential therapeutic strategy, and monitoring ATM status could be a valuable guide independent of the immunotherapy or chemotherapy strategy used.
Collapse
Affiliation(s)
- Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Wen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Peng L, Zhang X, Zhu Y, Shi L, Ai K, Huang G, Ma W, Wei Z, Wang L, Ma Y, Wang L. T2WI and ADC radiomics combined with a nomogram based on clinicopathologic features to quantitatively predict microsatellite instability in colorectal cancer. Acad Radiol 2025; 32:1431-1450. [PMID: 39490321 DOI: 10.1016/j.acra.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
RATIONALE AND OBJECTIVES Microsatellite instability (MSI) stratification can guide the clinical management of patients with colorectal cancer (CRC). This study aimed to establish a radiomics model for predicting the MSI status of patients with CRC before treatment. MATERIALS AND METHODS This retrospective study was performed on 366 patients diagnosed with CRC who underwent preoperative magnetic resonance imaging (MRI) and immunohistochemical staining between February 2016 and September 2023. The participants were divided randomly into training and testing cohorts in a 7:3 ratio. The tumor volume of interest (VOI) was manually delineated on T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) sequences using 3D Slicer software, and radiomics features were extracted. Feature selection was performed using the least absolute shrinkage and selection operator method. A radiomics nomogram was developed using multiple logistic regression, and the predictive performance of the models was evaluated and compared using receiver operating characteristic curves. The calibration curve, clinical decision curve analysis (DCA) and clinical impact curve (CIC) were used to evaluate the clinical application value of the model. RESULTS The radiomics normogram combined with history of chronic enteritis, tumor location, MR-reported inflammatory response, D2-40, carcinoembryonic antigen, tumor protein 53, and monocyte was an excellent predictive tool. The area under the curve for the training and testing cohorts were 0.927 and 0.984, respectively. The DCA and CIC demonstrated favorable clinical application and net benefit. CONCLUSIONS A radiomics nomogram based on T2WI and ADC sequences and clinicopathologic features can effectively and noninvasively predict the MSI status in CRC. This approach helps clinicians in stratifying CRC patients and making clinical decisions for personalized treatment.
Collapse
Affiliation(s)
- Leping Peng
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiuling Zhang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yuanhui Zhu
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liuyan Shi
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Kai Ai
- Department of Clinical and Technical Support, Philips Healthcare, Xi'an 710065, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Wenting Ma
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhaokun Wei
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ling Wang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Yaqiong Ma
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Lili Wang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
15
|
Wang Y, Xie B, Wang K, Zou W, Liu A, Xue Z, Liu M, Ma Y. Multi-parametric MRI Habitat Radiomics Based on Interpretable Machine Learning for Preoperative Assessment of Microsatellite Instability in Rectal Cancer. Acad Radiol 2025:S1076-6332(25)00111-4. [PMID: 40016002 DOI: 10.1016/j.acra.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
RATIONALE AND OBJECTIVES This study constructed an interpretable machine learning model based on multi-parameter MRI sub-region habitat radiomics and clinicopathological features, aiming to preoperatively evaluate the microsatellite instability (MSI) status of rectal cancer (RC) patients. MATERIALS AND METHODS This retrospective study recruited 291 rectal cancer patients with pathologically confirmed MSI status and randomly divided them into a training cohort and a testing cohort at a ratio of 8:2. First, the K-means method was used for cluster analysis of tumor voxels, and sub-region radiomics features and classical radiomics features were respectively extracted from multi-parameter MRI sequences. Then, the synthetic minority over-sampling technique method was used to balance the sample size, and finally, the features were screened. Prediction models were established using logistic regression based on clinicopathological variables, classical radiomics features, and MSI-related sub-region radiomics features, and the contribution of each feature to the model decision was quantified by the Shapley-Additive-Explanations (SHAP) algorithm. RESULTS The area under the curve (AUC) of the sub-region radiomics model in the training and testing groups was 0.848 and 0.8, respectively, both better than that of the classical radiomics and clinical models. The combined model performed the best, with AUCs of 0.908 and 0.863 in the training and testing groups, respectively. CONCLUSION We developed and validated a robust combined model that integrates clinical variables, classical radiomics features, and sub-region radiomics features to accurately determine the MSI status of RC patients. We visualized the prediction process using SHAP, enabling more effective personalized treatment plans and ultimately improving RC patient survival rates.
Collapse
Affiliation(s)
- Yueyan Wang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z., Y.M.); Graduate School of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z.)
| | - Bo Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z., Y.M.); Graduate School of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z.)
| | - Kai Wang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z., Y.M.); Graduate School of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z.)
| | - Wentao Zou
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z., Y.M.); Graduate School of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z.)
| | - Aie Liu
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200126, China (A.L., Z.X.)
| | - Zhong Xue
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200126, China (A.L., Z.X.)
| | - Mengxiao Liu
- MR Research Collaboration Team, Diagnostic Imaging, Siemens Healthineers Ltd, Shanghai 200126, China (M.L.)
| | - Yichuan Ma
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z., Y.M.).
| |
Collapse
|
16
|
Mosley SR, Chen A, Doell DNW, Choi S, Mowat C, Meier-Stephenson F, Meier-Stephenson V, Baker K. Cytosolic DNA composition is determined by genomic instability mechanism and regulates dendritic cell-mediated anti-tumor immunity. Cell Rep 2025; 44:115177. [PMID: 39864057 DOI: 10.1016/j.celrep.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/10/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Patients with colorectal cancers (CRCs) that have microsatellite instability (MSI) (MSI CRCs) face a better prognosis than those with the more common chromosomal instability (CIN) subtype (CIN CRCs) due to improved T cell-mediated anti-tumor immune responses. Previous investigations identified the cytosolic DNA (cyDNA) sensor STING as necessary for chemokine-mediated T cell recruitment in MSI CRCs. Here, we find that cyDNA from MSI CRC cells is inherently more capable of inducing STING activation and improves cytotoxic T cell activation by dendritic cells (DCs). Sequencing indicates that MSI cyDNA is enriched in microsatellites, which, upon DC uptake, induce anti-tumor immunity in a manner consistent with clinical MSI CRCs. DNA-damaging therapies also modulate cyDNA stimulation capacity, with radiation inducing larger cyDNA sizes and increased mitochondrial DNA content. Identifying highly stimulatory endogenous cyDNAs such as those in MSI CRCs will allow for optimized development of DNA-based STING agonist therapies to improve the responses of CIN CRCs with CIN to immunotherapies.
Collapse
Affiliation(s)
- Shayla R Mosley
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Angie Chen
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David N W Doell
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Siwon Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Courtney Mowat
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Felix Meier-Stephenson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vanessa Meier-Stephenson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kristi Baker
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
17
|
Xing C, Zhao L, Zou W, Peng X, Xing XL, Li J. NOS2 as a prognostic biomarker for early-onset colorectal cancer based on public data and clinical validation analysis. Sci Rep 2025; 15:4300. [PMID: 39905237 PMCID: PMC11794712 DOI: 10.1038/s41598-025-88966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/03/2025] [Indexed: 02/06/2025] Open
Abstract
Early-onset colorectal cancer (EOCRC) was characterized by strong aggressiveness and high malignancy. The aim of this study was to screen suitable biomarkers for patients with EOCRC. EOCRC from The Cancer Genome Atlas Program (TCGA) database and Gene Expression Mapping (GEO) database were used to screen biomarkers for prognosis and treatment guidance. Clinical samples were used to verify the expression situation of these candidate biomarkers. The results showed the immune-related gene nitric oxide synthase 2 (NOS2) was independently associated with the poor prognosis of EOCRC patients in both TGCA and GEO database. The Immune Dysfunction and Exclusion (TIDE) analysis showed that multiple immunotherapy signatures, such as TIDE, Exclusion, and CAF, were difference among EOCRC patients with different risk scores, and significantly correlated with the expression of NOS2. Sensitivity analysis of chemotherapy drugs showed that NOS2 was significantly correlated with several chemotherapy drugs, such as MG.132_1862, BMS.754807_2171, and GEN.317_1926. Clinical validation analysis showed that the expression of NOS2 and its related genes CXCL1 and CXCL2 were significantly decreased in EOCRC patients. The results suggested that NOS2 can be used as a potential biomarker for EOCRC, which can be used for prognosis and guidance of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Chaoqun Xing
- The First Affiliated Hospital of Hunan Medical University, Hunan University of Medicine, Huaihua, 418000, Hunan, P. R. China
- Hunan University of Medicine, Huaihua, 418000, Hunan, P. R. China
| | - Lipeng Zhao
- The Second People's Hospital of Huaihua, Huaihua, 418000, Hunan, P. R. China
| | - Weiwei Zou
- The Second People's Hospital of Huaihua, Huaihua, 418000, Hunan, P. R. China
| | - Xie Peng
- The Second People's Hospital of Huaihua, Huaihua, 418000, Hunan, P. R. China
| | - Xiao-Liang Xing
- The First Affiliated Hospital of Hunan Medical University, Hunan University of Medicine, Huaihua, 418000, Hunan, P. R. China.
- Hunan University of Medicine, Huaihua, 418000, Hunan, P. R. China.
| | - Jie Li
- Hunan University of Medicine, Huaihua, 418000, Hunan, P. R. China.
| |
Collapse
|
18
|
Farrag MS, Abdelwahab HW, Abdellateef A, Anber N, Ellayeh MA, Hussein DT, Eldesoky AR, Sheta H. DNA mismatch repair (MMR) genes expression in lung cancer and its correlation with different clinicopathologic parameters. Sci Rep 2025; 15:885. [PMID: 39762286 PMCID: PMC11704133 DOI: 10.1038/s41598-024-83067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Lung cancer (LC) is a crucial rapidly developing disease. In Egypt, it is one of the five most frequent cancers. Little is known about the impact of deleted mismatch repair genes and its correlation to clinicopathological characteristics. This study evaluates immunohistochemical expression of the mismatch repair genes (PMS2), (MSH2), (MLH1) & (MSH6) & its correlation with clinicopathologic parameters & prognosis of LC. Age was higher with lost MLH1 & PMS2 but HTN was higher with lost four markers. Smoking was associated with expression of MLH1 & PMS2. A progressive course was associated with lost MSH2 & MSH6. Suprarenal metastasis was associated with lost all markers but bone metastasis was associated with lost MSH2 & MSH6. All the markers were significantly correlated with each other, with perfect correlations between MSH6 & MSH2 and between MLH & PMS2. Median overall survival among cases with lost markers was significantly lower than patients with preserved markers. We recommend evaluation of the four proteins as a biomarker that could guide LC therapy. In-depth biological research is imperative to elucidate the precise roles and mechanisms of these markers. This will advance management strategies and even guide immune checkpoint inhibitor therapy for LC.
Collapse
Affiliation(s)
- Mayada Saad Farrag
- Pathology Department, Port Said Faculty of Medicine, Port Said University, Port Said, Egypt.
| | | | - Amr Abdellateef
- Cardiothoracic Surgery Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nahla Anber
- Emergency Hospital, Mansour University, Mansoura, Egypt
| | | | - Dalia Tawfeek Hussein
- Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Faculty of Medicine, Tobruk University, Tobruk, Libya
| | - Ahmed Ramadan Eldesoky
- Clinical Oncology and Nuclear Medicine Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Heba Sheta
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Wang S, Zhang M, Li T, Chen X, Wu Q, Tian D, Granot Z, Xu H, Hao J, Zhang H. A comprehensively prognostic and immunological analysis of PARP11 in pan-cancer. J Leukoc Biol 2024; 117:qiae030. [PMID: 38334307 DOI: 10.1093/jleuko/qiae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Poly (ADP-ribose) polymerase family member 11 (PARP11) has important immune regulatory functions in viral infection and tumor immune response. Particularly, PARP11 showed protumor activities in multiple preclinical murine models. However, no systematic pan-cancer analysis has been conducted to explore PARP11 function. In this study, we used multiple databases to assess PARP11 expression, which is associated with clinical outcomes, immune checkpoint factors, prognostic significance, genomic characteristics, and immunological aspects. The analysis revealed varying expression levels of PARP11 across different cancer types and a significant correlation between its expression and immune cell infiltration. Insights from the CellMiner database suggest a strong link between PARP11 expression and sensitivity to anticancer drugs, highlighting its potential as a therapeutic target. Moreover, PARP11 expression correlates with patient survival during anti-PD1 and anti-CTLA4 treatments, suggesting that PARP11 would be a predictor of immune checkpoint inhibitor treatment. In summary, PARP11 would be a potential immunoregulatory target and a diagnosis and prognosis marker for certain types of cancers. The detailed mechanisms of PARP11 in tumor immune responses need to be further investigated.
Collapse
Affiliation(s)
- Shengli Wang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, 79 Kangning Rd, Zhuhai, 519000, Guangdong, P.R. China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 W Huangpu Ave, Guangzhou, 510632, Guangdong, P.R. China
| | - Mingyue Zhang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, 79 Kangning Rd, Zhuhai, 519000, Guangdong, P.R. China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 W Huangpu Ave, Guangzhou, 510632, Guangdong, P.R. China
| | - Tao Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, 79 Kangning Rd, Zhuhai, 519000, Guangdong, P.R. China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 W Huangpu Ave, Guangzhou, 510632, Guangdong, P.R. China
| | - Xinru Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, 79 Kangning Rd, Zhuhai, 519000, Guangdong, P.R. China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 W Huangpu Ave, Guangzhou, 510632, Guangdong, P.R. China
| | - Qinhan Wu
- College of Life Sciences, Nankai University, 94 Weijin Rd, Tianjin, 300071, P.R. China
| | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshaner St, Guangzhou, 510080, Guangdong, P.R. China
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Ein Kerem, 9112102, Jerusalem, Israel
| | - Hongbiao Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshaner St, Guangzhou, 510275, Guangdong, P.R. China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, 79 Kangning Rd, Zhuhai, 519000, Guangdong, P.R. China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 W Huangpu Ave, Guangzhou, 510632, Guangdong, P.R. China
| | - Hongru Zhang
- College of Life Sciences, Nankai University, 94 Weijin Rd, Tianjin, 300071, P.R. China
| |
Collapse
|
20
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
21
|
Ma Y, Shi Z, Wei Y, Shi F, Qin G, Zhou Z. Exploring the value of multiple preprocessors and classifiers in constructing models for predicting microsatellite instability status in colorectal cancer. Sci Rep 2024; 14:20305. [PMID: 39218940 PMCID: PMC11366760 DOI: 10.1038/s41598-024-71420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Approximately 15% of patients with colorectal cancer (CRC) exhibit a distinct molecular phenotype known as microsatellite instability (MSI). Accurate and non-invasive prediction of MSI status is crucial for cost savings and guiding clinical treatment strategies. The retrospective study enrolled 307 CRC patients between January 2020 and October 2022. Preoperative images of computed tomography and postoperative status of MSI information were available for analysis. The stratified fivefold cross-validation was used to avoid sample bias in grouping. Feature extraction and model construction were performed as follows: first, inter-/intra-correlation coefficients and the least absolute shrinkage and selection operator algorithm were used to identify the most predictive feature subset. Subsequently, multiple discriminant models were constructed to explore and optimize the combination of six feature preprocessors (Box-Cox, Yeo-Johnson, Max-Abs, Min-Max, Z-score, and Quantile) and three classifiers (logistic regression, support vector machine, and random forest). Selecting the one with the highest average value of the area under the curve (AUC) in the test set as the radiomics model, and the clinical screening model and combined model were also established using the same processing steps as the radiomics model. Finally, the performances of the three models were evaluated and analyzed using decision and correction curves.We observed that the logistic regression model based on the quantile preprocessor had the highest average AUC value in the discriminant models. Additionally, tumor location, the clinical of N stage, and hypertension were identified as independent clinical predictors of MSI status. In the test set, the clinical screening model demonstrated good predictive performance, with the average AUC of 0.762 (95% confidence interval, 0.635-0.890). Furthermore, the combined model showed excellent predictive performance (AUC, 0.958; accuracy, 0.899; sensitivity, 0.929) and favorable clinical applicability and correction effects. The logistic regression model based on the quantile preprocessor exhibited excellent performance and repeatability, which may further reduce the variability of input data and improve the model performance for predicting MSI status in CRC.
Collapse
Affiliation(s)
- Yi Ma
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Zhihao Shi
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., 701 Yunjin Rd, Xuhui District, Shanghai, 200232, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., 701 Yunjin Rd, Xuhui District, Shanghai, 200232, China
| | - Guochu Qin
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
22
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
23
|
Fan WX, Su F, Zhang Y, Zhang XL, Du YY, Gao YJ, Li WL, Hu WQ, Zhao J. Oncological characteristics, treatments and prognostic outcomes in MMR-deficient colorectal cancer. Biomark Res 2024; 12:89. [PMID: 39183366 PMCID: PMC11346251 DOI: 10.1186/s40364-024-00640-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally. It's recognized that the molecular subtype of CRC, characterized by mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H), plays a critical role in determining appropriate treatment strategies. This review examines the current molecular classifications, focusing on dMMR/MSI-H CRC and its subtypes: Lynch syndrome (LS), Lynch-like syndrome (LLS), and sporadic cases. Despite advances in understanding of these genetic backgrounds, clinical trials have not conclusively differentiated the efficacy of immune checkpoint inhibitors among these subgroups. Therefore, while this review details the molecular characteristics and their general implications for treatment and prognosis, it also highlights the limitations and the need for more refined clinical studies to ascertain tailored therapeutic strategies for each subtype. Furthermore, this review summarizes completed and ongoing clinical studies, emphasizing the importance of developing treatments aligned more closely with molecular profiles. By discussing these aspects, the review seeks to provide a comprehensive analysis of oncological characteristics, presenting a detailed understanding of their implications for treatment and prognosis in dMMR/MSI-H CRC.
Collapse
Affiliation(s)
- Wen-Xuan Fan
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi, 030607, China
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Fei Su
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi, 030607, China
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yan Zhang
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
- Graduate School of Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Xiao-Ling Zhang
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yun-Yi Du
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yang-Jun Gao
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wei-Ling Li
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
- Graduate School of Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wen-Qing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| |
Collapse
|
24
|
Xiao G, Li J, Deng L, Gao S, Tan C, He G, Du R. Microsatellite instability evaluation by a novel PCR-based 8-loci test kit in colorectal cancer. Biotechnol Appl Biochem 2024; 71:860-867. [PMID: 38556769 DOI: 10.1002/bab.2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Microsatellite instability (MSI) assessment is strongly recommended for colorectal cancer patients, as MSI status is crucial in determining optimal treatment and predicting prognosis. This study evaluated the reliability and accuracy of a novel polymerase chain reaction (PCR)-based 8-loci MSI test kit, a rapid test kit designed to detect MSI, by comparing its performance with immunohistochemistry (IHC) and the National Cancer Institute (NCI) 2B3D Panel. MSI status was determined in 186 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissue samples with known mismatch repair (MMR) status by IHC using the novel PCR-based 8-loci MSI test kit. Additionally, the consistency between the NCI 2B3D Panel and the novel PCR-based 8-loci panel was compared using 69 FFPE tumor tissues paired with adjacent non-cancerous tissue. The novel PCR-based 8-loci MSI test kit and IHC demonstrated high concordance (overall agreement: 97.8%). However, four samples displayed discordant results, exhibiting MMR deficiency using IHC and microsatellite stability using the novel PCR-based 8-loci MSI test kit. Of the 69 samples reanalyzed using the NCI 2B3D Panel, high concordance with the novel PCR-based 8-loci MSI test kit was observed in 67 of 69 cases (overall agreement: 97.1%). The novel PCR-based 8-loci MSI test kit is a rapid and reliable tool for accurately detecting MSI status in colorectal cancer.
Collapse
Affiliation(s)
- Gaofang Xiao
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Jing Li
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Lijun Deng
- Department of Medical Engineering, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Shuangquan Gao
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Caiyun Tan
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Guiqing He
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Richang Du
- Department of Pathology, Shantou University Affiliated Yuebei People's Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
25
|
Xiang X, Ma X, Ying L, Zou H. Enhanced Commendable Sensitivity and Specificity for MSI in Colorectal Cancer by a New PCR-HRM Based 8-Loci MSI Assay. J Clin Lab Anal 2024; 38:e25085. [PMID: 39132875 PMCID: PMC11492358 DOI: 10.1002/jcla.25085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND This study evaluated the performance of the PCR-HRM assay by comparing it with immunohistochemistry (IHC) for mismatch repair (MMR) proteins and the PCR capillary electrophoresis (PCR-CE) methods. RESULTS A total of 224 patients with colorectal cancer participated in the study, with nearly half having mismatch repair deficiency (dMMR) tissues and the remainder possessing pMMR tissues. There was a 97.77% concordance between the PCR-HRM assay and IHC, and a 97.56% concordance between PCR-HRM and the PCR-CE assay. In comparison with IHC for dMMR proteins, the PCR-HRM demonstrated a sensitivity of 96.36% and a specificity of 99.12%. When juxtaposed with the PCR-CE assay, its sensitivity was 98.96% and specificity stood at 96.33%. The mutations observed in the microsatellite loci were uniformly distributed across all eight loci. Discrepant outcomes were more frequent in instances of MLH1 and PMS2 deficiency. Furthermore, the germline mutation status of MLH1, MSH2, PMS2, and MSH6 in 62 patients was ascertained using next-generation sequencing. All patients displaying MMR gene pathogenic mutations (N = 14) were identified as MSI-H by PCR-HRM, whereas those with MSS tissues (N = 43) did not exhibit MMR gene pathogenic mutations. Thus, the PCR-HRM method proficiently pinpoints tumors with verified germline MMR mutations, indicative of Lynch syndrome. CONCLUSION Conclusively, the PCR-HRM assay emerges as a swift and congruent diagnostic tool for microsatellite instability, boasting commendable sensitivity and specificity in colorectal cancer.
Collapse
Affiliation(s)
- Xueping Xiang
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Xiaojing Ma
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Linlin Ying
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Hong Zou
- Department of Pathology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
26
|
Qiao X, Ma D, Zhang X. Identification of hub genes and potential molecular mechanisms in MSS/MSI classifier primary colorectal cancer based on multiple datasets. Discov Oncol 2024; 15:290. [PMID: 39023715 PMCID: PMC11258107 DOI: 10.1007/s12672-024-01148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE MSI has a better prognosis than MSS in colorectal cancer patients, and the main objective of this study was to screen for differentially expressed molecules between MSI and MSS primary colorectal cancers using bioinformatics. MATERIAL AND METHODS Two gene expression datasets (GSE13294 and GSE13067) were downloaded from GEO, and differential expressed genes (DEGs) were analyzed using GEO2R. Gene Ontology, Kyoto Encyclopedia of Genomes, and Gene Set Enrichment Analysis were conducted using the DEGs. Furthermore, a Protein-Protein Interaction Networks (PPI) was constructed to screen for significant modules and identify hub genes. The hub genes were analyzed in colorectal cancer using GEPIA. The expression of hub genes in clinical samples was visualized using the online Human Protein Atlas (HPA). RESULTS A total of 265 common DEGs were identified in MSS primary colorectal cancer compared to MSI primary colorectal cancer. Among these, 178 DEGs were upregulated, and 87 DEGs were downregulated. Enrichment analysis showed that these DEGs were associated with the response to mechanical stimulus, regulation of cellular response to stress, G protein-coupled receptor binding, and other processes. A total of 5 hub genes was identified by cytoHubba: HNRNPL, RBM39, HNRNPH1, TRA2A, SRSF6. GEPIA software online analysis, 5 hub gene expression in colorectal cancer survival curve did not have significant differences. The expression of RBM39 was significantly different in different stages of colorectal cancer. The HPA online database results showed that the expression of the five hub proteins varied widely in CRC patients. CONCLUSION The hub genes, such as HNRNPH1and RBM39, and the spliceosome resulting from DEGs, which may provide novel insights and evidence for the future diagnosis and targeted therapy of MSS/MSI PCRC.
Collapse
Affiliation(s)
- Xia Qiao
- Institute of Medical Science, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Duan Ma
- Institute of Medical Science, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Xu Zhang
- Institute of Medical Science, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
27
|
Cai Z, Xu Z, Chen Y, Zhang R, Guo B, Chen H, Ouyang F, Chen X, Chen X, Liu D, Luo C, Li X, Liu W, Zhou C, Guan X, Liu Z, Zhao H, Hu Q. Multiparametric MRI subregion radiomics for preoperative assessment of high-risk subregions in microsatellite instability of rectal cancer patients: a multicenter study. Int J Surg 2024; 110:4310-4319. [PMID: 38498392 PMCID: PMC11254239 DOI: 10.1097/js9.0000000000001335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Microsatellite instability (MSI) is associated with treatment response and prognosis in patients with rectal cancer (RC). However, intratumoral heterogeneity limits MSI testing in patients with RC. The authors developed a subregion radiomics model based on multiparametric MRI to preoperatively assess high-risk subregions with MSI and predict the MSI status of patients with RC. METHODS This retrospective study included 475 patients (training cohort, 382; external test cohort, 93) with RC from two participating hospitals between April 2017 and June 2023. In the training cohort, subregion radiomic features were extracted from multiparametric MRI, which included T2-weighted, T1-weighted, diffusion-weighted, and contrast-enhanced T1-weighted imaging. MSI-related subregion radiomic features, classical radiomic features, and clinicoradiological variables were gathered to build five predictive models using logistic regression. Kaplan-Meier survival analysis was conducted to explore the prognostic information. RESULTS Among the 475 patients [median age, 64 years (interquartile range, IQR: 55-70 years); 304 men and 171 women], the prevalence of MSI was 11.16% (53/475). The subregion radiomics model outperformed the classical radiomics and clinicoradiological models in both training [area under the curve (AUC)=0.86, 0.72, and 0.59, respectively] and external test cohorts (AUC=0.83, 0.73, and 0.62, respectively). The subregion-clinicoradiological model combining clinicoradiological variables and subregion radiomic features performed the optimal, with AUCs of 0.87 and 0.85 in the training and external test cohorts, respectively. The 3-year disease-free survival rate of MSI groups predicted based on the model was higher than that of the predicted microsatellite stability groups in both patient cohorts (training, P =0.032; external test, P =0.046). CONCLUSIONS The authors developed and validated a model based on subregion radiomic features of multiparametric MRI to evaluate high-risk subregions with MSI and predict the MSI status of RC preoperatively, which may assist in individualized treatment decisions and positioning for biopsy.
Collapse
Affiliation(s)
- Zhiping Cai
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Zhenyu Xu
- Department of Radiology, The First People’s Hospital of Foshan, Foshan
| | - Yifan Chen
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Rong Zhang
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Baoliang Guo
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Haixiong Chen
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Fusheng Ouyang
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Xinjie Chen
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Xiaobo Chen
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, People’s Republic of China
| | - Dechao Liu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Chun Luo
- Department of Radiology, The First People’s Hospital of Foshan, Foshan
| | - Xiaohong Li
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Wei Liu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Cuiru Zhou
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Xinqun Guan
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Ziwei Liu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| | - Hai Zhao
- Department of Radiology, The First People’s Hospital of Foshan, Foshan
| | - Qiugen Hu
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)
| |
Collapse
|
28
|
Chen H, Jiang RY, Hua Z, Wang XW, Shi XL, Wang Y, Feng QQ, Luo J, Ning W, Shi YF, Zhang DK, Wang B, Jie JZ, Zhong DR. Comprehensive analysis of gene mutations and mismatch repair in Chinese colorectal cancer patients. World J Gastrointest Oncol 2024; 16:2673-2682. [PMID: 38994136 PMCID: PMC11236251 DOI: 10.4251/wjgo.v16.i6.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/12/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described. AIM To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC. METHODS We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression. RESULTS The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors. CONCLUSION This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.
Collapse
Affiliation(s)
- Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui-Ying Jiang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhan Hua
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Wei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Li Shi
- Department of Scientific Research, Geneis, Beijing 100012, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Feng
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Ning
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Da-Kui Zhang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jian-Zheng Jie
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ding-Rong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
29
|
Chen H, Jiang RY, Hua Z, Wang XW, Shi XL, Wang Y, Feng QQ, Luo J, Ning W, Shi YF, Zhang DK, Wang B, Jie JZ, Zhong DR. Comprehensive analysis of gene mutations and mismatch repair in Chinese colorectal cancer patients. World J Gastrointest Oncol 2024; 16:2661-2670. [DOI: 10.4251/wjgo.v16.i6.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RAS, BRAF, and mismatch repair (MMR)/microsatellite instability (MSI) are crucial biomarkers recommended by clinical practice guidelines for colorectal cancer (CRC). However, their characteristics and influencing factors in Chinese patients have not been thoroughly described.
AIM To analyze the clinicopathological features of KRAS, NRAS, BRAF, and PIK3CA mutations and the DNA MMR status in CRC.
METHODS We enrolled 2271 Chinese CRC patients at the China-Japan Friendship Hospital. MMR proteins were tested using immunohistochemical analysis, and the KRAS/NRAS/BRAF/PIK3CA mutations were determined using quantitative polymerase chain reaction. Microsatellite status was determined using an MSI detection kit. Statistical analyses were conducted using SPSS software and logistic regression.
RESULTS The KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 44.6%, 3.4%, 3.7%, and 3.9% of CRC patients, respectively. KRAS mutations were more likely to occur in patients with moderate-to-high differentiation. BRAF mutations were more likely to occur in patients with right-sided CRC, poorly differentiated, or no perineural invasion. Deficient MMR (dMMR) was detected in 7.9% of all patients and 16.8% of those with mucinous adenocarcinomas. KRAS, NRAS, BRAF, and PIK3CA mutations were detected in 29.6%, 1.1%, 8.1%, and 22.3% of patients with dMMR, respectively. The dMMR was more likely to occur in patients with a family history of CRC, aged < 50 years, right-sided CRC, poorly differentiated histology, no perineural invasion, and with carcinoma in situ, stage I, or stage II tumors.
CONCLUSION This study analyzed the molecular profiles of KRAS, NRAS, BRAF, PIK3CA, and MMR/MSI in CRC, identifying key influencing factors, with implications for clinical management of CRC.
Collapse
Affiliation(s)
- Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui-Ying Jiang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhan Hua
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Wei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Li Shi
- Department of Scientific Research, Geneis, Beijing 100012, China
| | - Ye Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Feng
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Luo
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wu Ning
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan-Fen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Da-Kui Zhang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jian-Zheng Jie
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ding-Rong Zhong
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
30
|
Zhang H, Xin H, Zhao M, Bi C, Xiao Y, Li Y, Qin C. Global research trends on the relationship between IBD and CRC: a bibliometric analysis from 2000 to 2023. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:83. [PMID: 38867343 PMCID: PMC11170923 DOI: 10.1186/s41043-024-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE This study aimed to conduct a bibliometric analysis of research articles on the relationship between inflammatory bowel disease (IBD) and colorectal cancer (CRC) using CiteSpace to summarize the current research status, hotspots, and trends in this field and present the results visually. METHOD Research articles on the relationship between IBD and CRC published from 2000 to 2023 and in English were selected from the Web of Science Core Collection (Woscc) database. The articles were downloaded as "full record and references". CiteSpace was used to conduct cooperative, cluster, co-citation, and burst analyses. RESULTS The literature search revealed 4244 articles; of which, 5 duplicates were removed, resulting in the inclusion of 4239 articles in this study. The United States of America had the highest number of publications, with Mayo Clinic and Harvard University being the most active institutions, and Bas Oldenburg being the most active author. Collaboration among core authors was inadequate. JA Eaden was the most cited author, and CRC was the most common keyword. Burst analysis indicated that Sun Yat-sen University might be one of the institutions with a large contribution to this research field in the future. Cluster analysis showed that earlier research focused more on microsatellite instability, whereas "gut microbiota" and "oxidative stress" are considered current research hotspots and trends. CONCLUSION At present, the primary focus areas of research are "gut microbiota" and "oxidative stress". With the improvement of healthcare policies and standards, regular endoscopic monitoring of patients with IBD has become an indispensable diagnostic and therapeutic practice. More drugs will be developed to reduce the risk of progression from IBD to CRC. The findings of this study provide valuable insights into the relationship between IBD and CRC for researchers in the same field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Huiru Xin
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Mengqi Zhao
- Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Chenyang Bi
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yafei Xiao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yifan Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
31
|
Hajjafari A, Sadr S, Rahdar A, Bayat M, Lotfalizadeh N, Dianaty S, Rezaei A, Moghaddam SP, Hajjafari K, Simab PA, Kharaba Z, Borji H, Pandey S. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. INORG CHEM COMMUN 2024; 164:112409. [DOI: 10.1016/j.inoche.2024.112409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
|
32
|
Zhou Z, Lin T, Chen S, Zhang G, Xu Y, Zou H, Zhou A, Zhang Y, Weng S, Han X, Liu Z. Omics-based molecular classifications empowering in precision oncology. Cell Oncol (Dordr) 2024; 47:759-777. [PMID: 38294647 DOI: 10.1007/s13402-023-00912-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
33
|
Xing X, Li D, Peng J, Shu Z, Zhang Y, Song Q. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer. Sci Rep 2024; 14:11760. [PMID: 38783014 PMCID: PMC11116457 DOI: 10.1038/s41598-024-62584-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to develop an optimal radiomics model for preoperatively predicting microsatellite instability (MSI) in patients with rectal cancer (RC) based on multiparametric magnetic resonance imaging. The retrospective study included 308 RC patients who did not receive preoperative antitumor therapy, among whom 51 had MSI. Radiomics features were extracted and dimensionally reduced from T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), and T1-weighted contrast enhanced (T1CE) images for each patient, and the features of each sequence were combined. Multifactor logistic regression was used to screen the optimal feature set for each combination. Different machine learning methods were applied to construct predictive MSI status models. Relative standard deviation values were determined to evaluate model performance and select the optimal model. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses were performed to evaluate model performance. The model constructed using the k-nearest neighbor (KNN) method combined with T2WI and T1CE images performed best. The area under the curve values for prediction of MSI with this model were 0.849 (0.804-0.887), with a sensitivity of 0.784 and specificity of 0.805. The Delong test showed no significant difference in diagnostic efficacy between the KNN-derived model and the traditional logistic regression model constructed using T1WI + DWI + T1CE and T2WI + T1WI + DWI + T1CE data (P > 0.05) and the diagnostic efficiency of the KNN-derived model was slightly better than that of the traditional model. From ROC curve analysis, the KNN-derived model significantly distinguished patients at low- and high-risk of MSI with the optimal threshold of 0.2, supporting the clinical applicability of the model. The model constructed using the KNN method can be applied to noninvasively predict MSI status in RC patients before surgery based on radiomics features from T2WI and T1CE images. Thus, this method may provide a convenient and practical tool for formulating treatment strategies and optimizing individual clinical decision-making for patients with RC.
Collapse
Affiliation(s)
- Xiaowei Xing
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongxue Li
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiaowei Song
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Wang W, Wang R, Han X, Zhang W, Zhu L, Gu Y. Epidemiological and clinicopathological features of KRAS, NRAS, BRAF mutations and MSI in Chinese patients with stage I-III colorectal cancer. Medicine (Baltimore) 2024; 103:e37693. [PMID: 38579072 PMCID: PMC10994587 DOI: 10.1097/md.0000000000037693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
The selection of appropriate treatment modalities based on the presence or absence of mutations in KRAS, NRAS, BRAF, and the microsatellite instability (MSI) status has become a crucial consensus in colorectal cancer (CRC) therapy. However, the distribution pattern of these genetic mutations and the prevalence of MSI status in Chinese stage I-III CRCs remain unclear. We retrospectively analyzed clinicopathological features, mutations in the KRAS, NRAS, and BRAF genes, as well as MSI status of 411 patients with stage I-III CRC who underwent surgery from June 2020 to December 2022 in the First Affiliated Hospital of Nanjing Medical University. The mutation rates of KRAS, NRAS, and BRAF were 48.9%, 2.2%, and 3.2%, respectively, and the microsatellite instability-high rate was 9.5%. KRAS mutation was independently associated with mucinous adenocarcinoma. Multivariate analysis suggested that tumor location and mucinous adenocarcinoma were independently associated with BRAF mutation. Only T stage was associated with NRAS mutations in the univariate analysis. Multivariate analysis revealed that factors such as larger tumor size, tumor location, younger age, and poor differentiation were independently associated with microsatellite instability-high status. The results illustrate the mutation frequencies of KRAS, NRAS, BRAF genes and MSI status in stage I-III CRC from the eastern region of China. These findings further validate the associations between these genes status and various clinicopathological characteristics.
Collapse
Affiliation(s)
- Weicheng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Bian X, Sun Q, Wang M, Dong H, Dai X, Zhang L, Fan G, Chen G. Preoperative prediction of microsatellite instability status in colorectal cancer based on a multiphasic enhanced CT radiomics nomogram model. BMC Med Imaging 2024; 24:77. [PMID: 38566000 PMCID: PMC10988858 DOI: 10.1186/s12880-024-01252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND To investigate the value of a nomogram model based on the combination of clinical-CT features and multiphasic enhanced CT radiomics for the preoperative prediction of the microsatellite instability (MSI) status in colorectal cancer (CRC) patients. METHODS A total of 347 patients with a pathological diagnosis of colorectal adenocarcinoma, including 276 microsatellite stabilized (MSS) patients and 71 MSI patients (243 training and 104 testing), were included. Univariate and multivariate regression analyses were used to identify the clinical-CT features of CRC patients linked with MSI status to build a clinical model. Radiomics features were extracted from arterial phase (AP), venous phase (VP), and delayed phase (DP) CT images. Different radiomics models for the single phase and multiphase (three-phase combination) were developed to determine the optimal phase. A nomogram model that combines clinical-CT features and the optimal phasic radscore was also created. RESULTS Platelet (PLT), systemic immune inflammation index (SII), tumour location, enhancement pattern, and AP contrast ratio (ACR) were independent predictors of MSI status in CRC patients. Among the AP, VP, DP, and three-phase combination models, the three-phase combination model was selected as the best radiomics model. The best MSI prediction efficacy was demonstrated by the nomogram model built from the combination of clinical-CT features and the three-phase combination model, with AUCs of 0.894 and 0.839 in the training and testing datasets, respectively. CONCLUSION The nomogram model based on the combination of clinical-CT features and three-phase combination radiomics features can be used as an auxiliary tool for the preoperative prediction of the MSI status in CRC patients.
Collapse
Affiliation(s)
- Xuelian Bian
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Qi Sun
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Mi Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Hanyun Dong
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Xiaoxiao Dai
- Department of Pathlogy, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China
| | - Guangqiang Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, 215004, Suzhou, Jiangsu, China.
| |
Collapse
|
36
|
Luo Q, Quan Y, Liu W, Wu Z, Qiu W, Liang W, Yang P, Huang Q, Li G, Wei J, Wang Q, Shen F, Li W, He F, Cao J. Seed and Soil: Consensus Molecular Subgroups (CMS) and Tumor Microenvironment Features Between Primary Lesions and Metastases of Different Organ Sites in Colorectal Cancer. Cancer Manag Res 2024; 16:225-243. [PMID: 38525373 PMCID: PMC10961079 DOI: 10.2147/cmar.s441675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Consensus molecular subtypes (CMS) are mainly used for biological interpretability and clinical stratification of colorectal cancer (CRC) in primary tumors (PT) but few in metastases. The heterogeneity of CMS distribution in metastases and the concordance of CMS between PT and metastases still lack sufficient study. We used CMS to classify CRC metastases and combine it with histopathological analysis to explore differences between PT and distant metastases. Patients and Methods We obtained gene expression profiles for 942 PT samples from TCGA database (n=376) and GEO database (n=566), as well as 442 metastasis samples from GEO database. Among these, 765 PT samples and 442 metastasis samples were confidently identified with CMS using the "CMS classifier" and enrolled for analysis. Clinicopathological manifestation and CMS classification of CRC metastases were assessed with data from GEO, TCGA, and cBioPortal. Overall, 105 PT-metastasis pairs were extracted from 10 GEO datasets to assess CMS concordance. Tumor microenvironment (TME) features between PT and metastases were analyzed by immune-stromal infiltration with ESTIMATE and xCell algorithms. Finally, TME features were validated with multiplex immunohistochemistry in 27 PT-metastasis pairs we retrospectively collected. Results Up to 64% of CRC metastases exhibited concordant CMS groups with matched PT, and the TME of metastases was similar to that of PT. For most common distant metastases, liver metastases were predominantly CMS2 and lung and peritoneal metastases were mainly CMS4, highlighting "seed" of tumor cells of different CMS groups had a preference for metastasis to "soil" of specific organs. Compared with PT, cancer-associated fibroblasts (CAF) reduced in liver metastases, CD4+T cells and M2-like macrophages increased in lung metastases, and M2-like macrophages and CAF increased in peritoneal metastases. Conclusion Our findings underscore the importance of CMS-guided specific organ monitoring and treatment post-primary tumor surgery for patients. Differences in immune-stromal infiltration among different metastases provide targeted therapeutic opportunities for metastatic CRC.
Collapse
Affiliation(s)
- Qingqing Luo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Yibo Quan
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Wei Liu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Zixin Wu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Wenjing Qiu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Wenlong Liang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Ping Yang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Qing Huang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Guanwei Li
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Jianchang Wei
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Qiang Wang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Fei Shen
- Department of Thyroid Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Wanglin Li
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Feng He
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Jie Cao
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| |
Collapse
|
37
|
Yang Z, Gao J, Zheng J, Han J, Li A, Liu G, Sun Y, Zhang J, Chen G, Xu R, Zhang X, Liu Y, Bai Z, Deng W, He W, Yao H, Zhang Z. Efficacy and safety of PD-1 blockade plus long-course chemoradiotherapy in locally advanced rectal cancer (NECTAR): a multi-center phase 2 study. Signal Transduct Target Ther 2024; 9:56. [PMID: 38462629 PMCID: PMC10925604 DOI: 10.1038/s41392-024-01762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Adding PD-1 blockade in the neoadjuvant regimens for locally advanced rectal cancer (LARC) patients with microsatellite stable (MSS) / mismatch repair-proficient (pMMR) tumors is an attractive, but debatable strategy. This phase 2, multicenter, prospective, single-arm study enrolled patients from 6 centers from June 2021 to November 2022. Locally advanced rectal cancer (LARC, cT3-4aN0M0 and cT1-4aN1-2M0) patients aged ≥18 years with the distance from distal border of tumor to anal verge ≤10 cm (identified by Magnetic Resonance Imaging) were qualified for inclusion. The patients received long-course radiotherapy (50 Gy/25 fractions, 2 Gy/fraction, 5 days/week) and three 21-day cycles capecitabine (850-1000 mg/m2, bid, po, day1-14) and three 21-day cycles tislelizumab (200 mg, iv.gtt, day8) as neoadjuvant. Total mesorectal excision (TME) was 6-12 weeks after the end of radiotherapy to achieve radical resection. A total of 50 patients were enrolled in this study. The pathological complete response rate was 40.0% [20/50, 95% confidence interval (CI): 27.61-53.82%], while 15 (30.0%, 95% CI: 19.1-43.75%), 9 (18.0%, 95% CI: 9.77-30.8%), 2 (4.0%, 95% CI: 1.10-13.46%) patients respectively achieved grade 1, 2, and 3 tumor regression. Treatment-related adverse events (TRAEs) occurred in 28 (56.0%) LARC patients, including 26(52.0%) with grade I-II and 2 (4.0%) with grade III (1 with grade 3 immune-related colitis and 1 with grade 3 rash). PD-1 blockade plus long-course chemoradiotherapy (CRT) showed promising therapeutic effects according to pathological complete response rate and is well-tolerated in LARC patients. A larger randomized controlled study is desired to further validate the above findings.
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei He
- Department of Thoracic Surgery / Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
38
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
39
|
He Y, Lu F, Jiang C, Gong F, Wu Z, Ostrikov K. Cold atmospheric plasma stabilizes mismatch repair for effective, uniform treatment of diverse colorectal cancer cell types. Sci Rep 2024; 14:3599. [PMID: 38351129 PMCID: PMC10864286 DOI: 10.1038/s41598-024-54020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Mismatch Repair (MMR) mechanisms play a pivotal role in rectifying DNA replication errors and maintaining the stability of DNA microsatellite structure. Colorectal cancer (CRC) can be characterized into microsatellite stability (MSS) and microsatellite instability (MSI) subtypes based on the functionality of MMR. MSI CRC notably exhibits enhanced chemotherapy resistance, attributable to diminished MMR-related protein expression. Cold atmospheric plasma (CAP) has emerged as a promising treatment modality, demonstrating efficacy in inducing apoptosis in various cancer cells. However, the therapeutic impact of CAP on MSI colorectal cancer, and the underlying mechanisms remain elusive. In this study, we investigated the effects of CAP on MSI (MC38, HCT116, and LOVO) and MSS (CT26 and HT29) CRC cell lines. We are probing into the products of CAP treatment. Our findings indicate that CAP treatment induces comparable effects on apoptosis, reactive oxygen species (ROS), and reactive nitrogen species (RNS), as well as the expression of apoptosis-related proteins in both MSI and MSS cells. Mechanistically, CAP treatment led to an elevation in the expression of mismatch repair proteins (MLH1 and MSH2), particularly in MSI cells, which notably have been proven to facilitate the activation of apoptosis-related proteins. Collectively, our study reveals that CAP enhances apoptotic signaling and induces apoptosis in MSI colorectal cancer cells by upregulating the expression of MMR-related proteins, thereby reinforcing MMR stabilization.
Collapse
Affiliation(s)
- Yuanyuan He
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Fu Lu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Chenmin Jiang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fanwu Gong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Kostya Ostrikov
- School of Chemistry and Physics and QUT Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
40
|
Reynolds T, Riddick G, Meyers G, Gordon M, Flores Monar GV, Moon D, Moon C. Results Obtained from a Pivotal Validation Trial of a Microsatellite Analysis (MSA) Assay for Bladder Cancer Detection through a Statistical Approach Using a Four-Stage Pipeline of Modern Machine Learning Techniques. Int J Mol Sci 2023; 25:472. [PMID: 38203643 PMCID: PMC10778918 DOI: 10.3390/ijms25010472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Several studies have shown that microsatellite changes can be profiled in urine for the detection of bladder cancer. The use of microsatellite analysis (MSA) for bladder cancer detection requires a comprehensive analysis of as many as 15 to 20 markers, based on the amplification and interpretations of many individual MSA markers, and it can be technically challenging. Here, to develop fast, more efficient, standardized, and less costly MSA for the detection of bladder cancer, we developed three multiplex-polymerase-chain-reaction-(PCR)-based MSA assays, all of which were analyzed via a genetic analyzer. First, we selected 16 MSA markers based on 9 selected publications. Based on samples from Johns Hopkins University (the JHU sample, the first set sample), we developed an MSA based on triplet, three-tube-based multiplex PCR (a Triplet MSA assay). The discovery, validation, and translation of biomarkers for the early detection of cancer are the primary focuses of the Early Detection Research Network (EDRN), an initiative of the National Cancer Institute (NCI). A prospective study sponsored by the EDRN was undertaken to determine the efficacy of a novel set of MSA markers for the early detection of bladder cancer. This work and data analysis were performed through a collaboration between academics and industry partners. In the current study, we undertook a re-analysis of the primary data from the Compass study to enhance the predictive power of the dataset in bladder cancer diagnosis. Using a four-stage pipeline of modern machine learning techniques, including outlier removal with a nonlinear model, correcting for majority/minority class imbalance, feature engineering, and the use of a model-derived variable importance measure to select predictors, we were able to increase the utility of the original dataset to predict the occurrence of bladder cancer. The results of this analysis showed an increase in accuracy (85%), sensitivity (82%), and specificity (83%) compared to the original analysis. The re-analysis of the EDRN study results using machine learning statistical analysis proved to achieve an appropriate level of accuracy, sensitivity, and specificity to support the use of the MSA for bladder cancer detection and monitoring. This assay can be a significant addition to the tools urologists use to both detect primary bladder cancers and monitor recurrent bladder cancer.
Collapse
Affiliation(s)
- Thomas Reynolds
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA; (T.R.); (G.M.)
| | - Gregory Riddick
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA; (T.R.); (G.M.)
| | - Gregory Meyers
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA; (T.R.); (G.M.)
| | - Maxie Gordon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA; (M.G.)
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | | | - David Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA; (M.G.)
| | - Chulso Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA; (M.G.)
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Reynolds T, Bertsche K, Moon D, Moon C. Qualification of the Microsatellite Instability Analysis (MSA) for Bladder Cancer Detection: The Technical Challenges of Concordance Analysis. Int J Mol Sci 2023; 25:209. [PMID: 38203379 PMCID: PMC10779061 DOI: 10.3390/ijms25010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Bladder cancer (here we refer to transitional carcinoma of bladder) is a major cause of morbidity and mortality in the Western world, and recent understanding of its etiology, the molecular characteristics associated with its progression, renders bladder cancer an ideal candidate for screening. Cystoscopy is invasive and sometimes carries unwanted complications, but it is the gold standard for the detection of bladder cancer. Urine cytology, while the most commonly used test as an initial screening tool, is of limited value due to its low sensitivity, particularly for low-grade tumors. Several new "molecular assays" for the diagnosis of urothelial cancer have been developed over the last two decades. Here, we have established our new bladder cancer test based on an assay established for the Early Detection Research Network (EDRN) study. As a part of the study, a quality control CLIA/College of American Pathology (CAP) accredited laboratory, (QA Lab), University of Maryland Baltimore Biomarker Reference Laboratory (UMB-BRL), performed quality assurance analysis. Quality assurance measures included a concordance study between the testing laboratory (AIBioTech), also CLIA/CAP accredited, and the QA lab to ensure that the assay was performed and the results were analyzed in a consistent manner. Therefore, following the technical transfer and training of the microsatellite analysis assay to the UMB-BRL and prior to the initiation of analysis of the clinical samples by the testing lab, a series of qualification studies were performed. This report details the steps taken to ensure qualification of the assay and illustrates the technical challenges facing biomarker validation of this kind.
Collapse
Affiliation(s)
- Thomas Reynolds
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VI 23831, USA
| | - Katie Bertsche
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VI 23831, USA
| | - David Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | - Chulso Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA
| |
Collapse
|
42
|
Chen H, Zhai C, Xu X, Wang H, Han W, Shen J. Multilevel Heterogeneity of Colorectal Cancer Liver Metastasis. Cancers (Basel) 2023; 16:59. [PMID: 38201487 PMCID: PMC10778489 DOI: 10.3390/cancers16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is a highly heterogeneous disease. Therapies that target both primary foci and liver metastasis are severely lacking. Therefore, understanding the features of metastatic tumor cells in the liver is valuable for the overall control of CRLM patients. In this review, we summarize the heterogeneity exhibited in CRLM from five aspects (gene, transcriptome, protein, metabolism, and immunity). In addition to genetic heterogeneity, the other four aspects exhibit significant heterogeneity. Compared to primary CRC, the dysregulation of epithelial-mesenchymal transition (EMT)-related proteins, the enhanced metabolic activity, and the increased infiltration of immunosuppressive cells are detected in CRLM. Preclinical evidence shows that targeting the EMT process or enhancing cellular metabolism may represent a novel approach to increasing the therapeutic efficacy of CRLM.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| |
Collapse
|
43
|
Cao Y, Wang J, Hou W, Ding Y, Zhu Y, Zheng J, Huang Q, Cao Z, Xie R, Wei Q, Qin H. Colorectal cancer-associated T cell receptor repertoire abnormalities are linked to gut microbiome shifts and somatic cell mutations. Gut Microbes 2023; 15:2263934. [PMID: 37795995 PMCID: PMC10557533 DOI: 10.1080/19490976.2023.2263934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRβ repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRβ clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jifeng Wang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yefei Zhu
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qiongyi Huang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhan Cao
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
44
|
Tsimberidou AM, Kahle M, Vo HH, Baysal MA, Johnson A, Meric-Bernstam F. Molecular tumour boards - current and future considerations for precision oncology. Nat Rev Clin Oncol 2023; 20:843-863. [PMID: 37845306 DOI: 10.1038/s41571-023-00824-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Over the past 15 years, rapid progress has been made in developmental therapeutics, especially regarding the use of matched targeted therapies against specific oncogenic molecular alterations across cancer types. Molecular tumour boards (MTBs) are panels of expert physicians, scientists, health-care providers and patient advocates who review and interpret molecular-profiling results for individual patients with cancer and match each patient to available therapies, which can include investigational drugs. Interpretation of the molecular alterations found in each patient is a complicated task that requires an understanding of their contextual functional effects and their correlations with sensitivity or resistance to specific treatments. The criteria for determining the actionability of molecular alterations and selecting matched treatments are constantly evolving. Therefore, MTBs have an increasingly necessary role in optimizing the allocation of biomarker-directed therapies and the implementation of precision oncology. Ultimately, increased MTB availability, accessibility and performance are likely to improve patient care. The challenges faced by MTBs are increasing, owing to the plethora of identifiable molecular alterations and immune markers in tumours of individual patients and their evolving clinical significance as more and more data on patient outcomes and results from clinical trials become available. Beyond next-generation sequencing, broader biomarker analyses can provide useful information. However, greater funding, resources and expertise are needed to ensure the sustainability of MTBs and expand their outreach to underserved populations. Harmonization between practice and policy will be required to optimally implement precision oncology. Herein, we discuss the evolving role of MTBs and current and future considerations for their use in precision oncology.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael Kahle
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet A Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Johnson
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Yu J, Yang M, Peng T, Liu Y, Cao Y. Evaluation of cell surface vimentin positive circulating tumor cells as a prognostic biomarker for stage III/IV colorectal cancer. Sci Rep 2023; 13:18791. [PMID: 37914786 PMCID: PMC10620146 DOI: 10.1038/s41598-023-45951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Currently, little is known about the phenotypes of circulating tumor cells (CTCs), particularly epithelial and mesenchymal phenotypes, and their impact on the prognosis of colorectal cancer (CRC) patients. This study aims to investigate the CTC phenotypes and their prognostic implications in stage III/IV CRC. Patients who were diagnosed with CRC and underwent CTC detection at two hospitals were included. CTCs were detected using a mesenchymal CTC kit, and the clinical and pathological characteristics of CTCs were compared with those of cell surface vimentin-positive CTCs (CSV-CTCs). Disease-free survival (DFS) was assessed and used as an indicator of CTC phenotype-related prognosis. Univariate and multivariate Cox regression analyses were made to identify risk factors, and nomogram models were employed for prognostic prediction. A total of 82 patients were enrolled, with a CTC detection rate of 86.6%. Among the detected CTCs, 60% were CSV-CTCs. The CSV-CTC count showed a positive correlation with the T-stage, the M-stage, and the location of the primary tumor (P = 0.01, P = 0.014, and P = 0.01, respectively). Kaplan-Meier survival analysis revealed that CSV-CTCs were associated with worse DFS in patients receiving first-line oxaliplatin chemotherapy (hazard ratio (HR) = 3.78, 95% CI 1.55-9.26, p = 0.04). When the cut-off value of the CSV-CTC count was 3, the optimal prognostic prediction was achieved. Compound models considering CSV-CTCs, TNM staging, the site of the primary tumor and the Ras gene status yielded the best results in both the receiver operating characteristic (ROC) analysis and the decision curve analysis (DCA). This study indicates that CSV-CTCs predominate in CTCs of CRC patients, and a count of CSV-CTCs ≥ 3 is an independent risk factor for worse prognosis.
Collapse
Affiliation(s)
- Jiazi Yu
- Department of Colorectal Surgery, Ningbo Medical Centre Li Huili Hospital, Ningbo, People's Republic of China
- Department of General Surgery, Ningbo Medical Treatment Centre Li Huili Hospital, 1111 Jiangnan Road, Ningbo, 315000, People's Republic of China
| | - Mian Yang
- Department of Colorectal Surgery, Ningbo Medical Centre Li Huili Hospital, Ningbo, People's Republic of China
| | - Tao Peng
- Department of Colorectal Surgery, Ningbo Medical Centre Li Huili Hospital, Ningbo, People's Republic of China
| | - Yelei Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yuepeng Cao
- Department of Colorectal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China.
| |
Collapse
|
46
|
Yue Y, Cheng M, Xi X, Wang Q, Wei M, Zheng B. Can neoadjuvant chemoradiotherapy combined with immunotherapy benefit patients with microsatellite stable locally advanced rectal cancer? a pooled and integration analysis. Front Oncol 2023; 13:1280995. [PMID: 37869097 PMCID: PMC10588447 DOI: 10.3389/fonc.2023.1280995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Objective To assess the clinical efficacy of neoadjuvant chemoradiotherapy combined with immunotherapy for patients with microsatellite stable (MSS) locally advanced rectal cancer and provide evidence to support clinical decision-making. Methods A systematic search was conducted on the PubMed, Embase, Cochrane Collaboration databases, conference summaries, and Chinese databases for clinical studies that investigated neoadjuvant chemoradiotherapy combined with immunotherapy for the treatment of locally advanced rectal cancer with MSS status. The search spanned from the inception of each database through July 2023. Data from the identified studies were extracted using a pre-designed table, and efficacy outcomes were analyzed. An integrated analysis was conducted using Stata 12.0 software. Results Eight studies were included, comprising 204 patients with locally advanced MSS rectal cancer who received chemoradiotherapy combined with immunotherapy. The integrated analysis revealed a pathologic complete remission rate of 0.33, a sphincter preservation rate of 0.86, an R0 resection rate of 0.83, a major pathologic remission rate of 0.33, and a clinical complete remission rate of 0.30. Conclusion Neoadjuvant chemoradiotherapy combined with immunotherapy demonstrates significant short-term efficacy in MSS-type locally advanced rectal cancer, notably enhancing the pathologic complete remission and sphincter preservation rates. This combination is a recommended treatment for patients with MSS-type rectal cancer.
Collapse
Affiliation(s)
- Yumin Yue
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Min Cheng
- Department of Colorectal Surgery, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Xiaohui Xi
- Department of Colorectal Surgery, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Quan Wang
- Ambulatory Surgery Center of Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bobo Zheng
- Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
47
|
Reynolds T, Gordon M, Monar GVF, Moon D, Moon C. Development of Multiplex Polymerase Chain Reaction (PCR)-Based MSA Assay for Bladder Cancer Detection. Int J Mol Sci 2023; 24:13651. [PMID: 37686456 PMCID: PMC10488090 DOI: 10.3390/ijms241713651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Several studies have shown that microsatellite changes can be profiled in the urine to detect bladder cancer. Microsatellite analysis (MSA) of bladder cancer detection requires a comprehensive analysis of up to 15-20 markers based on amplifying and interpreting many individual MSA markers, which can be technically challenging. To develop fast, efficient, standardized, and less costly MSA to detect bladder cancer, we developed three multiplex polymerase chain reaction (PCR) based MSA assays, all of which were analyzed by a genetic analyzer. First, we selected 16 MSA markers based on nine publications. We developed MSA assays based on triplet or three-tube-based multiplex PCR (Triplet MSA assay) using samples from Johns Hopkins University (JHU Sample, first set of samples). In the second set of samples (samples from six cancer patients and fourteen healthy individuals), our Triplet Assay with 15 MSA markers correctly predicted all 6/6 cancer samples to be cancerous and 14/14 healthy samples to be healthy. Although we could improve our report with more clinical information from patient samples and an increased number of cancer patients, our overall results suggest that our Triplet MSA Assay combined with a genetic analyzer is a potentially time- and cost-effective genetic assay for bladder cancer detection and has potential use as a dependable assay in patient care.
Collapse
Affiliation(s)
- Thomas Reynolds
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA
| | - Maxie Gordon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | | | - David Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | - Chulso Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Lin Y, Luo S, Luo M, Lu X, Li Q, Xie M, Huang Y, Liao X, Zhang Y, Li Y, Liang R. Homologous recombination repair gene mutations in colorectal cancer favors treatment of immune checkpoint inhibitors. Mol Carcinog 2023; 62:1271-1283. [PMID: 37232365 DOI: 10.1002/mc.23562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy is insensitive for Colorectal cancer (CRC) patients with microsatellite stable (MSS). Genomic data of three CRC cohort, n = 35), and the Cancer Genome Atlas (TCGA CRC cohort, n = 377), were analyzed. A cohort treated with ICIs from Memorial Sloan Kettering Cancer Center (MSKCC CRC cohort, n = 110) and two cases from the local hospital were characterized the impact of the HRR mutation on prognosis of CRC. Homologous recombination repair (HRR) gene mutations were more common in CN and HL cohorts (27.85%; 48.57%) than in TCGA CRC cohort (15.92%), especially in the MSS populations, the frequencies of HRR mutation were higher in CN and HL cohort (27.45%, 51.72%) than in TCGA cohort (6.85%). HRR mutations were associated with high tumor mutational burden (TMB-H). Although HRR mutation uncorrelated with an improved overall survival in the MSKCC CRC cohort (p = 0.97), HRR mutated patients had a significantly improved OS compared to the HRR wildtype population particularly in MSS subgroups (p = 0.0407) under ICI treatment. It probably contributed by a higher neoantigen and increased CD4+ T cell infiltration which found in the TCGA MSS HRR mutated CRC cohort. The similar phenomenon on cases was observed that MSS metastatic CRC patient with HRR mutation seemed more sensitive to ICI after multi-line chemotherapy in clinical practice than HRR wildtype. This finding suggests the feasibility of HRR mutation as an immunotherapy response predictor in MSS CRC, which highlights a potential therapeutic approach for these patients.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Shanshan Luo
- Department of Gastrointestinal Gland Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Min Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Xuerou Lu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Qian Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Mingzhi Xie
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yu Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Xiaoli Liao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
49
|
Han Q, Zeng H, Xu W, Wu M. Neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer: Current status and future prospects. Shijie Huaren Xiaohua Zazhi 2023; 31:615-621. [DOI: 10.11569/wcjd.v31.i15.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023] Open
Abstract
Immunotherapy, particularly programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) inhibitors, has made revolutionary progress in the treatment strategies for various types of cancer. Regarding colorectal cancer (CRC), the current clinical application of PD-1/PD-L1 inhibitors is primarily categorized based on mutation patterns, including deficient mismatch repair (dMMR)/high microsatellite instability (MSI-H) and proficient mismatch repair (pMMR) or non-high microsatellite instability (non-MSI-H). PD-1/PD-L1 inhibitors have demonstrated good efficacy against dMMR/MSI-H CRC by increasing T-cell infiltration into tumor tissues. However, the effectiveness of PD-1/PD-L1 inhibitors for pMMR/non-MSI-H CRC remains uncertain. Due to the lower prevalence of dMMR/MSI-H in CRC, recent clinical trials have reported combined applications of PD-1/PD-L1 inhibitors with other anti-tumor treatments such as chemotherapy, radiotherapy, and targeted therapy to achieve better therapeutic outcomes. Neoadjuvant therapy, primarily consisting of chemotherapy and radiotherapy, not only downstages the tumor but also provides benefits from local control, thus improving clinical symptoms and quality of life. Integrating immunotherapy into neoadjuvant therapy may alter the treatment approach for potentially resectable or certain metastatic CRC cases. In this article, we focus on the development of neoadjuvant anti-PD-1/PD-L1 therapy and discuss its future prospects for the treatment of CRC.
Collapse
Affiliation(s)
- Qu Han
- First Department of General Surgery, Fengcheng City People's Hospital, Fengcheng 331100, Jiangxi Province, China
| | - Hui Zeng
- First Department of General Surgery, Fengcheng City People's Hospital, Fengcheng 331100, Jiangxi Province, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mo Wu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
50
|
Han L, Zhang Y, Li L, Zhang Q, Liu Z, Niu H, Hu J, Ding Z, Shi X, Qian X. Exploring the Expression and Prognosis of Mismatch Repair Proteins and PD-L1 in Colorectal Cancer in a Chinese Cohort. Cancer Manag Res 2023; 15:791-801. [PMID: 37575316 PMCID: PMC10417781 DOI: 10.2147/cmar.s417470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Exploring the expression and prognosis of mismatch repair proteins and PD-L1 in colorectal cancer. Patients and Methods A total of 272 patients with surgically resected CRC were enrolled in the study from January 2018 to May 2022 at Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School). Surgically resected samples were collected from patients along with general, clinicopathological, and imaging data for each patient. Immunohistochemistry (IHC) was used to detect expression of MSH2, MSH6, MLH1, and PMS2 proteins in tumor tissue. X-squared (X2) testing was performed to investigate the correlation between expression of MMR proteins and PD-L1 in CRC tumor tissues and clinicopathological characteristics. Correlation analysis was also used to compare the deletion of four MMR proteins in CRC tumor tissues. A survival curve and Log rank test were used to investigate the relationship between the expression of MMR proteins and PD-L1 with regard to CRC patient prognosis and survival. Results MMR protein expression deletion was correlated with tumor location, the degree of tissue differentiation, and TNM stage (P<0.05). PD-L1 expression was correlated with TNM stage (P<0.05). Correlation analysis of deletion of MMR protein isoform expression found that PMS2 deletion was significantly correlated with MLH1 deletion (P<0.05). Similarly, MSH2 deletion was significantly correlated with MSH6 deletion (P<0.05). PMS2 deletion was also found to be correlated with PD-L1 expression (P<0.05). Progression-free survival was found to be significantly longer in mismatch repair-proficient (pMMR) patients compared with mismatch repair-deficient (dMMR) patients. Conclusion Deletion of MMR proteins and expression of PD-L1 are closely related to clinicopathological characteristics and overall prognosis of CRC patients. This suggests the relevance of MMR and PD-L1 as potential biomarkers for treatment of CRC patients.
Collapse
Affiliation(s)
- Lu Han
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yaping Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, People’s Republic of China
- Department of Pathology, The First People’s Hospital of Yangzhou, Yangzhou, People’s Republic of China
| | - Li Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Qun Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Zhihao Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, People’s Republic of China
| | - Haiqing Niu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Zhou Ding
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xiao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|