1
|
Zhu S, Cui H, Pan Y, Popple D, Xie G, Fink Z, Han J, Zettl A, Cheung Shum H, Russell TP. Responsive-Hydrogel Aquabots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401215. [PMID: 39075829 PMCID: PMC11422812 DOI: 10.1002/advs.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Indexed: 07/31/2024]
Abstract
It remains a challenge to produce soft robots that can mimic the responsive adaptability of living organisms. Rather than fabricating soft robots from bulk hydrogels,hydrogels are integrated into the interfacial assembly of aqueous two-phase systems to generate ultra-soft and elastic all-aqueous aquabots that exhibit responsive adaptability, that can shrink on demand and have electrically conductive functions. The adaptive functions of the aquabots provide a new platform to develop minimally invasive surgical devices, targeted drug delivery systems, and flexible electronic sensors and actuators.
Collapse
Affiliation(s)
- Shipei Zhu
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Huanqing Cui
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
| | - Yi Pan
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
- Institute of Biomedical EngineeringCollege of MedicineSouthwest Jiaotong UniversityChengdu610031P. R. China
| | - Derek Popple
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of PhysicsUniversity of California BerkeleyBerkeleyCA94720USA
- Department of ChemistryUniversity of California BerkeleyBerkeleyCA94720USA
| | - Ganhua Xie
- State Key Laboratory for Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Zachary Fink
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
| | - Jiale Han
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of California BerkeleyBerkeleyCA94720USA
| | - Alex Zettl
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of PhysicsUniversity of California BerkeleyBerkeleyCA94720USA
| | - Ho Cheung Shum
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongP. R. China
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong Kong (SAR)999077P. R. China
| | - Thomas P Russell
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Department of Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstMA01003USA
- Advanced Institute for Materials Research (AIMR)Tohoku University2‐1‐1 Katahira, AobaSendai980‐8577Japan
| |
Collapse
|
2
|
Salvador B, Cabanellas‐Reboredo M, Garci ME, González ÁF, Hernández‐Urcera J. The best defense is a good offense: Anti-predator behavior of the common octopus ( Octopus vulgaris) against conger eel attacks. Ecol Evol 2024; 14:e11107. [PMID: 38510541 PMCID: PMC10951491 DOI: 10.1002/ece3.11107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
We present the description of defensive behavior in wild Octopus vulgaris against conger eel (Conger conger) attacks based on three video sequences recorded by recreational SCUBA divers in the eastern Atlantic off the coast of Galicia (NW Spain) and in the Cantabrian Sea (NW Spain). These records document common traits in defensive behavior: (1) the octopuses enveloped the conger eel's head to obscure its view; (2) they covered the eel's gills in an attempt to suffocate it; (3) they released ink; (4) the octopuses lost some appendages because of the fight. In the third video, the octopus did not exhibit the defensive behavior described in the first two videos due to an inability to utilize its arms in defense, and the conger eel's success in capturing octopuses is discussed. Additionally, both the cost that the octopus could face by losing some arms during the fight and whether the experience it acquires can be an advantage for future encounters are analyzed. The defensive behavior exhibited by octopuses in this study highlights their ability to survive in a hostile environment and serves as an example of the extensive repertoire of anti-predator strategies employed by these cephalopods.
Collapse
Affiliation(s)
- Beatriz Salvador
- ECOBIOMAR Research GroupInstitute of Marine Research (IIM‐CSIC)VigoSpain
| | | | - Manuel E. Garci
- ECOBIOMAR Research GroupInstitute of Marine Research (IIM‐CSIC)VigoSpain
| | - Ángel F. González
- ECOBIOMAR Research GroupInstitute of Marine Research (IIM‐CSIC)VigoSpain
| | | |
Collapse
|
3
|
Imran MAS, Carrera M, Pérez-Polo S, Pérez J, Barros L, Dios S, Gestal C. Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches. Mar Drugs 2023; 21:md21040206. [PMID: 37103345 PMCID: PMC10142993 DOI: 10.3390/md21040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In addition, they serve as model species for biomedical and behavioral studies. Body parts of marine species are usually removed before reaching the final consumer as by-products in order to improve preservation, reduce shipping weight, and increase product quality. These by-products have recently attracted increasing attention due to the discovery of several relevant bioactive compounds. Particularly, the common octopus ink has been described as having antimicrobial and antioxidant properties, among others. In this study, the advanced proteomics discipline was applied to generate a common octopus reference proteome to screen potential bioactive peptides from fishing discards and by-products such as ink. A shotgun proteomics approach by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap Elite instrument was used to create a reference dataset from octopus ink. A total of 1432 different peptides belonging to 361 non-redundant annotated proteins were identified. The final proteome compilation was investigated by integrated in silico studies, including gene ontology (GO) term enrichment, pathways, and network studies. Different immune functioning proteins involved in the innate immune system, such as ferritin, catalase, proteasome, Cu/Zn superoxide dismutase, calreticulin, disulfide isomerase, heat shock protein, etc., were found in ink protein networks. Additionally, the potential of bioactive peptides from octopus ink was addressed. These bioactive peptides can exert beneficial health properties such as antimicrobial, antioxidant, antihypertensive, and antitumoral properties and are therefore considered lead compounds for developing pharmacological, functional foods or nutraceuticals.
Collapse
|
4
|
Kwon KM, Pak JH, Jeon CJ. Immunocytochemical localization of the AMPA glutamate receptor subtype GluR2/3 in the squid optic lobe. Acta Histochem 2022; 124:151941. [PMID: 35963117 DOI: 10.1016/j.acthis.2022.151941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
As a major excitatory neurotransmitter in the cephalopod visual system, glutamate signaling is facilitated by ionotropic receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR). In cephalopods with large and well-developed brains, the optic lobes (OL) mainly process visual inputs and are involved in learning and memory. Although the presence of AMPAR in squid OL has been reported, the organization of specific AMPAR-containing neurons remains unknown. This study aimed to investigate the immunocytochemical localization of the AMPA glutamate receptor subtype 2/3-immunoreactive (GluR2/3-IR) neurons in the OL of Pacific flying squid (Tordarodes pacificus). Morphologically diverse GluR2/3-IR neurons were predominantly located in the tangential zone of the medulla. Medium-to-large GluR2/3-IR neurons were also detected. The distribution patterns and cell morphologies of calcium-binding protein (CBP)-IR neurons, specifically calbindin-D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-IR neurons, were similar to those of GluR2/3-IR neurons. However, two-color immunofluorescence revealed that GluR2/3-IR neurons did not colocalize with the CBP-IR neurons. Furthermore, the specific localizations and diverse types of GluR2/3-IR neurons that do not express CB, CR, or PV in squid OL were determined. These findings further contribute to the existing data on glutamatergic visual systems and provide new insights for understanding the visual processing mechanisms in cephalopods.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Jacobs RE. Diffusion MRI Connections in the Octopus Brain. Exp Neurobiol 2022; 31:17-28. [PMID: 35256541 PMCID: PMC8907252 DOI: 10.5607/en21047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
Using high angle resolution diffusion magnetic resonance imaging (HARDI) with fiber tractography analysis we map out a meso-scale connectome of the Octopus bimaculoides brain. The brain of this cephalopod has a qualitatively different organization than that of vertebrates, yet it exhibits complex behavior, an elaborate sensory system and high cognitive abilities. Over the last 60 years wide ranging and detailed studies of octopus brain anatomy have been undertaken, including classical histological sectioning/staining, electron microscopy and neuronal tract tracing with injected dyes. These studies have elucidated many neuronal connections within and among anatomical structures. Diffusion MRI based tractography utilizes a qualitatively different method of tracing connections within the brain and offers facile three-dimensional images of anatomy and connections that can be quantitatively analyzed. Twenty-five separate lobes of the brain were segmented in the 3D MR images of each of three samples, including all five sub-structures in the vertical lobe. These parcellations were used to assay fiber tracings between lobes. The connectivity matrix constructed from diffusion MRI data was largely in agreement with that assembled from earlier studies. The one major difference was that connections between the vertical lobe and more basal supra-esophageal structures present in the literature were not found by MRI. In all, 92 connections between the 25 different lobes were noted by diffusion MRI: 53 between supra-esophageal lobes and 26 between the optic lobes and other structures. These represent the beginnings of a mesoscale connectome of the octopus brain.
Collapse
Affiliation(s)
- Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetics Institute, Keck School of Medicine of USC, Los Angeles, CA 90089-2821, USA
| |
Collapse
|
6
|
Chappell DR, Horan TM, Speiser DI. Panoramic spatial vision in the bay scallop Argopecten irradians. Proc Biol Sci 2021; 288:20211730. [PMID: 34753355 PMCID: PMC8580434 DOI: 10.1098/rspb.2021.1730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022] Open
Abstract
We have a growing understanding of the light-sensing organs and light-influenced behaviours of animals with distributed visual systems, but we have yet to learn how these animals convert visual input into behavioural output. It has been suggested they consolidate visual information early in their sensory-motor pathways, resulting in them being able to detect visual cues (spatial resolution) without being able to locate them (spatial vision). To explore how an animal with dozens of eyes processes visual information, we analysed the responses of the bay scallop Argopecten irradians to both static and rotating visual stimuli. We found A. irradians distinguish between static visual stimuli in different locations by directing their sensory tentacles towards them and were more likely to point their extended tentacles towards larger visual stimuli. We also found that scallops track rotating stimuli with individual tentacles and with rotating waves of tentacle extension. Our results show, to our knowledge for the first time that scallops have both spatial resolution and spatial vision, indicating their sensory-motor circuits include neural representations of their visual surroundings. Exploring a wide range of animals with distributed visual systems will help us learn the different ways non-cephalized animals convert sensory input into behavioural output.
Collapse
Affiliation(s)
- Daniel R. Chappell
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Tyler M. Horan
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Daniel I. Speiser
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
7
|
Abstract
Intelligence of physical agents, such as human-made (e.g., robots, autonomous cars) and biological (e.g., animals, plants) ones, is not only enabled by their computational intelligence (CI) in their brain, but also by their physical intelligence (PI) encoded in their body. Therefore, it is essential to advance the PI of human-made agents as much as possible, in addition to their CI, to operate them in unstructured and complex real-world environments like the biological agents. This article gives a perspective on what PI paradigm is, when PI can be more significant and dominant in physical and biological agents at different length scales and how bioinspired and abstract PI methods can be created in agent bodies. PI paradigm aims to synergize and merge many research fields, such as mechanics, materials science, robotics, mechanical design, fluidics, active matter, biology, self-assembly and collective systems, to enable advanced PI capabilities in human-made agent bodies, comparable to the ones observed in biological organisms. Such capabilities would progress the future robots and other machines beyond what can be realized using the current frameworks.
Collapse
Affiliation(s)
- Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Sampaio E, Ramos CS, Bernardino BLM, Bleunven M, Augustin ML, Moura É, Lopes VM, Rosa R. Neurally underdeveloped cuttlefish newborns exhibit social learning. Anim Cogn 2021; 24:23-32. [PMID: 32651650 DOI: 10.1007/s10071-020-01411-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/01/2020] [Accepted: 07/03/2020] [Indexed: 01/05/2023]
Abstract
Learning can occur through self-experience with the environment, or through the observation of others. The latter allows for adaptive behaviour without trial-and-error, thus maximizing individual fitness. Perhaps given their mostly solitary lifestyle, cuttlefish have seldomly been tested under observational learning scenarios. Here we used a multi-treatment design to disentangle if and how neurally immature cuttlefish Sepia officinalis hatchlings (up to 5 days) incorporate social information into their decision-making, when performing a task where inhibition of predatory behaviour is learned. In the classical social learning treatment using pre-trained demonstrators, observers did not register any predatory behaviour. In the inhibition by social learning treatment, using naïve (or sham) demonstrators, more observers than demonstrators learned the task, while also reaching learning criterion in fewer trials, and performing less number of attacks per trial. Moreover, the performance of demonstrator-observer pairs was highly correlated, indicating that the mere presence of conspecifics did not explain our results by itself. Additionally, observers always reported higher latency time to attack during trials, a trend that was reversed in the positive controls. Lastly, pre-exposure to the stimulus did not improve learning rates. Our findings reveal the vicarious capacity of these invertebrate newborns to learn modulation (inhibition) of predatory behaviour, potentially through emulation (i.e. affordance learning). Despite ongoing changes on neural organization during early ontogeny, cognitively demanding forms of learning are already present in cuttlefish newborns, facilitating behavioural adaptation at a critical life stage, and potentially improving individual fitness in the environment.
Collapse
Affiliation(s)
- Eduardo Sampaio
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal.
- Department of Collective Behaviour, Max Planck Institute for Animal Behavior, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
| | - Catarina S Ramos
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Bruna L M Bernardino
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Maela Bleunven
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Marta L Augustin
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Érica Moura
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Vanessa M Lopes
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| |
Collapse
|
9
|
Johnson AA, Shokhirev MN, Shoshitaishvili B. Revamping the evolutionary theories of aging. Ageing Res Rev 2019; 55:100947. [PMID: 31449890 DOI: 10.1016/j.arr.2019.100947] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a millennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain why such stark longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumulation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality - like planarian flatworms, panther worms, and hydra - further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality. The evolutionary response to extrinsic mortality is likely dependent on multiple interacting factors in the organism, population, and ecology, including food availability, population density, reproductive cost, age-mortality interactions, and the mortality source.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Boris Shoshitaishvili
- Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States
| |
Collapse
|
10
|
Nesher N, Maiole F, Shomrat T, Hochner B, Zullo L. From synaptic input to muscle contraction: arm muscle cells of Octopus vulgaris show unique neuromuscular junction and excitation-contraction coupling properties. Proc Biol Sci 2019; 286:20191278. [PMID: 31455193 DOI: 10.1098/rspb.2019.1278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The muscular-hydrostat configuration of octopus arms allows high manoeuvrability together with the efficient motor performance necessary for its multitasking abilities. To control this flexible and hyper-redundant system the octopus has evolved unique strategies at the various levels of its brain-to-body organization. We focus here on the arm neuromuscular junction (NMJ) and excitation-contraction (E-C) properties of the arm muscle cells. We show that muscle cells are cholinergically innervated at single eye-shaped locations where acetylcholine receptors (AChR) are concentrated, resembling the vertebrate neuromuscular endplates. Na+ and K+ contribute nearly equally to the ACh-activated synaptic current mediating membrane depolarization, thereby activating voltage-dependent L-type Ca2+ channels. We show that cell contraction can be mediated directly by the inward Ca2+ current and also indirectly by calcium-induced calcium release (CICR) from internal stores. Indeed, caffeine-induced cell contraction and immunohistochemical staining revealed the presence and close association of dihydropyridine (DHPR) and ryanodine (RyR) receptor complexes, which probably mediate the CICR. We suggest that the dynamics of octopus arm contraction can be controlled in two ways; motoneurons with large synaptic inputs activate vigorous contraction via activation of the two routs of Ca2+ induced contraction, while motoneurons with lower-amplitude inputs may regulate a graded contraction through frequency-dependent summation of EPSP trains that recruit the CICR. Our results thus suggest that these motoneuronal pools are likely to be involved in the activation of different E-C coupling modes, thus enabling a dynamics of muscles activation appropriate for various tasks such as stiffening versus motion generation.
Collapse
Affiliation(s)
- Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Federica Maiole
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Benyamin Hochner
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Letizia Zullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
11
|
Ritschard EA, Fitak RR, Simakov O, Johnsen S. Genomic signatures of G-protein-coupled receptor expansions reveal functional transitions in the evolution of cephalopod signal transduction. Proc Biol Sci 2019; 286:20182929. [PMID: 30963849 PMCID: PMC6408891 DOI: 10.1098/rspb.2018.2929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/04/2019] [Indexed: 01/29/2023] Open
Abstract
Coleoid cephalopods show unique morphological and neural novelties, such as arms with tactile and chemosensory suckers and a large complex nervous system. The evolution of such cephalopod novelties has been attributed at a genomic level to independent gene family expansions, yet the exact association and the evolutionary timing remain unclear. In the octopus genome, one such expansion occurred in the G-protein-coupled receptors (GPCRs) repertoire, a superfamily of proteins that mediate signal transduction. Here, we assessed the evolutionary history of this expansion and its relationship with cephalopod novelties. Using phylogenetic analyses, at least two cephalopod- and two octopus-specific GPCR expansions were identified. Signatures of positive selection were analysed within the four groups, and the locations of these sequences in the Octopus bimaculoides genome were inspected. Additionally, the expression profiles of cephalopod GPCRs across various tissues were extracted from available transcriptomic data. Our results reveal the evolutionary history of cephalopod GPCRs. Unexpanded cephalopod GPCRs shared with other bilaterians were found to be mainly nervous tissue specific. By contrast, duplications that are shared between octopus and the bobtail squid or specific to the octopus' lineage generated copies with divergent expression patterns devoted to tissues outside of the brain. The acquisition of novel expression domains was accompanied by gene order rearrangement through either translocation or duplication and gene loss. Lastly, expansions showed signs of positive selection and some were found to form tandem clusters with shared conserved expression profiles in cephalopod innovations such as the axial nerve cord. Altogether, our results contribute to the understanding of the molecular and evolutionary history of signal transduction and provide insights into the role of this expansion during the emergence of cephalopod novelties and/or adaptations.
Collapse
Affiliation(s)
- Elena A. Ritschard
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Liu YC, Chung WS, Yu CC, Hsu ST, Chan FL, Liu TH, Su CH, Hwu Y, Marshall NJ, Chiao CC. Morphological changes of the optic lobe from late embryonic to adult stages in oval squids Sepioteuthis lessoniana. J Morphol 2017; 279:75-85. [PMID: 29044653 DOI: 10.1002/jmor.20755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/20/2017] [Accepted: 09/19/2017] [Indexed: 11/06/2022]
Abstract
The optic lobe is the largest brain area within the central nervous system of cephalopods and it plays important roles in the processing of visual information, the regulation of body patterning, and locomotive behavior. The oval squid Sepioteuthis lessoniana has relatively large optic lobes that are responsible for visual communication via dynamic body patterning. It has been observed that the visual behaviors of oval squids change as the animals mature, yet little is known about how the structure of the optic lobes changes during development. The aim of the present study was to characterize the ontogenetic changes in neural organization of the optic lobes of S. lessoniana from late embryonic stage to adulthood. Magnetic resonance imaging and micro-CT scans were acquired to reconstruct the 3D-structure of the optic lobes and examine the external morphology at different developmental stages. In addition, optic lobe slices with nuclear staining were used to reveal changes in the internal morphology throughout development. As oval squids mature, the proportion of the brain making up the optic lobes increases continuously, and the optic lobes appear to have a prominent dent on the ventrolateral side. Inside the optic lobe, the cortex and the medulla expand steadily from the late embryonic stage to adulthood, but the cell islands in the tangential zone of the optic lobe decrease continuously in parallel. Interestingly, the size of the nuclei of cells within the medulla of the optic lobe increases throughout development. These findings suggest that the optic lobe undergoes continuous external morphological change and internal neural reorganization throughout the oval squid's development. These morphological changes in the optic lobe are likely to be responsible for changes in the visuomotor behavior of oval squids from hatching to adulthood.
Collapse
Affiliation(s)
- Yung-Chieh Liu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Sung Chung
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Su-Ting Hsu
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Fung-Lan Chan
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsung-Han Liu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yeukuang Hwu
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
13
|
Bellier JP, Xie Y, Farouk SM, Sakaue Y, Tooyama I, Kimura H. Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm. Brain Struct Funct 2017; 222:3043-3061. [PMID: 28247020 DOI: 10.1007/s00429-017-1385-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023]
Abstract
The octopus arm contains a tridimensional array of muscles with a massive sensory-motor system. We herein provide the first evidence for the existence of serotonin (5-HT) in the octopus arm nervous system and investigated its distribution using immunohistochemistry. 5-HT-like immunoreactive (5-HT-lir) nerve cell bodies were exclusively localized in the cellular layer of the axial nerve cord. Those cell bodies emitted 5-HT-lir nerve fibers in the direction of the sucker, the intramuscular nerves cords, the ganglion of the sucker, and the intrinsic musculature. Others 5-HT-lir nerve fibers were observed in various tissues, including the cerebrobrachial tract, the skin, and the blood vessels. 5-HT was detected by high-performance liquid chromatography in various regions of the octopus arm at levels matching the density of 5-HT-lir staining. The absence of 5-HT-lir interconnections between the cerebrobrachial tract and the other components of the axial nerve cord suggests that two types of 5-HT-lir innervation exist in the arm. One type, which originates from the brain, may innervate the periphery through the cerebrobrachial tract. Another type, which originates in the cellular layer of the axial nerve cord, may form an intrinsic network in the arm. In addition, 5-HT-lir fibers likely emitted from the neuropil of the axial nerve cord were found to project into cells showing staining for peripheral choline acetyltransferase, a marker of sensory cells of the sucker. Taken together, these observations suggest that intrinsic 5-HT-lir innervation may participate in the sensory transmission in the octopus arm.
Collapse
Affiliation(s)
- Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yu Xie
- Life Science Research Center, Beihua University, Jilin, 132013, China
| | - Sameh Mohamed Farouk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yuko Sakaue
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
14
|
Bakopoulos V, White D, Valsamidis MA, Vasilaki F. Experimental infection of octopus vulgaris (Cuvier, 1797) with Photobacterium damsela subsp. piscicida. Immunohistochemical tracking of antigen and tissue responses. J Invertebr Pathol 2017; 144:24-31. [PMID: 28108174 DOI: 10.1016/j.jip.2017.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 11/17/2022]
Abstract
Adult common octopus individuals were intramuscularly infected with Photobacterium damsela subsp. piscicida in order to investigate if this species is sensitive to this common and important fish pathogen. The fate of the bacterial antigens and the tissue responses of Octopus vulgaris were studied employing immunohistochemical techniques. Strong reaction at the site of injection was evident from day 2 post-infection that continued until day 14. Great numbers of hemocytes that were attracted at the site of infection were involved in phagocytosis of bacteria. Very early in the infection, a transition of cells to fibroblasts and an effort to isolate the infection was observed. During the course of the study, very large necrotic cells were seen at the site of infection, whereas during the later stages hemocytes with phagocytosed bacteria were observed in well-defined pockets inside the muscle tissue. None of the internal organs tested for the presence of the bacterium were positive with the exception of the digestive gland where antigen staining was observed which was not associated with hemocyte infiltration. The high doses of bacterial cells used in this experimental infection and the lack of disease signs from Octopus vulgaris suggest that, under normal conditions, octopus is resistant to Photobacterium damsela subsp. piscicida.
Collapse
Affiliation(s)
- Vasileios Bakopoulos
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene 81100, Lesvos, Greece.
| | - Daniella White
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| | - Feli Vasilaki
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene 81100, Lesvos, Greece
| |
Collapse
|
15
|
Grant SGN. The molecular evolution of the vertebrate behavioural repertoire. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150051. [PMID: 26598730 PMCID: PMC4685586 DOI: 10.1098/rstb.2015.0051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations.
Collapse
Affiliation(s)
- Seth G N Grant
- Centre for Clinical Brain Science, Edinburgh University, Chancellors Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
16
|
Fiorito G, Affuso A, Basil J, Cole A, de Girolamo P, D'Angelo L, Dickel L, Gestal C, Grasso F, Kuba M, Mark F, Melillo D, Osorio D, Perkins K, Ponte G, Shashar N, Smith D, Smith J, Andrews PLR. Guidelines for the Care and Welfare of Cephalopods in Research -A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim 2016; 49:1-90. [PMID: 26354955 DOI: 10.1177/0023677215580006] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care committees, facility managers and animal care staff which will assist in improving both the care given to cephalopods, and the manner in which experimental procedures are carried out. Topics covered include: implications of the Directive for cephalopod research; project application requirements and the authorisation process; the application of the 3Rs principles; the need for harm-benefit assessment and severity classification. Guidelines and species-specific requirements are provided on: i. supply, capture and transport; ii. environmental characteristics and design of facilities (e.g. water quality control, lighting requirements, vibration/noise sensitivity); iii. accommodation and care (including tank design), animal handling, feeding and environmental enrichment; iv. assessment of health and welfare (e.g. monitoring biomarkers, physical and behavioural signs); v. approaches to severity assessment; vi. disease (causes, prevention and treatment); vii. scientific procedures, general anaesthesia and analgesia, methods of humane killing and confirmation of death. Sections covering risk assessment for operators and education and training requirements for carers, researchers and veterinarians are also included. Detailed aspects of care and welfare requirements for the main laboratory species currently used are summarised in Appendices. Knowledge gaps are highlighted to prompt research to enhance the evidence base for future revision of these guidelines.
Collapse
Affiliation(s)
- Graziano Fiorito
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Association for Cephalopod Research 'CephRes', Italy
| | - Andrea Affuso
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Animal Model Facility - BIOGEM S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Jennifer Basil
- Biology Department, Brooklyn College - CUNY Graduate Center, Brooklyn, NY, USA
| | - Alison Cole
- Association for Cephalopod Research 'CephRes', Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Ludovic Dickel
- Groupe mémoire et Plasticité comportementale, University of Caen Basse-Normandy, Caen, France
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Frank Grasso
- BioMimetic and Cognitive Robotics, Department of Psychology, Brooklyn College - CUNY, Brooklyn, NY, USA
| | - Michael Kuba
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Felix Mark
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Daniela Melillo
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Sussex, UK
| | - Kerry Perkins
- School of Life Sciences, University of Sussex, Sussex, UK
| | | | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben-Gurion University of the Negev, Beer, Sheva, Israel
| | - David Smith
- FELASA, Federation for Laboratory Animal Science Associations
| | | | - Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK Association for Cephalopod Research 'CephRes', Italy
| |
Collapse
|
17
|
Gestal C, Castellanos-Martínez S. Understanding the cephalopod immune system based on functional and molecular evidence. FISH & SHELLFISH IMMUNOLOGY 2015; 46:120-130. [PMID: 25982402 DOI: 10.1016/j.fsi.2015.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Cephalopods have the most advanced circulatory and nervous system among the mollusks. Recently, they have been included in the European directive which state that suffering and pain should be minimized in cephalopods used in experimentation. The knowledge about cephalopod welfare is still limited and several gaps are yet to be filled, especially in reference to pathogens, pathologies and immune response of these mollusks. In light of the requirements of the normative, in addition to the ecologic and economic importance of cephalopods, in this review we update the work published to date concerning cephalopod immune system. Significant advances have been reached in relation to the characterization of haemocytes and defensive mechanisms comprising cellular and humoral factors mainly, but not limited, in species of high economic value like Sepia officinalis and Octopus vulgaris. Moreover, the improvement of molecular approaches has helped to discover several immune-related genes/proteins. These immune genes/proteins include antimicrobial peptides, phenoloxidases, antioxidant enzymes, serine protease inhibitor, lipopolysaccharide-induced TNF-α factor, Toll-like receptors, lectins, even clusters of differentiation among others. Most of them have been found in haemocytes but also in gills and digestive gland, and the characterization as well as their precise role in the immune response of cephalopods is still pending to be elucidated. The assessment of immune parameters in cephalopods exposed to contaminants is just starting, but the negative impact of some pollutants on the immune response of the common octopus has been reported. This review summarizes the current status of our knowledge about the cephalopod immune system that seems to be far from simply. On the contrary, the advances gained to date point out a complex innate immunity in cephalopods.
Collapse
Affiliation(s)
- C Gestal
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| | | |
Collapse
|
18
|
Tramacere F, Pugno NM, Kuba MJ, Mazzolai B. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment. Interface Focus 2015; 5:20140050. [PMID: 25657834 DOI: 10.1098/rsfs.2014.0050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, the attachment mechanism of the octopus sucker has attracted the interest of scientists from different research areas, including biology, engineering, medicine and robotics. From a technological perspective, the main goal is to identify the underlying mechanisms involved in sucker attachment for use in the development of new generations of artificial devices and materials. Recently, the understanding of the morphology of the sucker has been significantly improved; however, the mechanisms that allow attachment remain largely unknown. In this work, we present new anatomical findings: specifically, a protuberance in the acetabular roof in five different octopus species; previously, this protuberance was identified by the authors in Octopus vulgaris. Moreover, we discuss the role of the protuberance and other anatomical structures in attachment with minimal energy consumption.
Collapse
Affiliation(s)
- Francesca Tramacere
- Center for Micro-BioRobotics , Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera 56125 , Italy
| | - Nicola M Pugno
- Laboratory of Bio-inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering , University of Trento , via Mesiano 77, Trento 38123 , Italy ; Center for Materials and Microsystems , Fondazione Bruno Kessler , via Sommarive 18, Povo 38123 , Italy ; School of Engineering and Materials Science , Queen Mary University of London , Mile End Road, London E1 4NS , UK
| | - Michael J Kuba
- Max Planck Institute for Brain Research , Max Planck Institute , Max von Laue Strasse 4, Frankfurt 60438 , Germany
| | - Barbara Mazzolai
- Center for Micro-BioRobotics , Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera 56125 , Italy
| |
Collapse
|
19
|
Aruldhason BV, Vairamani S, Annaian S. Antimicrobial activity of methanolic extract and fractionated polysaccharide from Loligo duvauceli Orbingy 1848 and Doryteuthis sibogae Adam 1954 on human pathogenic microorganisms. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajmr12.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D'Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P. Cephalopods in neuroscience: regulations, research and the 3Rs. INVERTEBRATE NEUROSCIENCE 2014; 14:13-36. [PMID: 24385049 PMCID: PMC3938841 DOI: 10.1007/s10158-013-0165-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.
Collapse
|
21
|
Mather JA, Kuba MJ. The cephalopod specialties: complex nervous system, learning, and cognition. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2013-0009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While clearly of molluscan ancestry, the coleoid cephalopods are emergent within the phylum for complexity of brain and behaviour. The brain does not just have centralization of the molluscan ganglia but also contains lobes with “higher order” functions such as storage of learned information, and centres have been compared with the vertebrate cerebellum and frontal lobe. The flexible muscular hydrostat movement system theoretically has unlimited degrees of freedom, and octopuses are models for “soft movement” robots. The decentralized nervous system, particularly in the arms of octopuses, results in decision making at many levels. Free of the molluscan shell and with evolutionary pressure from the bony fishes, coleoids have evolved a specialty in cognition and they may have a simple form of consciousness. Cephalopods also have a skin display system of unmatched complexity and excellence of camouflage, also used for communication with predators and conspecifics. A cephalopod is first and foremost a learning animal, using the display system for deception, having spatial memory, personalities, and motor play. They represent an alternative model to the vertebrates for the evolution of complex brains and high intelligence, which has as yet been only partly explored.
Collapse
Affiliation(s)
- Jennifer A. Mather
- Department of Psychology, The University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Michael J. Kuba
- Department of Neurobiology, Institute of Life Sciences and Interdisciplinary Center for Neural Computation, Hebrew University, 91904 Jerusalem, Israel
| |
Collapse
|
22
|
Abstract
Octopuses have a unique flexible body and unusual morphology, but nevertheless they are undoubtedly a great evolutionary success. They compete successfully with vertebrates in their ecological niche using a rich behavioral repertoire more typical of an intelligent predator which includes extremely effective defensive behavior--fast escape swimming and an astonishing ability to adapt their shape and color to their environment. The most obvious characteristic feature of an octopus is its eight long and flexible arms, but these pose a great challenge for achieving the level of motor and sensory information processing necessary for their behaviors. First, coordinating motion is a formidable task because of the infinite degrees of freedom that have to be controlled; and second, it is hard to use body coordinates in this flexible animal to represent sensory information in a central control system. Here I will review experimental results suggesting that these difficulties, arising from the animal's morphology, have imposed the evolution of unique brain/body/behavior relationships best explained as intelligent behavior which emerges from the octopus's embodied organization. The term 'intelligent embodiment' comes from robotics and refers to an approach to designing autonomous robots in which the behavior emerges from the dynamic physical and sensory interactions of the agent's materials, morphology and environment. Consideration of the unusual neurobiology of the octopus in the light of its unique morphology suggests that similar embodied principles are instrumental for understanding the emergence of intelligent behavior in all biological systems.
Collapse
Affiliation(s)
- Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life Sciences, and Interdisciplinary Center for Neural Computation, Edmond J Safra Campus, Givat Ram, Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
23
|
Ristau CA. Cognitive ethology. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:493-509. [DOI: 10.1002/wcs.1239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Huffard CL. Cephalopod neurobiology: an introduction for biologists working in other model systems. INVERTEBRATE NEUROSCIENCE 2013; 13:11-8. [PMID: 23456288 DOI: 10.1007/s10158-013-0147-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 02/18/2013] [Indexed: 02/04/2023]
Abstract
This paper concisely summarizes major aspects of cephalopod biology, behavior, and ecology providing a backdrop against which neurobiology of these animals can be interpreted. Reproduction, camouflage, motor control, memory, learning, and behavioral ecology are introduced, and thorough literature reviews of these subjects are cited for further reading. The aim of this paper is to provide a general introduction to cephalopods for use by workers currently focused on other model systems.
Collapse
Affiliation(s)
- Christine L Huffard
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118, USA.
| |
Collapse
|
25
|
|
26
|
Can cuttlefish learn by observing others? Anim Cogn 2012; 16:313-20. [DOI: 10.1007/s10071-012-0573-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 10/04/2012] [Accepted: 10/15/2012] [Indexed: 02/03/2023]
|
27
|
Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P. Soft Robot Arm Inspired by the Octopus. Adv Robot 2012. [DOI: 10.1163/156855312x626343] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Cecilia Laschi
- a The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy;,
| | - Matteo Cianchetti
- b The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Barbara Mazzolai
- c Center for Micro-BioRobotics of IIT@SSSA, Istituto Italiano di Tecnologia (IIT), Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Laura Margheri
- d The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Maurizio Follador
- e The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Paolo Dario
- f The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| |
Collapse
|
28
|
Gutnick T, Byrne RA, Hochner B, Kuba M. Octopus vulgaris uses visual information to determine the location of its arm. Curr Biol 2011; 21:460-2. [PMID: 21396818 DOI: 10.1016/j.cub.2011.01.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/19/2010] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements.
Collapse
Affiliation(s)
- Tamar Gutnick
- Department of Neurobiology, Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | | | | | | |
Collapse
|
29
|
Tricarico E, Borrelli L, Gherardi F, Fiorito G. I know my neighbour: individual recognition in Octopus vulgaris. PLoS One 2011; 6:e18710. [PMID: 21533257 PMCID: PMC3076440 DOI: 10.1371/journal.pone.0018710] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 03/16/2011] [Indexed: 11/19/2022] Open
Abstract
Background Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions. Methodology/Principal Findings The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 “sight-allowed” (and 12 “isolated”) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque) partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs composed of either familiar (“sham switches”) or unfamiliar conspecifics (“real switches”). Longer latencies (i.e. the time elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were used as proxies for recognition. Conclusions Octopuses appear able to recognise conspecifics and to remember the individual previously met for at least one day. To the best of our knowledge, this is the first experimental study showing the occurrence of a form of IR in cephalopods. Future studies should clarify whether this is a “true” IR.
Collapse
Affiliation(s)
- Elena Tricarico
- Dipartimento di Biologia Evoluzionistica Leo Pardi, Università degli Studi di Firenze, Firenze, Italy.
| | | | | | | |
Collapse
|
30
|
Pronk R, Wilson DR, Harcourt R. Video playback demonstrates episodic personality in the gloomy octopus. ACTA ACUST UNITED AC 2010; 213:1035-41. [PMID: 20228339 DOI: 10.1242/jeb.040675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coleoid cephalopods, including octopuses, cuttlefish and squid, rely mainly on visual signals when interacting with conspecifics, predators and prey. Presenting visual stimuli, such as models, photographs, mirrors and live conspecifics, can thus provide insight into cephalopod behaviour. These methods, however, have limitations - mirrors and live animals lack experimental control, whereas models and photographs sacrifice motion-based information. Video playback addresses these issues by presenting controlled, moving and realistic stimuli but, to date, video playback has not been used successfully with any cephalopod. Here, we developed a video playback technique for the gloomy octopus (Octopus tetricus) that incorporated recent advances in video technology. We then used this technique to test for personality, which we defined as behavioural differences between individuals that are consistent over time and across ecologically important contexts. We captured wild octopuses and tested them on 3 separate days over a 10 day period. On each test day, subjects were presented with videos of a food item, a novel object and a conspecific. These represented a foraging, novel and threatening context, respectively. A fourth video without a moving stimulus controlled for the playback monitor itself and potential artifacts associated with video playback. Experimental stimuli evoked unambiguous and biologically appropriate responses from the subjects. Furthermore, individuals' responses to the three experimental contexts were highly correlated within a given test day. However, within a given context, individuals behaved inconsistently across the 3 test days. The reordering of ranks suggests that rather than fulfilling the criteria for personality, gloomy octopus show temporal discontinuities, and hence display episodic personality.
Collapse
Affiliation(s)
- R Pronk
- Graduate School of the Environment, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | |
Collapse
|
31
|
Shomrat T, Feinstein N, Klein M, Hochner B. Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 2010; 169:52-64. [PMID: 20433903 DOI: 10.1016/j.neuroscience.2010.04.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
The modern cephalopod mollusks (coleoids) are considered the most behaviorally advanced invertebrate, yet little is known about the neurophysiological basis of their behaviors. Previous work suggested that the vertical lobe (VL) of cephalopods is a crucial site for the learning and memory components of these behaviors. We are therefore studying the neurophysiology of the VL in Octopus vulgaris and have discovered a robust activity-dependent long-term potentiation (LTP) of the synaptic input to the VL. Moreover, we have shown that the VL and its LTP are involved in behavioral long-term memory acquisition. To advance our understanding of the VL as a learning neural network we explore the possible involvement of neuromodulation in VL function. Here we examine whether the well studied serotonergic modulation in simple models of learning in gastropods mollusks is conserved in the octopus VL. We demonstrate histochemically that the VL is innervated by afferent terminals containing 5-HT immunoreactivity (5-HT-IR). Physiologically, 5-HT has a robust facilitatory effect on synaptic transmission and activity-dependent LTP induction. These results suggest that serotonergic neuromodulation is a part of a reinforcing/reward signaling system conserved in both simple and complex learning systems of mollusks. However, there are notable functional differences. First, the effective concentration of 5-HT in the VL is rather high (100 microM); secondly, only neuropilar regions but not cell bodies in the VL are innervated by terminals containing 5-HT-IR. Thirdly, repetitive or long exposures to 5-HT do not lead to a clear long-term facilitation. We propose that in the octopus VL, while the basic facilitatory properties of molluscan 5-HT system are conserved, the system has adapted to convey signals from other brain areas to reinforce the activity-dependent associations at specific sites in the large connections matrix in the VL.
Collapse
Affiliation(s)
- T Shomrat
- Department of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neural Computation, Edmond J Safra Campus, Givat Ram Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
32
|
Zullo L, Sumbre G, Agnisola C, Flash T, Hochner B. Nonsomatotopic organization of the higher motor centers in octopus. Curr Biol 2009; 19:1632-6. [PMID: 19765993 DOI: 10.1016/j.cub.2009.07.067] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.
Collapse
Affiliation(s)
- Letizia Zullo
- Department of Neurobiology, Institute of Life Sciences and Interdisciplinary Center for Neuronal Computation, Hebrew University, Jerusalem 91904, Israel.
| | | | | | | | | |
Collapse
|