1
|
Krösche M, Hartmann CJ, Butz M, Schnitzler A, Hirschmann J. Altered cortical network dynamics during observing and preparing action in patients with corticobasal syndrome. Neurobiol Dis 2025; 205:106796. [PMID: 39778748 DOI: 10.1016/j.nbd.2025.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
Corticobasal syndrome (CBS) is characterized not only by parkinsonism but also by higher-order cortical dysfunctions, such as apraxia. However, the electrophysiological mechanisms underlying these symptoms remain poorly understood. To explore the pathophysiology of CBS, we recorded magnetoencephalographic (MEG) data from 17 CBS patients and 20 age-matched controls during an observe-to-imitate task. This task involved observing a tool-use video (action observation), withholding movement upon a Go cue (movement preparation), and subsequently imitating the tool-use action. We analyzed spectral power modulations at the source level. During action observation, event-related beta power (13-30 Hz) suppression was weaker in CBS patients compared to controls. This reduction was evident bilaterally in superior parietal, primary motor, premotor and inferior frontal cortex. During movement preparation, beta power suppression was also reduced in CBS patients, correlating with longer reaction times. Immediately prior to movement onset, however, beta suppression was comparable between groups. Our findings suggest that action observation induces beta suppression, likely indicative of motor cortical disinhibition, which is impaired in CBS patients. This alteration may represent a neural correlate of disrupted visuo-motor mapping in CBS. The altered timing of beta suppression to the Go cue suggests deficits in learning the task's temporal structure rather than in movement initiation itself.
Collapse
Affiliation(s)
- Marius Krösche
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christian J Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Chua YW, Jiménez-Sánchez L, Ledsham V, O'Carroll S, Cox RFA, Andonovic I, Tachtatzis C, Boardman JP, Fletcher-Watson S, Rowe P, Delafield-Butt J. A multi-level analysis of motor and behavioural dynamics in 9-month-old preterm and term-born infants during changing emotional and interactive contexts. Sci Rep 2025; 15:952. [PMID: 39762299 PMCID: PMC11704203 DOI: 10.1038/s41598-024-83194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Computational analysis of infant movement has significant potential to reveal markers of developmental health. We report two studies employing dynamic analyses of motor kinematics and motor behaviours, which characterise movement at two levels, in 9-month-old infants. We investigate the effect of preterm birth (< 33 weeks of gestation) and the effect of changing emotional and social-interactive contexts in the still-face paradigm. First, multiscale permutation entropy was employed to analyse acceleration kinematic timeseries data collected from Inertial Measurement Unit (IMU) sensors on infants' torso, wrists, and ankles (N = 32: 10 term; 22 preterm). Second, Recurrence Quantification Analysis was used to characterise patterns of second-to-second behavioural changes, from observationally coded behavioural timeseries on infants' emotional self-regulation (N = 111: 61 term; 50 preterm). We found frequency-specific effects of context on permutation entropy. Relative to infants born at term (> 37 weeks of gestation), infants born preterm showed greater permutation entropy in their left ankle and torso movements, but not in right ankle or wrist movements. We did not find effects of preterm birth or emotional context on micro-level behavioural dynamics. Our methodology and findings inform future work using multiscale entropy to study infant development. Dynamic analysis of behaviour is a relatively young field, and applications to emotional self-regulation requires further methodological development.
Collapse
Affiliation(s)
- Yu Wei Chua
- Strathclyde Institute of Education, University of Strathclyde, Lord Hope Building, Glasgow, G4 0LT, UK.
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK.
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Department of Public Health, Policy and Systems, Institute of Population Health, University of Liverpool, Liverpool, L69 3GF, UK.
| | - Lorena Jiménez-Sánchez
- Translational Neuroscience PhD Programme, Salvesen Mindroom Research Centre, The University of Edinburgh, Kennedy Tower, Morningside Terrace, Edinburgh, EH10 5HF, UK
| | - Victoria Ledsham
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Sinéad O'Carroll
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Ralf F A Cox
- Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Ivan Andonovic
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Christos Tachtatzis
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - James P Boardman
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Sue Fletcher-Watson
- Salvesen Mindroom Research Centre, The University of Edinburgh, Kennedy Tower, Edinburgh, EH10 5HF, UK
| | - Philip Rowe
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Jonathan Delafield-Butt
- Strathclyde Institute of Education, University of Strathclyde, Lord Hope Building, Glasgow, G4 0LT, UK
- Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building, Glasgow, G1 1QE, UK
| |
Collapse
|
3
|
Maccora S, Sardo P, Giglia G, Torrente A, Di Stefano V, Brighina F. Transcranial alternating current stimulation can modulate the blink reflex excitability. Effects of a 10- and 20-Hz tACS session on the blink reflex recovery cycle in healthy subjects. Neurol Sci 2025; 46:401-409. [PMID: 39096396 PMCID: PMC11698815 DOI: 10.1007/s10072-024-07719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND The blink reflex excitability, assessed through paired electrical stimuli responses, has been modulated using traditional non-invasive neurostimulation techniques. Recently, transcranial Alternating Current Stimulation (tACS) emerged as a tool to modulate brain oscillations implicated in various motor, perceptual, and cognitive functions. This study aims to investigate the influence of 20-Hz and 10-Hz tACS sessions on the primary motor cortex and their impact on blink reflex excitability. MATERIALS AND METHODS Fifteen healthy volunteers underwent 10-min tACS sessions (intensity 1 mA) with active/reference electrodes placed over C4/Pz, delivering 20-Hz, 10-Hz, and sham stimulation. The blink reflex recovery cycle (BRrc) was assessed using the R2 amplitude ratio at various interstimulus intervals (ISIs) before (T0), immediately after (T1), and 30 min post-tACS (T2). RESULTS Both 10-Hz and 20-Hz tACS sessions significantly increased R2 ratio at T1 (10-Hz: p = 0.02; 20-Hz: p < 0.001) and T2 (10-Hz: p = 0.01; 20-Hz: p < 0.001) compared to baseline (T0). Notably, 20-Hz tACS induced a significantly greater increase in blink reflex excitability compared to sham at both T1 (p = 0.04) and T2 (p < 0.001). CONCLUSION This study demonstrates the modulatory effect of tACS on trigemino-facial reflex circuits, with a lasting impact on BRrc. Beta-band frequency tACS exhibited a more pronounced effect than alpha-band frequency, highlighting the influential role of beta-band oscillations in the motor cortex on blink reflex excitability modulation.
Collapse
Affiliation(s)
- Simona Maccora
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy.
- ARNAS Civico, Di Cristina, Via del Vespro 143, 90129, Benfratelli, Palermo, Italy.
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicily, Italy
| |
Collapse
|
4
|
Morales Fajardo K, Yan X, Lungoci G, Casado Sánchez M, Mitsis GD, Boudrias MH. The Modulatory Effects of Transcranial Alternating Current Stimulation on Brain Oscillatory Patterns in the Beta Band in Healthy Older Adults. Brain Sci 2024; 14:1284. [PMID: 39766483 PMCID: PMC11675015 DOI: 10.3390/brainsci14121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In the last few years, transcranial alternating current stimulation (tACS) has attracted attention as a promising approach to interact with ongoing oscillatory cortical activity and, consequently, to enhance cognitive and motor processes. While tACS findings are limited by high variability in young adults' responses, its effects on brain oscillations in older adults remain largely unexplored. In fact, the modulatory effects of tACS on cortical oscillations in healthy aging participants have not yet been investigated extensively, particularly during movement. This study aimed to examine the after-effects of 20 Hz and 70 Hz High-Definition tACS on beta oscillations both during rest and movement. Methods: We recorded resting state EEG signals and during a handgrip task in 15 healthy older participants. We applied 10 min of 20 Hz HD-tACS, 70 Hz HD-tACS or Sham stimulation for 10 min. We extracted resting-state beta power and movement-related beta desynchronization (MRBD) values to compare between stimulation frequencies and across time. Results: We found that 20 Hz HD-tACS induced a significant reduction in beta power for electrodes C3 and CP3, while 70 Hz did not have any significant effects. With regards to MRBD, 20 Hz HD-tACS led to more negative values, while 70 Hz HD-tACS resulted in more positive ones for electrodes C3 and FC3. Conclusions: These findings suggest that HD-tACS can modulate beta brain oscillations with frequency specificity. They also highlight the focal impact of HD-tACS, which elicits effects on the cortical region situated directly beneath the stimulation electrode.
Collapse
Affiliation(s)
- Kenya Morales Fajardo
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| | - Xuanteng Yan
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - George Lungoci
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Monserrat Casado Sánchez
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 1A1, Canada
| | - Georgios D. Mitsis
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada;
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, QC H3G 1Y5, Canada;
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, QC H3S 1M9, Canada; (X.Y.); (G.L.); (M.C.S.)
| |
Collapse
|
5
|
Giraud M, Javadi AH, Lenatti C, Allen J, Tamè L, Nava E. The role of the somatosensory system in the feeling of emotions: a neurostimulation study. Soc Cogn Affect Neurosci 2024; 19:nsae062. [PMID: 39275796 PMCID: PMC11488518 DOI: 10.1093/scan/nsae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta, and sham) while participants saw emotional stimuli with different degrees of pleasantness and levels of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant versus unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions-arousal and valence-corroborating the view of a dissociation between these two dimensions of emotions.
Collapse
Affiliation(s)
- Michelle Giraud
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| | - Amir-Homayoun Javadi
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Carmen Lenatti
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - John Allen
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Elena Nava
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
6
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. Nat Commun 2024; 15:8336. [PMID: 39333151 PMCID: PMC11437063 DOI: 10.1038/s41467-024-52664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. Stepping-related delta-rhythmic neural activity is coupled to beta (10-30 Hz) frequency dynamics that are also prominent in sensorimotor circuits. We explored how beta-frequency sensory stimulation influences stepping and dorsal striatal regulation of stepping. We delivered audiovisual stimulation at 10 or 145 Hz to mice voluntarily locomoting, while recording locomotion, cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
Affiliation(s)
- Sudiksha Sridhar
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Lowet
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Howard J Gritton
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer Freire
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Pharmacology, Boston University, Boston, MA, USA
| | - Chengqian Zhou
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Florence Liang
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Xue Han
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
8
|
McNally M, Byczynski G, Vanneste S. An overview of the effects and mechanisms of transcranial stimulation frequency on motor learning. J Neuroeng Rehabil 2024; 21:157. [PMID: 39267118 PMCID: PMC11391832 DOI: 10.1186/s12984-024-01464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Many studies over the recent decades have attempted the modulation of motor learning using brain stimulation. Alternating currents allow for researchers not only to electrically stimulate the brain, but to further investigate the effects of specific frequencies, in and beyond the context of their endogenous associations. Transcranial alternating current stimulation (tACS) has therefore been used during motor learning to modulate aspects of acquisition, consolidation and performance of a learned motor skill. Despite numerous reviews on the effects of tACS, and its role in motor learning, there are few studies which synthesize the numerous frequencies and their respective theoretical mechanisms as they relate to motor and perceptual processes. Here we provide a short overview of the main stimulation frequencies used in motor learning modulation (e.g., alpha, beta, and gamma), and discuss the effect and proposed mechanisms of these studies. We summarize with the current state of the field, the effectiveness and variability in motor learning modulation, and novel mechanistic proposals from other fields.
Collapse
Affiliation(s)
- Michelle McNally
- Department of Physiology, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- School of Psychology, Trinity College Dublin, Dublin, D02 PN40, Ireland.
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, D02 PN40, Ireland.
| |
Collapse
|
9
|
Happer JP, Beaton LE, Wagner LC, Hodgkinson CA, Goldman D, Marinkovic K. Neural indices of heritable impulsivity: Impact of the COMT Val158Met polymorphism on frontal beta power during early motor preparation. Biol Psychol 2024; 191:108826. [PMID: 38862067 DOI: 10.1016/j.biopsycho.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Studies of COMT Val158Met suggest that the neural circuitry subserving inhibitory control may be modulated by this functional polymorphism altering cortical dopamine availability, thus giving rise to heritable differences in behaviors. Using an anatomically-constrained magnetoencephalography method and stratifying the sample by COMT genotype, from a larger sample of 153 subjects, we examined the spatial and temporal dynamics of beta oscillations during motor execution and inhibition in 21 healthy Met158/Met158 (high dopamine) or 21 Val158/Val158 (low dopamine) genotype individuals during a Go/NoGo paradigm. While task performance was unaffected, Met158 homozygotes demonstrated an overall increase in beta power across regions essential for inhibitory control during early motor preparation (∼100 ms latency), suggestive of a global motor "pause" on behavior. This increase was especially evident on Go trials with slow response speed and was absent during inhibition failures. Such a pause could underlie the tendency of Met158 allele carriers to be more cautious and inhibited. In contrast, Val158 homozygotes exhibited a beta drop during early motor preparation, indicative of high response readiness. This decrease was associated with measures of behavioral disinhibition and consistent with greater extraversion and impulsivity observed in Val homozygotes. These results provide mechanistic insight into genetically-determined interindividual differences of inhibitory control with higher cortical dopamine associated with momentary response hesitation, and lower dopamine leading to motor impulsivity.
Collapse
Affiliation(s)
- Joseph P Happer
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren E Beaton
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Laura C Wagner
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Bethesda, MD, USA
| | - Ksenija Marinkovic
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychology, San Diego State University, San Diego, CA, USA; Department of Radiology, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
10
|
He X, Sun W, Song R, Xu W. Wavelet Coherence Analysis of Post-Stroke Intermuscular Coupling Modulated by Myoelectric-Controlled Interfaces. Bioengineering (Basel) 2024; 11:802. [PMID: 39199760 PMCID: PMC11351678 DOI: 10.3390/bioengineering11080802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Intermuscular coupling reflects the corticospinal interaction associated with the control of muscles. Nevertheless, the deterioration of intermuscular coupling caused by stroke has not received much attention. The purpose of this study was to investigate the effect of myoelectric-controlled interface (MCI) dimensionality on the intermuscular coupling after stroke. In total, ten age-matched controls and eight stroke patients were recruited and executed elbow tracking tasks within 1D or 2D MCI. Movement performance was quantified using the root mean square error (RMSE). Wavelet coherence was used to analyze the intermuscular coupling in alpha band (8-12 Hz) and beta band (15-35 Hz). The results found that smaller RMSE of antagonist muscles was observed in both groups within 2D MCI compared to 1D MCI. The alpha-band wavelet coherence was significantly lower in the patients compared to the controls during elbow extension. Furthermore, a decreased alpha-band and beta-band wavelet coherence was observed in the controls and stroke patients, as the dimensionality of MCI increased. These results may suggest that stroke-related neural impairments deteriorate the motor performance and intermuscular coordination pattern, and, further, that MCI holds promise as a novel effective tool for rehabilitation through the direct modulation of muscle activation pattern.
Collapse
Affiliation(s)
- Xinyi He
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.H.); (W.S.)
| | - Wenbo Sun
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.H.); (W.S.)
| | - Rong Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.H.); (W.S.)
- Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518107, China
| | - Weiling Xu
- School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|
11
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602408. [PMID: 39026712 PMCID: PMC11257482 DOI: 10.1101/2024.07.07.602408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. In addition to delta rhythms, beta (10-30 Hz) frequency dynamics are also prominent in the motor circuits and are coupled to neuronal delta rhythms both at the network and the cellular levels. Since beta rhythms are broadly supported by cortical and subcortical sensorimotor circuits, we explore how beta-frequency sensory stimulation influences delta-rhythmic stepping movement, and dorsal striatal circuit regulation of stepping. We delivered audiovisual stimulation at 10 Hz or 145 Hz to mice voluntarily locomoting, while simultaneously recording stepping movement, striatal cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though sensory stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping movement and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency dorsal striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
|
12
|
Boebinger S, Payne A, Martino G, Kerr K, Mirdamadi J, McKay JL, Borich M, Ting L. Precise cortical contributions to sensorimotor feedback control during reactive balance. PLoS Comput Biol 2024; 20:e1011562. [PMID: 38630803 PMCID: PMC11057980 DOI: 10.1371/journal.pcbi.1011562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/29/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The role of the cortex in shaping automatic whole-body motor behaviors such as walking and balance is poorly understood. Gait and balance are typically mediated through subcortical circuits, with the cortex becoming engaged as needed on an individual basis by task difficulty and complexity. However, we lack a mechanistic understanding of how increased cortical contribution to whole-body movements shapes motor output. Here we use reactive balance recovery as a paradigm to identify relationships between hierarchical control mechanisms and their engagement across balance tasks of increasing difficulty in young adults. We hypothesize that parallel sensorimotor feedback loops engaging subcortical and cortical circuits contribute to balance-correcting muscle activity, and that the involvement of cortical circuits increases with balance challenge. We decomposed balance-correcting muscle activity based on hypothesized subcortically- and cortically-mediated feedback components driven by similar sensory information, but with different loop delays. The initial balance-correcting muscle activity was engaged at all levels of balance difficulty. Its onset latency was consistent with subcortical sensorimotor loops observed in the lower limb. An even later, presumed, cortically-mediated burst of muscle activity became additionally engaged as balance task difficulty increased, at latencies consistent with longer transcortical sensorimotor loops. We further demonstrate that evoked cortical activity in central midline areas measured using electroencephalography (EEG) can be explained by a similar sensory transformation as muscle activity but at a delay consistent with its role in a transcortical loop driving later cortical contributions to balance-correcting muscle activity. These results demonstrate that a neuromechanical model of muscle activity can be used to infer cortical contributions to muscle activity without recording brain activity. Our model may provide a useful framework for evaluating changes in cortical contributions to balance that are associated with falls in older adults and in neurological disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Scott Boebinger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Aiden Payne
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Giovanni Martino
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Kennedy Kerr
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Jasmine Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States of America
| | - J. Lucas McKay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- Departments of Biomedical Informatics and Neurology, Emory University, Atlanta, Georgia, United States of America
| | - Michael Borich
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Lena Ting
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
13
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
14
|
Ammar A, Boujelbane MA, Simak ML, Fraile-Fuente I, Rizzi N, Washif JA, Zmijewski P, Jahrami H, Schöllhorn WI. Unveiling the acute neurophysiological responses to strength training: An exploratory study on novices performing weightlifting bouts with different motor learning models. Biol Sport 2024; 41:249-274. [PMID: 38524821 PMCID: PMC10955729 DOI: 10.5114/biolsport.2024.133481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 03/26/2024] Open
Abstract
Currently, there is limited evidence regarding various neurophysiological responses to strength exercise and the influence of the adopted practice schedule. This study aimed to assess the acute systemic effects of snatch training bouts, employing different motor learning models, on skill efficiency, electric brain activity (EEG), heart rate variability (HRV), and perceived exertion as well as mental demand in novices. In a within-subject design, sixteen highly active males (mean age: 23.13 ± 2.09 years) randomly performed snatch learning bouts consisting of 36 trials using repetitive learning (RL), contextual interference (blocked, CIb; and serial, CIs), and differential learning (DL) models. Spontaneous resting EEG and HRV activities were recorded at PRE and POST training bouts while measuring heart rate. Perceived exertion and mental demand were assessed immediately after, and barbell kinematics were recorded during three power snatch trials performed following the POST measurement. The results showed increases in alpha, beta, and gamma frequencies from pre- to post-training bouts in the majority of the tested brain regions (p values ranging from < 0.0001 to 0.02). The CIb model exhibited increased frequencies in more regions. Resting time domain HRV parameters were altered following the snatch bouts, with increased HR (p < 0.001) and decreased RR interval (p < 0.001), SDNN, and RMSSD (p values ranging from < 0.0001 to 0.02). DL showed more pronounced pulse-related changes (p = 0.01). Significant changes in HRV frequency domain parameters were observed, with a significant increase in LFn (p = 0.03) and a decrease in HFn (p = 0.001) registered only in the DL model. Elevated HR zones (> HR zone 3) were more dominant in the DL model during the snatch bouts (effect size = 0.5). Similarly, the DL model tended to exhibit higher perceived physical (effect size = 0.5) and mental exertions (effect size = 0.6). Despite the highest psycho-physiological response, the DL group showed one of the fewest significant EEG changes. There was no significant advantage of one learning model over the other in terms of technical efficiency. These findings offer preliminary support for the acute neurophysiological benefits of coordination-strength-based exercise in novices, particularly when employing a DL model. The advantages of combining EEG and HRV measurements for comprehensive monitoring and understanding of potential adaptations are also highlighted. However, further studies encompassing a broader range of coordination-strength-based exercises are warranted to corroborate these observations.
Collapse
Affiliation(s)
- Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine of Sfax,University of Sfax, Sfax 3029, Tunisia
- High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Mohamed Ali Boujelbane
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Tunisia
- Research Unit: “Physical Activity, Sport, and Health”, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
| | - Marvin Leonard Simak
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irene Fraile-Fuente
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nikolas Rizzi
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jad Adrian Washif
- Sports Performance Division, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Piotr Zmijewski
- Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Haitham Jahrami
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
- Government Hospitals, Manama, Kingdom of Bahrain
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Jiao F, Zhuang J, Nitsche MA, Lin Z, Ma Y, Liu Y. Application of transcranial alternating current stimulation to improve eSports-related cognitive performance. Front Neurosci 2024; 18:1308370. [PMID: 38476869 PMCID: PMC10927847 DOI: 10.3389/fnins.2024.1308370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Electronic Sports (eSports) is a popular and still emerging sport. Multiplayer Online Battle Arena (MOBA) and First/Third Person Shooting Games (FPS/TPS) require excellent visual attention abilities. Visual attention involves specific frontal and parietal areas, and is associated with alpha coherence. Transcranial alternating current stimulation (tACS) is a principally suitable tool to improve cognitive functions by modulation of regional oscillatory cortical networks that alters regional and larger network connectivity. Methods In this single-blinded crossover study, 27 healthy college students were recruited and exposed to 10 Hz tACS of the right frontoparietal network. Subjects conducted a Visual Spatial Attention Distraction task in three phases: T0 (pre-stimulation), T1 (during stimulation), T2 (after-stimulation), and an eSports performance task which contained three games ("Exact Aiming," "Flick Aiming," "Press Reaction") before and after stimulation. Results The results showed performance improvements in the "Exact Aiming" task and hint for a prevention of reaction time performance decline in the "Press Reaction" task in the real, as compared to the sham stimulation group. We also found a significant decrease of reaction time in the visual spatial attention distraction task at T1 compared to T0 in the real, but not sham intervention group. However, accuracy and inverse efficiency scores (IES) did not differ between intervention groups in this task. Discussion These results suggest that 10 Hz tACS over the right frontal and parietal cortex might improve eSports-related skill performance in specific tasks, and also improve visual attention in healthy students during stimulation. This tACS protocol is a potential tool to modulate neurocognitive performance involving tracking targets, and might be a foundation for the development of a new concept to enhance eSports performance. This will require however proof in real life scenarios, as well optimization.
Collapse
Affiliation(s)
- Fujia Jiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Michael A. Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Zhenggen Lin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yuanbo Ma
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
16
|
Lee S, Song E, Zhu M, Appel-Cresswell S, McKeown MJ. Apathy scores in Parkinson's disease relate to EEG components in an incentivized motor task. Brain Commun 2024; 6:fcae025. [PMID: 38370450 PMCID: PMC10873141 DOI: 10.1093/braincomms/fcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/12/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
Apathy is one of the most prevalent non-motor symptoms of Parkinson's disease and is characterized by decreased goal-directed behaviour due to a lack of motivation and/or impaired emotional reactivity. Despite its high prevalence, the neurophysiological mechanisms underlying apathy in Parkinson's disease, which may guide neuromodulation interventions, are poorly understood. Here, we investigated the neural oscillatory characteristics of apathy in Parkinson's disease using EEG data recorded during an incentivized motor task. Thirteen Parkinson's disease patients with apathy and 13 Parkinson's disease patients without apathy as well as 12 healthy controls were instructed to squeeze a hand grip device to earn a monetary reward proportional to the grip force they used. Event-related spectral perturbations during the presentation of a reward cue and squeezing were analysed using multiset canonical correlation analysis to detect different orthogonal components of temporally consistent event-related spectral perturbations across trials and participants. The first component, predominantly located over parietal regions, demonstrated suppression of low-beta (12-20 Hz) power (i.e. beta desynchronization) during reward cue presentation that was significantly smaller in Parkinson's disease patients with apathy compared with healthy controls. Unlike traditional event-related spectral perturbation analysis, the beta desynchronization in this component was significantly correlated with clinical apathy scores. Higher monetary rewards resulted in larger beta desynchronization in healthy controls but not Parkinson's disease patients. The second component contained gamma and theta frequencies and demonstrated exaggerated theta (4-8 Hz) power in Parkinson's disease patients with apathy during the reward cue and squeezing compared with healthy controls (HCs), and this was positively correlated with Montreal Cognitive Assessment scores. The third component, over central regions, demonstrated significantly different beta power across groups, with apathetic groups having the lowest beta power. Our results emphasize that altered low-beta and low-theta oscillations are critical for reward processing and motor planning in Parkinson's disease patients with apathy and these may provide a target for non-invasive neuromodulation.
Collapse
Affiliation(s)
- Soojin Lee
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Esther Song
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Maria Zhu
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Department of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Silke Appel-Cresswell
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Martin J McKeown
- Pacific Parkinson’s Research Centre, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
17
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-Gamma Activity Is Coupled to Low-Gamma Oscillations in Precentral Cortices and Modulates with Movement and Speech. eNeuro 2024; 11:ENEURO.0163-23.2023. [PMID: 38242691 PMCID: PMC10867721 DOI: 10.1523/eneuro.0163-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger-flexion or word-reading tasks. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
Affiliation(s)
- Jeffrey Z Nie
- Southern Illinois University School of Medicine, Springfield 62794, Illinois
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Robert D Flint
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Prashanth Prakash
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Jason K Hsieh
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Emily M Mugler
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Matthew C Tate
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
| | - Joshua M Rosenow
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
| | - Marc W Slutzky
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Neuroscience, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
- Department of Biomedical Engineering, Northwestern University, Evanston 60201, Illinois
| |
Collapse
|
18
|
Guerra A, Paparella G, Passaretti M, Costa D, Birreci D, De Biase A, Colella D, Angelini L, Cannavacciuolo A, Berardelli A, Bologna M. Theta-tACS modulates cerebellar-related motor functions and cerebellar-cortical connectivity. Clin Neurophysiol 2024; 158:159-169. [PMID: 38219405 DOI: 10.1016/j.clinph.2023.12.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE To evaluate the effects of cerebellar transcranial alternating current stimulation (tACS) delivered at cerebellar-resonant frequencies, i.e., theta (θ) and gamma (γ), on upper limb motor performance and cerebellum-primary motor cortex (M1) connectivity, as assessed by cerebellar-brain inhibition (CBI), in healthy subjects. METHODS Participants underwent cerebellar-tACS while performing three cerebellar-dependent motor tasks: (i) rhythmic finger-tapping, (ii) arm reaching-to-grasp ('grasping') and (iii) arm reaching-to-point ('pointing') an object. Also, we evaluated possible changes in CBI during cerebellar-tACS. RESULTS θ-tACS decreased movement regularity during the tapping task and increased the duration of the pointing task compared to sham- and γ-tACS. Additionally, θ-tACS increased the CBI effectiveness (greater inhibition). The effect of θ-tACS on movement rhythm correlated with CBI changes and less tapping regularity corresponded to greater CBI. CONCLUSIONS Cerebellar-tACS delivered at the θ frequency modulates cerebellar-related motor behavior and this effect is, at least in part, mediated by changes in the cerebellar inhibitory output onto M1. The effects of θ-tACS may be due to the modulation of cerebellar neurons that resonate to the θ rhythm. SIGNIFICANCE These findings contribute to a better understanding of the physiological mechanisms of motor control and provide new evidence on cerebellar non-invasive brain stimulation.
Collapse
Affiliation(s)
- Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Giulia Paparella
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | - Davide Costa
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alessandro De Biase
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS) 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
19
|
Zhang X, Wang H, Guo Y, Long J. Beta rebound reduces subsequent movement preparation time by modulating of GABAA inhibition. Cereb Cortex 2024; 34:bhae037. [PMID: 38342689 DOI: 10.1093/cercor/bhae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/13/2024] Open
Abstract
Post-movement beta synchronization is an increase of beta power relative to baseline, which commonly used to represent the status quo of the motor system. However, its functional role to the subsequent voluntary motor output and potential electrophysiological significance remain largely unknown. Here, we examined the reaction time of a Go/No-Go task of index finger tapping which performed at the phases of power baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds (ballistic/self-paced) in 13 healthy subjects. We found a correlation between the post-movement beta synchronization and reaction time that larger post-movement beta synchronization prolonged the reaction time during Go trials. To probe the electrophysiological significance of post-movement beta synchronization, we assessed intracortical inhibitory measures probably involving GABAB (long-interval intracortical inhibition) and GABAA (short-interval intracortical inhibition) receptors in beta baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds. We found that short-interval intracortical inhibition but not long-interval intracortical inhibition increased in post-movement beta synchronization peak compared with that in the power baseline, and was negatively correlated with the change of post-movement beta synchronization peak value. These novel findings indicate that the post-movement beta synchronization is related to forward model updating, with high beta rebound predicting longer time for the preparation of subsequent movement by inhibitory neural pathways of GABAA.
Collapse
Affiliation(s)
- Xiangzi Zhang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Houmin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaqiu Guo
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- Pazhou Lab, Guangzhou 510335, China
| |
Collapse
|
20
|
Akaiwa M, Matsuda Y, Kurokawa R, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K, Kozuka N. Does 20 Hz Transcranial Alternating Current Stimulation over the Human Primary Motor Cortex Modulate Beta Rebound Following Voluntary Movement? Brain Sci 2024; 14:74. [PMID: 38248289 PMCID: PMC10813667 DOI: 10.3390/brainsci14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Beta frequency oscillations originating from the primary motor cortex increase in amplitude following the initiation of voluntary movement, a process termed beta rebound. The strength of beta rebound has been reported to predict the recovery of motor function following stroke, suggesting therapeutic applications of beta rebound modulation. The present study examined the effect of 20 Hz transcranial alternating current stimulation (tACS) on the beta rebound induced by self-paced voluntary movement. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded from 16 healthy adults during voluntary movements performed before and after active or sham tACS. There was no significant change in average beta rebound after active tACS. However, the beta rebound amplitude was significantly enhanced in a subset of participants, and the magnitude of the increase across all participants was negatively correlated with the difference between individual peak beta frequency and tACS frequency. Thus, matching the stimulus frequency of tACS with individual beta frequency may facilitate therapeutic enhancement for motor rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ryo Kurokawa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yasushi Sugawara
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan;
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| |
Collapse
|
21
|
Pardo-Valencia J, Fernández-García C, Alonso-Frech F, Foffani G. Oscillatory vs. non-oscillatory subthalamic beta activity in Parkinson's disease. J Physiol 2024; 602:373-395. [PMID: 38084073 DOI: 10.1113/jp284768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Parkinson's disease is characterized by exaggerated beta activity (13-35 Hz) in cortico-basal ganglia motor loops. Beta activity includes both periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and excitation/inhibition balance (i.e. non-oscillatory activity). However, the relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. We recorded, modelled and analysed subthalamic local field potentials in parkinsonian patients at rest while off or on medication. Autoregressive modelling with additive 1/f noise clarified the relationships between measures of beta activity in the time domain (i.e. amplitude and duration of beta bursts) or in the frequency domain (i.e. power and sharpness of the spectral peak) and oscillatory vs. non-oscillatory activity: burst duration and spectral sharpness are specifically sensitive to oscillatory activity, whereas burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Our experimental data confirmed the model predictions and assumptions. We subsequently analysed the effect of levodopa, obtaining strong-to-extreme Bayesian evidence that oscillatory beta activity is reduced in patients on vs. off medication, with moderate evidence for absence of modulation of the non-oscillatory component. Finally, specifically the oscillatory component of beta activity correlated with the rate of motor progression of the disease. Methodologically, these results provide an integrative understanding of beta-based biomarkers relevant for adaptive deep brain stimulation. Biologically, they suggest that primarily the oscillatory component of subthalamic beta activity is dopamine dependent and may play a role not only in the pathophysiology but also in the progression of Parkinson's disease. KEY POINTS: Beta activity in Parkinson's disease includes both true periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and synaptic balance (i.e. non-oscillatory activity). The relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. Burst duration and spectral sharpness are specifically sensitive to oscillatory activity, while burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Only the oscillatory component of subthalamic beta activity is dopamine-dependent. Stronger beta oscillatory activity correlates with faster motor progression of the disease.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carla Fernández-García
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - Fernando Alonso-Frech
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Department of Neurology, San Carlos Research Health Intitute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Instituto de Salud Carlos III, CIBERNED, Madrid, Spain
| |
Collapse
|
22
|
Bougou V, Vanhoyland M, Decramer T, Van Hoylandt A, Smeijers S, Nuttin B, De Vloo P, Vandenberghe W, Nieuwboer A, Janssen P, Theys T. Active and Passive Cycling Decrease Subthalamic β Oscillations in Parkinson's Disease. Mov Disord 2024; 39:85-93. [PMID: 37860957 DOI: 10.1002/mds.29632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Preserved cycling capabilities in patients with Parkinson's disease, especially in those with freezing of gait are still poorly understood. Previous research with invasive local field potential recordings in the subthalamic nucleus has shown that cycling causes a stronger suppression of β oscillations compared to walking, which facilitates motor continuation. METHODS We recorded local field potentials from 12 patients with Parkinson's disease (six without freezing of gait, six with freezing of gait) who were bilaterally implanted with deep brain stimulation electrodes in the subthalamic nucleus. We investigated β (13-30 Hz) and high γ (60-100 Hz) power during both active and passive cycling with different cadences and compared patients with and without freezing of gait. The passive cycling experiment, where a motor provided a fixed cadence, allowed us to study the effect of isolated sensory inputs without physical exercise. RESULTS We found similarly strong suppression of pathological β activity for both active and passive cycling. In contrast, there was stronger high γ band activity for active cycling. Notably, the effects of active and passive cycling were all independent of cadence. Finally, β suppression was stronger for patients with freezing of gait, especially during passive cycling. CONCLUSIONS Our results provide evidence for a link between proprioceptive input during cycling and β suppression. These findings support the role of continuous external sensory input and proprioceptive feedback during rhythmic passive cycling movements and suggest that systematic passive mobilization might hold therapeutic potential. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Vasiliki Bougou
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Michaël Vanhoyland
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Decramer
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Anaïs Van Hoylandt
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Steven Smeijers
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Parkinson Research, Research Group Experimental Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Research Group of Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, Research Group Neurophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
| | - Tom Theys
- Research Group of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Zueva MV, Neroeva NV, Zhuravleva AN, Bogolepova AN, Kotelin VV, Fadeev DV, Tsapenko IV. Fractal Phototherapy in Maximizing Retina and Brain Plasticity. ADVANCES IN NEUROBIOLOGY 2024; 36:585-637. [PMID: 38468055 DOI: 10.1007/978-3-031-47606-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The neuroplasticity potential is reduced with aging and impairs during neurodegenerative diseases and brain and visual system injuries. This limits the brain's capacity to repair the structure and dynamics of its activity after lesions. Maximization of neuroplasticity is necessary to provide the maximal CNS response to therapeutic intervention and adaptive reorganization of neuronal networks in patients with degenerative pathology and traumatic injury to restore the functional activity of the brain and retina.Considering the fractal geometry and dynamics of the healthy brain and the loss of fractality in neurodegenerative pathology, we suggest that the application of self-similar visual signals with a fractal temporal structure in the stimulation therapy can reactivate the adaptive neuroplasticity and enhance the effectiveness of neurorehabilitation. This proposition was tested in the recent studies. Patients with glaucoma had a statistically significant positive effect of fractal photic therapy on light sensitivity and the perimetric MD index, which shows that methods of fractal stimulation can be a novel nonpharmacological approach to neuroprotective therapy and neurorehabilitation. In healthy rabbits, it was demonstrated that a long-term course of photostimulation with fractal signals does not harm the electroretinogram (ERG) and retina structure. Rabbits with modeled retinal atrophy showed better dynamics of the ERG restoration during daily stimulation therapy for a week in comparison with the controls. Positive changes in the retinal function can indirectly suggest the activation of its adaptive plasticity and the high potential of stimulation therapy with fractal visual stimuli in a nonpharmacological neurorehabilitation, which requires further study.
Collapse
Affiliation(s)
- Marina V Zueva
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Natalia V Neroeva
- Department of Pathology of the Retina and Optic Nerve, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Anastasia N Zhuravleva
- Department of Glaucoma, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Anna N Bogolepova
- Department of neurology, neurosurgery and medical genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladislav V Kotelin
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Denis V Fadeev
- Scientific Experimental Center Department, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Irina V Tsapenko
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| |
Collapse
|
24
|
Yue Z, Xiao P, Wang J, Tong RKY. Brain oscillations in reflecting motor status and recovery induced by action observation-driven robotic hand intervention in chronic stroke. Front Neurosci 2023; 17:1241772. [PMID: 38146541 PMCID: PMC10749335 DOI: 10.3389/fnins.2023.1241772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/14/2023] [Indexed: 12/27/2023] Open
Abstract
Hand rehabilitation in chronic stroke remains challenging, and finding markers that could reflect motor function would help to understand and evaluate the therapy and recovery. The present study explored whether brain oscillations in different electroencephalogram (EEG) bands could indicate the motor status and recovery induced by action observation-driven brain-computer interface (AO-BCI) robotic therapy in chronic stroke. The neurophysiological data of 16 chronic stroke patients who received 20-session BCI hand training is the basis of the study presented here. Resting-state EEG was recorded during the observation of non-biological movements, while task-stage EEG was recorded during the observation of biological movements in training. The motor performance was evaluated using the Action Research Arm Test (ARAT) and upper extremity Fugl-Meyer Assessment (FMA), and significant improvements (p < 0.05) on both scales were found in patients after the intervention. Averaged EEG band power in the affected hemisphere presented negative correlations with scales pre-training; however, no significant correlations (p > 0.01) were found both in the pre-training and post-training stages. After comparing the variation of oscillations over training, we found patients with good and poor recovery presented different trends in delta, low-beta, and high-beta variations, and only patients with good recovery presented significant changes in EEG band power after training (delta band, p < 0.01). Importantly, motor improvements in ARAT correlate significantly with task EEG power changes (low-beta, c.c = 0.71, p = 0.005; high-beta, c.c = 0.71, p = 0.004) and task/rest EEG power ratio changes (delta, c.c = -0.738, p = 0.003; low-beta, c.c = 0.67, p = 0.009; high-beta, c.c = 0.839, p = 0.000). These results suggest that, in chronic stroke, EEG band power may not be a good indicator of motor status. However, ipsilesional oscillation changes in the delta and beta bands provide potential biomarkers related to the therapeutic-induced improvement of motor function in effective BCI intervention, which may be useful in understanding the brain plasticity changes and contribute to evaluating therapy and recovery in chronic-stage motor rehabilitation.
Collapse
Affiliation(s)
- Zan Yue
- Institute of Robotics and Intelligent Systems, Xi’an Jiaotong University, Xi’an, China
- Neurorehabilitation Robotics Research Institute, Xi’an Jiaotong University, Xi’an, China
| | - Peng Xiao
- Institute of Robotics and Intelligent Systems, Xi’an Jiaotong University, Xi’an, China
- Neurorehabilitation Robotics Research Institute, Xi’an Jiaotong University, Xi’an, China
| | - Jing Wang
- Institute of Robotics and Intelligent Systems, Xi’an Jiaotong University, Xi’an, China
- Neurorehabilitation Robotics Research Institute, Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Chung LKH, Jack BN, Griffiths O, Pearson D, Luque D, Harris AWF, Spencer KM, Le Pelley ME, So SHW, Whitford TJ. Neurophysiological evidence of motor preparation in inner speech and the effect of content predictability. Cereb Cortex 2023; 33:11556-11569. [PMID: 37943760 PMCID: PMC10751289 DOI: 10.1093/cercor/bhad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023] Open
Abstract
Self-generated overt actions are preceded by a slow negativity as measured by electroencephalogram, which has been associated with motor preparation. Recent studies have shown that this neural activity is modulated by the predictability of action outcomes. It is unclear whether inner speech is also preceded by a motor-related negativity and influenced by the same factor. In three experiments, we compared the contingent negative variation elicited in a cue paradigm in an active vs. passive condition. In Experiment 1, participants produced an inner phoneme, at which an audible phoneme whose identity was unpredictable was concurrently presented. We found that while passive listening elicited a late contingent negative variation, inner speech production generated a more negative late contingent negative variation. In Experiment 2, the same pattern of results was found when participants were instead asked to overtly vocalize the phoneme. In Experiment 3, the identity of the audible phoneme was made predictable by establishing probabilistic expectations. We observed a smaller late contingent negative variation in the inner speech condition when the identity of the audible phoneme was predictable, but not in the passive condition. These findings suggest that inner speech is associated with motor preparatory activity that may also represent the predicted action-effects of covert actions.
Collapse
Affiliation(s)
- Lawrence K-h Chung
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Building 39, Science Road, Canberra ACT 2601, Australia
| | - Oren Griffiths
- School of Psychological Sciences, University of Newcastle, Behavioural Sciences Building, University Drive, Callaghan NSW 2308, Australia
| | - Daniel Pearson
- School of Psychology, University of Sydney, Griffith Taylor Building, Manning Road, Camperdown NSW 2006, Australia
| | - David Luque
- Department of Basic Psychology and Speech Therapy, University of Malaga, Faculty of Psychology, Dr Ortiz Ramos Street, 29010 Malaga, Spain
| | - Anthony W F Harris
- Westmead Clinical School, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Kevin M Spencer
- Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, 150 South Huntington Avenue, Boston MA 02130, United States
| | - Mike E Le Pelley
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
| | - Suzanne H-w So
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Thomas J Whitford
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
26
|
Parto-Dezfouli M, Vezoli J, Bosman CA, Fries P. Enhanced behavioral performance through interareal gamma and beta synchronization. Cell Rep 2023; 42:113249. [PMID: 37837620 PMCID: PMC10679823 DOI: 10.1016/j.celrep.2023.113249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Cognitive functioning requires coordination between brain areas. Between visual areas, feedforward gamma synchronization improves behavioral performance. Here, we investigate whether similar principles hold across brain regions and frequency bands, using simultaneous electrocorticographic recordings from 15 areas of two macaque monkeys during performance of a selective attention task. Short behavioral reaction times (RTs), suggesting efficient interareal communication, occurred when occipital areas V1, V2, V4, and DP showed gamma synchronization, and fronto-central areas S1, 5, F1, F2, and F4 showed beta synchronization. For both area clusters and corresponding frequency bands, deviations from the typically observed phase relations increased RTs. Across clusters and frequency bands, good phase relations occurred in a correlated manner specifically when they processed the behaviorally relevant stimulus. Furthermore, the fronto-central cluster exerted a beta-band influence onto the occipital cluster whose strength predicted short RTs. These results suggest that local gamma and beta synchronization and their inter-regional coordination jointly improve behavioral performance.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Conrado Arturo Bosman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Wang X, Delgado J, Marchesotti S, Kojovic N, Sperdin HF, Rihs TA, Schaer M, Giraud AL. Speech Reception in Young Children with Autism Is Selectively Indexed by a Neural Oscillation Coupling Anomaly. J Neurosci 2023; 43:6779-6795. [PMID: 37607822 PMCID: PMC10552944 DOI: 10.1523/jneurosci.0112-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 08/24/2023] Open
Abstract
Communication difficulties are one of the core criteria in diagnosing autism spectrum disorder (ASD), and are often characterized by speech reception difficulties, whose biological underpinnings are not yet identified. This deficit could denote atypical neuronal ensemble activity, as reflected by neural oscillations. Atypical cross-frequency oscillation coupling, in particular, could disrupt the joint tracking and prediction of dynamic acoustic stimuli, a dual process that is essential for speech comprehension. Whether such oscillatory anomalies already exist in very young children with ASD, and with what specificity they relate to individual language reception capacity is unknown. We collected neural activity data using electroencephalography (EEG) in 64 very young children with and without ASD (mean age 3; 17 females, 47 males) while they were exposed to naturalistic-continuous speech. EEG power of frequency bands typically associated with phrase-level chunking (δ, 1-3 Hz), phonemic encoding (low-γ, 25-35 Hz), and top-down control (β, 12-20 Hz) were markedly reduced in ASD relative to typically developing (TD) children. Speech neural tracking by δ and θ (4-8 Hz) oscillations was also weaker in ASD compared with TD children. After controlling gaze-pattern differences, we found that the classical θ/γ coupling was replaced by an atypical β/γ coupling in children with ASD. This anomaly was the single most specific predictor of individual speech reception difficulties in ASD children. These findings suggest that early interventions (e.g., neurostimulation) targeting the disruption of β/γ coupling and the upregulation of θ/γ coupling could improve speech processing coordination in young children with ASD and help them engage in oral interactions.SIGNIFICANCE STATEMENT Very young children already present marked alterations of neural oscillatory activity in response to natural speech at the time of autism spectrum disorder (ASD) diagnosis. Hierarchical processing of phonemic-range and syllabic-range information (θ/γ coupling) is disrupted in ASD children. Abnormal bottom-up (low-γ) and top-down (low-β) coordination specifically predicts speech reception deficits in very young ASD children, and no other cognitive deficit.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France, 75012
| | - Jaime Delgado
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Silvia Marchesotti
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Nada Kojovic
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Holger Franz Sperdin
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Marie Schaer
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Anne-Lise Giraud
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France, 75012
| |
Collapse
|
28
|
Szul MJ, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J, Bonaiuto JJ. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog Neurobiol 2023; 228:102490. [PMID: 37391061 DOI: 10.1016/j.pneurobio.2023.102490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
Collapse
Affiliation(s)
- Maciej J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Sotirios Papadopoulos
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | | | - Denis Schwartz
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
29
|
Ibáñez J, Zicher B, Brown KE, Rocchi L, Casolo A, Del Vecchio A, Spampinato D, Vollette CA, Rothwell JC, Baker SN, Farina D. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. J Physiol 2023; 601:3187-3199. [PMID: 35776944 DOI: 10.1113/jp282983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Transcranial alternating current stimulation (TACS) is commonly used to synchronize a cortical area and its outputs to the stimulus waveform, but gathering evidence for this based on brain recordings in humans is challenging. The corticospinal tract transmits beta oscillations (∼21 Hz) from the motor cortex to tonically contracted limb muscles linearly. Therefore, muscle activity may be used to measure the level of beta entrainment in the corticospinal tract due to TACS over the motor cortex. Here, we assessed whether TACS is able to modulate the neural inputs to muscles, which would provide indirect evidence for TACS-driven neural entrainment. In the first part of the study, we ran simulations of motor neuron (MN) pools receiving inputs from corticospinal neurons with different levels of beta entrainment. Results suggest that MNs are highly sensitive to changes in corticospinal beta activity. Then, we ran experiments on healthy human subjects (N = 10) in which TACS (at 1 mA) was delivered over the motor cortex at 21 Hz (beta stimulation), or at 7 Hz or 40 Hz (control conditions) while the abductor digiti minimi or the tibialis anterior muscle were tonically contracted. Muscle activity was measured using high-density electromyography, which allowed us to decompose the activity of pools of motor units innervating the muscles. By analysing motor unit pool activity, we observed that none of the TACS conditions could consistently alter the spectral contents of the common neural inputs received by the muscles. These results suggest that 1 mA TACS over the motor cortex given at beta frequencies does not entrain corticospinal activity. KEY POINTS: Transcranial alternating current stimulation (TACS) is commonly used to entrain the communication between brain regions. It is challenging to find direct evidence supporting TACS-driven neural entrainment due to the technical difficulties in recording brain activity during stimulation. Computational simulations of motor neuron pools receiving common inputs in the beta (∼21 Hz) band indicate that motor neurons are highly sensitive to corticospinal beta entrainment. Motor unit activity from human muscles does not support TACS-driven corticospinal entrainment.
Collapse
Affiliation(s)
- Jaime Ibáñez
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- Department of Bioengineering, Imperial College, London, UK
- Department for Clinical and movement neurosciences, Institute of Neurology, University College London, UK
| | - Blanka Zicher
- Department of Bioengineering, Imperial College, London, UK
| | - Katlyn E Brown
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Lorenzo Rocchi
- Department for Clinical and movement neurosciences, Institute of Neurology, University College London, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, 17 Friedrich-Alexander University, Erlangen, Germany
| | - Danny Spampinato
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation, Rome, Italy
| | | | | | - Stuart N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Dario Farina
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
30
|
Acosta-Mejia MT, Villalobos N. Neurophysiology of Brain Networks Underlies Symptoms of Parkinson's Disease: A Basis for Diagnosis and Management. Diagnostics (Basel) 2023; 13:2394. [PMID: 37510138 PMCID: PMC10377975 DOI: 10.3390/diagnostics13142394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is one of the leading neurodegenerative disorders. It is considered a movement disorder, although it is accepted that many nonmotor symptoms accompany the classic motor symptoms. PD exhibits heterogeneous and overlaying clinical symptoms, and the overlap of motor and nonmotor symptoms complicates the clinical diagnosis and management. Loss of modulation secondary to the absence of dopamine due to degeneration of the substantia nigra compacta produces changes in firing rates and patterns, oscillatory activity, and higher interneuronal synchronization in the basal ganglia-thalamus-cortex and nigrovagal network involvement in motor and nonmotor symptoms. These neurophysiological changes can be monitored by electrophysiological assessment. The purpose of this review was to summarize the results of neurophysiological changes, especially in the network oscillation in the beta-band level associated with parkinsonism, and to discuss the use of these methods to optimize the diagnosis and management of PD.
Collapse
Affiliation(s)
- Martha Teresa Acosta-Mejia
- Área Académica de Nutrición, Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda La Concepción, Sn Agustin Tlaxiaca, Estado de Hidalgo 42160, Mexico
| | - Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico, Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
31
|
Pierrieau E, Berret B, Lepage JF, Bernier PM. From Motivation to Action: Action Cost Better Predicts Changes in Premovement Beta-Band Activity than Speed. J Neurosci 2023; 43:5264-5275. [PMID: 37339875 PMCID: PMC10342222 DOI: 10.1523/jneurosci.0213-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
Although premovement beta-band event-related desynchronization (β-ERD; 13-30 Hz) from sensorimotor regions is modulated by movement speed, current evidence does not support a strict monotonic association between the two. Given that β-ERD is thought to increase information encoding capacity, we tested the hypothesis that it might be related to the expected neurocomputational cost of movement, here referred to as action cost. Critically, action cost is greater both for slow and fast movements compared with a medium or "preferred" speed. Thirty-one right-handed participants performed a speed-controlled reaching task while recording their EEG. Results revealed potent modulations of beta power as a function of speed, with β-ERD being significantly greater both for movements performed at high and low speeds compared with medium speed. Interestingly, medium-speed movements were more often chosen by participants than low-speed and high-speed movements, suggesting that they were evaluated as less costly. In line with this, modeling of action cost revealed a pattern of modulation across speed conditions that strikingly resembled the one found for β-ERD. Indeed, linear mixed models showed that estimated action cost predicted variations of β-ERD significantly better than speed. This relationship with action cost was specific to beta power, as it was not found when averaging activity in the mu band (8-12 Hz) and gamma band (31-49 Hz) bands. These results demonstrate that increasing β-ERD may not merely speed up movements, but instead facilitate the preparation of high-speed and low-speed movements through the allocation of additional neural resources, thereby enabling flexible motor control.SIGNIFICANCE STATEMENT Heightened beta activity has been associated with movement slowing in Parkinson's disease, and modulations of beta activity are commonly used to decode movement parameters in brain-computer interfaces. Here we show that premovement beta activity is better explained by the neurocomputational cost of the action rather than its speed. Instead of being interpreted as a mere reflection of changes in movement speed, premovement changes in beta activity might therefore be used to infer the amount of neural resources that are allocated for motor planning.
Collapse
Affiliation(s)
- Emeline Pierrieau
- Programme de Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Bastien Berret
- CIAMS (Complexité, Innovation, Activités, Motrices, et Sportives), Université Paris-Saclay, 91405 Orsay, France
- CIAMS (Complexité, Innovation, Activités, Motrices, et Sportives), Université d'Orléans, 45067 Orléans, France
- Institut Universitaire de France, 75231 Paris, France
| | - Jean-François Lepage
- Programme de Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
32
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
33
|
He Y, Liu S, Chen L, Ke Y, Ming D. Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci 2023; 17:1091925. [PMID: 37090788 PMCID: PMC10117687 DOI: 10.3389/fnins.2023.1091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Neuronal oscillations are the primary basis for precise temporal coordination of neuronal processing and are linked to different brain functions. Transcranial alternating current stimulation (tACS) has demonstrated promising potential in improving cognition by entraining neural oscillations. Despite positive findings in recent decades, the results obtained are sometimes rife with variance and replicability problems, and the findings translation to humans is quite challenging. A thorough understanding of the mechanisms underlying tACS is necessitated for accurate interpretation of experimental results. Animal models are useful for understanding tACS mechanisms, optimizing parameter administration, and improving rational design for broad horizons of tACS. Here, we review recent electrophysiological advances in tACS from animal models, as well as discuss some critical issues for results coordination and translation. We hope to provide an overview of neurophysiological mechanisms and recommendations for future consideration to improve its validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
| |
Collapse
|
34
|
Zich C, Quinn AJ, Bonaiuto JJ, O'Neill G, Mardell LC, Ward NS, Bestmann S. Spatiotemporal organisation of human sensorimotor beta burst activity. eLife 2023; 12:e80160. [PMID: 36961500 PMCID: PMC10110262 DOI: 10.7554/elife.80160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral, and spatiotemporal characteristics, indicating distinct functional roles.
Collapse
Affiliation(s)
- Catharina Zich
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
- Medical Research Council Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229BronFrance
- Université Claude Bernard Lyon 1, Université de LyonLyonFrance
| | - George O'Neill
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Lydia C Mardell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Nick S Ward
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
35
|
Duchet B, Sermon JJ, Weerasinghe G, Denison T, Bogacz R. How to entrain a selected neuronal rhythm but not others: open-loop dithered brain stimulation for selective entrainment. J Neural Eng 2023; 20:10.1088/1741-2552/acbc4a. [PMID: 36880684 PMCID: PMC7614323 DOI: 10.1088/1741-2552/acbc4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Objective.While brain stimulation therapies such as deep brain stimulation for Parkinson's disease (PD) can be effective, they have yet to reach their full potential across neurological disorders. Entraining neuronal rhythms using rhythmic brain stimulation has been suggested as a new therapeutic mechanism to restore neurotypical behaviour in conditions such as chronic pain, depression, and Alzheimer's disease. However, theoretical and experimental evidence indicate that brain stimulation can also entrain neuronal rhythms at sub- and super-harmonics, far from the stimulation frequency. Crucially, these counterintuitive effects could be harmful to patients, for example by triggering debilitating involuntary movements in PD. We therefore seek a principled approach to selectively promote rhythms close to the stimulation frequency, while avoiding potential harmful effects by preventing entrainment at sub- and super-harmonics.Approach.Our open-loop approach to selective entrainment, dithered stimulation, consists in adding white noise to the stimulation period.Main results.We theoretically establish the ability of dithered stimulation to selectively entrain a given brain rhythm, and verify its efficacy in simulations of uncoupled neural oscillators, and networks of coupled neural oscillators. Furthermore, we show that dithered stimulation can be implemented in neurostimulators with limited capabilities by toggling within a finite set of stimulation frequencies.Significance.Likely implementable across a variety of existing brain stimulation devices, dithering-based selective entrainment has potential to enable new brain stimulation therapies, as well as new neuroscientific research exploiting its ability to modulate higher-order entrainment.
Collapse
Affiliation(s)
- Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - James J Sermon
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Gihan Weerasinghe
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Timothy Denison
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Parto-Dezfouli M, Vezoli J, Bosman CA, Fries P. Enhanced Behavioral Performance through Interareal Gamma and Beta Synchronization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531093. [PMID: 36945499 PMCID: PMC10028832 DOI: 10.1101/2023.03.06.531093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive functioning requires coordination between brain areas. Between visual areas, feedforward gamma synchronization improves behavioral performance. Here, we investigate whether similar principles hold across brain regions and frequency bands, using simultaneous local field potential recordings from 15 areas during performance of a selective attention task. Short behavioral reaction times (RTs), an index of efficient interareal communication, occurred when occipital areas V1, V2, V4, DP showed gamma synchronization, and fronto-central areas S1, 5, F1, F2, F4 showed beta synchronization. For both area clusters and corresponding frequency bands, deviations from the typically observed phase relations increased RTs. Across clusters and frequency bands, good phase relations occurred in a correlated manner specifically when they processed the behaviorally relevant stimulus. Furthermore, the fronto-central cluster exerted a beta-band influence onto the occipital cluster whose strength predicted short RTs. These results suggest that local gamma and beta synchronization and their inter-regional coordination jointly improve behavioral performance.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Conrado Arturo Bosman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands
| |
Collapse
|
37
|
Movement characteristics impact decision-making and vice versa. Sci Rep 2023; 13:3281. [PMID: 36841847 PMCID: PMC9968293 DOI: 10.1038/s41598-023-30325-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Previous studies suggest that humans are capable of coregulating the speed of decisions and movements if promoted by task incentives. It is unclear however whether such behavior is inherent to the process of translating decisional information into movements, beyond posing a valid strategy in some task contexts. Therefore, in a behavioral online study we imposed time constraints to either decision- or movement phases of a sensorimotor task, ensuring that coregulating decisions and movements was not promoted by task incentives. We found that participants indeed moved faster when fast decisions were promoted and decided faster when subsequent finger tapping movements had to be executed swiftly. These results were further supported by drift diffusion modelling and inspection of psychophysical kernels: Sensorimotor delays related to initiating the finger tapping sequence were shorter in fast-decision as compared to slow-decision blocks. Likewise, the decisional speed-accuracy tradeoff shifted in favor of faster decisions in fast-tapping as compared to slow-tapping blocks. These findings suggest that decisions not only impact movement characteristics, but that properties of movement impact the time taken to decide. We interpret these behavioral results in the context of embodied decision-making, whereby shared neural mechanisms may modulate decisions and movements in a joint fashion.
Collapse
|
38
|
Lofredi R, Scheller U, Mindermann A, Feldmann LK, Krauss JK, Saryyeva A, Schneider GH, Kühn AA. Pallidal Beta Activity Is Linked to Stimulation-Induced Slowness in Dystonia. Mov Disord 2023. [PMID: 36807626 DOI: 10.1002/mds.29347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Pallidal deep brain stimulation (DBS) effectively alleviates symptoms in dystonia patients, but may induce movement slowness as a side-effect. In Parkinson's disease, hypokinetic symptoms have been associated with increased beta oscillations (13-30 Hz). We hypothesize that this pattern is symptom-specific, thus accompanying DBS-induced slowness in dystonia. METHODS In 6 dystonia patients, pallidal rest recordings with a sensing-enabled DBS device were performed and tapping speed was assessed using marker-less pose estimation over 5 time points following cessation of DBS. RESULTS After cessation of pallidal stimulation, movement speed increased over time (P < 0.01). A linear mixed-effects model revealed that pallidal beta activity explained 77% of the variance in movement speed across patients (P = 0.01). CONCLUSIONS The association between beta oscillations and slowness across disease entities provides further evidence for symptom-specific oscillatory patterns in the motor circuit. Our findings might help DBS therapy improvements, as DBS-devices able to adapt to beta oscillations are already commercially available. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Ute Scheller
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Aurika Mindermann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucia K Feldmann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Exzellenzcluster - NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Soyuhos O, Baldauf D. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex. Eur J Neurosci 2023; 57:1114-1140. [PMID: 36789470 DOI: 10.1111/ejn.15936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Neuroimaging evidence suggests that the frontal eye field (FEF) and inferior frontal junction (IFJ) govern the encoding of spatial and nonspatial (such as feature- or object-based) representations, respectively, both during visual attention and working memory tasks. However, it is still unclear whether such contrasting functional segregation is also reflected in their underlying functional connectivity patterns. Here, we hypothesized that FEF has predominant functional coupling with spatiotopically organized regions in the dorsal ('where') visual stream whereas IFJ has predominant functional connectivity with the ventral ('what') visual stream. We applied seed-based functional connectivity analyses to temporally high-resolving resting-state magnetoencephalography (MEG) recordings. We parcellated the brain according to the multimodal Glasser atlas and tested, for various frequency bands, whether the spontaneous activity of each parcel in the ventral and dorsal visual pathway has predominant functional connectivity with FEF or IFJ. The results show that FEF has a robust power correlation with the dorsal visual pathway in beta and gamma bands. In contrast, anterior IFJ (IFJa) has a strong power coupling with the ventral visual stream in delta, beta and gamma oscillations. Moreover, while FEF is phase-coupled with the superior parietal lobe in the beta band, IFJa is phase-coupled with the middle and inferior temporal cortex in delta and gamma oscillations. We argue that these intrinsic connectivity fingerprints are congruent with each brain region's function. Therefore, we conclude that FEF and IFJ have dissociable connectivity patterns that fit their respective functional roles in spatial versus nonspatial top-down attention and working memory control.
Collapse
Affiliation(s)
- Orhan Soyuhos
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.,Center for Neuroscience, University of California, Davis, California, USA
| | - Daniel Baldauf
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
40
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528325. [PMID: 36824850 PMCID: PMC9949043 DOI: 10.1101/2023.02.13.528325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger movements or speaking words aloud. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
|
41
|
Pomper U, Ansorge U. Motor-induced oscillations in choice response performance. Psychophysiology 2023; 60:e14172. [PMID: 36040756 PMCID: PMC10078311 DOI: 10.1111/psyp.14172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023]
Abstract
Recently, numerous studies have revealed 4-12 Hz fluctuations of behavioral performance in a multitude of tasks. The majority has utilized stimuli near detection threshold and observed related fluctuations in hit-rates, attributing these to perceptual or attentional processes. As neural oscillations in the 8-20 Hz range also feature prominently in cortical motor areas, they might cause fluctuations in the ability to induce responses, independent of attentional capabilities. Additionally, different effectors (e.g., the left versus right hand) might be cyclically prioritized in an alternating fashion, similar to the attentional sampling of distinct locations, objects, or memory templates. Here, we investigated these questions via a behavioral dense-sampling approach. Twenty-six participants performed a simple visual discrimination task using highly salient stimuli. We varied the interval between each motor response and the subsequent target from 330 to 1040 ms, and analyzed performance as a function of this interval. Our data show significant fluctuations of both RTs and sensitivity between 12.5 and 25 Hz, but no evidence for an alternating prioritization of left- versus right-hand responses. While our results suggest an impact of motor-related signals on performance oscillations, they might additionally be influenced by perceptual processes earlier in the processing hierarchy. In summary, we demonstrate that behavioral oscillations generalize to situations involving highly salient stimuli, closer to everyday life. Moreover, our work adds to the literature by showing fluctuations at a high speed, which might be a consequence of both low task difficulty and the involvement of sensorimotor rhythms.
Collapse
Affiliation(s)
- Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.,Cognitive Science Research Hub, University of Vienna, Vienna, Austria.,Research Platform Mediatised Lifeworlds, University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Wessel MJ, Draaisma LR, Hummel FC. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:120-128. [PMID: 35060078 DOI: 10.1007/s12311-021-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland. .,Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
43
|
Aussel A, Fiebelkorn IC, Kastner S, Kopell NJ, Pittman-Polletta BR. Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention. eLife 2023; 12:e67684. [PMID: 36718998 PMCID: PMC10129332 DOI: 10.7554/elife.67684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, β, and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.
Collapse
Affiliation(s)
- Amélie Aussel
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester Medical Center, University of RochesterRochesterUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Nancy J Kopell
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Benjamin Rafael Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| |
Collapse
|
44
|
Ding Q, Lin T, Cai G, Ou Z, Yao S, Zhu H, Lan Y. Individual differences in beta-band oscillations predict motor-inhibitory control. Front Neurosci 2023; 17:1131862. [PMID: 36937674 PMCID: PMC10014589 DOI: 10.3389/fnins.2023.1131862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Objective The ability of motor-inhibitory control is critical in daily life. The physiological mechanisms underlying motor inhibitory control deficits remain to be elucidated. Beta band oscillations have been suggested to be related to motor performance, but whether they relate to motor-inhibitory control remains unclear. This study is aimed at systematically investigating the relationship between beta band oscillations and motor-inhibitory control to determine whether beta band oscillations were related to the ability of motor-inhibitory control. Methods We studied 30 healthy young adults (age: 21.6 ± 1.5 years). Stop-signal reaction time (SSRT) was derived from stop signal task, indicating the ability of motor-inhibitory control. Resting-state electroencephalography (EEG) was recorded for 12 min. Beta band power and functional connectivity (including global efficiency) were calculated. Correlations between beta band oscillations and SSRT were performed. Results Beta band EEG power in left and right motor cortex (MC), right somatosensory cortex (SC), and right inferior frontal cortex (IFC) was positively correlated with SSRT (P's = 0.031, 0.021, 0.045, and 0.015, respectively). Beta band coherence between bilateral MC, SC, and IFC was also positively correlated with SSRT (P's < 0.05). Beta band global efficiency was positively correlated with SSRT (P = 0.01). Conclusion This is the first study to investigate the relationship between resting-state cortical beta oscillations and response inhibition. Our findings revealed that individuals with better ability of motor inhibitory control tend to have less cortical beta band power and functional connectivity. This study has clinical significance on the underlying mechanisms of motor inhibitory control deficits.
Collapse
Affiliation(s)
- Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou, Guangdong, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Guiyuan Cai
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Zitong Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shantong Yao
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hongxiang Zhu
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Hongxiang Zhu,
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou, Guangdong, China
- Yue Lan,
| |
Collapse
|
45
|
10 Minutes Frontal 40 Hz tACS-Effects on Working Memory Tested by Luck-Vogel Task. Behav Sci (Basel) 2022; 13:bs13010039. [PMID: 36661611 PMCID: PMC9855106 DOI: 10.3390/bs13010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Working memory is a cognitive process that involves short-term active maintenance, flexible updating, and processing of goal- or task-relevant information. All frequency bands are involved in working memory. The activities of the theta and gamma frequency bands in the frontoparietal network are highly involved in working memory processes; theta oscillations play a role in the temporal organization of working memory items, and gamma oscillations influence the maintenance of information in working memory. Transcranial alternating current stimulation (tACS) results in frequency-specific modulation of endogenous oscillations and has shown promising results in cognitive neuroscience. The electrophysiological and behavioral changes induced by the modulation of endogenous gamma frequency in the prefrontal cortex using tACS have not been extensively studied in the context of working memory. Therefore, we aimed to investigate the effects of frontal gamma-tACS on working memory outcomes. We hypothesized that a 10-min gamma tACS administered over the frontal cortex would significantly improve working memory outcomes. Young healthy participants performed Luck-Vogel cognitive behavioral tasks with simultaneous pre- and post-intervention EEG recording (Sham versus 40 Hz tACS). Data from forty-one participants: sham (15 participants) and tACS (26 participants), were used for the statistical and behavioral analysis. The relative changes in behavioral outcomes and EEG due to the intervention were analyzed. The results show that tACS caused an increase in the power spectral density in the high beta and low gamma EEG bands and a decrease in left-right coherence. On the other hand, tACS had no significant effect on success rates and response times. Conclusion: 10 min of frontal 40 Hz tACS was not sufficient to produce detectable behavioral effects on working memory, whereas electrophysiological changes were evident. The limitations of the current stimulation protocol and future directions are discussed in detail in the following sections.
Collapse
|
46
|
Correia JP, Vaz JR, Domingos C, Freitas SR. From thinking fast to moving fast: motor control of fast limb movements in healthy individuals. Rev Neurosci 2022; 33:919-950. [PMID: 35675832 DOI: 10.1515/revneuro-2021-0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The ability to produce high movement speeds is a crucial factor in human motor performance, from the skilled athlete to someone avoiding a fall. Despite this relevance, there remains a lack of both an integrative brain-to-behavior analysis of these movements and applied studies linking the known dependence on open-loop, central control mechanisms of these movements to their real-world implications, whether in the sports, performance arts, or occupational setting. In this review, we cover factors associated with the planning and performance of fast limb movements, from the generation of the motor command in the brain to the observed motor output. At each level (supraspinal, peripheral, and motor output), the influencing factors are presented and the changes brought by training and fatigue are discussed. The existing evidence of more applied studies relevant to practical aspects of human performance is also discussed. Inconsistencies in the existing literature both in the definitions and findings are highlighted, along with suggestions for further studies on the topic of fast limb movement control. The current heterogeneity in what is considered a fast movement and in experimental protocols makes it difficult to compare findings in the existing literature. We identified the role of the cerebellum in movement prediction and of surround inhibition in motor slowing, as well as the effects of fatigue and training on central motor control, as possible avenues for further research, especially in performance-driven populations.
Collapse
Affiliation(s)
- José Pedro Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413, Rio Maior, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| |
Collapse
|
47
|
Uehara K, Fine JM, Santello M. Modulation of cortical beta oscillations influences motor vigor: A rhythmic TMS-EEG study. Hum Brain Mapp 2022; 44:1158-1172. [PMID: 36419365 PMCID: PMC9875933 DOI: 10.1002/hbm.26149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Previous electro- or magnetoencephalography (Electro/Magneto EncephaloGraphic; E/MEG) studies using a correlative approach have shown that β (13-30 Hz) oscillations emerging in the primary motor cortex (M1) are implicated in regulating motor response vigor and associated with an anti-kinetic role, that is, slowness of movement. However, the functional role of M1 β oscillations in regulation of motor responses remains unclear. To address this gap, we combined EEG with rhythmic TMS (rhTMS) delivered to M1 at the β (20 Hz) frequency shortly before subjects performed an isometric ramp-and-hold finger force production task at three force levels. rhTMS is a novel approach that can modulate rhythmic patterns of neural activity. β-rhTMS over M1 induced a modulation of neural oscillations to β frequency in the sensorimotor area and reduced peak force rate during the ramp-up period relative to sham and catch trials. Interestingly, this rhTMS effect occurred only in the large force production condition. To distinguish whether the effects of rhTMS on EEG and behavior stemmed from phase-resetting by each magnetic pulse or neural entrainment by the periodicity of rhTMS, we performed a control experiment using arrhythmic TMS (arTMS). arTMS did not induce changes in EEG oscillations nor peak force rate during the rump-up period. Our results provide novel evidence that β neural oscillations emerging the sensorimotor area influence the regulation of motor response vigor. Furthermore, our findings further demonstrate that rhTMS is a promising tool for tuning neural oscillations to the target frequency.
Collapse
Affiliation(s)
- Kazumasa Uehara
- School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA,Division of Neural Dynamics, Department of System NeuroscienceNational Institute for Physiological SciencesOkazakiAichiJapan,Department of Physiological Sciences, School of Life ScienceSOKENDAI (The Graduate University for Advanced Studies)OkazakiAichiJapan
| | - Justin M. Fine
- School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA,University of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Marco Santello
- School of Biological and Health Systems EngineeringArizona State UniversityTempeArizonaUSA
| |
Collapse
|
48
|
Hu K, Wan R, Liu Y, Niu M, Guo J, Guo F. Effects of transcranial alternating current stimulation on motor performance and motor learning for healthy individuals: A systematic review and meta-analysis. Front Physiol 2022; 13:1064584. [PMID: 36467691 PMCID: PMC9715745 DOI: 10.3389/fphys.2022.1064584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2023] Open
Abstract
Objective:Previous behavioral studies have reported the potential of transcranial alternating current stimulation in analyzing the causal relationship between neural activity and behavior. However, the efficacy of tACS on motor performance and learning in healthy individuals remains unclear. This systematic reviewexamines the effectiveness of tACS on motor performance and motor learning in healthy individuals. Methods: Literature was systematically searched through the Cochrane Library, PubMed, EMBASE, and Web of Science until 16 October 2022. Studies were eligible for review if they were randomized, parallel, or crossover experimental designs and reported the efficacy of tACS on motor performance and motor learning in healthy adults. Review Manager 5.3 was used to evaluate the methodological quality and analyze the combined effect. Results: Ten studies (270 participants) met all the inclusion criteria. The results showed that motor performance was not significantly greater than that with sham tACS stimulation [I2 = 44%, 95% CI (-0.01, 0.35), p = 0.06, standardized mean difference = 0.17], whereas motor learning ability improved significantly [I2 = 33%, 95% CI (-1.03, -0.31), p = 0.0002, SMD = -0.67]. Subgroup analysis found that gamma bend tACS could affect the changes in motor performance (I2 = 6%, 95% CI (0.05, 0.51), p = 0.02, SMD = 0.28), and online tACS did as well [I2 = 54%, 95% CI (0.12, 0.56), p = 0.002, SMD = 0.34]. Conclusion: The results showed that tACS effectively improves motor performance (gamma band and online mode) and motor learning in healthy individuals, which indicates that tACS may be a potential therapeutic tool to improve motor behavioral outcomes. However, further evidence is needed to support these promising results. Systematic Review Registration: PROSPERO, identifier CRD42022342884.
Collapse
Affiliation(s)
- Kun Hu
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruihan Wan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Maolin Niu
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jianrui Guo
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| | - Feng Guo
- College of Human Kinesiology, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
49
|
Aubonnet R, Shoykhet A, Jacob D, Di Lorenzo G, Petersen H, Gargiulo P. Postural control paradigm (BioVRSea): towards a neurophysiological signature. Physiol Meas 2022; 43. [PMID: 36265477 DOI: 10.1088/1361-6579/ac9c43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/20/2022] [Indexed: 02/07/2023]
Abstract
Objective.To define a new neurophysiological signature from electroencephalography (EEG) during a complex postural control task using the BioVRSea paradigm, consisting of virtual reality (VR) and a moving platform, mimicking the behavior of a boat on the sea.Approach.EEG (64 electrodes) data from 190 healthy subjects were acquired. The experiment is composed of 6 segments (Baseline, PRE, 25%, 50%, 75%, POST). The baseline lasts 60 s while standing on the motionless platform with a mountain view in the VR goggles. PRE and POST last 40 s while standing on the motionless platform with a sea simulation. The 3 other tasks last 40 s each, with the platform moving to adapt to the waves, and the subject holding a bar to maintain its balance. The power spectral density (PSD) difference for each task minus baseline has been computed for every electrode, for five frequency bands (delta, theta, alpha, beta, and low-gamma). Statistical significance has been computed.Main results.All the bands were significant for the whole cohort, for each task regarding baseline. Delta band shows a prefrontal PSD increase, theta a fronto-parietal decrease, alpha a global scalp power decrease, beta an increase in the occipital and temporal scalps and a decrease in other areas, and low-gamma a significant but slight increase in the parietal, occipital and temporal scalp areas.Significance.This study develops a neurophysiological reference during a complex postural control task. In particular, we found a strong localized activity associated with certain frequency bands during certain phases of the experiment. This is the first step towards a neurophysiological signature that can be used to identify pathological conditions lacking quantitative diagnostics assessment.
Collapse
Affiliation(s)
- R Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - A Shoykhet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - D Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - G Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - H Petersen
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Akureyri Hospital, Akureyri, Iceland
| | - P Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland.,Department of Science, Landspitalin, National University Hospital of Iceland, Reykjavik, Iceland
| |
Collapse
|
50
|
Torrecillos F, Tan H, Brown P, Capone F, Ricciuti R, Di Lazzaro V, Marano M. Non-invasive vagus nerve stimulation modulates subthalamic beta activity in Parkinson's disease. Brain Stimul 2022; 15:1513-1516. [PMID: 36574539 PMCID: PMC7613925 DOI: 10.1016/j.brs.2022.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fioravante Capone
- Operative research unit of of Neurology, Neurophysiology and Neurobiology; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy; Research unit of Neurology, Neurophysiology and Neurobiology; Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy
| | - Riccardo Ricciuti
- Neurosurgery Unit, Neurosciences department, Belcolle Hospital, ASL Viterbo, Viterbo, Italy
| | - Vincenzo Di Lazzaro
- Operative research unit of of Neurology, Neurophysiology and Neurobiology; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy; Research unit of Neurology, Neurophysiology and Neurobiology; Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy
| | - Massimo Marano
- Operative research unit of of Neurology, Neurophysiology and Neurobiology; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy; Research unit of Neurology, Neurophysiology and Neurobiology; Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy.
| |
Collapse
|