1
|
Joldersma D, Guo L, Alger EI, Ippoliti C, Luo X, Platts AE, Edger PP, Liu Z. Identification and analysis of imprinted genes in wild strawberry uncover a regulatory pathway in endosperm development. PLANT PHYSIOLOGY 2024; 196:2599-2613. [PMID: 39331513 DOI: 10.1093/plphys/kiae496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024]
Abstract
Fertilization is a fundamental process that triggers seed and fruit development, but the molecular mechanisms underlying fertilization-induced seed development are poorly understood. Previous research has established AGamous-Like62 (AGL62) activation and auxin biosynthesis in the endosperm as key events following fertilization in Arabidopsis (Arabidopsis thaliana) and wild strawberry (Fragaria vesca). To test the hypothesis that epigenetic mechanisms are critical in mediating the effect of fertilization on the activation of AGL62 and auxin biosynthesis in the endosperm, we first identified and analyzed imprinted genes from the endosperm of wild strawberries. We isolated endosperm tissues from F1 seeds of 2 wild strawberry F. vesca subspecies, generated endosperm-enriched transcriptomes, and identified candidate Maternally Expressed and Paternally Expressed Genes (MEGs and PEGs). Through bioinformatic analyses, we identified 4 imprinted genes that may be involved in regulating the expression of FveAGL62 and auxin biosynthesis genes. We conducted functional analysis of a maternally expressed gene FveMYB98 through CRISPR-knockout and over-expression in transgenic strawberries as well as analysis in heterologous systems. FveMYB98 directly repressed FveAGL62 at stage 3 endosperm, which likely serves to limit auxin synthesis and endosperm proliferation. These results provide an inroad into the regulation of early-stage seed development by imprinted genes in strawberries, suggest the potential function of imprinted genes in parental conflict, and identify FveMYB98 as a regulator of a key transition point in endosperm development.
Collapse
Affiliation(s)
- Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth I Alger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Christina Ippoliti
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Mitochondrial DNA Deficiency and Supplementation in Sus scrofa Oocytes Influence Transcriptome Profiles in Oocytes and Blastocysts. Int J Mol Sci 2023; 24:ijms24043783. [PMID: 36835193 PMCID: PMC9963854 DOI: 10.3390/ijms24043783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deficiency correlates with poor oocyte quality and fertilisation failure. However, the supplementation of mtDNA deficient oocytes with extra copies of mtDNA improves fertilisation rates and embryo development. The molecular mechanisms associated with oocyte developmental incompetence, and the effects of mtDNA supplementation on embryo development are largely unknown. We investigated the association between the developmental competence of Sus scrofa oocytes, assessed with Brilliant Cresyl Blue, and transcriptome profiles. We also analysed the effects of mtDNA supplementation on the developmental transition from the oocyte to the blastocyst by longitudinal transcriptome analysis. mtDNA deficient oocytes revealed downregulation of genes associated with RNA metabolism and oxidative phosphorylation, including 56 small nucleolar RNA genes and 13 mtDNA protein coding genes. We also identified the downregulation of a large subset of genes for meiotic and mitotic cell cycle process, suggesting that developmental competence affects the completion of meiosis II and first embryonic cell division. The supplementation of oocytes with mtDNA in combination with fertilisation improves the maintenance of the expression of several key developmental genes and the patterns of parental allele-specific imprinting gene expression in blastocysts. These results suggest associations between mtDNA deficiency and meiotic cell cycle and the developmental effects of mtDNA supplementation on Sus scrofa blastocysts.
Collapse
|
3
|
Liang D, Aygün N, Matoba N, Ideraabdullah FY, Love MI, Stein JL. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation. Hum Mol Genet 2023; 32:402-416. [PMID: 35994039 PMCID: PMC9851749 DOI: 10.1093/hmg/ddac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Latchney SE, Cadney MD, Hopkins A, Garland T. DNA Methylation Analysis of Imprinted Genes in the Cortex and Hippocampus of Cross-Fostered Mice Selectively Bred for Increased Voluntary Wheel-Running. Behav Genet 2022; 52:281-297. [PMID: 35988119 PMCID: PMC9463359 DOI: 10.1007/s10519-022-10112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behavior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions. First, do HR mice have altered DNA methylation profiles of imprinted genes in the brain compared to C mice? Second, does maternal upbringing further modify the DNA methylation status of these imprinted genes? To address these questions, we cross-fostered all offspring at birth to create four experimental groups: C pups to other C dams, HR pups to other HR dams, C pups to HR dams, and HR pups to C dams. Bisulfite sequencing of 16 imprinted genes in the cortex and hippocampus revealed that the HR line had altered DNA methylation patterns of the paternally imprinted genes, Rasgrf1 and Zdbf2, as compared with the C line. Both fostering between the HR and C lines and sex modified the DNA methylation profiles for the paternally expressed genes Mest, Peg3, Igf2, Snrpn, and Impact. Ig-DMR, a gene with multiple paternal and maternal imprinted clusters, was also affected by maternal upbringing and sex. Our results suggest that differential methylation patterns of imprinted genes in the brain could contribute to evolutionary increases in wheel-running behavior and are also dependent on maternal upbringing and sex.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, 18952 E. Fisher Rd, Saint Mary's City, MD, 20686, USA.
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Hou X, Wang Z, Shi L, Wang L, Zhao F, Liu X, Gao H, Shi L, Yan H, Wang L, Zhang L. Identification of imprinted genes in the skeletal muscle of newborn piglets by high-throughput sequencing. Anim Genet 2022; 53:479-486. [PMID: 35481679 DOI: 10.1111/age.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Imprinted genes - exhibiting parent-specific transcription - play essential roles in the process of mammalian development and growth. Skeletal muscle growth is crucial for meat production. To further understand the role of imprinted genes during the porcine skeletal muscle growth, DNA-seq and RNA-seq were used to explore the characteristics of imprinted genes from porcine reciprocal crosses. A total of 584 545 single-nucleotide variations were discovered in the DNA-seq data of F0 parents, heterozygous in two pig breeds (Yorkshire and Min pigs) but homozygous in each breed. These single-nucleotide variations were used to determine the allelic-specific expression in F1 individuals. Finally, eight paternal expression sites and three maternal expression sites were detected, whereas two paternally expressed imprinted genes (NDN and IGF2) and one maternally expressed imprinted gene (H1-3) were validated by Sanger sequencing. DNA methylation regulates the expression of imprinted genes, and all of the identified imprinted genes in this study were predicted to possess CpG islands. PBX1 and YY1 binding motifs were discovered in the promoter regions of all three imprinted genes, which were candidate elements regulating the transcription of imprinted genes. For these identified imprinted genes, IGF2 and NDN promoted muscle growth whereas H1-3 inhibited cell proliferation, corroborating the 'parental conflict' theory that paternally expressed imprinted genes assisted descendants' growth whereas maternally expressed imprinted genes inhibited it. This study discovered porcine imprinted genes in skeletal muscle and was the first to reveal that H1-3 was expressed by the maternal allele to our knowledge. Our findings provided valuable resources for the potential utilization of imprinted genes in pig breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zishuai Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liangyu Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ligang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Shi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022; 20:70. [PMID: 35317801 PMCID: PMC8941758 DOI: 10.1186/s12915-022-01270-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cytosine DNA methylation is a heritable epigenetic mark present in most eukaryotic groups. While the patterns and functions of DNA methylation have been extensively studied in mouse and human, their conservation in other vertebrates remains poorly explored. In this study, we interrogated the distribution and function of DNA methylation in primary fibroblasts of seven vertebrate species including bio-medical models and livestock species (human, mouse, rabbit, dog, cow, pig, and chicken). Results Our data highlight both divergence and conservation of DNA methylation patterns and functions. We show that the chicken genome is hypomethylated compared to other vertebrates. Furthermore, compared to mouse, other species show a higher frequency of methylation of CpG-rich DNA. We reveal the conservation of large unmethylated valleys and patterns of DNA methylation associated with X-chromosome inactivation through vertebrate evolution and make predictions of conserved sets of imprinted genes across mammals. Finally, using chemical inhibition of DNA methylation, we show that the silencing of germline genes and endogenous retroviruses (ERVs) are conserved functions of DNA methylation in vertebrates. Conclusions Our data highlight conserved properties of DNA methylation in vertebrate genomes but at the same time point to differences between mouse and other vertebrate species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01270-x.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Elouan Cleroux
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Sylvain Guibert
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté, Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, 21000, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction - CECOS, 14 rue Gaffarel, 21000, Dijon, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.
| |
Collapse
|
7
|
Zhang Z, Yu S, Li J, Zhu Y, Jiang S, Xia H, Zhou Y, Sun D, Liu M, Li C, Zhu Y, Ruan Y, Dong X. Epigenetic modifications potentially controlling the allelic expression of imprinted genes in sunflower endosperm. BMC PLANT BIOLOGY 2021; 21:570. [PMID: 34863098 PMCID: PMC8642925 DOI: 10.1186/s12870-021-03344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/26/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon mainly occurs in endosperm of flowering plants. Genome-wide identification of imprinted genes have been completed in several dicot Cruciferous plant and monocot crops. RESULTS Here, we analyzed global patterns of allelic gene expression in developing endosperm of sunflower which belongs to the composite family. Totally, 691 imprinted loci candidates were identified in 12 day-after-pollination sunflower endosperm including 79 maternally expressed genes (MEG) and 596 paternally expressed genes (PEG), 6 maternally expressed noncoding RNAs (MNC) and 10 paternally expressed noncoding RNAs (PNC). And a clear clustering of imprinted genes throughout the rapeseed genome was identified. Generally, imprinting in sunflower is conserved within a species, but intraspecific variation also was detected. Limited loci in sunflower are imprinted in other several different species. The DNA methylation pattern around imprinted genes were investigated in embryo and endosperm tissues. In CG context, the imprinted genes were significantly associated with differential methylated regions exhibiting hypomethylation in endosperm and hypermethylation in embryo, which indicated that the maternal demethylation in CG context potentially induce the genomic imprinting in endosperm. CONCLUSION Our study would be helpful for understanding of genomic imprinting in plants and provide potential basis for further research in imprinting in sunflower.
Collapse
Affiliation(s)
- Zhichao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanbin Zhu
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China
- State Key Laboratory of the Northeast Crop Genetics and Breeding, Shenyang, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haoran Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yue Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Daqiu Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China.
- State Key Laboratory of Maize Bio-Breeding, Shenyang, China.
| |
Collapse
|
8
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
10
|
Li J, Chen W, Li D, Gu S, Liu X, Dong Y, Jin L, Zhang C, Li S. Conservation of Imprinting and Methylation of MKRN3, MAGEL2 and NDN Genes in Cattle. Animals (Basel) 2021; 11:1985. [PMID: 34359112 PMCID: PMC8300276 DOI: 10.3390/ani11071985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Genomic imprinting is the epigenetic mechanism of transcriptional regulation that involves differential DNA methylation modification. Comparative analysis of imprinted genes between species can help us to investigate the biological significance and regulatory mechanisms of genomic imprinting. MKRN3, MAGEL2 and NDN are three maternally imprinted genes identified in the human PWS/AS imprinted locus. This study aimed to assess the allelic expression of MKRN3, MAGEL2 and NDN and to examine the differentially methylated regions (DMRs) of bovine PWS/AS imprinted domains. An expressed single-nucleotide polymorphism (SNP)-based approach was used to investigate the allelic expression of MKRN3, MAGEL2 and NDN genes in bovine adult tissues and placenta. Consistent with the expression in humans and mice, we found that the MKRN3, MAGEL2 and NDN genes exhibit monoallelic expression in bovine somatic tissues and the paternal allele expressed in the bovine placenta. Three DMRs, PWS-IC, MKRN3 and NDN DMR, were identified in the bovine PWS/AS imprinted region by analysis of the DNA methylation status in bovine tissues using the bisulfite sequencing method and were located in the promoter and exon 1 of the SNRPN gene, NDN promoter and 5' untranslated region (5'UTR) of MKRN3 gene, respectively. The PWS-IC DMR is a primary DMR inherited from the male or female gamete, but NDN and MKRN3 DMR are secondary DMRs that occurred after fertilization by examining the methylation status in gametes.
Collapse
Affiliation(s)
- Junliang Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Weina Chen
- Department of Traditional Chinese Medicine, Hebei University, Baoding 071000, China;
| | - Dongjie Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050081, China;
| | - Shukai Gu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Xiaoqian Liu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Yanqiu Dong
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Lanjie Jin
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| |
Collapse
|
11
|
Zheng K, Yan J, Deng J, Wu W, Wen Y. Modification of Experimental Design and Statistical Method for Mapping Imprinted QTLs Based on Immortalized F2 Population. Front Genet 2020; 11:589047. [PMID: 33329733 PMCID: PMC7714927 DOI: 10.3389/fgene.2020.589047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon, which plays important roles in the growth and development of animals and plants. Immortalized F2 (imF2) populations generated by random cross between recombinant inbred (RI) or doubled haploid (DH) lines have been proved to have significant advantages for mapping imprinted quantitative trait loci (iQTLs), and statistical methods for this purpose have been proposed. In this paper, we propose a special type of imF2 population (R-imF2) for iQTL mapping, which is developed by random reciprocal cross between RI/DH lines. We also propose two modified iQTL mapping methods: two-step point mapping (PM-2) and two-step composite point mapping (CPM-2). Simulation studies indicated that: (i) R-imF2 cannot improve the results of iQTL mapping, but the experimental design can probably reduce the workload of population construction; (ii) PM-2 can increase the precision of estimating the position and effects of a single iQTL; and (iii) CPM-2 can precisely map not only iQTLs, but also non-imprinted QTLs. The modified experimental design and statistical methods will facilitate and promote the study of iQTL mapping.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiqiang Yan
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiacong Deng
- School of Ocean and Biochemical Engineering, Fuqing Branch of Fujian Normal University, Fuzhou, China
| | - Weiren Wu
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Weiren Wu,
| | - Yongxian Wen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Yongxian Wen,
| |
Collapse
|
12
|
Parental Bias Has Benefits. Neuron 2020; 107:994-996. [PMID: 32971001 DOI: 10.1016/j.neuron.2020.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this issue, Laukoter et al., 2020 report that parent-of-origin-dependent expression is homogeneous across distinct cortical cell types and within individual populations. Conversely, they observe preferential sensitivity of astrocytes to altered doses of imprinted loci.
Collapse
|
13
|
Varrault A, Dubois E, Le Digarcher A, Bouschet T. Quantifying Genomic Imprinting at Tissue and Cell Resolution in the Brain. EPIGENOMES 2020; 4:21. [PMID: 34968292 PMCID: PMC8594728 DOI: 10.3390/epigenomes4030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Imprinted genes are a group of ~150 genes that are preferentially expressed from one parental allele owing to epigenetic marks asymmetrically distributed on inherited maternal and paternal chromosomes. Altered imprinted gene expression causes human brain disorders such as Prader-Willi and Angelman syndromes and additional rare brain diseases. Research data principally obtained from the mouse model revealed how imprinted genes act in the normal and pathological brain. However, a better understanding of imprinted gene functions calls for building detailed maps of their parent-of-origin-dependent expression and of associated epigenetic signatures. Here we review current methods for quantifying genomic imprinting at tissue and cell resolutions, with a special emphasis on methods to detect parent-of-origin dependent expression and their applications to the brain. We first focus on bulk RNA-sequencing, the main method to detect parent-of-origin-dependent expression transcriptome-wide. We discuss the benefits and caveats of bulk RNA-sequencing and provide a guideline to use it on F1 hybrid mice. We then review methods for detecting parent-of-origin-dependent expression at cell resolution, including single-cell RNA-seq, genetic reporters, and molecular probes. Finally, we provide an overview of single-cell epigenomics technologies that profile additional features of genomic imprinting, including DNA methylation, histone modifications and chromatin conformation and their combination into sc-multimodal omics approaches, which are expected to yield important insights into genomic imprinting in individual brain cells.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Emeric Dubois
- Montpellier GenomiX (MGX), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France;
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| |
Collapse
|
14
|
Ahn J, Wu H, Lee J, Hwang IS, Yu D, Ahn JS, Lee JW, Hwang S, Lee K. Identification of a Novel Imprinted Transcript in the Porcine GNAS Complex Locus Using Methylome and Transcriptome of Parthenogenetic Fetuses. Genes (Basel) 2020; 11:genes11010096. [PMID: 31947640 PMCID: PMC7017182 DOI: 10.3390/genes11010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022] Open
Abstract
Genomic imprinting in domestic animals contributes to the variance of performance traits. However, research remains to be done on large-scale detection of epigenetic landscape of porcine imprinted loci including the GNAS complex locus. The purpose of this study was to generate porcine parthenogenetic fetuses and comprehensively identify imprinting patterns of the GNAS locus in transcript levels. To this end, both normally fertilized and bimaternal (uniparental) parthenogenetic porcine fetuses were generated, and whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) were performed to construct methylome and transcriptome, respectively. Differentially methylated regions (DMRs) between the fetuses were identified through methylome analysis, and parental-origin-specific expression patterns of transcripts were examined with transcriptome. As a result, three major DMRs were identified: paternally methylated Nesp DMR, maternally methylated Nespas-Gnasxl DMR, and maternally methylated Exon1B–Exon1A DMR. Parental-origin-specific expressions of those five DMR-affected transcripts were found, including a novel imprinted transcript, Exon1B, in pigs. In conclusion, using parthenotes, parental-origin-specific imprinting patterns in the porcine GNAS locus was comprehensively identified, and our approach paves the way for the discovery of novel imprinted genes and loci in a genomic context across species.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
| | - Huiguang Wu
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Joonbum Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Korea;
| | - Debing Yu
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
- Department of Animal Breeding & Genetics, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Seop Ahn
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (J.-S.A.)
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (J.-S.A.)
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Korea;
- Correspondence: (S.H.); (K.L.)
| | - Kichoon Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.A.); (H.W.); (J.L.); (D.Y.)
- Correspondence: (S.H.); (K.L.)
| |
Collapse
|
15
|
Choi K, Raghupathy N, Churchill GA. A Bayesian mixture model for the analysis of allelic expression in single cells. Nat Commun 2019; 10:5188. [PMID: 31729374 PMCID: PMC6858378 DOI: 10.1038/s41467-019-13099-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/09/2019] [Indexed: 11/09/2022] Open
Abstract
Allele-specific expression (ASE) at single-cell resolution is a critical tool for understanding the stochastic and dynamic features of gene expression. However, low read coverage and high biological variability present challenges for analyzing ASE. We demonstrate that discarding multi-mapping reads leads to higher variability in estimates of allelic proportions, an increased frequency of sampling zeros, and can lead to spurious findings of dynamic and monoallelic gene expression. Here, we report a method for ASE analysis from single-cell RNA-Seq data that accurately classifies allelic expression states and improves estimation of allelic proportions by pooling information across cells. We further demonstrate that combining information across cells using a hierarchical mixture model reduces sampling variability without sacrificing cell-to-cell heterogeneity. We applied our approach to re-evaluate the statistical independence of allelic bursting and track changes in the allele-specific expression patterns of cells sampled over a developmental time course.
Collapse
Affiliation(s)
- Kwangbom Choi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | | | - Gary A Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
16
|
Reynès C, Kister G, Rohmer M, Bouschet T, Varrault A, Dubois E, Rialle S, Journot L, Sabatier R. ISoLDE: a data-driven statistical method for the inference of allelic imbalance in datasets with reciprocal crosses. Bioinformatics 2019; 36:504-513. [PMID: 31350542 PMCID: PMC9883709 DOI: 10.1093/bioinformatics/btz564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Allelic imbalance (AI), i.e. the unequal expression of the alleles of the same gene in a single cell, affects a subset of genes in diploid organisms. One prominent example of AI is parental genomic imprinting, which results in parent-of-origin-dependent, mono-allelic expression of a limited number of genes in metatherian and eutherian mammals and in angiosperms. Currently available methods for identifying AI rely on data modeling and come with the associated limitations. RESULTS We have designed ISoLDE (Integrative Statistics of alleLe Dependent Expression), a novel nonparametric statistical method that takes into account both AI and the characteristics of RNA-seq data to infer allelic expression bias when at least two biological replicates are available for reciprocal crosses. ISoLDE learns the distribution of a specific test statistic from the data and calls genes 'allelically imbalanced', 'bi-allelically expressed' or 'undetermined'. Depending on the number of replicates, predefined thresholds or permutations are used to make calls. We benchmarked ISoLDE against published methods, and showed that ISoLDE compared favorably with respect to sensitivity, specificity and robustness to the number of replicates. Using ISoLDE on different RNA-seq datasets generated from hybrid mouse tissues, we did not discover novel imprinted genes (IGs), confirming the most conservative estimations of IG number. AVAILABILITY AND IMPLEMENTATION ISoLDE has been implemented as a Bioconductor package available at http://bioconductor.org/packages/ISoLDE/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Guilhem Kister
- Faculté de Pharmacie, Univ. Montpellier 34093 Montpellier, France
| | - Marine Rohmer
- Montpellier GenomiX, MGX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, IGF, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Annie Varrault
- Institut de Génomique Fonctionnelle, IGF, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, MGX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Stéphanie Rialle
- Montpellier GenomiX, MGX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France,Montpellier GenomiX, MGX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | | |
Collapse
|
17
|
Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019; 176:952-965. [PMID: 30794780 DOI: 10.1016/j.cell.2019.01.043] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.
Collapse
Affiliation(s)
- Valter Tucci
- Department of Neuroscience and Brain Technologies - Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 44H, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
18
|
|
19
|
Duan J(E, Zhang M, Flock K, Seesi SA, Mandoiu I, Jones A, Johnson E, Pillai S, Hoffman M, McFadden K, Jiang H, Reed S, Govoni K, Zinn S, Jiang Z, Tian X(C. Effects of maternal nutrition on the expression of genomic imprinted genes in ovine fetuses. Epigenetics 2018; 13:793-807. [PMID: 30051747 PMCID: PMC6224220 DOI: 10.1080/15592294.2018.1503489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon of differential allelic expression based on parental origin. To date, 263 imprinted genes have been identified among all investigated mammalian species. However, only 21 have been described in sheep, of which 11 are annotated in the current ovine genome. Here, we aim to i) use DNA/RNA high throughput sequencing to identify new monoallelically expressed and imprinted genes in day 135 ovine fetuses and ii) determine whether maternal diet (100%, 60%, or 140% of National Research Council Total Digestible Nutrients) influences expression of imprinted genes. We also reported strategies to solve technical challenges in the data analysis pipeline. We identified 80 monoallelically expressed, 13 new putative imprinted genes, and five known imprinted genes in sheep using the 263 genes stated above as a guide. Sanger sequencing confirmed allelic expression of seven genes, CASD1, COPG2, DIRAS3, INPP5F, PLAGL1, PPP1R9A, and SLC22A18. Among the 13 putative imprinted genes, five were localized in the known sheep imprinting domains of MEST on chromosome 4, DLK1/GTL2 on chromosome 18 and KCNQ1 on chromosome 21, and three were in a novel sheep imprinted cluster on chromosome 4, known in other species as PEG10/SGCE. The expression of DIRAS3, IGF2, PHLDA2, and SLC22A18 was altered by maternal diet, albeit without allelic expression reversal. Together, our results expanded the list of sheep imprinted genes to 34 and demonstrated that while the expression levels of four imprinted genes were changed by maternal diet, the allelic expression patterns were un-changed for all imprinted genes studied.
Collapse
Affiliation(s)
| | - Mingyuan Zhang
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaleigh Flock
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Sahar Al Seesi
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Ion Mandoiu
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Amanda Jones
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Elizabeth Johnson
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Sambhu Pillai
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Maria Hoffman
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Katelyn McFadden
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sarah Reed
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Kristen Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Steve Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Zongliang Jiang
- School of Animal Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | | |
Collapse
|
20
|
Expanding the phenotypic spectrum of variants in PDE4D/PRKAR1A: from acrodysostosis to acroscyphodysplasia. Eur J Hum Genet 2018; 26:1611-1622. [PMID: 30006632 DOI: 10.1038/s41431-018-0135-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/11/2018] [Accepted: 02/23/2018] [Indexed: 11/08/2022] Open
Abstract
Acrodysostosis (MIM 101800) is a dominantly inherited condition associating (1) skeletal features (short stature, facial dysostosis, and brachydactyly with cone-shaped epiphyses), (2) resistance to hormones and (3) possible intellectual disability. Acroscyphodysplasia (MIM 250215) is characterized by growth retardation, brachydactyly, and knee epiphyses embedded in cup-shaped metaphyses. We and others have identified PDE4D or PRKAR1A variants in acrodysostosis; PDE4D variants have been reported in three cases of acroscyphodysplasia. Our study aimed at reviewing the clinical and molecular findings in a cohort of 27 acrodysostosis and 5 acroscyphodysplasia cases. Among the acrodysostosis cases, we identified 9 heterozygous de novo PRKAR1A variants and 11 heterozygous PDE4D variants. The 7 patients without variants presented with symptoms of acrodysostosis (brachydactyly and cone-shaped epiphyses), but none had the characteristic facial dysostosis. In the acroscyphodysplasia cases, we identified 2 PDE4D variants. For 2 of the 3 negative cases, medical records revealed early severe infection, which has been described in some reports of acroscyphodysplasia. Subdividing our series of acrodysostosis based on the disease-causing gene, we confirmed genotype-phenotype correlations. Hormone resistance was consistently observed in patients carrying PRKAR1A variants, whereas no hormone resistance was observed in 9 patients with PDE4D variants. All patients with PDE4D variants shared characteristic facial features (midface hypoplasia with nasal hypoplasia) and some degree of intellectual disability. Our findings of PDE4D variants in two cases of acroscyphodysplasia support that PDE4D may be responsible for this severe skeletal dysplasia. We eventually emphasize the importance of some specific assessments in the long-term follow up, including cardiovascular and thromboembolic risk factors.
Collapse
|
21
|
Lin CY, Chang KW, Lin CY, Wu JY, Coon H, Huang PH, Ho HN, Akbarian S, Gau SSF, Huang HS. Allele-specific expression in a family quartet with autism reveals mono-to-biallelic switch and novel transcriptional processes of autism susceptibility genes. Sci Rep 2018; 8:4277. [PMID: 29523860 PMCID: PMC5844893 DOI: 10.1038/s41598-018-22753-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, and the exact causal mechanism is unknown. Dysregulated allele-specific expression (ASE) has been identified in persons with ASD; however, a comprehensive analysis of ASE has not been conducted in a family quartet with ASD. To fill this gap, we analyzed ASE using genomic DNA from parent and offspring and RNA from offspring's postmortem prefrontal cortex (PFC); one of the two offspring had been diagnosed with ASD. DNA- and RNA-sequencing revealed distinct ASE patterns from the PFC of both offspring. However, only the PFC of the offspring with ASD exhibited a mono-to-biallelic switch for LRP2BP and ZNF407. We also identified a novel site of RNA-editing in KMT2C in addition to new monoallelically-expressed genes and miRNAs. Our results demonstrate the prevalence of ASE in human PFC and ASE abnormalities in the PFC of a person with ASD. Taken together, these findings may provide mechanistic insights into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Chun-Yen Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Pediatrics, Yong-He Cardinal Tien Hospital, Taipei, Taiwan
| | - Kai-Wei Chang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jia-Ying Wu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Neurodevelopment Club in Taiwan, Taipei, 10051, Taiwan.
| |
Collapse
|
22
|
Abstract
Epigenetic mechanisms that cause maternally and paternally inherited alleles to be expressed differently in offspring have the potential to radically change our understanding of the mechanisms that shape disease susceptibility, phenotypic variation, cell fate, and gene expression. However, the nature and prevalence of these effects
in vivo have been unclear and are debated. Here, I consider major new studies of epigenetic allelic effects in cell lines and primary cells and
in vivo. The emerging picture is that these effects take on diverse forms, and this review attempts to clarify the nature of the different forms that have been uncovered for genomic imprinting and random monoallelic expression (RME). I also discuss apparent discrepancies between
in vitro and
in vivo studies. Importantly, multiple studies suggest that allelic effects are prevalent and can be developmental stage- and cell type-specific. I propose some possible functions and consider roles for allelic effects within the broader context of gene regulatory networks, cellular diversity, and plasticity. Overall, the field is ripe for discovery and is in need of mechanistic and functional studies.
Collapse
|
23
|
Andergassen D, Dotter CP, Wenzel D, Sigl V, Bammer PC, Muckenhuber M, Mayer D, Kulinski TM, Theussl HC, Penninger JM, Bock C, Barlow DP, Pauler FM, Hudson QJ. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. eLife 2017; 6. [PMID: 28806168 PMCID: PMC5555720 DOI: 10.7554/elife.25125] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023] Open
Abstract
To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI:http://dx.doi.org/10.7554/eLife.25125.001
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph P Dotter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Wenzel
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Verena Sigl
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp C Bammer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Markus Muckenhuber
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Mayer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tomasz M Kulinski
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Denise P Barlow
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian M Pauler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Quanah J Hudson
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
24
|
Chuang TJ, Tseng YH, Chen CY, Wang YD. Assessment of imprinting- and genetic variation-dependent monoallelic expression using reciprocal allele descendants between human family trios. Sci Rep 2017; 7:7038. [PMID: 28765567 PMCID: PMC5539102 DOI: 10.1038/s41598-017-07514-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022] Open
Abstract
Genomic imprinting is an important epigenetic process that silences one of the parentally-inherited alleles of a gene and thereby exhibits allelic-specific expression (ASE). Detection of human imprinting events is hampered by the infeasibility of the reciprocal mating system in humans and the removal of ASE events arising from non-imprinting factors. Here, we describe a pipeline with the pattern of reciprocal allele descendants (RADs) through genotyping and transcriptome sequencing data across independent parent-offspring trios to discriminate between varied types of ASE (e.g., imprinting, genetic variation-dependent ASE, and random monoallelic expression (RME)). We show that the vast majority of ASE events are due to sequence-dependent genetic variant, which are evolutionarily conserved and may themselves play a cis-regulatory role. Particularly, 74% of non-RAD ASE events, even though they exhibit ASE biases toward the same parentally-inherited allele across different individuals, are derived from genetic variation but not imprinting. We further show that the RME effect may affect the effectiveness of the population-based method for detecting imprinting events and our pipeline can help to distinguish between these two ASE types. Taken together, this study provides a good indicator for categorization of different types of ASE, opening up this widespread and complex mechanism for comprehensive characterization.
Collapse
Affiliation(s)
| | | | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Da Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
A Generalized Linear Model for Decomposing Cis-regulatory, Parent-of-Origin, and Maternal Effects on Allele-Specific Gene Expression. G3-GENES GENOMES GENETICS 2017; 7:2227-2234. [PMID: 28515049 PMCID: PMC5499130 DOI: 10.1534/g3.117.042895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Joint quantification of genetic and epigenetic effects on gene expression is important for understanding the establishment of complex gene regulation systems in living organisms. In particular, genomic imprinting and maternal effects play important roles in the developmental process of mammals and flowering plants. However, the influence of these effects on gene expression are difficult to quantify because they act simultaneously with cis-regulatory mutations. Here we propose a simple method to decompose cis-regulatory (i.e., allelic genotype), genomic imprinting [i.e., parent-of-origin (PO)], and maternal [i.e., maternal genotype (MG)] effects on allele-specific gene expression using RNA-seq data obtained from reciprocal crosses. We evaluated the efficiency of method using a simulated dataset and applied the method to whole-body Drosophila and mouse trophoblast stem cell (TSC) and liver RNA-seq data. Consistent with previous studies, we found little evidence of PO and MG effects in adult Drosophila samples. In contrast, we identified dozens and hundreds of mouse genes with significant PO and MG effects, respectively. Interestingly, a similar number of genes with significant PO effect were detect in mouse TSCs and livers, whereas more genes with significant MG effect were observed in livers. Further application of this method will clarify how these three effects influence gene expression levels in different tissues and developmental stages, and provide novel insight into the evolution of gene expression regulation.
Collapse
|
26
|
Bouschet T, Dubois E, Reynès C, Kota SK, Rialle S, Maupetit-Méhouas S, Pezet M, Le Digarcher A, Nidelet S, Demolombe V, Cavelier P, Meusnier C, Maurizy C, Sabatier R, Feil R, Arnaud P, Journot L, Varrault A. In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression. Cereb Cortex 2017; 27:2418-2433. [PMID: 27095822 DOI: 10.1093/cercor/bhw102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.
Collapse
Affiliation(s)
- Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Christelle Reynès
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Satya K Kota
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Stéphanie Rialle
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Stéphanie Maupetit-Méhouas
- GReD (Genetics, Reproduction and Development), CNRS UMR6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mikael Pezet
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Sabine Nidelet
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Vincent Demolombe
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Patricia Cavelier
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Céline Meusnier
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Chloé Maurizy
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France.,Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Robert Sabatier
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Philippe Arnaud
- GReD (Genetics, Reproduction and Development), CNRS UMR6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France.,Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Annie Varrault
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| |
Collapse
|
27
|
Yeo S, Hodgkinson CA, Zhou Z, Jung J, Leung M, Yuan Q, Goldman D. The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits. BMC Genomics 2016; 17:620. [PMID: 27515598 PMCID: PMC4982227 DOI: 10.1186/s12864-016-2922-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL’s for complex phenotypes. Results We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Conclusions Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were tissue-specific in action. The identification of strain specific DAE QTLs, can assist in assessment of candidate genes located within the large intervals associated with trait QTLs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2922-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungeun Yeo
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Zhifeng Zhou
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Jeesun Jung
- Laboratory of Epidemiology and Biometry, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Ming Leung
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - David Goldman
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA.
| |
Collapse
|
28
|
Chen Z, Hagen DE, Wang J, Elsik CG, Ji T, Siqueira LG, Hansen PJ, Rivera RM. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics 2016; 11:501-16. [PMID: 27245094 PMCID: PMC4939914 DOI: 10.1080/15592294.2016.1184805] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects.
Collapse
Affiliation(s)
- Zhiyuan Chen
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Darren E Hagen
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Juanbin Wang
- b Department of Statistics , University of Missouri , Columbia , MO , USA
| | - Christine G Elsik
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Tieming Ji
- b Department of Statistics , University of Missouri , Columbia , MO , USA
| | - Luiz G Siqueira
- c Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Peter J Hansen
- c Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Rocío M Rivera
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| |
Collapse
|
29
|
Wilkins JF, Úbeda F, Van Cleve J. The evolving landscape of imprinted genes in humans and mice: Conflict among alleles, genes, tissues, and kin. Bioessays 2016; 38:482-9. [PMID: 26990753 DOI: 10.1002/bies.201500198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three recent genome-wide studies in mice and humans have produced the most definitive map to date of genomic imprinting (gene expression that depends on parental origin) by incorporating multiple tissue types and developmental stages. Here, we explore the results of these studies in light of the kinship theory of genomic imprinting, which predicts that imprinting evolves due to differential genetic relatedness between maternal and paternal relatives. The studies produce a list of imprinted genes with around 120-180 in mice and ~100 in humans. The studies agree on broad patterns across mice and humans including the complex patterns of imprinted expression at loci like Igf2 and Grb10. We discuss how the kinship theory provides a powerful framework for hypotheses that can explain these patterns. Finally, since imprinting is rare in the genome despite predictions from the kinship theory that it might be common, we discuss evolutionary factors that could favor biallelic expression.
Collapse
Affiliation(s)
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
30
|
A Mouse Model for Imprinting of the Human Retinoblastoma Gene. PLoS One 2015; 10:e0134672. [PMID: 26275142 PMCID: PMC4537222 DOI: 10.1371/journal.pone.0134672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
The human RB1 gene is imprinted due to integration of the PPP1R26P1 pseudogene into intron 2. PPP1R26P1 harbors the gametic differentially methylated region of the RB1 gene, CpG85, which is methylated in the female germ line. The paternally unmethylated CpG85 acts as promoter for the alternative transcript 2B of RB1, which interferes with expression of full-length RB1 in cis. In mice, PPP1R26P1 is not present in the Rb1 gene and Rb1 is not imprinted. Assuming that the mechanisms responsible for genomic imprinting are conserved, we investigated if imprinting of mouse Rb1 can be induced by transferring human PPP1R26P1 into mouse Rb1. We generated humanized Rb1_PPP1R26P1 knock-in mice that pass human PPP1R26P1 through the mouse germ line. We found that the function of unmethylated CpG85 as promoter for an alternative Rb1 transcript and as cis-repressor of the main Rb1 transcript is maintained in mouse tissues. However, CpG85 is not recognized as a gametic differentially methylated region in the mouse germ line. DNA methylation at CpG85 is acquired only in tissues of neuroectodermal origin, independent of parental transmission of PPP1R26P1. Absence of CpG85 methylation in oocytes and sperm implies a failure of imprint methylation establishment in the germ line. Our results indicate that site-specific integration of a proven human gametic differentially methylated region is not sufficient for acquisition of DNA methylation in the mouse germ line, even if promoter function of the element is maintained. This suggests a considerable dependency of DNA methylation induction on the surrounding sequence. However, our model is suited to determine the cellular function of the alternative Rb1 transcript.
Collapse
|
31
|
Pirinen M, Lappalainen T, Zaitlen NA, Dermitzakis ET, Donnelly P, McCarthy MI, Rivas MA. Assessing allele-specific expression across multiple tissues from RNA-seq read data. Bioinformatics 2015; 31:2497-504. [PMID: 25819081 PMCID: PMC4514921 DOI: 10.1093/bioinformatics/btv074] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/09/2015] [Accepted: 01/29/2015] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION RNA sequencing enables allele-specific expression (ASE) studies that complement standard genotype expression studies for common variants and, importantly, also allow measuring the regulatory impact of rare variants. The Genotype-Tissue Expression (GTEx) project is collecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are required for the analysis of these data. RESULTS We present a statistical method to compare different patterns of ASE across tissues and to classify genetic variants according to their impact on the tissue-wide expression profile. We focus on strong ASE effects that we are expecting to see for protein-truncating variants, but our method can also be adjusted for other types of ASE effects. We illustrate the method with a real data example on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a simulation study to assess our method more generally.
Collapse
Affiliation(s)
- Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development and, Institute for Genetics and Genomics in Geneva (iG3), University of Geneva, Geneva, Switzerland, Swiss Institute of Bioinformatics, Geneva, Switzerland, Department of Genetics, Stanford University, Palo Alto, CA, USA, New York Genome Center, New York, NY, USA, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development and, Institute for Genetics and Genomics in Geneva (iG3), University of Geneva, Geneva, Switzerland, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics and Department of Statistics, University of Oxford, Oxford, UK and
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics and Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK
| | | |
Collapse
|
32
|
Bonthuis PJ, Huang WC, Stacher Hörndli CN, Ferris E, Cheng T, Gregg C. Noncanonical Genomic Imprinting Effects in Offspring. Cell Rep 2015; 12:979-91. [PMID: 26235621 DOI: 10.1016/j.celrep.2015.07.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Here, we describe an RNA-sequencing (RNA-seq)-based approach that accurately detects even modest maternal or paternal allele expression biases at the tissue level, which we call noncanonical genomic imprinting effects. We profile imprinting in the arcuate nucleus (ARN) and dorsal raphe nucleus of the female mouse brain as well as skeletal muscle (mesodermal) and liver (endodermal). Our study uncovers hundreds of noncanonical autosomal and X-linked imprinting effects. Noncanonical imprinting is highly tissue-specific and enriched in the ARN, but rare in the liver. These effects are reproducible across different genetic backgrounds and associated with allele-specific chromatin. Using in situ hybridization for nascent RNAs, we discover that autosomal noncanonical imprinted genes with a tissue-level allele bias exhibit allele-specific expression effects in subpopulations of neurons in the brain in vivo. We define noncanonical imprinted genes that regulate monoamine signaling and determine that these effects influence the impact of inherited mutations on offspring behavior.
Collapse
Affiliation(s)
- Paul J Bonthuis
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Wei-Chao Huang
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Cornelia N Stacher Hörndli
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Elliott Ferris
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Tong Cheng
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Christopher Gregg
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA.
| |
Collapse
|
33
|
Andergassen D, Dotter CP, Kulinski TM, Guenzl PM, Bammer PC, Barlow DP, Pauler FM, Hudson QJ. Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput sequencing data. Nucleic Acids Res 2015. [PMID: 26202974 PMCID: PMC4666383 DOI: 10.1093/nar/gkv727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Detecting allelic biases from high-throughput sequencing data requires an approach that maximises sensitivity while minimizing false positives. Here, we present Allelome.PRO, an automated user-friendly bioinformatics pipeline, which uses high-throughput sequencing data from reciprocal crosses of two genetically distinct mouse strains to detect allele-specific expression and chromatin modifications. Allelome.PRO extends approaches used in previous studies that exclusively analyzed imprinted expression to give a complete picture of the ‘allelome’ by automatically categorising the allelic expression of all genes in a given cell type into imprinted, strain-biased, biallelic or non-informative. Allelome.PRO offers increased sensitivity to analyze lowly expressed transcripts, together with a robust false discovery rate empirically calculated from variation in the sequencing data. We used RNA-seq data from mouse embryonic fibroblasts from F1 reciprocal crosses to determine a biologically relevant allelic ratio cutoff, and define for the first time an entire allelome. Furthermore, we show that Allelome.PRO detects differential enrichment of H3K4me3 over promoters from ChIP-seq data validating the RNA-seq results. This approach can be easily extended to analyze histone marks of active enhancers, or transcription factor binding sites and therefore provides a powerful tool to identify candidate cis regulatory elements genome wide.
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Christoph P Dotter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Tomasz M Kulinski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp C Bammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Quanah J Hudson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| |
Collapse
|
34
|
Perez JD, Rubinstein ND, Fernandez DE, Santoro SW, Needleman LA, Ho-Shing O, Choi JJ, Zirlinger M, Chen SK, Liu JS, Dulac C. Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. eLife 2015; 4:e07860. [PMID: 26140685 PMCID: PMC4512258 DOI: 10.7554/elife.07860] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022] Open
Abstract
The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes. Strikingly, many genes exhibit parentally biased--rather than monoallelic--expression, with different magnitudes according to age, organ, and brain region. Developmental changes in parental bias and overall gene expression are strongly correlated, suggesting combined roles in regulating gene dosage. Finally, brain-specific deletion of the paternal, but not maternal, allele of the paternally-biased Bcl-x, (Bcl2l1) results in loss of specific neuron types, supporting the functional significance of parental biases. These findings reveal the remarkable complexity of genomic imprinting, with important implications for understanding the normal and diseased brain.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | | | - Stephen W Santoro
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, United States
| | - Leigh A Needleman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Olivia Ho-Shing
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - John J Choi
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | | | | | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
35
|
Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, Zhang R, Eng C, Torgerson DG, Urbanek C, Li JB, Rodriguez-Santana JR, Burchard EG, Seibold MA, MacArthur DG, Montgomery SB, Zaitlen NA, Lappalainen T. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015; 25:927-36. [PMID: 25953952 PMCID: PMC4484390 DOI: 10.1101/gr.192278.115] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.
Collapse
Affiliation(s)
- Yael Baran
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Meena Subramaniam
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Biton
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Emily K Tsang
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA
| | - Manuel A Rivas
- Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Maria Gutierrez-Arcelus
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Kim R Kukurba
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Dara G Torgerson
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Cydney Urbanek
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Max A Seibold
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA; Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Denver, Denver, Colorado 80045, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, New York 10013, USA; Department of Systems Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
36
|
Metsalu T, Viltrop T, Tiirats A, Rajashekar B, Reimann E, Kõks S, Rull K, Milani L, Acharya G, Basnet P, Vilo J, Mägi R, Metspalu A, Peters M, Haller-Kikkatalo K, Salumets A. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. Epigenetics 2015; 9:1397-409. [PMID: 25437054 DOI: 10.4161/15592294.2014.970052] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Given the possible critical importance of placental gene imprinting and random monoallelic expression on fetal and infant health, most of those genes must be identified, in order to understand the risks that the baby might meet during pregnancy and after birth. Therefore, the aim of the current study was to introduce a workflow and tools for analyzing imprinted and random monoallelic gene expression in human placenta, by applying whole-transcriptome (WT) RNA sequencing of placental tissue and genotyping of coding DNA variants in family trios. Ten family trios, each with a healthy spontaneous single-term pregnancy, were recruited. Total RNA was extracted for WT analysis, providing the full sequence information for the placental transcriptome. Parental and child blood DNA genotypes were analyzed by exome SNP genotyping microarrays, mapping the inheritance and estimating the abundance of parental expressed alleles. Imprinted genes showed consistent expression from either parental allele, as demonstrated by the SNP content of sequenced transcripts, while monoallelically expressed genes had random activity of parental alleles. We revealed 4 novel possible imprinted genes (LGALS8, LGALS14, PAPPA2 and SPTLC3) and confirmed the imprinting of 4 genes (AIM1, PEG10, RHOBTB3 and ZFAT-AS1) in human placenta. The major finding was the identification of 4 genes (ABP1, BCLAF1, IFI30 and ZFAT) with random allelic bias, expressing one of the parental alleles preferentially. The main functions of the imprinted and monoallelically expressed genes included: i) mediating cellular apoptosis and tissue development; ii) regulating inflammation and immune system; iii) facilitating metabolic processes; and iv) regulating cell cycle.
Collapse
Key Words
- ASE, allele-specific expression
- FDR, false discovery rate
- GEO, Gene Expression Omnibus
- IUGR, intrauterine growth restriction
- MAF, minor allele frequency
- MHC, major histocompatibility complex
- NK cells, natural killer cells
- RNA sequencing
- RNA-Seq, RNA-sequencing
- RPKM, reads per kilobase per million
- UCSC, University of California Santa Cruz
- WT, whole-transcriptome
- allele-specific expression
- imprinting
- placenta
- random monoallelic expression
- short read mapping
Collapse
Affiliation(s)
- Tauno Metsalu
- a Institute of Computer Science ; University of Tartu ; Tartu , Estonia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Parent-specific gene expression (PSGE) is little known outside of mammals and plants. PSGE occurs when the expression level of a gene depends on whether an allele was inherited from the mother or the father. Kin selection theory predicts that there should be extensive PSGE in social insects because social insect parents can gain inclusive fitness benefits by silencing parental alleles in female offspring. We searched for evidence of PSGE in honey bees using transcriptomes from reciprocal crosses between European and Africanized strains. We found 46 transcripts with significant parent-of-origin effects on gene expression, many of which overexpressed the maternal allele. Interestingly, we also found a large proportion of genes showing a bias toward maternal alleles in only one of the reciprocal crosses. These results indicate that PSGE may occur in social insects. The nonreciprocal effects could be largely driven by hybrid incompatibility between these strains. Future work will help to determine if these are indeed parent-of-origin effects that can modulate inclusive fitness benefits.
Collapse
|
38
|
Ruhrmann S, Stridh P, Kular L, Jagodic M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int J Biochem Cell Biol 2015; 67:49-57. [PMID: 26002250 DOI: 10.1016/j.biocel.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
39
|
Babak T, DeVeale B, Tsang EK, Zhou Y, Li X, Smith KS, Kukurba KR, Zhang R, Li JB, van der Kooy D, Montgomery SB, Fraser HB. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet 2015; 47:544-9. [PMID: 25848752 PMCID: PMC4414907 DOI: 10.1038/ng.3274] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
Genomic imprinting is an epigenetic process that restricts gene expression to either the maternally or paternally inherited allele. Many theories have been proposed to explain its evolutionary origin, but understanding has been limited by a paucity of data mapping the breadth and dynamics of imprinting within any organism. We generated an atlas of imprinting spanning 33 mouse and 45 human developmental stages and tissues. Nearly all imprinted genes were imprinted in early development and either retained their parent-of-origin expression in adults or lost it completely. Consistent with an evolutionary signature of parental conflict, imprinted genes were enriched for coexpressed pairs of maternally and paternally expressed genes, showed accelerated expression divergence between human and mouse, and were more highly expressed than their non-imprinted orthologs in other species. Our approach demonstrates a general framework for the discovery of imprinting in any species and sheds light on the causes and consequences of genomic imprinting in mammals.
Collapse
Affiliation(s)
- Tomas Babak
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Brian DeVeale
- UCSF School of Medicine, UCSF, San Francisco, CA, 94143, USA
| | - Emily K. Tsang
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Yiqi Zhou
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Xin Li
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin S. Smith
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Kim R. Kukurba
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
40
|
Spies N, Smith CL, Rodriguez JM, Baker JC, Batzoglou S, Sidow A. Constraint and divergence of global gene expression in the mammalian embryo. eLife 2015; 4:e05538. [PMID: 25871848 PMCID: PMC4417935 DOI: 10.7554/elife.05538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
The effects of genetic variation on gene regulation in the developing mammalian embryo remain largely unexplored. To globally quantify these effects, we crossed two divergent mouse strains and asked how genotype of the mother or of the embryo drives gene expression phenotype genomewide. Embryonic expression of 331 genes depends on the genotype of the mother. Embryonic genotype controls allele-specific expression of 1594 genes and a highly overlapping set of cis-expression quantitative trait loci (eQTL). A marked paucity of trans-eQTL suggests that the widespread expression differences do not propagate through the embryonic gene regulatory network. The cis-eQTL genes exhibit lower-than-average evolutionary conservation and are depleted for developmental regulators, consistent with purifying selection acting on expression phenotype of pattern formation genes. The widespread effect of maternal and embryonic genotype in conjunction with the purifying selection we uncovered suggests that embryogenesis is an important and understudied reservoir of phenotypic variation.
Collapse
Affiliation(s)
- Noah Spies
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Cheryl L Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Jesse M Rodriguez
- Department of Computer Science, Stanford University, Stanford, United States
- Biomedical Informatics Program, Stanford University School of Medicine, Stanford, United States
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Serafim Batzoglou
- Department of Computer Science, Stanford University, Stanford, United States
| | - Arend Sidow
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
41
|
Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome. Genetics 2015; 200:537-49. [PMID: 25858912 DOI: 10.1534/genetics.115.176263] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5' and 3' termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease.
Collapse
|
42
|
Stelzer Y, Bar S, Bartok O, Afik S, Ronen D, Kadener S, Benvenisty N. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts. Cell Rep 2015; 11:308-20. [DOI: 10.1016/j.celrep.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022] Open
|
43
|
Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, Wang JR, Morgan AP, Calaway JD, Aylor DL, Yun Z, Bell TA, Buus RJ, Calaway ME, Didion JP, Gooch TJ, Hansen SD, Robinson NN, Shaw GD, Spence JS, Quackenbush CR, Barrick CJ, Nonneman RJ, Kim K, Xenakis J, Xie Y, Valdar W, Lenarcic AB, Wang W, Welsh CE, Fu CP, Zhang Z, Holt J, Guo Z, Threadgill DW, Tarantino LM, Miller DR, Zou F, McMillan L, Sullivan PF, Pardo-Manuel de Villena F. Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nat Genet 2015; 47:353-60. [PMID: 25730764 PMCID: PMC4380817 DOI: 10.1038/ng.3222] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022]
Abstract
Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Since regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in this process. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. These effects influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, including classical imprinting and a novel, global allelic imbalance in favor of the paternal allele. We conclude that, as with humans, pervasive regulatory variation influences complex genetic traits in mice and provide a new resource toward understanding the genetic control of transcription in mammals.
Collapse
Affiliation(s)
- James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vasyl Zhabotynsky
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wei Sun
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shunping Huang
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Isa Kemal Pakatci
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yunjung Kim
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy R Wang
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew P Morgan
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John D Calaway
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David L Aylor
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zaining Yun
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy A Bell
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryan J Buus
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark E Calaway
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John P Didion
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Terry J Gooch
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie D Hansen
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nashiya N Robinson
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ginger D Shaw
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason S Spence
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Corey R Quackenbush
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cordelia J Barrick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Randal J Nonneman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyungsu Kim
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James Xenakis
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuying Xie
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William Valdar
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan B Lenarcic
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wei Wang
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catherine E Welsh
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chen-Ping Fu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhaojun Zhang
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James Holt
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhishan Guo
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Lisa M Tarantino
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Darla R Miller
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Patrick F Sullivan
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [4] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Pardo-Manuel de Villena
- 1] Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [3] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Varmuza S, Miri K. What does genetics tell us about imprinting and the placenta connection? Cell Mol Life Sci 2015; 72:51-72. [PMID: 25194419 PMCID: PMC11114082 DOI: 10.1007/s00018-014-1714-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/07/2023]
Abstract
Genomic imprinting is an epigenetic gene silencing phenomenon that is specific to eutherians in the vertebrate lineage. The acquisition of both placentation and genomic imprinting has spurred interest in the possible evolutionary link for many years. In this review we examine the genetic evidence and find that while many imprinted domains are anchored by genes required for proper placenta development in a parent of origin fashion, an equal number of imprinted genes have no apparent function that depends on imprinting. Examination of recent data from studies of molecular and genetic mechanisms points to a maternal control of the selection and maintenance of imprint marks, reinforcing the importance of the oocyte in the healthy development of the placenta and fetus.
Collapse
Affiliation(s)
- Susannah Varmuza
- Department of Cell and Systems Biology, University of Toronto, 611-25 Harbord Street, Toronto, M5S 3G5, Canada,
| | | |
Collapse
|
45
|
Szelinger S, Malenica I, Corneveaux JJ, Siniard AL, Kurdoglu AA, Ramsey KM, Schrauwen I, Trent JM, Narayanan V, Huentelman MJ, Craig DW. Characterization of X chromosome inactivation using integrated analysis of whole-exome and mRNA sequencing. PLoS One 2014; 9:e113036. [PMID: 25503791 PMCID: PMC4264736 DOI: 10.1371/journal.pone.0113036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022] Open
Abstract
In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to in silico data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a de novo, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∶20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the de novo event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.
Collapse
Affiliation(s)
- Szabolcs Szelinger
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- Molecular and Cellular Biology Interdisciplinary Graduate Program, College of Liberal Arts and Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ivana Malenica
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Jason J. Corneveaux
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Ashley L. Siniard
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Ahmet A. Kurdoglu
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Keri M. Ramsey
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Isabelle Schrauwen
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Jeffrey M. Trent
- Genetic Basis of Human Disease Division, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- Neurology Research, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Matthew J. Huentelman
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - David W. Craig
- Center for Rare Childhood Disorders, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
46
|
Brekke TD, Good JM. Parent-of-origin growth effects and the evolution of hybrid inviability in dwarf hamsters. Evolution 2014; 68:3134-48. [PMID: 25130206 PMCID: PMC4437546 DOI: 10.1111/evo.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/11/2014] [Indexed: 12/24/2022]
Abstract
Mammalian hybrids often show abnormal growth, indicating that developmental inviability may play an important role in mammalian speciation. Yet, it is unclear if this recurrent phenotype reflects a common genetic basis. Here, we describe extreme parent-of-origin-dependent growth in hybrids from crosses between two species of dwarf hamsters, Phodopus campbelli and Phodopus sungorus. One cross type resulted in massive placental and embryonic overgrowth, severe developmental defects, and maternal death. Embryos from the reciprocal cross were viable and normal sized, but adult hybrid males were relatively small. These effects are strikingly similar to patterns from several other mammalian hybrids. Using comparative sequence data from dwarf hamsters and several other hybridizing mammals, we argue that extreme hybrid growth can contribute to reproductive isolation during the early stages of species divergence. Next, we tested if abnormal growth in hybrid hamsters was associated with disrupted genomic imprinting. We found no association between imprinting status at several candidate genes and hybrid growth, though two interacting genes involved in embryonic growth did show reduced expression in overgrown hybrids. Collectively, our study indicates that growth-related hybrid inviability may play an important role in mammalian speciation but that the genetic underpinnings of these phenotypes remain unresolved.
Collapse
Affiliation(s)
- Thomas D. Brekke
- Division of Biological Sciences, The University of Montana, Missoula Montana, 59812
| | - Jeffrey M. Good
- Division of Biological Sciences, The University of Montana, Missoula Montana, 59812
| |
Collapse
|
47
|
Steyaert S, Van Criekinge W, De Paepe A, Denil S, Mensaert K, Vandepitte K, Vanden Berghe W, Trooskens G, De Meyer T. SNP-guided identification of monoallelic DNA-methylation events from enrichment-based sequencing data. Nucleic Acids Res 2014; 42:e157. [PMID: 25237057 PMCID: PMC4227762 DOI: 10.1093/nar/gku847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monoallelic gene expression is typically initiated early in the development of an organism. Dysregulation of monoallelic gene expression has already been linked to several non-Mendelian inherited genetic disorders. In humans, DNA-methylation is deemed to be an important regulator of monoallelic gene expression, but only few examples are known. One important reason is that current, cost-affordable truly genome-wide methods to assess DNA-methylation are based on sequencing post-enrichment. Here, we present a new methodology based on classical population genetic theory, i.e. the Hardy–Weinberg theorem, that combines methylomic data from MethylCap-seq with associated SNP profiles to identify monoallelically methylated loci. Applied on 334 MethylCap-seq samples of very diverse origin, this resulted in the identification of 80 genomic regions featured by monoallelic DNA-methylation. Of these 80 loci, 49 are located in genic regions of which 25 have already been linked to imprinting. Further analysis revealed statistically significant enrichment of these loci in promoter regions, further establishing the relevance and usefulness of the method. Additional validation was done using both 14 whole-genome bisulfite sequencing data sets and 16 mRNA-seq data sets. Importantly, the developed approach can be easily applied to other enrichment-based sequencing technologies, like the ChIP-seq-based identification of monoallelic histone modifications.
Collapse
Affiliation(s)
- Sandra Steyaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Wim Van Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Ayla De Paepe
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Simon Denil
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Klaas Mensaert
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | | | - Wim Vanden Berghe
- PPES, Department of Biomedical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Geert Trooskens
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| | - Tim De Meyer
- Department of Mathematical Modelling, Statistics and Bioinformatics, University of Ghent, Ghent 9000, Belgium
| |
Collapse
|
48
|
Gregg C. Known unknowns for allele-specific expression and genomic imprinting effects. F1000PRIME REPORTS 2014; 6:75. [PMID: 25343032 PMCID: PMC4166941 DOI: 10.12703/p6-75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have provided evidence for non-canonical imprinting effects that are associated with allele-specific expression biases at the tissue level in mice. These imprinting effects have features that are distinct from canonical imprinting effects that involve allele silencing. Here, I discuss some of the evidence for non-canonical imprinting effects in the context of random X-inactivation and epigenetic allele-specific expression effects on the autosomes. I propose several mechanisms that may underlie non-canonical imprinting effects and outline future directions and approaches to study these effects at the cellular level in vivo. The growing evidence for complex allele-specific expression effects that are cell- and developmental stage-specific has opened a new frontier for study. Currently, the function of these effects and the underlying regulatory mechanisms are largely unknown.
Collapse
Affiliation(s)
- Christopher Gregg
- Department of Neurobiology & Anatomy and Human Genetics, University of Utah School of Medicine, 323 Wintrobe Bldg 530, University of Utah, School of Medicine20 North 1900 East, Salt Lake City, UT 84132-3401USA
- The New York Stem Cell Foundation178 Columbus Avenue #237064, New York, NY 10023USA
| |
Collapse
|
49
|
Wang X, Clark AG. Using next-generation RNA sequencing to identify imprinted genes. Heredity (Edinb) 2014; 113:156-66. [PMID: 24619182 PMCID: PMC4105452 DOI: 10.1038/hdy.2014.18] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting is manifested as differential allelic expression (DAE) depending on the parent-of-origin. The most direct way to identify imprinted genes is to directly score the DAE in a context where one can identify which parent transmitted each allele. Because many genes display DAE, simply scoring DAE in an individual is not sufficient to identify imprinted genes. In this paper, we outline many technical aspects of a scheme for identification of imprinted genes that makes use of RNA sequencing (RNA-seq) from tissues isolated from F1 offspring derived from the pair of reciprocal crosses. Ideally, the parental lines are from two inbred strains that are not closely related to each other. Aspects of tissue purity, RNA extraction, library preparation and bioinformatic inference of imprinting are all covered. These methods have already been applied in a number of organisms, and one of the most striking results is the evolutionary fluidity with which novel imprinted genes are gained and lost within genomes. The general methodology is also applicable to a wide range of other biological problems that require quantification of allele-specific expression using RNA-seq, such as cis-regulation of gene expression, X chromosome inactivation and random monoallelic expression.
Collapse
Affiliation(s)
- X Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
50
|
Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 2014; 15:517-30. [PMID: 24958438 DOI: 10.1038/nrg3766] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression according to parental origin. It has long been established that imprinted genes have major effects on development and placental biology before birth. More recently, it has become evident that imprinted genes also have important roles after birth. In this Review, I bring together studies of the effects of imprinted genes from the prenatal period onwards. Recent work on postnatal stages shows that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders.
Collapse
Affiliation(s)
- Jo Peters
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|