1
|
Lo JY, Adam KM, Garrison JL. Neuropeptide inactivation regulates egg-laying behavior to influence reproductive health in Caenorhabditis elegans. Curr Biol 2024; 34:4715-4728.e4. [PMID: 39395417 DOI: 10.1016/j.cub.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
Neural communication requires both fast-acting neurotransmitters and neuromodulators that function on slower timescales to communicate. Endogenous bioactive peptides, often called "neuropeptides," comprise the largest and most diverse class of neuromodulators that mediate crosstalk between the brain and peripheral tissues to regulate physiology and behaviors conserved across the animal kingdom. Neuropeptide signaling can be terminated through receptor binding and internalization or degradation by extracellular enzymes called neuropeptidases. Inactivation by neuropeptidases can shape the dynamics of signaling in vivo by specifying both the duration of signaling and the anatomic path neuropeptides can travel before they are degraded. For most neuropeptides, the identity of the relevant inactivating peptidase(s) is unknown. Here, we established a screening platform in C. elegans utilizing mass spectrometry-based peptidomics to discover neuropeptidases and simultaneously profile the in vivo specificity of these enzymes against each of more than 250 endogenous peptides. We identified NEP-2, a worm ortholog of the mammalian peptidase neprilysin-2, and demonstrated that it regulates specific neuropeptides, including those in the egg-laying circuit. We found that NEP-2 is required in muscle cells to regulate signals from neurons to modulate both behavior and health in the reproductive system. Taken together, our results demonstrate that peptidases, which are an important node of regulation in neuropeptide signaling, affect the dynamics of signaling to impact behavior, physiology, and aging.
Collapse
Affiliation(s)
- Jacqueline Y Lo
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Katelyn M Adam
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, USA; Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA; Center for Healthy Aging in Women, 8001 Redwood Boulevard, Novato, CA 94945, USA; Productive Health Global Consortium, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
2
|
Peesapati RS, Austin-Byler BL, Nawaz FZ, Stevenson JB, Mais SA, Kaya RN, Hassan MG, Khanal N, Wells AC, Ghiai D, Garikapati AK, Selhub J, Kipreos ET. A specific folate activates serotonergic neurons to control C. elegans behavior. Nat Commun 2024; 15:8471. [PMID: 39349491 PMCID: PMC11442744 DOI: 10.1038/s41467-024-52738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Folates are B-group vitamins that function in one-carbon metabolism. Here we show that a specific folate can activate serotonergic neurons in C. elegans to modulate behavior through a pathway that requires the folate receptor FOLR-1 and the GON-2 calcium channel. FOLR-1 and GON-2 physically interact in a heterologous system, and both are expressed in the HSN and NSM serotonergic neurons. Both the folate 10-formyl-THF and a non-metabolic pteroate induce increases in the number of Ca2+ transients in the HSN neurons and egg laying in an FOLR-1- and GON-2-dependent manner. FOLR-1 and GON-2 are required for the activation of the NSM neurons in response to 10-formyl-THF, and for full NSM-mediated stoppage of movement when starved animals encounter bacteria. Our results demonstrate that FOLR-1 acts independently of one-carbon metabolism and suggest that 10-formyl-THF acts as a dietary signal that activates serotonergic neurons to impact behavior through a pathway that involves calcium entry.
Collapse
Affiliation(s)
- Ria S Peesapati
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | | | | | | | - Stanelle A Mais
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Rabia N Kaya
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Michael G Hassan
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Nabraj Khanal
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Alexandra C Wells
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Deena Ghiai
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Anish K Garikapati
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Edward T Kipreos
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024:iyae141. [PMID: 39344922 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
4
|
Banse SA, Jarrett CM, Robinson KJ, Blue BW, Shaw EL, Phillips PC. The egg-counter: a novel microfluidic platform for characterization of Caenorhabditis elegans egg-laying. LAB ON A CHIP 2024; 24:2975-2986. [PMID: 38738514 PMCID: PMC11131562 DOI: 10.1039/d3lc01073b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/20/2024] [Indexed: 05/14/2024]
Abstract
Reproduction is a fundamental process that shapes the demography of every living organism yet is often difficult to assess with high precision in animals that produce large numbers of offspring. Here, we present a novel microfluidic research platform for studying Caenorhabditis elegans' egg-laying. The platform provides higher throughput than traditional solid-media behavioral assays while providing a very high degree of temporal resolution. Additionally, the environmental control enabled by microfluidic animal husbandry allows for experimental perturbations difficult to achieve with solid-media assays. We demonstrate the platform's utility by characterizing C. elegans egg-laying behavior at two commonly used temperatures, 15 and 20 °C. As expected, we observed a delayed onset of egg-laying at 15 °C degrees, consistent with published temperature effects on development rate. Additionally, as seen in solid media studies, egg laying output was higher under the canonical 20 °C conditions. While we validated the Egg-Counter with a study of temperature effects in wild-type animals, the platform is highly adaptable to any nematode egg-laying research where throughput or environmental control needs to be maximized without sacrificing temporal resolution.
Collapse
Affiliation(s)
- Stephen A Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Cody M Jarrett
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Kristin J Robinson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Benjamin W Blue
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Emily L Shaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
5
|
Mignerot L, Gimond C, Bolelli L, Bouleau C, Sandjak A, Boulin T, Braendle C. Natural variation in the Caenorhabditis elegans egg-laying circuit modulates an intergenerational fitness trade-off. eLife 2024; 12:RP88253. [PMID: 38564369 PMCID: PMC10987095 DOI: 10.7554/elife.88253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Asma Sandjak
- Université Côte d’Azur, CNRS, Inserm, IBVNiceFrance
| | - Thomas Boulin
- Institut NeuroMyoGène, CNRS, Inserm, Université de LyonLyonFrance
| | | |
Collapse
|
6
|
Li R, Xu Y, Wen X, Chen YH, Wang PZ, Zhao JL, Wu PP, Wu JJ, Liu H, Huang JH, Li SJ, Wu ZX. GCY-20 signaling controls suppression of Caenorhabditis elegans egg laying by moderate cold. Cell Rep 2024; 43:113708. [PMID: 38294902 DOI: 10.1016/j.celrep.2024.113708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Organisms sensing environmental cues and internal states and integrating the sensory information to control fecundity are essential for survival and proliferation. The present study finds that a moderate cold temperature of 11°C reduces egg laying in Caenorhabditis elegans. ASEL and AWC neurons sense the cold via GCY-20 signaling and act antagonistically on egg laying through the ASEL and AWC/AIA/HSN circuits. Upon cold stimulation, ASEL and AWC release glutamate to activate and inhibit AIA interneurons by acting on highly and lowly sensitive ionotropic GLR-2 and GLC-3 receptors, respectively. AIA inhibits HSN motor neuron activity via acetylcholinergic ACR-14 receptor signaling and suppresses egg laying. Thus, ASEL and AWC initiate and reduce the cold suppression of egg laying. ASEL's action on AIA and egg laying dominates AWC's action. The biased opposite actions of these neurons on egg laying provide animals with a precise adaptation of reproductive behavior to environmental temperatures.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuan-Hua Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hao Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Prakash SJ, Van Auken KM, Hill DP, Sternberg PW. Semantic representation of neural circuit knowledge in Caenorhabditis elegans. Brain Inform 2023; 10:30. [PMID: 37947958 PMCID: PMC10638142 DOI: 10.1186/s40708-023-00208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023] Open
Abstract
In modern biology, new knowledge is generated quickly, making it challenging for researchers to efficiently acquire and synthesise new information from the large volume of primary publications. To address this problem, computational approaches that generate machine-readable representations of scientific findings in the form of knowledge graphs have been developed. These representations can integrate different types of experimental data from multiple papers and biological knowledge bases in a unifying data model, providing a complementary method to manual review for interacting with published knowledge. The Gene Ontology Consortium (GOC) has created a semantic modelling framework that extends individual functional gene annotations to structured descriptions of causal networks representing biological processes (Gene Ontology-Causal Activity Modelling, or GO-CAM). In this study, we explored whether the GO-CAM framework could represent knowledge of the causal relationships between environmental inputs, neural circuits and behavior in the model nematode C. elegans [C. elegans Neural-Circuit Causal Activity Modelling (CeN-CAM)]. We found that, given extensions to several relevant ontologies, a wide variety of author statements from the literature about the neural circuit basis of egg-laying and carbon dioxide (CO2) avoidance behaviors could be faithfully represented with CeN-CAM. Through this process, we were able to generate generic data models for several categories of experimental results. We also discuss how semantic modelling may be used to functionally annotate the C. elegans connectome. Thus, Gene Ontology-based semantic modelling has the potential to support various machine-readable representations of neurobiological knowledge.
Collapse
Affiliation(s)
- Sharan J Prakash
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kimberly M Van Auken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David P Hill
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
8
|
Huang YC, Luo J, Huang W, Baker CM, Gomes MA, Meng B, Byrne AB, Flavell SW. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. Curr Biol 2023; 33:4430-4445.e6. [PMID: 37769660 PMCID: PMC10860333 DOI: 10.1016/j.cub.2023.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neurons in the circuits that generate behaviors have a remarkable capacity for flexibility as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of adaptive behaviors remains unknown. Here, we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg laying and locomotion while also biasing the animals toward low-speed dwelling behavior over minutes. The acute effects of HSN on egg laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal compartments. The long-lasting effects on dwelling are mediated in part by HSN release of serotonin, which is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal that neurons can borrow serotonin from one another to control behavior.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenjia Huang
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Casey M Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bohan Meng
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra B Byrne
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Atanas AA, Kim J, Wang Z, Bueno E, Becker M, Kang D, Park J, Kramer TS, Wan FK, Baskoylu S, Dag U, Kalogeropoulou E, Gomes MA, Estrem C, Cohen N, Mansinghka VK, Flavell SW. Brain-wide representations of behavior spanning multiple timescales and states in C. elegans. Cell 2023; 186:4134-4151.e31. [PMID: 37607537 PMCID: PMC10836760 DOI: 10.1016/j.cell.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Changes in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral features. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representations of multiple behaviors. Moreover, although many neurons encode current motor actions, others integrate recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global map of how the cell types across an animal's brain encode its behavior.
Collapse
Affiliation(s)
- Adam A Atanas
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungsoo Kim
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziyu Wang
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - McCoy Becker
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Di Kang
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungyeon Park
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talya S Kramer
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flossie K Wan
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Saba Baskoylu
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ugur Dag
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elpiniki Kalogeropoulou
- School of Computing, University of Leeds, Leeds, UK; School of Biology, University of Leeds, Leeds, UK
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassi Estrem
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Netta Cohen
- School of Computing, University of Leeds, Leeds, UK
| | - Vikash K Mansinghka
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Banse SA, Jarrett CM, Robinson KJ, Blue BW, Shaw EL, Phillips PC. The Egg-Counter: A novel microfluidic platform for characterization of Caenorhabditis elegans egg-laying. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555781. [PMID: 37732270 PMCID: PMC10508723 DOI: 10.1101/2023.09.01.555781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Reproduction is a fundamental process that shapes the demography of every living organism yet is often difficult to assess with high precision in animals that produce large numbers of offspring. Here, we present a novel microfluidic research platform for studying Caenorhabditis elegans' egg-laying. The platform provides higher throughput than traditional solid-media assays while providing a very high degree of temporal resolution. Additionally, the environmental control enabled by microfluidic animal husbandry allows for experimental perturbations difficult to achieve with solid-media assays. We demonstrate the platform's utility by characterizing C. elegans egg-laying behavior at two commonly used temperatures, 15 and 20°C. As expected, we observed a delayed onset of egg-laying at 15°C degrees, consistent with published temperature effects on development rate. Additionally, as seen in solid media studies, egg laying output was higher under the canonical 20°C conditions. While we validated the Egg-Counter with a study of temperature effects in wild-type animals, the platform is highly adaptable to any nematode egg-laying research where throughput or environmental control needs to be maximized without sacrificing temporal resolution.
Collapse
Affiliation(s)
- Stephen A. Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Cody M. Jarrett
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Kristin J. Robinson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Benjamin W. Blue
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Emily L. Shaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
11
|
Medrano E, Collins KM. Muscle-directed mechanosensory feedback activates egg-laying circuit activity and behavior in Caenorhabditis elegans. Curr Biol 2023; 33:2330-2339.e8. [PMID: 37236183 PMCID: PMC10280788 DOI: 10.1016/j.cub.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Mechanosensory feedback of the internal reproductive state drives decisions about when and where to reproduce.1 For instance, stretch in the Drosophila reproductive tract produced by artificial distention or from accumulated eggs regulates the attraction to acetic acid to ensure optimal oviposition.2 How such mechanosensory feedback modulates neural circuits to coordinate reproductive behaviors is incompletely understood. We previously identified a stretch-dependent homeostat that regulates egg laying in Caenorhabditis elegans. Sterilized animals lacking eggs show reduced Ca2+ transient activity in the presynaptic HSN command motoneurons that drive egg-laying behavior, while animals forced to accumulate extra eggs show dramatically increased circuit activity that restores egg laying.3 Interestingly, genetic ablation or electrical silencing of the HSNs delays, but does not abolish, the onset of egg laying,3,4,5 with animals recovering vulval muscle Ca2+ transient activity upon egg accumulation.6 Using an acute gonad microinjection technique to mimic changes in pressure and stretch resulting from germline activity and egg accumulation, we find that injection rapidly stimulates Ca2+ activity in both neurons and muscles of the egg-laying circuit. Injection-induced vulval muscle Ca2+ activity requires L-type Ca2+ channels but is independent of presynaptic input. Conversely, injection-induced neural activity is disrupted in mutants lacking the vulval muscles, suggesting "bottom-up" feedback from muscles to neurons. Direct mechanical prodding activates the vulval muscles, suggesting that they are the proximal targets of the stretch-dependent stimulus. Our results show that egg-laying behavior in C. elegans is regulated by a stretch-dependent homeostat that scales postsynaptic muscle responses with egg accumulation in the uterus.
Collapse
Affiliation(s)
- Emmanuel Medrano
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Kevin M Collins
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA.
| |
Collapse
|
12
|
Porta-de-la-Riva M, Gonzalez AC, Sanfeliu-Cerdán N, Karimi S, Malaiwong N, Pidde A, Morales-Curiel LF, Fernandez P, González-Bolívar S, Hurth C, Krieg M. Neural engineering with photons as synaptic transmitters. Nat Methods 2023; 20:761-769. [PMID: 37024651 DOI: 10.1038/s41592-023-01836-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of the Caenorhabditis elegans nociceptive avoidance circuit. To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit. Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.
Collapse
Affiliation(s)
| | | | | | - Shadi Karimi
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | | | | | | | | | | | - Cedric Hurth
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | - Michael Krieg
- Institut de Ciències Fotòniques, Castelldefels, Spain.
| |
Collapse
|
13
|
Huang YC, Luo J, Huang W, Baker CM, Gomes MA, Byrne AB, Flavell SW. A single neuron in C. elegans orchestrates multiple motor outputs through parallel modes of transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.532814. [PMID: 37034579 PMCID: PMC10081309 DOI: 10.1101/2023.04.02.532814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Animals generate a wide range of highly coordinated motor outputs, which allows them to execute purposeful behaviors. Individual neuron classes in the circuits that generate behavior have a remarkable capacity for flexibility, as they exhibit multiple axonal projections, transmitter systems, and modes of neural activity. How these multi-functional properties of neurons enable the generation of highly coordinated behaviors remains unknown. Here we show that the HSN neuron in C. elegans evokes multiple motor programs over different timescales to enable a suite of behavioral changes during egg-laying. Using HSN activity perturbations and in vivo calcium imaging, we show that HSN acutely increases egg-laying and locomotion while also biasing the animals towards low-speed dwelling behavior over longer timescales. The acute effects of HSN on egg-laying and high-speed locomotion are mediated by separate sets of HSN transmitters and different HSN axonal projections. The long-lasting effects on dwelling are mediated by HSN release of serotonin that is taken up and re-released by NSM, another serotonergic neuron class that directly evokes dwelling. Our results show how the multi-functional properties of a single neuron allow it to induce a coordinated suite of behaviors and also reveal for the first time that neurons can borrow serotonin from one another to control behavior.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinyue Luo
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenjia Huang
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Casey M. Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A. Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra B. Byrne
- Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Ruach R, Ratner N, Emmons SW, Zaslaver A. The synaptic organization in the Caenorhabditis elegans neural network suggests significant local compartmentalized computations. Proc Natl Acad Sci U S A 2023; 120:e2201699120. [PMID: 36630454 PMCID: PMC9934027 DOI: 10.1073/pnas.2201699120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023] Open
Abstract
Neurons are characterized by elaborate tree-like dendritic structures that support local computations by integrating multiple inputs from upstream presynaptic neurons. It is less clear whether simple neurons, consisting of a few or even a single neurite, may perform local computations as well. To address this question, we focused on the compact neural network of Caenorhabditis elegans animals for which the full wiring diagram is available, including the coordinates of individual synapses. We find that the positions of the chemical synapses along the neurites are not randomly distributed nor can they be explained by anatomical constraints. Instead, synapses tend to form clusters, an organization that supports local compartmentalized computations. In mutually synapsing neurons, connections of opposite polarity cluster separately, suggesting that positive and negative feedback dynamics may be implemented in discrete compartmentalized regions along neurites. In triple-neuron circuits, the nonrandom synaptic organization may facilitate local functional roles, such as signal integration and coordinated activation of functionally related downstream neurons. These clustered synaptic topologies emerge as a guiding principle in the network, presumably to facilitate distinct parallel functions along a single neurite, which effectively increase the computational capacity of the neural network.
Collapse
Affiliation(s)
- Rotem Ruach
- Department of Genetics, Silberman Institute of Life Science, The Hebrew University, Jerusalem9190401, Israel
| | - Nir Ratner
- Department of Genetics, Silberman Institute of Life Science, The Hebrew University, Jerusalem9190401, Israel
| | - Scott W. Emmons
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York10461, NY
- Department of Genetics, Albert Einstein College of Medicine, New York10461, NY
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, The Hebrew University, Jerusalem9190401, Israel
| |
Collapse
|
15
|
Gianakas CA, Keeley DP, Ramos-Lewis W, Park K, Jayadev R, Kenny IW, Chi Q, Sherwood DR. Hemicentin-mediated type IV collagen assembly strengthens juxtaposed basement membrane linkage. J Cell Biol 2022; 222:213571. [PMID: 36282214 PMCID: PMC9597354 DOI: 10.1083/jcb.202112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Basement membrane (BM) matrices surround and separate most tissues. However, through poorly understood mechanisms, BMs of adjacent tissue can also stably link to support organ structure and function. Using endogenous knock-in fluorescent proteins, conditional RNAi, optogenetics, and quantitative live imaging, we identified extracellular matrix proteins mediating a BM linkage (B-LINK) between the uterine utse and epidermal seam cell BMs in Caenorhabditis elegans that supports the uterus during egg-laying. We found that hemicentin is secreted by the utse and promotes fibulin-1 assembly to jointly initiate the B-LINK. During egg-laying, however, both proteins' levels decline and are not required for B-LINK maintenance. Instead, we discovered that hemicentin recruits ADAMTS9/20, which facilitates the assembly of high levels of type IV collagen that sustains the B-LINK during the mechanically active egg-laying period. This work reveals mechanisms underlying BM-BM linkage maturation and identifies a crucial function for hemicentin and fibulin-1 in initiating attachment and type IV collagen in strengthening this specialized form of tissue linkage.
Collapse
Affiliation(s)
- Claire A. Gianakas
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kieop Park
- Department of Biology, Duke University, Durham, NC
| | | | | | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC,Correspondence to David R. Sherwood:
| |
Collapse
|
16
|
McLachlan IG, Kramer TS, Dua M, DiLoreto EM, Gomes MA, Dag U, Srinivasan J, Flavell SW. Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior. eLife 2022; 11:e79557. [PMID: 36044259 PMCID: PMC9433090 DOI: 10.7554/elife.79557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Animals must weigh competing needs and states to generate adaptive behavioral responses to the environment. Sensorimotor circuits are thus tasked with integrating diverse external and internal cues relevant to these needs to generate context-appropriate behaviors. However, the mechanisms that underlie this integration are largely unknown. Here, we show that a wide range of states and stimuli converge upon a single Caenorhabditis elegans olfactory neuron to modulate food-seeking behavior. Using an unbiased ribotagging approach, we find that the expression of olfactory receptor genes in the AWA olfactory neuron is influenced by a wide array of states and stimuli, including feeding state, physiological stress, and recent sensory cues. We identify odorants that activate these state-dependent olfactory receptors and show that altered expression of these receptors influences food-seeking and foraging. Further, we dissect the molecular and neural circuit pathways through which external sensory information and internal nutritional state are integrated by AWA. This reveals a modular organization in which sensory and state-related signals arising from different cell types in the body converge on AWA and independently control chemoreceptor expression. The synthesis of these signals by AWA allows animals to generate sensorimotor responses that reflect the animal's overall state. Our findings suggest a general model in which sensory- and state-dependent transcriptional changes at the sensory periphery modulate animals' sensorimotor responses to meet their ongoing needs and states.
Collapse
Affiliation(s)
- Ian G McLachlan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Talya S Kramer
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- MIT Biology Graduate Program, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malvika Dua
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Elizabeth M DiLoreto
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Matthew A Gomes
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ugur Dag
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
17
|
Dhakal P, Chaudhry SI, Signorelli R, Collins KM. Serotonin signals through postsynaptic Gαq, Trio RhoGEF, and diacylglycerol to promote Caenorhabditis elegans egg-laying circuit activity and behavior. Genetics 2022; 221:iyac084. [PMID: 35579369 PMCID: PMC9252285 DOI: 10.1093/genetics/iyac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Activated Gαq signals through phospholipase-Cβ and Trio, a Rho GTPase exchange factor (RhoGEF), but how these distinct effector pathways promote cellular responses to neurotransmitters like serotonin remains poorly understood. We used the egg-laying behavior circuit of Caenorhabditis elegans to determine whether phospholipase-Cβ and Trio mediate serotonin and Gαq signaling through independent or related biochemical pathways. Our genetic rescue experiments suggest that phospholipase-Cβ functions in neurons while Trio Rho GTPase exchange factor functions in both neurons and the postsynaptic vulval muscles. While Gαq, phospholipase-Cβ, and Trio Rho GTPase exchange factor mutants fail to lay eggs in response to serotonin, optogenetic stimulation of the serotonin-releasing HSN neurons restores egg laying only in phospholipase-Cβ mutants. Phospholipase-Cβ mutants showed vulval muscle Ca2+ transients while strong Gαq and Trio Rho GTPase exchange factor mutants had little or no vulval muscle Ca2+ activity. Treatment with phorbol 12-myristate 13-acetate that mimics 1,2-diacylglycerol, a product of PIP2 hydrolysis, rescued egg-laying circuit activity and behavior defects of Gαq signaling mutants, suggesting both phospholipase-C and Rho signaling promote synaptic transmission and egg laying via modulation of 1,2-diacylglycerol levels. 1,2-Diacylglycerol activates effectors including UNC-13; however, we find that phorbol esters, but not serotonin, stimulate egg laying in unc-13 and phospholipase-Cβ mutants. These results support a model where serotonin signaling through Gαq, phospholipase-Cβ, and UNC-13 promotes neurotransmitter release, and that serotonin also signals through Gαq, Trio Rho GTPase exchange factor, and an unidentified, phorbol 12-myristate 13-acetate-responsive effector to promote postsynaptic muscle excitability. Thus, the same neuromodulator serotonin can signal in distinct cells and effector pathways to coordinate activation of a motor behavior circuit.
Collapse
Affiliation(s)
- Pravat Dhakal
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Sana I Chaudhry
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
18
|
Yu B, Wang Y, Gao S. Motor Rhythm Dissection From the Backward Circuit in C. elegans. Front Mol Neurosci 2022; 15:845733. [PMID: 35370545 PMCID: PMC8966088 DOI: 10.3389/fnmol.2022.845733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Motor rhythm is initiated and sustained by oscillatory neuronal activity. We recently discovered that the A-class excitatory motor neurons (MNs) (A-MNs) function as intrinsic oscillators. They drive backward locomotion by generating rhythmic postsynaptic currents (rPSCs) in body wall muscles. Molecular underpinning of the rPSCs, however, is not fully elucidated. We report here that there are three types of the rPSC patterns, namely the phasic, tonic, and long-lasting, each with distinct kinetics and channel-dependence. The Na+ leak channel is required for all rPSC patterns. The tonic rPSCs exhibit strong dependence on the high-voltage-gated Ca2+ channels. Three K+ channels, the BK-type Ca2+-activated K+ channel, Na+-activated K+ channel, and voltage-gated K+ channel (Kv4), primarily inhibit tonic and long-lasting rPSCs with varying degrees and preferences. The elaborate regulation of rPSCs by different channels, through increasing or decreasing the rPSCs frequency and/or charge, correlates with the changes in the reversal velocity for respective channel mutants. The molecular dissection of different A-MNs-rPSC components therefore reveals different mechanisms for multiplex motor rhythm.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shangbang Gao,
| |
Collapse
|
19
|
Widaad A, Zulkipli IN, Petalcorin MIR. Anthelmintic Effect of Leucaena leucocephala Extract and Its Active Compound, Mimosine, on Vital Behavioral Activities in Caenorhabditis elegans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061875. [PMID: 35335240 PMCID: PMC8950933 DOI: 10.3390/molecules27061875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
Helminth infections continue to be a neglected global threat in tropical regions, and there have been growing cases of anthelmintic resistance reported towards the existing anthelmintic drugs. Thus, the search for a novel anthelmintic agent has been increasing, especially those derived from plants. Leucaena leucocephala (LL) is a leguminous plant that is known to have several pharmacological activities, including anthelmintic activity. It is widely known to contain a toxic compound called mimosine, which we believed could be a potential lead candidate that could exert a potent anthelmintic effect. Hence, this study aimed to validate the presence of mimosine in LL extract and to investigate the anthelmintic effect of LL extract and mimosine on head thrashing, egg-laying, and pharyngeal pumping activities using the animal model Caenorhabditis elegans (C. elegans). Mimosine content in LL extract was confirmed through an HPLC analysis of spiking LL extract with different mimosine concentrations, whereby an increasing trend in peak heights was observed at a retention time of 0.9 min. LL extract and mimosine caused a significant dose-dependent increase in the percentage of worm mortality, which produced LC50s of 73 mg/mL and 6.39 mg/mL, respectively. Exposure of C. elegans to different concentrations of LL extract and mimosine significantly decreased the head thrashing, egg-laying, and mean pump amplitude of pharyngeal pumping activity. We speculated that these behavioral changes are due to the inhibitory effect of LL extract and mimosine on an L-type calcium channel called EGL-19. Our findings provide evidential support for the potential of LL extract and its active compound, mimosine, as novel anthelmintic candidates. However, the underlying mechanism of the anthelmintic action has yet to be elucidated.
Collapse
|
20
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
21
|
Zhao Y, Zhang L, Rütgen M, Sladky R, Lamm C. Neural dynamics between anterior insular cortex and right supramarginal gyrus dissociate genuine affect sharing from perceptual saliency of pretended pain. eLife 2021; 10:e69994. [PMID: 34409940 PMCID: PMC8443248 DOI: 10.7554/elife.69994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
Empathy for pain engages both shared affective responses and self-other distinction. In this study, we addressed the highly debated question of whether neural responses previously linked to affect sharing could result from the perception of salient affective displays. Moreover, we investigated how the brain network involved in affect sharing and self-other distinction underpinned our response to a pain that is either perceived as genuine or pretended (while in fact both were acted for reasons of experimental control). We found stronger activations in regions associated with affect sharing (anterior insula [aIns] and anterior mid-cingulate cortex) as well as with affective self-other distinction (right supramarginal gyrus [rSMG]), in participants watching video clips of genuine vs. pretended facial expressions of pain. Using dynamic causal modeling, we then assessed the neural dynamics between the right aIns and rSMG in these two conditions. This revealed a reduced inhibitory effect on the aIns to rSMG connection for genuine pain compared to pretended pain. For genuine pain only, brain-to-behavior regression analyses highlighted a linkage between this inhibitory effect on the one hand, and pain ratings as well as empathic traits on the other. These findings imply that if the pain of others is genuine and thus calls for an appropriate empathic response, neural responses in the aIns indeed seem related to affect sharing and self-other distinction is engaged to avoid empathic over-arousal. In contrast, if others merely pretend to be in pain, the perceptual salience of their painful expression results in neural responses that are down-regulated to avoid inappropriate affect sharing and social support.
Collapse
Affiliation(s)
- Yili Zhao
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
- Vienna Cognitive Science Hub, University of ViennaViennaAustria
| | - Ronald Sladky
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
- Vienna Cognitive Science Hub, University of ViennaViennaAustria
| |
Collapse
|
22
|
Motor behavior: A feedforward circuit for zebrafish escape. Curr Biol 2021; 31:R965-R967. [PMID: 34375603 DOI: 10.1016/j.cub.2021.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A recent study of motor control in zebrafish demonstrates the critical role of an excitatory neural relay network in the transformation of a unilateral turn command into a subsequent bilateral swim signal. A rapid and smooth transition between these motor phases is critical for successfully escaping danger.
Collapse
|
23
|
Emerson S, Hay M, Smith M, Granger R, Blauch D, Snyder N, El Bejjani R. Acetylcholine signaling genes are required for cocaine-stimulated egg laying in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2021; 11:jkab143. [PMID: 33914087 PMCID: PMC8763240 DOI: 10.1093/g3journal/jkab143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
The toxicity and addictive liability associated with cocaine abuse are well-known. However, its mode of action is not completely understood, and effective pharmacotherapeutic interventions remain elusive. The cholinergic effects of cocaine on acetylcholine receptors, synthetic enzymes, and degradative enzymes have been the focus of relatively little empirical investigation. Due to its genetic tractability and anatomical simplicity, the egg laying circuit of the hermaphroditic nematode, Caenorhabditis elegans, is a powerful model system to precisely examine the genetic and molecular targets of cocaine in vivo. Here, we report a novel cocaine-induced behavioral phenotype in C. elegans, cocaine-stimulated egg laying. In addition, we present the results of an in vivo candidate suppression screen of synthetic enzymes, receptors, degradative enzymes, and downstream components of the intracellular signaling cascades of the main neurotransmitter systems that control C. elegans egg laying. Our results show that cocaine-stimulated egg laying is dependent on acetylcholine synthesis and synaptic release, functional nicotinic acetylcholine receptors, and the C. elegans acetylcholinesterases.
Collapse
Affiliation(s)
- Soren Emerson
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
| | - Megan Hay
- Biology Department, Davidson College, Davidson, NC 28035, USA
| | - Mark Smith
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
- Psychology Department, Davidson College, Davidson, NC 28035, USA
| | - Ricky Granger
- Biology Department, Davidson College, Davidson, NC 28035, USA
| | - David Blauch
- Chemistry Department, Davidson College, Davidson, NC 28035 USA
| | - Nicole Snyder
- Chemistry Department, Davidson College, Davidson, NC 28035 USA
| | - Rachid El Bejjani
- Neuroscience Interdisciplinary Program, Davidson College, Davidson, NC 28035, USA
- Biology Department, Davidson College, Davidson, NC 28035, USA
| |
Collapse
|
24
|
Li J, Qu M, Wang M, Yue Y, Chen Z, Liu R, Bu Y, Li Y. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans. J Environ Sci (China) 2021; 105:1-10. [PMID: 34130826 DOI: 10.1016/j.jes.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
DEHP (di(2-ethylhexyl) phthalate) is an endocrine disruptor commonly found in plastic products that has been associated with reproduction alterations, but the effect of DEHP on toxicity is still widely unknown. Using DEHP concentrations of 10, 1, and 0.1 mg/L, we showed that DEHP reduced the reproductive capacity of Caenorhabditis elegans after 72 hr. of exposure. DEHP exposure reduced the reproductive capacity in terms of decreased brood sizes, egg hatchability (0.1, 1 and 10 mg/L), and egg-laying rate (1 and 10 mg/L), and increased numbers of fertilized eggs in the uterus (1 and 10 mg/L). DEHP also caused damage to gonad development. DEHP decreased the total number of germline cells, and decreased the relative area of the gonad arm of all exposure groups, with worms in the 1 mg/L DEHP exposure group having the minimum gonad arm area. Additionally, DEHP caused a significant concentration-dependent increase in the expression of unc-86. Autophagy and ROS contributed to the enhancement of DEHP toxicity in reducing reproductive capacity, and glutathione peroxidase and superoxide dismutase were activated as the antioxidant defense in this study. Hence, we found that DEHP has a dual effect on nematodes. Higher concentration (10 mg/L) DEHP can inhibit the expression of autophagy genes (atg-18, atg-7, bec-1, lgg-1 and unc-51), and lower concentrations (0.1 and 1 mg/L) can promote the expression of autophagy genes. Our data highlight the potential environmental risk of DEHP in inducing reproductive toxicity toward the gonad development and reproductive capacity of environmental organisms.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mei Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Yue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
25
|
Ravi B, Zhao J, Chaudhry I, Signorelli R, Bartole M, Kopchock RJ, Guijarro C, Kaplan JM, Kang L, Collins KM. Presynaptic Gαo (GOA-1) signals to depress command neuron excitability and allow stretch-dependent modulation of egg laying in Caenorhabditis elegans. Genetics 2021; 218:6284136. [PMID: 34037773 DOI: 10.1093/genetics/iyab080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Egg laying in the nematode worm Caenorhabditis elegans is a two-state behavior modulated by internal and external sensory input. We have previously shown that homeostatic feedback of embryo accumulation in the uterus regulates bursting activity of the serotonergic HSN command neurons that sustains the egg-laying active state. How sensory feedback of egg release signals to terminate the egg-laying active state is less understood. We find that Gαo, a conserved Pertussis Toxin-sensitive G protein, signals within HSN to inhibit egg-laying circuit activity and prevent entry into the active state. Gαo signaling hyperpolarizes HSN, reducing HSN Ca2+ activity and input onto the postsynaptic vulval muscles. Loss of inhibitory Gαo signaling uncouples presynaptic HSN activity from a postsynaptic, stretch-dependent homeostat, causing precocious entry into the egg-laying active state when only a few eggs are present in the uterus. Feedback of vulval opening and egg release activates the uv1 neuroendocrine cells which release NLP-7 neuropeptides which signal to inhibit egg laying through Gαo-independent mechanisms in the HSNs and Gαo-dependent mechanisms in cells other than the HSNs. Thus, neuropeptide and inhibitory Gαo signaling maintains a bi-stable state of electrical excitability that dynamically controls circuit activity in response to both external and internal sensory input to drive a two-state behavior output.
Collapse
Affiliation(s)
- Bhavya Ravi
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | - Jian Zhao
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - I Chaudhry
- Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | - Mattingly Bartole
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | | | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - Lijun Kang
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kevin M Collins
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| |
Collapse
|
26
|
Vigne P, Gimond C, Ferrari C, Vielle A, Hallin J, Pino-Querido A, El Mouridi S, Mignerot L, Frøkjær-Jensen C, Boulin T, Teotónio H, Braendle C. A single-nucleotide change underlies the genetic assimilation of a plastic trait. SCIENCE ADVANCES 2021; 7:7/6/eabd9941. [PMID: 33536214 PMCID: PMC7857674 DOI: 10.1126/sciadv.abd9941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 05/09/2023]
Abstract
Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.
Collapse
Affiliation(s)
- Paul Vigne
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | | - Anne Vielle
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | - Johan Hallin
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, Québec, Canada
| | - Ania Pino-Querido
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Sonia El Mouridi
- Institut NeuroMyoGène, CNRS, Inserm, Université de Lyon, Lyon, France
| | | | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Thomas Boulin
- Institut NeuroMyoGène, CNRS, Inserm, Université de Lyon, Lyon, France
| | - Henrique Teotónio
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | | |
Collapse
|
27
|
Zellag RM, Zhao Y, Poupart V, Singh R, Labbé JC, Gerhold AR. CentTracker: a trainable, machine-learning-based tool for large-scale analyses of Caenorhabditis elegans germline stem cell mitosis. Mol Biol Cell 2021; 32:915-930. [PMID: 33502892 PMCID: PMC8108535 DOI: 10.1091/mbc.e20-11-0716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Investigating the complex interactions between stem cells and their native environment requires an efficient means to image them in situ. Caenorhabditis elegans germline stem cells (GSCs) are distinctly accessible for intravital imaging; however, long-term image acquisition and analysis of dividing GSCs can be technically challenging. Here we present a systematic investigation into the technical factors impacting GSC physiology during live imaging and provide an optimized method for monitoring GSC mitosis under minimally disruptive conditions. We describe CentTracker, an automated and generalizable image analysis tool that uses machine learning to pair mitotic centrosomes and that can extract a variety of mitotic parameters rapidly from large-scale data sets. We employ CentTracker to assess a range of mitotic features in a large GSC data set. We observe spatial clustering of mitoses within the germline tissue but no evidence that subpopulations with distinct mitotic profiles exist within the stem cell pool. We further find biases in GSC spindle orientation relative to the germline’s distal–proximal axis and thus the niche. The technical and analytical tools provided herein pave the way for large-scale screening studies of multiple mitotic processes in GSCs dividing in situ, in an intact tissue, in a living animal, under seemingly physiological conditions.
Collapse
Affiliation(s)
- Réda M Zellag
- Department of Biology, McGill University, Montréal, QC H2A 1B1, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Yifan Zhao
- Department of Biology, McGill University, Montréal, QC H2A 1B1, Canada.,Present address: Harvard-MIT Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ramya Singh
- Department of Biology, McGill University, Montréal, QC H2A 1B1, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Abigail R Gerhold
- Department of Biology, McGill University, Montréal, QC H2A 1B1, Canada
| |
Collapse
|
28
|
Chen YC, Seyedsayamdost MR, Ringstad N. A microbial metabolite synergizes with endogenous serotonin to trigger C. elegans reproductive behavior. Proc Natl Acad Sci U S A 2020; 117:30589-30598. [PMID: 33199611 PMCID: PMC7720207 DOI: 10.1073/pnas.2017918117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural products are a major source of small-molecule therapeutics, including those that target the nervous system. We have used a simple serotonin-dependent behavior of the roundworm Caenorhabditis elegans, egg laying, to perform a behavior-based screen for natural products that affect serotonin signaling. Our screen yielded agonists of G protein-coupled serotonin receptors, protein kinase C agonists, and a microbial metabolite not previously known to interact with serotonin signaling pathways: the disulfide-bridged 2,5-diketopiperazine gliotoxin. Effects of gliotoxin on egg-laying behavior required the G protein-coupled serotonin receptors SER-1 and SER-7, and the Gq ortholog EGL-30. Furthermore, mutants lacking serotonergic neurons and mutants that cannot synthesize serotonin were profoundly resistant to gliotoxin. Exogenous serotonin restored their sensitivity to gliotoxin, indicating that this compound synergizes with endogenous serotonin to elicit behavior. These data show that a microbial metabolite with no structural similarity to known serotonergic agonists potentiates an endogenous serotonin signal to affect behavior. Based on this study, we suggest that microbial metabolites are a rich source of functionally novel neuroactive molecules.
Collapse
Affiliation(s)
- Yen-Chih Chen
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| | | | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
29
|
Signal Decoding for Glutamate Modulating Egg Laying Oppositely in Caenorhabditis elegans under Varied Environmental Conditions. iScience 2020; 23:101588. [PMID: 33089099 PMCID: PMC7567941 DOI: 10.1016/j.isci.2020.101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Animals' ability to sense environmental cues and to integrate this information to control fecundity is vital for continuing the species lineage. In this study, we observed that the sensory neurons Amphid neuron (ASHs and ADLs) differentially regulate egg-laying behavior in Caenorhabditis elegans under varied environmental conditions via distinct neuronal circuits. Under standard culture conditions, ASHs tonically release a small amount of glutamate and inhibit Hermaphrodite specific motor neuron (HSN) activities and egg laying via a highly sensitive Glutamate receptor (GLR)-5 receptor. In contrast, under Cu2+ stimulation, ASHs and ADLs may release a large amount of glutamate and inhibit Amphid interneuron (AIA) interneurons via low-sensitivity Glutamate-gated chloride channel (GLC)-3 receptor, thus removing the inhibitory roles of AIAs on HSN activity and egg laying. However, directly measuring the amount of glutamate released by sensory neurons under different conditions and assaying the binding kinetics of receptors with the neurotransmitter are still required to support this study directly. Short-term exposure of CuSO4 evokes hyperactive egg laying ASHs inhibit HSNs and egg laying via GLR-5 receptor under no Cu2+ treatment AIA interneurons suppress HSNs and thus egg laying through ACR-14 signaling Under noxious Cu2+ treatment, ASHs and ADLs suppress AIAs and augment egg laying
Collapse
|
30
|
Téllez-Arreola JL, Silva M, Martínez-Torres A. MCTP-1 modulates neurotransmitter release in C. elegans. Mol Cell Neurosci 2020; 107:103528. [PMID: 32650044 DOI: 10.1016/j.mcn.2020.103528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022] Open
Abstract
Multiple C2 and Transmembrane Domain Proteins (MCTPs) are putative calcium sensors. Proteins that contain C2 domains play essential roles in membrane trafficking and exocytosis; however, MCTPs functions in neurotransmitter release are not known. Here we report that in C. elegans mctp-1 is under the control of two promoters - one active in the nervous system and the second in the spermatheca. We generated and characterized a loss of function amt1 mutant and compared it to a previously published loss of function mutant (av112). Loss of mctp-1 function causes defects in egg-laying, crawling velocity, and thrashing rates. Both amt1 and av112 mutants are hyposensitive to the acetylcholinesterase blocker aldicarb, suggesting that MCTP-1 may play a role in synaptic vesicle release.
Collapse
Affiliation(s)
- José Luis Téllez-Arreola
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76215 Juriquilla, Querétaro, México; School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Malan Silva
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76215 Juriquilla, Querétaro, México.
| |
Collapse
|
31
|
Dynamic Regulation of Adult-Specific Functions of the Nervous System by Signaling from the Reproductive System. Curr Biol 2019; 29:4116-4123.e3. [PMID: 31708396 DOI: 10.1016/j.cub.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Unlike juveniles, adult animals engage in suites of behaviors related to the search for and selection of potential mates and mating, including appropriate responses to sex pheromones. As in other species [1], male sex pheromones modulate several behaviors and physiological processes in C. elegans hermaphrodites [2-5]. In particular, one of these small-molecule signals, an ascaroside ascr#10, causes reduced exploration, more avid mating, and improved reproductive performance (see the accompanying paper by Aprison and Ruvinsky in this issue of Current Biology) [6]. Here, we investigated the mechanism that restricts pheromone response to adult hermaphrodites. Unexpectedly, we found that attainment of developmental adulthood was not alone sufficient for the behavioral response to the pheromone. To modify exploratory behavior in response to male pheromone, adult hermaphrodites also require functional germline and egg-laying apparatus. We show that this dependence of behavior on the reproductive system is due to feedback from the vulva muscles that reports ongoing reproduction to the nervous system. Our results reveal an activity-dependent conduit by which the reproductive system continuously licenses adult behaviors, including appropriate responses to the pheromones of the opposite sex. More broadly, our results suggest that signals from peripheral organs may serve as an important component of assuring age-appropriate functions of the nervous system.
Collapse
|
32
|
Chew YL, Grundy LJ, Brown AEX, Beets I, Schafer WR. Neuropeptides encoded by nlp-49 modulate locomotion, arousal and egg-laying behaviours in Caenorhabditis elegans via the receptor SEB-3. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170368. [PMID: 30201834 PMCID: PMC6158228 DOI: 10.1098/rstb.2017.0368] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
Neuropeptide signalling has been implicated in a wide variety of biological processes in diverse organisms, from invertebrates to humans. The Caenorhabditis elegans genome has at least 154 neuropeptide precursor genes, encoding over 300 bioactive peptides. These neuromodulators are thought to largely signal beyond 'wired' chemical/electrical synapse connections, therefore creating a 'wireless' network for neuronal communication. Here, we investigated how behavioural states are affected by neuropeptide signalling through the G protein-coupled receptor SEB-3, which belongs to a bilaterian family of orphan secretin receptors. Using reverse pharmacology, we identified the neuropeptide NLP-49 as a ligand of this evolutionarily conserved neuropeptide receptor. Our findings demonstrate novel roles for NLP-49 and SEB-3 in locomotion, arousal and egg-laying. Specifically, high-content analysis of locomotor behaviour indicates that seb-3 and nlp-49 deletion mutants cause remarkably similar abnormalities in movement dynamics, which are reversed by overexpression of wild-type transgenes. Overexpression of NLP-49 in AVK interneurons leads to heightened locomotor arousal, an effect that is dependent on seb-3. Finally, seb-3 and nlp-49 mutants also show constitutive egg-laying in liquid medium and alter the temporal pattern of egg-laying in similar ways. Together, these results provide in vivo evidence that NLP-49 peptides act through SEB-3 to modulate behaviour, and highlight the importance of neuropeptide signalling in the control of behavioural states.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
33
|
Rivera Gomez K, Schvarzstein M. Immobilization of nematodes for live imaging using an agarose pad produced with a Vinyl Record. MICROPUBLICATION BIOLOGY 2018; 2018. [PMID: 32550397 PMCID: PMC7282523 DOI: 10.17912/qg0j-vt85] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Katherine Rivera Gomez
- City University of New York (CUNY), Brooklyn College, Brooklyn, NY USA. x.,The Graduate Center at CUNY, NY, NY USA
| | - Mara Schvarzstein
- City University of New York (CUNY), Brooklyn College, Brooklyn, NY USA. x.,The Graduate Center at CUNY, NY, NY USA
| |
Collapse
|
34
|
Cellomics approach for high-throughput functional annotation of Caenorhabditis elegans neural network. Sci Rep 2018; 8:10380. [PMID: 29991757 PMCID: PMC6039433 DOI: 10.1038/s41598-018-28653-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
In Caenorhabditis elegans, which has only 302 neurons, relationships between behaviors and neural networks are not easily elucidated. In this study, we proposed a novel cellomics approach enabling high-throughput and comprehensive exploration of the functions of a single neuron or a subset of neurons in a complex neural network on a particular behavior. To realize this, we combined optogenetics and Brainbow technologies. Using these technologies, we established a C. elegans library where opsin is labeled in a randomized pattern. Behavioral analysis on this library under light illumination enabled high-throughput annotation of neurons affecting target behaviors. We applied this approach to the egg-laying behavior of C. elegans and succeeded in high-throughput confirmation that hermaphrodite-specific neurons play an important role in the egg-laying behavior. This cellomics approach will lead to the accumulation of neurophysiological and behavioral data of the C. elegans neural network, which is necessary for constructing neuroanatomically grounded models of behavior.
Collapse
|
35
|
Homeostatic Feedback Modulates the Development of Two-State Patterned Activity in a Model Serotonin Motor Circuit in Caenorhabditis elegans. J Neurosci 2018; 38:6283-6298. [PMID: 29891728 DOI: 10.1523/jneurosci.3658-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023] Open
Abstract
Neuron activity accompanies synapse formation and maintenance, but how early circuit activity contributes to behavior development is not well understood. Here, we use the Caenorhabditis elegans egg-laying motor circuit as a model to understand how coordinated cell and circuit activity develops and drives a robust two-state behavior in adults. Using calcium imaging in behaving animals, we find the serotonergic hermaphrodite-specific neurons (HSNs) and vulval muscles show rhythmic calcium transients in L4 larvae before eggs are produced. HSN activity in L4 is tonic and lacks the alternating burst-firing/quiescent pattern seen in egg-laying adults. Vulval muscle activity in L4 is initially uncoordinated but becomes synchronous as the anterior and posterior muscle arms meet at HSN synaptic release sites. However, coordinated muscle activity does not require presynaptic HSN input. Using reversible silencing experiments, we show that neuronal and vulval muscle activity in L4 is not required for the onset of adult behavior. Instead, the accumulation of eggs in the adult uterus renders the muscles sensitive to HSN input. Sterilization or acute electrical silencing of the vulval muscles inhibits presynaptic HSN activity and reversal of muscle silencing triggers a homeostatic increase in HSN activity and egg release that maintains ∼12-15 eggs in the uterus. Feedback of egg accumulation depends upon the vulval muscle postsynaptic terminus, suggesting that a retrograde signal sustains HSN synaptic activity and egg release. Our results show that egg-laying behavior in C. elegans is driven by a homeostat that scales serotonin motor neuron activity in response to postsynaptic muscle feedback.SIGNIFICANCE STATEMENT The functional importance of early, spontaneous neuron activity in synapse and circuit development is not well understood. Here, we show in the nematode Caenorhabditis elegans that the serotonergic hermaphrodite-specific neurons (HSNs) and postsynaptic vulval muscles show activity during circuit development, well before the onset of adult behavior. Surprisingly, early activity is not required for circuit development or the onset of adult behavior and the circuit remains unable to drive egg laying until fertilized embryos are deposited into the uterus. Egg accumulation potentiates vulval muscle excitability, but ultimately acts to promote burst firing in the presynaptic HSNs which results in egg laying. Our results suggest that mechanosensory feedback acts at three distinct steps to initiate, sustain, and terminate C. elegans egg-laying circuit activity and behavior.
Collapse
|
36
|
Yue X, Zhao J, Li X, Fan Y, Duan D, Zhang X, Zou W, Sheng Y, Zhang T, Yang Q, Luo J, Duan S, Xiao R, Kang L. TMC Proteins Modulate Egg Laying and Membrane Excitability through a Background Leak Conductance in C. elegans. Neuron 2018; 97:571-585.e5. [PMID: 29395910 PMCID: PMC7038793 DOI: 10.1016/j.neuron.2017.12.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/24/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Membrane excitability is a fundamentally important feature for all excitable cells including both neurons and muscle cells. However, the background depolarizing conductances in excitable cells, especially in muscle cells, are not well characterized. Although mutations in transmembrane channel-like (TMC) proteins TMC1 and TMC2 cause deafness and vestibular defects in mammals, their precise action modes are elusive. Here, we discover that both TMC-1 and TMC-2 are required for normal egg laying in C. elegans. Mutations in these TMC proteins cause membrane hyperpolarization and disrupt the rhythmic calcium activities in both neurons and muscles involved in egg laying. Mechanistically, TMC proteins enhance membrane depolarization through background leak currents and ectopic expression of both C. elegans and mammalian TMC proteins results in membrane depolarization. Therefore, we have identified an unexpected role of TMC proteins in modulating membrane excitability. Our results may provide mechanistic insights into the functions of TMC proteins in hearing loss and other diseases.
Collapse
Affiliation(s)
- Xiaomin Yue
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhao
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Li
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuedan Fan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Duo Duan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Zou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Ting Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Luo
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| | - Lijun Kang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
37
|
Ravi B, Nassar LM, Kopchock RJ, Dhakal P, Scheetz M, Collins KM. Ratiometric Calcium Imaging of Individual Neurons in Behaving Caenorhabditis Elegans. J Vis Exp 2018. [PMID: 29443112 PMCID: PMC5912386 DOI: 10.3791/56911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has become increasingly clear that neural circuit activity in behaving animals differs substantially from that seen in anesthetized or immobilized animals. Highly sensitive, genetically encoded fluorescent reporters of Ca2+ have revolutionized the recording of cell and synaptic activity using non-invasive optical approaches in behaving animals. When combined with genetic and optogenetic techniques, the molecular mechanisms that modulate cell and circuit activity during different behavior states can be identified. Here we describe methods for ratiometric Ca2+ imaging of single neurons in freely behaving Caenorhabditis elegans worms. We demonstrate a simple mounting technique that gently overlays worms growing on a standard Nematode Growth Media (NGM) agar block with a glass coverslip, permitting animals to be recorded at high-resolution during unrestricted movement and behavior. With this technique, we use the sensitive Ca2+ reporter GCaMP5 to record changes in intracellular Ca2+ in the serotonergic Hermaphrodite Specific Neurons (HSNs) as they drive egg-laying behavior. By co-expressing mCherry, a Ca2+-insensitive fluorescent protein, we can track the position of the HSN within ~ 1 µm and correct for fluctuations in fluorescence caused by changes in focus or movement. Simultaneous, infrared brightfield imaging allows for behavior recording and animal tracking using a motorized stage. By integrating these microscopic techniques and data streams, we can record Ca2+ activity in the C. elegans egg-laying circuit as it progresses between inactive and active behavior states over tens of minutes.
Collapse
Affiliation(s)
- Bhavya Ravi
- Neuroscience Program, University of Miami School of Medicine
| | - Layla M Nassar
- Neuroscience Program, University of Miami School of Medicine; Department of Biology, University of Miami
| | | | | | | | - Kevin M Collins
- Neuroscience Program, University of Miami School of Medicine; Department of Biology, University of Miami;
| |
Collapse
|
38
|
Piechulek A, von Mikecz A. Life span-resolved nanotoxicology enables identification of age-associated neuromuscular vulnerabilities in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1095-1103. [PMID: 29031405 DOI: 10.1016/j.envpol.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
At present, the majority of investigations concerning nanotoxicology in the nematode C. elegans address short-term effects. While this approach allows for the identification of uptake pathways, exposition and acute toxicity, nanoparticle-organism interactions that manifest later in the adult life of C. elegans are missed. Here we show that a microhabitat composed of liquid S-medium and live bacteria in microtiter wells prolongs C. elegans longevity and is optimally suited to monitor chronic eNP-effects over the entire life span (about 34 days) of the nematode. Silver (Ag) nanoparticles reduced C. elegans life span in concentrations ≥10 μg/mL, whereas nano ZnO and CeO2 (1-160 μg/mL) had no effect on longevity. Monitoring of locomotion behaviors throughout the entire life span of C. elegans showed that Ag NPs accelerate the age-associated decline of swimming and increase of uncoordinated movements at concentrations of ≥10 μg/mL, whereas neuromuscular defects did not occur in response to ZnO and CeO2 NPs. By means of a fluorescing reporter worm expressing tryptophan hydroxylase-1::DsRed Ag NP-induced behavioral defects were correlated to axonal protein aggregation and neurodegeneration in single serotonergic HSN as well as sensory ADF neurons. Notably, serotonergic ADF neurons represented a sensitive target for Ag NPs in comparison to GABAergic neurons that showed no signs of degeneration under the same conditions. We conclude that due to its analogy to the jellylike boom culture of C. elegans on microbe-rich rotting plant material liquid S-medium culture in spatially confined microtiter wells represents a relevant as well as practical tool for comparative identification of age-resolved nanoparticle effects and vulnerabilities in a significant target organism. Consistent with this, specifically middle-aged nematodes showed premature neuromuscular defects after Ag NP-exposure.
Collapse
Affiliation(s)
- Annette Piechulek
- IUF - Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Germany.
| |
Collapse
|
39
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
40
|
Barbagallo B, Philbrook A, Touroutine D, Banerjee N, Oliver D, Lambert CM, Francis MM. Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit. Development 2017; 144:1807-1819. [PMID: 28420711 DOI: 10.1242/dev.141911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
Establishing and maintaining the appropriate number of GABA synapses is key for balancing excitation and inhibition in the nervous system, though we have only a limited understanding of the mechanisms controlling GABA circuit connectivity. Here, we show that disrupting cholinergic innervation of GABAergic neurons in the C. elegans motor circuit alters GABAergic neuron synaptic connectivity. These changes are accompanied by reduced frequency and increased amplitude of GABAergic synaptic events. Acute genetic disruption in early development, during the integration of post-embryonic-born GABAergic neurons into the circuit, produces irreversible effects on GABAergic synaptic connectivity that mimic those produced by chronic manipulations. In contrast, acute genetic disruption of cholinergic signaling in the adult circuit does not reproduce these effects. Our findings reveal that GABAergic signaling is regulated by cholinergic neuronal activity, probably through distinct mechanisms in the developing and mature nervous system.
Collapse
Affiliation(s)
- Belinda Barbagallo
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Navonil Banerjee
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Devyn Oliver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
41
|
Banerjee N, Bhattacharya R, Gorczyca M, Collins KM, Francis MM. Local neuropeptide signaling modulates serotonergic transmission to shape the temporal organization of C. elegans egg-laying behavior. PLoS Genet 2017; 13:e1006697. [PMID: 28384151 PMCID: PMC5398689 DOI: 10.1371/journal.pgen.1006697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
Animal behaviors are often composed of distinct alternating behavioral states. Neuromodulatory signals are thought to be critical for establishing stable behavioral states and for orchestrating transitions between them. However, we have only a limited understanding of how neuromodulatory systems act in vivo to alter circuit performance and shape behavior. To address these questions, we have investigated neuromodulatory signaling in the context of Caenorhabditis elegans egg-laying. Egg-laying activity cycles between discrete states-short bursts of egg deposition (active phases) that alternate with prolonged quiescent periods (inactive phases). Here using genetic, pharmacological and optogenetic approaches for cell-specific activation and inhibition, we show that a group of neurosecretory cells (uv1) located in close spatial proximity to the egg-laying neuromusculature direct the temporal organization of egg-laying by prolonging the duration of inactive phases. We demonstrate that the modulatory effects of the uv1 cells are mediated by peptides encoded by the nlp-7 and flp-11 genes that act locally to inhibit circuit activity, primarily by inhibiting vesicular release of serotonin from HSN motor neurons. This peptidergic inhibition is achieved, at least in part, by reducing synaptic vesicle abundance in the HSN motor neurons. By linking the in vivo actions of specific neuropeptide signaling systems with the generation of stable behavioral outcomes, our study reveals how cycles of neuromodulation emanating from non-neuronal cells can fundamentally shape the organization of a behavioral program.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Raja Bhattacharya
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Michael Gorczyca
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Kevin M. Collins
- Department of Biology, University of Miami, Coral Gables, FL United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| |
Collapse
|
42
|
Ardeshiri R, Rezai P. Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5749-5752. [PMID: 28269560 DOI: 10.1109/embc.2016.7592033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Caenorhabditis elegans (C. elegans) and Drosophila melanogaster (D. melanogaster) are widely-used model organisms for neurological and cardiac studies due to their simple neuronal (302 neurons in C. elegans) and cardiac (simple tubular organ in D. melanogaster) systems. However, their small sizes and continuous mobility impede their precise and timely manipulation, hence, limiting the assays that can be done using conventional manual methods. This has resulted in a need for technologies that allow multidirectional manipulation of model organisms to enable studies on target neurons and organs throughout the body. By integration of rotatable glass capillaries with pneumatic suction into microfluidic devices, we propose novel Lab-on-Chips for multi-directional manipulation and imaging of small organisms. These hybrid Lab-on-Chips can facilitate the processes of animal handling and stimuli control, using modules for single-organism selection, orientation, imaging and chemical stimulation. We show the applications of these hybrid microdevices in manipulating C. elegans for neuronal imaging (neuron-level assay) or D. melanogaster for heart screening (organ level assay). These devices can enhance the throughput of biological assays on whole-organisms and find their applications in drug discovery and toxicology.
Collapse
|
43
|
Zang KE, Ho E, Ringstad N. Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels. eLife 2017; 6. [PMID: 28165324 PMCID: PMC5330680 DOI: 10.7554/elife.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
Serotonin is an evolutionarily ancient molecule that functions in generating and modulating many behavioral states. Although much is known about how serotonin acts on its cellular targets, how serotonin release is regulated in vivo remains poorly understood. In the nematode C. elegans, serotonin neurons that drive female reproductive behavior are directly modulated by inhibitory neuropeptides. Here, we report the isolation of mutants in which inhibitory neuropeptides fail to properly modulate serotonin neurons and the behavior they mediate. The corresponding mutations affect the T-type calcium channel CCA-1 and symmetrically re-tune its voltage-dependencies of activation and inactivation towards more hyperpolarized potentials. This shift in voltage dependency strongly and specifically bypasses the behavioral and cell physiological effects of peptidergic inhibition on serotonin neurons. Our results indicate that T-type calcium channels are critical regulators of a C. elegans serotonergic circuit and demonstrate a mechanism in which T-type channels functionally gate inhibitory modulation in vivo.
Collapse
Affiliation(s)
- Kara E Zang
- Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, NYU Langone School of Medicine, New York, United States
| | - Elver Ho
- Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, NYU Langone School of Medicine, New York, United States
| | - Niels Ringstad
- Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, NYU Langone School of Medicine, New York, United States
| |
Collapse
|
44
|
Collins KM, Bode A, Fernandez RW, Tanis JE, Brewer JC, Creamer MS, Koelle MR. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. eLife 2016; 5. [PMID: 27849154 PMCID: PMC5142809 DOI: 10.7554/elife.21126] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/14/2016] [Indexed: 01/13/2023] Open
Abstract
Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states. DOI:http://dx.doi.org/10.7554/eLife.21126.001 It has been said that if the human brain were so simple that we could understand it, we would be so simple that we couldn’t. This quote neatly captures the challenge of working out how 80 billion neurons collectively generate our thoughts and behavior. Fortunately, the nervous system is also organized into simpler units called circuits. Each consists of a relatively small number of neurons, which communicate with one another to control as little as a single behavior. These circuits should in principle be simple enough for us to understand, particularly if we study them in nervous systems less complex than our own. Despite this, there is currently not a single circuit in any organism in which we can explain how communication between individual neurons generates behavior. Collins et al. therefore set out to characterize a simple neural circuit in one of the simplest model organisms: the egg-laying circuit of the worm C. elegans. Using mutations, drugs and molecular genetic techniques, Collins et al. systematically altered the activity and signaling of each of the neurons within the egg-laying circuit. The experiments revealed that cells called command neurons trigger egg laying by producing signals that switch on the rest of the circuit. Once activated, the circuit is able to respond to waves of activity from a second circuit – called the central pattern generator – that also controls the worm’s movement. Finally, laying an egg activates a third set of neurons, which release a signal that returns the circuit to its inactive state. The use of distinct signals and neurons to activate the circuit, to coordinate its ongoing activity, and to inactivate the circuit when its task is complete also applies to many other neural circuits. Now that these signals have been identified in one circuit, it should be possible to build on these findings to better understand how others work. DOI:http://dx.doi.org/10.7554/eLife.21126.002
Collapse
Affiliation(s)
- Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Addys Bode
- Department of Biology, University of Miami, Coral Gables, United States
| | - Robert W Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Jessica E Tanis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Jacob C Brewer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| |
Collapse
|
45
|
Ardeshiri R, Mulcahy B, Zhen M, Rezai P. A hybrid microfluidic device for on-demand orientation and multidirectional imaging of C. elegans organs and neurons. BIOMICROFLUIDICS 2016; 10:064111. [PMID: 27990213 PMCID: PMC5135714 DOI: 10.1063/1.4971157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/16/2016] [Indexed: 05/06/2023]
Abstract
C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology.
Collapse
Affiliation(s)
- Ramtin Ardeshiri
- Department of Mechanical Engineering, York University , Toronto, Ontario M3J 1P3, Canada
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University , Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
46
|
Moy K, Li W, Tran HP, Simonis V, Story E, Brandon C, Furst J, Raicu D, Kim H. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior. PLoS One 2015; 10:e0145870. [PMID: 26713869 PMCID: PMC4699910 DOI: 10.1371/journal.pone.0145870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the alteration and transition of C. elegans locomotory behavior in a food-deprived condition.
Collapse
Affiliation(s)
- Kyle Moy
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Weiyu Li
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Huu Phuoc Tran
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Valerie Simonis
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Evan Story
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Christopher Brandon
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, United States of America
| | - Jacob Furst
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Daniela Raicu
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
- * E-mail: (DR); (HK)
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, United States of America
- * E-mail: (DR); (HK)
| |
Collapse
|
47
|
Scharf A, Gührs KH, von Mikecz A. Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans. Nanotoxicology 2015; 10:426-35. [PMID: 26444998 PMCID: PMC4819850 DOI: 10.3109/17435390.2015.1073399] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axons of neural cells. Proteomic screening revealed that exposure of adult C. elegans with silica NPs promotes segregation of proteins belonging to the gene ontology (GO) group of “protein folding, proteolysis and stress response” to an SDS-resistant aggregome network. Candidate proteins in this group include chaperones, heat shock proteins and subunits of the 26S proteasome which are all decisively involved in protein homeostasis. The pathway of protein homeostasis was validated as a major target of silica NPs by behavioral phenotyping, as inhibitors of amyloid formation rescued NP-induced defects of locomotory patterns and egg laying. The analysis of a reporter worm for serotonergic neural cells revealed that silica NP-induced protein aggregation likewise occurs in axons of HSN neurons, where presynaptic accumulation of serotonin, e.g. disturbed axonal transport reduces the capacity for neurotransmission and egg laying. The results suggest that in C. elegans silica NPs promote a cascade of events including disturbance of protein homeostasis, widespread protein aggregation and inhibition of serotonergic neurotransmission which can be interrupted by compounds preventing amyloid fibrillation.
Collapse
Affiliation(s)
- Andrea Scharf
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| | - Karl-Heinz Gührs
- b CF Proteomics, FLI-Leibniz-Institute for Age Research, Fritz-Lipman-Institute e.V. , Jena , Germany
| | - Anna von Mikecz
- a IUF - Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Duesseldorf , Düsseldorf , Germany and
| |
Collapse
|
48
|
Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Proc Natl Acad Sci U S A 2015; 112:E3525-34. [PMID: 26100886 DOI: 10.1073/pnas.1423808112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called "BAG," "AFD," and "ASE" that respond to CO2 stimuli. Using in vivo Ca(2+) imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca(2+). In contrast, glial sheath cells harboring the sensory endings of C. elegans' major chemosensory neurons exhibit strong and sustained decreases in Ca(2+) in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry.
Collapse
|
49
|
The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. elegans by modulating motor neuron excitability. J Neurosci 2014; 34:764-75. [PMID: 24431435 DOI: 10.1523/jneurosci.3112-13.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CLC-2 is a hyperpolarization-activated, inwardly rectifying chloride channel. Although the properties of the CLC-2 channel have been well characterized, its function in vivo is not well understood. We have found that channels encoded by the Caenorhabditis elegans CLC-2 homolog clh-3 regulate the activity of the spontaneously active hermaphrodite-specific neurons (HSNs), which control the egg-laying behavior. We identified a gain-of-function mutation in clh-3 that increases channel activity. This mutation inhibits egg laying and inhibits HSN activity by decreasing its excitability. Conversely, loss-of-function mutations in clh-3 lead to misregulated egg laying and an increase in HSN excitability, indicating that these channels modulate egg laying by limiting HSN excitability. clh-3-encoded channels are not required for GABAA-receptor-mediated inhibition of the HSN. However, they require low intracellular chloride for HSN inhibition, indicating that they inhibit excitability directly by mediating chloride influx. This mechanism of CLH-3-dependent modulation may be conserved in other neurons in which the driving force favors chloride influx.
Collapse
|
50
|
Sanders J, Nagy S, Fetterman G, Wright C, Treinin M, Biron D. The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor. BMC Neurosci 2013; 14:156. [PMID: 24341457 PMCID: PMC3878553 DOI: 10.1186/1471-2202-14-156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To survive dynamic environments, it is essential for all animals to appropriately modulate their behavior in response to various stimulus intensities. For instance, the nematode Caenorhabditis elegans suppresses the rate of egg-laying in response to intense mechanical stimuli, in a manner dependent on the mechanosensory neurons FLP and PVD. We have found that the unilaterally placed single interneuron ALA acted as a high-threshold mechanosensor, and that it was required for this protective behavioral response. RESULTS ALA was required for the inhibition of egg-laying in response to a strong (picking-like) mechanical stimulus, characteristic of routine handling of the animals. Moreover, ALA did not respond physiologically to less intense touch stimuli, but exhibited distinct physiological responses to anterior and posterior picking-like touch, suggesting that it could distinguish between spatially separated stimuli. These responses required neither neurotransmitter nor neuropeptide release from potential upstream neurons. In contrast, the long, bilaterally symmetric processes of ALA itself were required for producing its physiological responses; when they were severed, responses to stimuli administered between the cut and the cell body were unaffected, while responses to stimuli administered posterior to the cut were abolished. CONCLUSION C. elegans neurons are typically classified into three major groups: sensory neurons with specialized sensory dendrites, interneurons, and motoneurons with neuromuscular junctions. Our findings suggest that ALA can autonomously sense intense touch and is thus a dual-function neuron, i.e., an interneuron as well as a novel high-threshold mechanosensor.
Collapse
Affiliation(s)
| | | | | | | | | | - David Biron
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|