1
|
Lang F, Cornwell JA, Kaur K, Elmogazy O, Zhang W, Zhang M, Song H, Sun Z, Wu X, Aladjem MI, Aregger M, Cappell SD, Yang C. Abrogation of the G2/M checkpoint as a chemosensitization approach for alkylating agents. Neuro Oncol 2024; 26:1083-1096. [PMID: 38134889 PMCID: PMC11145461 DOI: 10.1093/neuonc/noad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The cell cycle is tightly regulated by checkpoints, which play a vital role in controlling its progression and timing. Cancer cells exploit the G2/M checkpoint, which serves as a resistance mechanism against genotoxic anticancer treatments, allowing for DNA repair prior to cell division. Manipulating cell cycle timing has emerged as a potential strategy to augment the effectiveness of DNA damage-based therapies. METHODS In this study, we conducted a forward genome-wide CRISPR/Cas9 screening with repeated exposure to the alkylating agent temozolomide (TMZ) to investigate the mechanisms underlying tumor cell survival under genotoxic stress. RESULTS Our findings revealed that canonical DNA repair pathways, including the Ataxia-telangiectasia mutated (ATM)/Fanconi and mismatch repair, determine cell fate under genotoxic stress. Notably, we identified the critical role of PKMYT1, in ensuring cell survival. Depletion of PKMYT1 led to overwhelming TMZ-induced cytotoxicity in cancer cells. Isobologram analysis demonstrated potent drug synergy between alkylating agents and a Myt1 kinase inhibitor, RP-6306. Mechanistically, inhibiting Myt1 forced G2/M-arrested cells into an unscheduled transition to the mitotic phase without complete resolution of DNA damage. This forced entry into mitosis, along with persistent DNA damage, resulted in severe mitotic abnormalities. Ultimately, these aberrations led to mitotic exit with substantial apoptosis. Preclinical animal studies demonstrated that the combination regimen involving TMZ and RP-6306 prolonged the overall survival of glioma-bearing mice. CONCLUSIONS Collectively, our findings highlight the potential of targeting cell cycle timing through Myt1 inhibition as an effective strategy to enhance the efficacy of current standard cancer therapies, potentially leading to improved disease outcomes.
Collapse
Affiliation(s)
- Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James A Cornwell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Karambir Kaur
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Omar Elmogazy
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Meili Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael Aregger
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Phosphorylation of VP1 Mediated by CDK1-Cyclin B1 Facilitates Infectious Bursal Disease Virus Replication. J Virol 2023; 97:e0194122. [PMID: 36602364 PMCID: PMC9888224 DOI: 10.1128/jvi.01941-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus belonging to the genus Avibirnavirus in the family Birnaviridae. It can cause serious failure of vaccination in young poultry birds with impaired immune systems. Post-translational modifications of the VP1 protein are essential for viral RNA transcription, genome replication, and viral multiplication. Little information is available so far regarding the exact mechanism of phosphorylation of IBDV VP1 and its significance in the viral life cycle. Here, we provide several lines of evidence that the cyclin-dependent kinase 1 (CDK1)-cyclin B1 complex phosphorylates VP1, which facilitates viral replication. We show that the CDK1-cyclin B1 specifically interacts with VP1 and phosphorylates VP1 on the serine 7 residue, located in the N-terminal 7SPAQ10 region, which follows the optimal phosphorylation motif of CDK1, p-S/T-P. Additionally, IBDV infection drives the cytoplasmic accumulation of CDK1-cyclin B1, which co-localizes with VP1, supporting the kinase activity of CDK1-cyclin B1. Treatment with CDK1 inhibitor RO3306 and knockdown of CDK1-cyclin B1 severely disrupts the polymerase activity of VP1, resulting in diminished viral replication. Moreover, the replication of S7A mutant recombinant IBDV was significantly decreased compared to that of wild-type (WT) IBDV. Thus, CDK1-cyclin B1 is a crucial enzyme which phosphorylates IBDV VP1 on serine 7, which is necessary both for the polymerase activity of VP1 and for viral replication. IMPORTANCE Infectious bursal disease virus still poses a great economic threat to the global poultry farming industry. Detailed information on the steps of viral genome replication is essential for the development of antiviral therapeutics. Phosphorylation is a common post-translational modification in several viral proteins. There is a lack of information regarding the significance of VP1 phosphorylation and its role in modulating the viral life cycle. In this study, we found that CDK1-cyclin B1 accumulates in the cytoplasm and phosphorylates VP1 on serine 7. The presence of a CDK1 inhibitor and the silencing of CDK1-cyclin B1 decrease IBDV replication. The mutation of VP1 serine 7 to alanine reduces VP1 polymerase activity, disrupting the viral life cycle, which suggests that this residue serves an essential function. Our study offers novel insights into the regulatory mechanism of VP1 phosphorylation.
Collapse
|
3
|
Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK. Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol 2022; 10:901320. [PMID: 36060813 PMCID: PMC9428126 DOI: 10.3389/fcell.2022.901320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The 26S proteasome is a multi-subunit protein complex that is canonically known for its ability to degrade proteins in cells and maintain protein homeostasis. Non-canonical or non-proteolytic roles of proteasomal subunits exist but remain less well studied. We provide characterization of germline-specific functions of different 19S proteasome regulatory particle (RP) subunits in C. elegans using RNAi specifically from the L4 stage and through generation of endogenously tagged 19S RP lid subunit strains. We show functions for the 19S RP in regulation of proliferation and maintenance of integrity of mitotic zone nuclei, in polymerization of the synaptonemal complex (SC) onto meiotic chromosomes and in the timing of SC subunit redistribution to the short arm of the bivalent, and in turnover of XND-1 proteins at late pachytene. Furthermore, we report that certain 19S RP subunits are required for proper germ line localization of WEE-1.3, a major meiotic kinase. Additionally, endogenous fluorescent labeling revealed that the two isoforms of the essential 19S RP proteasome subunit RPN-6.1 are expressed in a tissue-specific manner in the hermaphrodite. Also, we demonstrate that the 19S RP subunits RPN-6.1 and RPN-7 are crucial for the nuclear localization of the lid subunits RPN-8 and RPN-9 in oocytes, further supporting the ability to utilize the C. elegans germ line as a model to study proteasome assembly real-time. Collectively, our data support the premise that certain 19S RP proteasome subunits are playing tissue-specific roles, especially in the germ line. We propose C. elegans as a versatile multicellular model to study the diverse proteolytic and non-proteolytic roles that proteasome subunits play in vivo.
Collapse
Affiliation(s)
| | - Cristina Quesada-Candela
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Makaelah Murray
- Department of Biology, Howard University, Washington, DC, United States
| | - Caroline Ugoaru
- Department of Biology, Howard University, Washington, DC, United States
| | - Judith L. Yanowitz
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Departments of Developmental Biology, Microbiology, and Molecular Genetics, The Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| | - Anna K. Allen
- Department of Biology, Howard University, Washington, DC, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| |
Collapse
|
4
|
NFE2L3 Controls Colon Cancer Cell Growth through Regulation of DUX4, a CDK1 Inhibitor. Cell Rep 2020; 29:1469-1481.e9. [PMID: 31693889 DOI: 10.1016/j.celrep.2019.09.087] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 06/26/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
Constitutive nuclear factor κB (NF-κB) activation is a hallmark of colon tumor growth. Cyclin-dependent kinases (CDKs) are critical cell-cycle regulators, and inhibition of CDK activity has been used successfully as anticancer therapy. Here, we show that the NFE2L3 transcription factor functions as a key regulator in a pathway that links NF-κB signaling to the control of CDK1 activity, thereby driving colon cancer cell proliferation. We found that NFE2L3 expression is regulated by the RELA subunit of NF-κB and that NFE2L3 levels are elevated in patients with colon adenocarcinoma when compared with normal adjacent tissue. Silencing of NFE2L3 significantly decreases colon cancer cell proliferation in vitro and tumor growth in vivo. NFE2L3 knockdown results in increased levels of double homeobox factor 4 (DUX4), which functions as a direct inhibitor of CDK1. The discovered oncogenic pathway governing cell-cycle progression may open up unique avenues for precision cancer therapy.
Collapse
|
5
|
Lemonnier T, Dupré A, Jessus C. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. Cell Div 2020; 15:9. [PMID: 32508972 PMCID: PMC7249327 DOI: 10.1186/s13008-020-00065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cell division is orchestrated by the phosphorylation and dephosphorylation of thousands of proteins. These post-translational modifications underlie the molecular cascades converging to the activation of the universal mitotic kinase, Cdk1, and entry into cell division. They also govern the structural events that sustain the mechanics of cell division. While the role of protein kinases in mitosis has been well documented by decades of investigations, little was known regarding the control of protein phosphatases until the recent years. However, the regulation of phosphatase activities is as essential as kinases in controlling the activation of Cdk1 to enter M-phase. The regulation and the function of phosphatases result from post-translational modifications but also from the combinatorial association between conserved catalytic subunits and regulatory subunits that drive their substrate specificity, their cellular localization and their activity. It now appears that sequential dephosphorylations orchestrated by a network of phosphatase activities trigger Cdk1 activation and then order the structural events necessary for the timely execution of cell division. This review discusses a series of recent works describing the important roles played by protein phosphatases for the proper regulation of meiotic division. Many breakthroughs in the field of cell cycle research came from studies on oocyte meiotic divisions. Indeed, the meiotic division shares most of the molecular regulators with mitosis. The natural arrests of oocytes in G2 and in M-phase, the giant size of these cells, the variety of model species allowing either biochemical or imaging as well as genetics approaches explain why the process of meiosis has served as an historical model to decipher signalling pathways involved in the G2-to-M transition. The review especially highlights how the phosphatase PP2A-B55δ critically orchestrates the timing of meiosis resumption in amphibian oocytes. By opposing the kinase PKA, PP2A-B55δ controls the release of the G2 arrest through the dephosphorylation of their substrate, Arpp19. Few hours later, the inhibition of PP2A-B55δ by Arpp19 releases its opposing kinase, Cdk1, and triggers M-phase. In coordination with a variety of phosphatases and kinases, the PP2A-B55δ/Arpp19 duo therefore emerges as the key effector of the G2-to-M transition.
Collapse
Affiliation(s)
- Tom Lemonnier
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Aude Dupré
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| | - Catherine Jessus
- Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine, LBD-IBPS, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Gonzalez L, Nebreda AR. RINGO/Speedy proteins, a family of non-canonical activators of CDK1 and CDK2. Semin Cell Dev Biol 2020; 107:21-27. [PMID: 32317145 DOI: 10.1016/j.semcdb.2020.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Cyclin-dependent kinases (CDKs) require the binding to a regulatory subunit to acquire enzymatic activity, and cyclins are the canonical CDK activators. However, there are specific situations in which CDKs can be activated by non-cyclin proteins that are less characterized. This review focuses on the family of RINGO/Speedy proteins, which have no sequence amino acid homology to cyclins but can bind to and activate CDK1 and CDK2. Interestingly, RINGO/Speedy proteins can activate CDKs under conditions in which CDK-cyclin complexes would not be active, and there is evidence that RINGO/Speedy-activated CDKs can phosphorylate different sites than the cyclin-activated CDKs. RINGO/Speedy proteins were originally described in Xenopus oocytes, but their roles in mammalian cells have also been addressed. We will summarize the properties of RINGO/Speedy proteins and how they trigger CDK activation, and discuss recent studies that characterized their physiological functions. In particular, studies using genetically modified mice have shown that RingoA, also known as Spy1, plays a key role in meiosis regulation. Emerging evidence also suggests a potential role for RingoA/Spy1 in cancer.
Collapse
Affiliation(s)
- Laura Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
7
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
8
|
Gheldof A, Mackay DJG, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet 2019; 56:271-282. [PMID: 30728173 PMCID: PMC6581078 DOI: 10.1136/jmedgenet-2018-105513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
During reproductive age, approximately one in seven couples are confronted with fertility problems. While the aetiology is diverse, including infections, metabolic diseases, hormonal imbalances and iatrogenic effects, it is becoming increasingly clear that genetic factors have a significant contribution. Due to the complex nature of infertility that often hints at a multifactorial cause, the search for potentially causal gene mutations in idiopathic infertile couples has remained difficult. Idiopathic infertility patients with a suspicion of an underlying genetic cause can be expected to have mutations in genes that do not readily affect general health but are only essential in certain processes connected to fertility. In this review, we specifically focus on genes involved in meiosis and maternal-effect processes, which are of critical importance for reproduction and initial embryonic development. We give an overview of genes that have already been linked to infertility in human, as well as good candidates which have been described in other organisms. Finally, we propose a phenotypic range in which we expect an optimal diagnostic yield of a meiotic/maternal-effect gene panel.
Collapse
Affiliation(s)
- Alexander Gheldof
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Deborah J G Mackay
- Faculty of Medicine, University of Southampton, Southampton University Hospital, Southampton, UK
| | - Ying Cheong
- Complete Fertility, Human Development of Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Willem Verpoest
- Reproduction and Genetics Department, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Reproductive Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
9
|
Li QQ, Hsu I, Sanford T, Railkar R, Balaji N, Sourbier C, Vocke C, Balaji KC, Agarwal PK. Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M. Cell Mol Life Sci 2018; 75:939-963. [PMID: 29071385 PMCID: PMC7984729 DOI: 10.1007/s00018-017-2681-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/05/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.
Collapse
Affiliation(s)
- Qingdi Quentin Li
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Iawen Hsu
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Navin Balaji
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cathy Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - K C Balaji
- Wake Forest University School of Medicine, Winston Salem, NC, 27106, USA
| | - Piyush K Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Peuchen EH, Cox OF, Sun L, Hebert AS, Coon JJ, Champion MM, Dovichi NJ, Huber PW. Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development. Sci Rep 2017; 7:15647. [PMID: 29142207 PMCID: PMC5688136 DOI: 10.1038/s41598-017-15936-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/03/2017] [Indexed: 01/08/2023] Open
Abstract
The earliest stages of animal development are largely controlled by changes in protein phosphorylation mediated by signaling pathways and cyclin-dependent kinases. In order to decipher these complex networks and to discover new aspects of regulation by this post-translational modification, we undertook an analysis of the X. laevis phosphoproteome at seven developmental stages beginning with stage VI oocytes and ending with two-cell embryos. Concurrent measurement of the proteome and phosphoproteome enabled measurement of phosphosite occupancy as a function of developmental stage. We observed little change in protein expression levels during this period. We detected the expected phosphorylation of MAP kinases, translational regulatory proteins, and subunits of APC/C that validate the accuracy of our measurements. We find that more than half the identified proteins possess multiple sites of phosphorylation that are often clustered, where kinases work together in a hierarchical manner to create stretches of phosphorylated residues, which may be a means to amplify signals or stabilize a particular protein conformation. Conversely, other proteins have opposing sites of phosphorylation that seemingly reflect distinct changes in activity during this developmental timeline.
Collapse
Affiliation(s)
- Elizabeth H Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Olivia F Cox
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Alex S Hebert
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
11
|
Yue J, López JM. JNK does not regulate meiotic progression in Xenopus oocytes: The strange case of pJNK and pERK. Dev Biol 2016; 416:42-51. [DOI: 10.1016/j.ydbio.2016.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 01/13/2023]
|
12
|
Rajasekaran D, Siddiq A, Willoughby JLS, Biagi JM, Christadore LM, Yunes SA, Gredler R, Jariwala N, Robertson CL, Akiel MA, Shen XN, Subler MA, Windle JJ, Schaus SE, Fisher PB, Hansen U, Sarkar D. Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): Evaluation using an endogenous HCC model. Oncotarget 2016; 6:26266-77. [PMID: 26313006 PMCID: PMC4694900 DOI: 10.18632/oncotarget.4656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/06/2015] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.
Collapse
Affiliation(s)
- Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jennifer L S Willoughby
- Department of Biology, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA.,Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Jessica M Biagi
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Lisa M Christadore
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Sarah A Yunes
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Maaged A Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Scott E Schaus
- Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ulla Hansen
- Department of Biology, Center for Chemical Methodology and Library Development at Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.,VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Varadarajan R, Ayeni J, Jin Z, Homola E, Campbell SD. Myt1 inhibition of Cyclin A/Cdk1 is essential for fusome integrity and premeiotic centriole engagement in Drosophila spermatocytes. Mol Biol Cell 2016; 27:2051-63. [PMID: 27170181 PMCID: PMC4927279 DOI: 10.1091/mbc.e16-02-0104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
Drosophila Myt1 is essential for male fertility. Loss of Myt1 activity causes defective fusomes and premature centriole disengagement during premeiotic G2 phase due to lack of Myt1 inhibition of Cyclin A/Cdk1. These functions are distinct from known roles for Myt1 inhibition of Cyclin B/Cdk1 used to regulate G2/MI timing. Regulation of cell cycle arrest in premeiotic G2 phase coordinates germ cell maturation and meiotic cell division with hormonal and developmental signals by mechanisms that control Cyclin B synthesis and inhibitory phosphorylation of the M-phase kinase, Cdk1. In this study, we investigated how inhibitory phosphorylation of Cdk1 by Myt1 kinase regulates premeiotic G2 phase of Drosophila male meiosis. Immature spermatocytes lacking Myt1 activity exhibit two distinct defects: disrupted intercellular bridges (fusomes) and premature centriole disengagement. As a result, the myt1 mutant spermatocytes enter meiosis with multipolar spindles. These myt1 defects can be suppressed by depletion of Cyclin A activity or ectopic expression of Wee1 (a partially redundant Cdk1 inhibitory kinase) and phenocopied by expression of a Cdk1F mutant defective for inhibitory phosphorylation. We therefore conclude that Myt1 inhibition of Cyclin A/Cdk1 is essential for normal fusome behavior and centriole engagement during premeiotic G2 arrest of Drosophila male meiosis. The novel meiotic functions we discovered for Myt1 kinase are spatially and temporally distinct from previously described functions of Myt1 as an inhibitor of Cyclin B/Cdk1 to regulate G2/MI timing.
Collapse
Affiliation(s)
- Ramya Varadarajan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Joseph Ayeni
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zhigang Jin
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Ellen Homola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
14
|
Essential role of the Cdk2 activator RingoA in meiotic telomere tethering to the nuclear envelope. Nat Commun 2016; 7:11084. [PMID: 27025256 PMCID: PMC4820962 DOI: 10.1038/ncomms11084] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/19/2016] [Indexed: 11/24/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO) mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic defects virtually identical to those observed in Cdk2 KO mice including non-homologous chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO spermatocytes display severely affected telomere tethering as well as impaired distribution of Sun1, a protein essential for the attachment of telomeres to the nuclear envelope. Our results identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins. CDKs play central roles in cell cycle regulation and are normally activated by cyclins. Here the authors show that RingoA induces a cyclin-independent function of CDK2 at meiotic telomeres, which regulates their tethering to the nuclear envelope and proper synapsis of homologous chromosomes.
Collapse
|
15
|
Rohe A, Platzer C, Masch A, Greiner S, Henze C, Ihling C, Erdmann F, Schutkowski M, Sippl W, Schmidt M. Identification of peptidic substrates for the human kinase Myt1 using peptide microarrays. Bioorg Med Chem 2015; 23:4936-4942. [DOI: 10.1016/j.bmc.2015.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
|
16
|
Duan RB, Zhang L, Chen DF, Yang F, Yang JS, Yang WJ. Two p90 ribosomal S6 kinase isoforms are involved in the regulation of mitotic and meiotic arrest in Artemia. J Biol Chem 2014; 289:16006-15. [PMID: 24755224 DOI: 10.1074/jbc.m114.553370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are multiple isoforms of p90 ribosomal S6 kinase (RSK), which regulate diverse cellular functions such as cell growth, proliferation, maturation, and motility. However, the relationship between the structures and functions of RSK isoforms remains undetermined. Artemia is a useful model in which to study cell cycle arrest because these animals undergo prolonged diapauses, a state of obligate dormancy. A novel RSK isoform was identified in Artemia, which was termed Ar-Rsk2. This isoform was compared with an RSK isoform that we previously identified in Artemia, termed Ar-Rsk1. Ar-Rsk2 has an ERK-docking motif, whereas Ar-Rsk1 does not. Western blot analysis revealed that Ar-Rsk1 was activated by phosphorylation, which blocked meiosis in oocytes. Knockdown of Ar-Rsk1 reduced the level of phosphorylated cdc2 and thereby suppressed cytostatic factor activity. This indicates that Ar-Rsk1 regulates the cytostatic factor in meiosis. Expression of Ar-Rsk2 was down-regulated in Artemia cysts in which mitosis was arrested. Knockdown of Ar-Rsk2 resulted in decreased levels of cyclin D3 and phosphorylated histone H3, and the production of pseudo-diapause cysts. This indicates that Ar-Rsk2 regulates mitotic arrest. PLK and ERK RNAi showed that Ar-Rsk2, but not Ar-Rsk1, could be activated by PLK-ERK in Artemia. This is the first study to report that RSK isoforms with and without an ERK-docking motif regulate mitosis and meiosis, respectively. This study provides insight into the relationship between the structures and functions of RSK isoforms.
Collapse
Affiliation(s)
- Ru-Bing Duan
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Zhang
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dian-Fu Chen
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin-Shu Yang
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei-Jun Yang
- From the Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
17
|
Chen WQ, Xu B, Mao JW, Wei FX, Li M, Liu T, Jin XB, Zhang LR. Inhibitory Effects of α-Pinene on Hepatoma Carcinoma Cell Proliferation. Asian Pac J Cancer Prev 2014; 15:3293-7. [DOI: 10.7314/apjcp.2014.15.7.3293] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Shimizu F, Shiiba M, Ogawara K, Kimura R, Minakawa Y, Baba T, Yokota S, Nakashima D, Higo M, Kasamatsu A, Sakamoto Y, Tanzawa H, Uzawa K. Overexpression of LIM and SH3 Protein 1 leading to accelerated G2/M phase transition contributes to enhanced tumourigenesis in oral cancer. PLoS One 2013; 8:e83187. [PMID: 24386158 PMCID: PMC3873298 DOI: 10.1371/journal.pone.0083187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND LIM and SH3 protein 1 (LASP-1) is a specific focal adhesion protein involved in several malignant tumors. However, its role in oral squamous cell carcinoma (OSCC) is unknown. The aim of this study was to characterize the role and molecular status/mechanism of LASP-1 in OSCC. METHODS We evaluated LASP-1 mRNA and protein expressions in OSCC-derived cell lines and primary OSCCs. Using an shRNA system, we analyzed the effect of LASP-1 on the biology and function of the OSCC cell lines, HSC-3 and Ca9-22. The cells also were subcutaneously injected to evaluate tumor growth in vivo. Data were analyzed by the Fisher's exact test or the Mann-Whitney U test. Bonferroni correction was used for multiple testing. RESULTS Significant up-regulation of LASP-1 was detected in OSCC-derived cell lines (n = 7, P<0.007) and primary OSCCs (n = 50, P<0.001) compared to normal controls. LASP-1 knockdown cells significantly inhibited cellular proliferation compared with shMock-transfected cells (P<0.025) by arresting cell-cycle progression at the G2 phase. We observed dramatic reduction in the growth of shLASP-1 OSCC xenografts compared with shMock xenografts in vivo. CONCLUSION Our results suggested that overexpression of LASP-1 is linked closely to oral tumourigenicity and further provide novel evidence that LASP-1 plays an essential role in tumor cellular growth by mediating G2/M transition.
Collapse
Affiliation(s)
- Fumie Shimizu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Shiiba
- Department of Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Ogawara
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
- * E-mail: (KO); (KU)
| | - Ryota Kimura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuyuki Minakawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takao Baba
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yokota
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Morihiro Higo
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kasamatsu
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Yosuke Sakamoto
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Hideki Tanzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
- * E-mail: (KO); (KU)
| |
Collapse
|
19
|
Huang H, Hu M, Zhao R, Li P, Li M. Dihydromyricetin suppresses the proliferation of hepatocellular carcinoma cells by inducing G2/M arrest through the Chk1/Chk2/Cdc25C pathway. Oncol Rep 2013; 30:2467-75. [PMID: 24002546 DOI: 10.3892/or.2013.2705] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/15/2013] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to evaluate the antitumor mechanism of dihydromyricetin (DHM). Results showed that DHM significantly inhibited cell viability of HepG2 and Hep3B cells in a dose-dependent manner. DHM induced G2/M cell-cycle arrest in HepG2 and Hep3B cells by altering the expression of cell cycle proteins such as cyclin A, cyclin B1, Cdk1, p53, Cdc25c, p-Cdc25c Chk1 and Chk, which are critical for G2/M transition. Knockdown of p53 and Chk1 in HepG2 cells did not affect G2/M phase arrest caused by DHM. Furthermore, G2/M arrest induced by DHM can be disrupted by Chk2 siRNA. These findings indicate that DHM inhibits the growth of hepatocellular carcinoma (HCC) cells via G2/M phase cell cycle arrest through Chk1/Chk2/Cdc25C pathway. The present study identified effects of DHM in G2/M phase arrest in HCC and described detailed mechanisms of G2/M phase arrest by this agent, which may contribute to its overall cancer preventive efficacy in HCC.
Collapse
Affiliation(s)
- Haili Huang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | | | | | | | | |
Collapse
|
20
|
The DNA damage response during mitosis. Mutat Res 2013; 750:45-55. [PMID: 23880065 DOI: 10.1016/j.mrfmmm.2013.07.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.
Collapse
|
21
|
Pike T, Widberg C, Goodall A, Payne E, Giles N, Hancock J, Gabrielli B. Truncated MEK1 is required for transient activation of MAPK signalling in G2 phase cells. Cell Signal 2013; 25:1423-8. [DOI: 10.1016/j.cellsig.2013.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/16/2013] [Indexed: 02/08/2023]
|
22
|
Sensitization of lung cancer cells to cisplatin by β-elemene is mediated through blockade of cell cycle progression: antitumor efficacies of β-elemene and its synthetic analogs. Med Oncol 2013; 30:488. [PMID: 23397083 DOI: 10.1007/s12032-013-0488-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023]
Abstract
The development of effective agents for overcoming platinum chemoresistance in lung carcinoma continues to have high priority. We have demonstrated recently that β-elemene, a novel antitumor compound, enhances cisplatin activity by triggering lung cancer cell death via apoptosis. Here, we investigated whether β-elemene acts synergistically with cisplatin to inhibit non-small cell lung cancer (NSCLC) cell proliferation by blocking cell cycle progression. β-Elemene substantially increased the suppressive effect of cisplatin on cell growth and proliferation in the NSCLC cell lines H460 and A549. Furthermore, β-elemene augmented cisplatin in the cell cycle arrest of NSCLC cells at G(2)/M. This was associated with upregulated checkpoint kinase (CHK2) expression and reduced CDC2 activity (i.e., increased phosphorylation of CDC2 on Tyr-15 and decreased phosphorylation of CDC2 on Thr-161). Moreover, β-elemene and cisplatin in combination clearly decreased the protein levels of cyclin B1 and CDC25C and increased the levels of p21(Cip1/Waf1), p27(Kip1), and GADD45 in these cells, compared with the effects of either agent alone at the same concentration. These results suggest that the β-elemene-enhanced inhibitory effect of cisplatin on lung carcinoma cell proliferation is regulated by a CHK2-mediated CDC25C/CDC2/cyclin B1 signaling pathway and leads to the blockade of cell cycle progression at G(2)/M. A comparison of the cytotoxic efficacies of β-elemene and three synthetic analogs (β-elemenol, β-elemenal, and β-elemene fluoride) in the two lung cancer cell lines revealed that β-elemenol and β-elemene fluoride had the same antitumor efficacy as β-elemene, whereas β-elemenal was appreciably more potent than β-elemene. Thus, although all three synthetic analogs of β-elemene considerably suppressed NSCLC cell growth and proliferation, β-elemenal may have greater potential as an anticancer alternative to β-elemene in treating lung cancer and other tumors.
Collapse
|
23
|
Abstract
Mammalian oocytes spend the majority of their lives in a dormant state, residing in primordial follicles. This arrest, most analogous to the G2 stage of the mitotic cell cycle division, is only broken in the hours preceding ovulation, when a hormonal rise induces meiotic resumption and entry into the first meiotic division. At a molecular level, this event is triggered by CDK1 activity, and here, we examine how CDK1 is suppressed during meiotic arrest and raised for oocyte maturation. We focus on signaling: intercellular signaling between the oocyte and the somatic cells of the follicle, and spatial signaling involving the anaphase-promoting complex (APC) within the oocyte. Meiotic arrest is achieved through APC(FZR1)-mediated cyclin B1 degradation. Once meiotic resumption resumes, CDK1 levels rise, but its activity eventually needs to be suppressed for completion of the first meiotic division. This is achieved by APC(CDC20), whose activity is critically regulated by the spindle assembly checkpoint, and which induces both a loss in CDK1 activity as well as the cohesive ties holding chromosomes together.
Collapse
Affiliation(s)
- Janet E Holt
- Center for Reproductive Sciences & School of Biomedical Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | |
Collapse
|
24
|
Sun H, Hou H, Lu P, Zhang L, Zhao F, Ge C, Wang T, Yao M, Li J. Isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/m cell cycle arrest and apoptosis. PLoS One 2012; 7:e36808. [PMID: 22623962 PMCID: PMC3356335 DOI: 10.1371/journal.pone.0036808] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/06/2012] [Indexed: 12/21/2022] Open
Abstract
The treatment of human hepatocellular carcinoma (HCC) cell lines with (+)-isocorydine, which was isolated and purified from Papaveraceae sp. plants, resulted in a growth inhibitory effect caused by the induction of G2/M phase cell cycle arrest and apoptosis. We report that isocorydine induces G2/M phase arrest by increasing cyclin B1 and p-CDK1 expression levels, which was caused by decreasing the expression and inhibiting the activation of Cdc25C. The phosphorylation levels of Chk1 and Chk2 were increased after ICD treatment. Furthermore, G2/M arrest induced by ICD can be disrupted by Chk1 siRNA but not by Chk2 siRNA. In addition, isocorydine treatment led to a decrease in the percentage of CD133(+) PLC/PRF/5 cells. Interestingly, isocorydine treatment dramatically decreased the tumorigenicity of SMMC-7721 and Huh7 cells. These findings indicate that isocorydine might be a potential therapeutic drug for the chemotherapeutic treatment of HCC.
Collapse
Affiliation(s)
- Hefen Sun
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Helei Hou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- Experimental Pathological Laboratory, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Tingpu Wang
- College of Life Sciences and Chemistry, Tianshui Normal University, Tianshui, China
| | - Ming Yao
- Experimental Pathological Laboratory, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
25
|
Abstract
The RSK (90 kDa ribosomal S6 kinase) family comprises a group of highly related serine/threonine kinases that regulate diverse cellular processes, including cell growth, proliferation, survival and motility. This family includes four vertebrate isoforms (RSK1, RSK2, RSK3 and RSK4), and single family member orthologues are also present in Drosophila and Caenorhabditis elegans. The RSK isoforms are downstream effectors of the Ras/ERK (extracellular-signal-regulated kinase) signalling pathway. Significant advances in the field of RSK signalling have occurred in the past few years, including several new functions ascribed to the RSK isoforms, the discovery of novel protein substrates and the implication of different RSK isoforms in cancer. Collectively, these new findings increase the diversity of biological functions regulated by RSK, and highlight potential new directions of research. In the present paper, we review the structure, expression and activation mechanisms of the RSK isoforms, and discuss their physiological roles on the basis of established substrates and recent discoveries.
Collapse
|
26
|
Coulonval K, Kooken H, Roger PP. Coupling of T161 and T14 phosphorylations protects cyclin B-CDK1 from premature activation. Mol Biol Cell 2011; 22:3971-85. [PMID: 21900495 PMCID: PMC3204060 DOI: 10.1091/mbc.e11-02-0136] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/19/2011] [Accepted: 09/01/2011] [Indexed: 01/26/2023] Open
Abstract
Mitosis is triggered by the abrupt dephosphorylation of inhibitory Y15 and T14 residues of cyclin B1-bound cyclin-dependent kinase (CDK)1 that is also phosphorylated at T161 in its activation loop. The sequence of events leading to the accumulation of fully phosphorylated cyclin B1-CDK1 complexes remains unclear. Two-dimensional gel electrophoresis allowed us to determine whether T14, Y15, and T161 phosphorylations occur on same CDK1 molecules and to characterize the physiological occurrence of their seven phosphorylation combinations. Intriguingly, in cyclin B1-CDK1, the activating T161 phosphorylation never occurred without the T14 phosphorylation. This strict association could not be uncoupled by a substantial reduction of T14 phosphorylation in response to Myt1 knockdown, suggesting some causal relationship. However, T14 phosphorylation was not directly required for T161 phosphorylation, because Myt1 knockdown did uncouple these phosphorylations when leptomycin B prevented cyclin B1-CDK1 complexes from accumulating in cytoplasm. The coupling mechanism therefore depended on unperturbed cyclin B1-CDK1 traffic. The unexpected observation that the activating phosphorylation of cyclin B1-CDK1 was tightly coupled to its T14 phosphorylation, but not Y15 phosphorylation, suggests a mechanism that prevents premature activation by constitutively active CDK-activating kinase. This explained the opposite effects of reduced expression of Myt1 and Wee1, with only the latter inducing catastrophic mitoses.
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hugues Kooken
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Pierre P. Roger
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
- WELBIO
| |
Collapse
|
27
|
Lin YC, Sun SH, Wang FF. Suppression of Polo like kinase 1 (PLK1) by p21(Waf1) mediates the p53-dependent prevention of caspase-independent mitotic death. Cell Signal 2011; 23:1816-23. [PMID: 21726628 DOI: 10.1016/j.cellsig.2011.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/20/2011] [Indexed: 01/10/2023]
Abstract
Polo-like kinase 1 (Plk1) plays key roles in many aspects of mitosis. We have previously shown that induction of p21(Waf1) by p53 is responsible for protection of cells against adriamycin-induced polyploidy formation and mitotic catastrophe. Here we show that adriamycin treatment suppressed Plk1 expression in a p53- and p21(Waf1)-dependent manner. Ablation of p21(Waf1) inhibited the adriamycin-induced p53 activation, and this inhibition was alleviated by knockdown of Plk1, suggesting that p21(Waf1)-dependent suppression of Plk1 expression is responsible for maintaining p53 activation during stress response. Plk1 associated with p53 and disrupted its interaction with target gene promoters in cells treated with adriamycin. Overexpression of Plk1 inhibited the p53-mediated prevention of caspase-independent mitotic death, but not polyploidy formation, in adriamycin-treated cells. Together our results indicate that suppression of Plk1 by p21(Waf1) is responsible for p53-dependent protection against adriamycin-induced caspase-independent mitotic death.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 11221, Taiwan
| | | | | |
Collapse
|
28
|
Gaffré M, Martoriati A, Belhachemi N, Chambon JP, Houliston E, Jessus C, Karaiskou A. A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes. Development 2011; 138:3735-44. [DOI: 10.1242/dev.063974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.
Collapse
Affiliation(s)
- Melina Gaffré
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Alain Martoriati
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Naima Belhachemi
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Jean-Philippe Chambon
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Evelyn Houliston
- UPMC Université Paris 06, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
- CNRS, UMR7009-Biologie du Développement, 06230 Villefranche sur mer, France
| | - Catherine Jessus
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| | - Anthi Karaiskou
- UPMC Université Paris 06, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
- CNRS, UMR7622-Biologie du Développement, 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
29
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
30
|
Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75:50-83. [PMID: 21372320 DOI: 10.1128/mmbr.00031-10] [Citation(s) in RCA: 2186] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
|
31
|
Kishimoto T. A primer on meiotic resumption in starfish oocytes: the proposed signaling pathway triggered by maturation-inducing hormone. Mol Reprod Dev 2011; 78:704-7. [PMID: 21714029 DOI: 10.1002/mrd.21343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 05/22/2011] [Indexed: 11/06/2022]
Abstract
This short review updates the maturation-inducing hormonal signaling in starfish oocytes. In this system, the activation of cyclin B-Cdc2 kinase (Cdk1) that leads to meiotic resumption does not require new protein synthesis. The key intracellular mediator after hormonal stimulation by 1-methyladenine is the protein kinase Akt/PKB, which in turn directly downregulates Myt1 and upregulates Cdc25 toward the activation of cyclin B-Cdc2. Mitotic kinases including Aurora, Plk1 and Greatwall are activated downstream of cyclin B-Cdc2. The starfish oocyte thus provides a simple model system for the study of meiotic resumption.
Collapse
Affiliation(s)
- Takeo Kishimoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama, Japan.
| |
Collapse
|
32
|
Yamamoto TM, Blake-Hodek K, Williams BC, Lewellyn AL, Goldberg ML, Maller JL. Regulation of Greatwall kinase during Xenopus oocyte maturation. Mol Biol Cell 2011; 22:2157-64. [PMID: 21551066 PMCID: PMC3128519 DOI: 10.1091/mbc.e11-01-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Greatwall kinase is required for M phase maintenance by inhibiting PP2A. Gwl associates with PP2A in G2 oocytes, but the complex dissociates during M phase (meiosis I). Mutating Lys71 to Met (K71M) generates gain-of-function Gwl kinase activity toward endosulfinethat is sufficient to induce oocyte maturation in the absence of progesterone. Greatwall kinase has been identified as a key element in M phase initiation and maintenance in Drosophila, Xenopus oocytes/eggs, and mammalian cells. In M phase, Greatwall phosphorylates endosulfine and related proteins that bind to and inhibit protein phosphatase 2A/B55, the principal phosphatase for Cdk-phosphorylated substrates. We show that Greatwall binds active PP2A/B55 in G2 phase oocytes but dissociates from it when progesterone-treated oocytes reach M phase. This dissociation does not require Greatwall kinase activity or phosphorylation at T748 in the presumptive T loop of the kinase. A mutant K71M Greatwall, also known as Scant in Drosophila, induces M phase in the absence of progesterone when expressed in oocytes, despite its reduced stability and elevated degradation by the proteasome. M phase induction by Scant Greatwall requires protein synthesis but is not associated with altered binding or release of PP2A/B55 as compared to wild-type Greatwall. However, in vitro studies with Greatwall proteins purified from interphase cells indicate that Scant, but not wild-type Greatwall, has low but detectable activity against endosulfine. These results demonstrate progesterone-dependent regulation of the PP2A/B55–Greatwall interaction during oocyte maturation and suggest that the cognate Scant Greatwall mutation has sufficient constitutive kinase activity to promote M phase in Xenopus oocytes.
Collapse
Affiliation(s)
- Tomomi M Yamamoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cargnello M, Roux PP. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev 2011. [DOI: 78495111110.1128/mmbr.00031-10' target='_blank'>'"<>78495111110.1128/mmbr.00031-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1128/mmbr.00031-10','', '10.1016/j.cub.2010.02.050')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
78495111110.1128/mmbr.00031-10" />
Abstract
SUMMARYThe mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
Affiliation(s)
- Marie Cargnello
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Müller HW, Wernet P. MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 2011; 6:e16138. [PMID: 21283765 PMCID: PMC3024412 DOI: 10.1371/journal.pone.0016138] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/14/2010] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. Methodology/Principal Findings Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G1/S transition. Pro-proliferative target genes cyclinD1 (CCND1) and E2F1 as well as anti-proliferative targets CDKN1A (p21), PTEN, RB1, RBL1 (p107), RBL2 (p130) were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G2/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. Conclusions/Significance Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G1/S transition.
Collapse
Affiliation(s)
- Hans-Ingo Trompeter
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
| | - Hassane Abbad
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
| | - Katharina M. Iwaniuk
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
| | - Markus Hafner
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Neil Renwick
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Thomas Tuschl
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Jessica Schira
- Molecular Neurobiology Laboratory, Medical Faculty, Department of Neurology, University Düsseldorf, Düsseldorf, Germany
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Medical Faculty, Department of Neurology, University Düsseldorf, Düsseldorf, Germany
| | - Peter Wernet
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
35
|
Tran T, Kolupaeva V, Basilico C. FGF inhibits the activity of the cyclin B1/CDK1 kinase to induce a transient G₂arrest in RCS chondrocytes. Cell Cycle 2010; 9:4379-86. [PMID: 21051949 DOI: 10.4161/cc.9.21.13671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G₁ phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G₂ phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G₁ arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. the inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G₂ arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and AtM/ATR kinase are known to play essential roles in the G₂ checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G₂ arrest. Additionally our results indicate that the transient G₂ arrest is induced by FGF in RCS cell through mechanisms that are independent of the G₁ arrest, and that the G₂ block is not strictly required for the sustained G₁ arrest but may provide a pausing mechanism that allows the FGF response to be fully established.
Collapse
Affiliation(s)
- Tri Tran
- NYU School of Medicine, New York, USA
| | | | | |
Collapse
|