1
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. J Cell Biol 2024; 223:e202406119. [PMID: 39373700 PMCID: PMC11461286 DOI: 10.1083/jcb.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a "core complex" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Strutt H, Meshram D, Manning E, Madathil ACK, Strutt D. Fat-Dachsous planar polarity function requires two distinct heterophilic cadherin-cadherin binding interactions. Cell Rep 2024; 43:114722. [PMID: 39302834 PMCID: PMC11497213 DOI: 10.1016/j.celrep.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Fat and Dachsous are evolutionarily conserved atypical cadherins that regulate polarized cell behaviors. In the Drosophila wing, they interact heterophilically between neighboring cells, localize asymmetrically to opposite cell ends, and control wing shape by regulating oriented cell rearrangements and divisions. Fat and Dachsous have 34 and 27 cadherin repeats, respectively, and previous work has identified trans interactions between their first four cadherin repeats. Here, we identify a second heterophilic binding site in their C-terminal cadherin repeats and show the conservation of this binding site in human Fat4 and Dachsous1. We provide evidence that both N- and C-terminal binding sites regulate the stability of Fat-Dachsous binding interactions and show that the N-terminal binding sites are partly dispensable for Fat-Dachsous function in vivo. Finally, we provide in vivo confirmation that the N-terminal repeats interact in an anti-parallel manner. We propose that multiple binding sites promote the clustering of Fat and Dachsous into a lattice-like array.
Collapse
Affiliation(s)
- Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Dipak Meshram
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
3
|
Matakatsu H, Fehon RG. Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599638. [PMID: 38948705 PMCID: PMC11212998 DOI: 10.1101/2024.06.18.599638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two protocadherins, Dachsous (Ds) and Fat (Ft), regulate organ growth in Drosophila via the Hippo pathway. Ds and Ft bind heterotypically to regulate the abundance and subcellular localization of a 'core complex' consisting of Dachs, Dlish and Approximated. This complex localizes to the junctional cortex where it promotes growth by repressing the pathway kinase Warts. Ds is believed to promote growth by recruiting and stabilizing the core complex at the junctional cortex, while Ft represses growth by promoting degradation of core complex components. Here, we examine the functions of intracellular domains of Ds and Ft and their relationship to the core complex. While Ds promotes accumulation of the core complex proteins in cortical puncta, it is not required for core complex assembly. Indeed, the core complex assembles maximally in the absence of both Ds and Ft. Furthermore, while Ds promotes growth in the presence of Ft, it represses growth in the absence of Ft by removing the core complex from the junctional cortex. Ft similarly recruits core complex components, however it normally promotes their degradation. Our findings reveal that Ds and Ft constrain tissue growth by repressing the default 'on' state of the core complex.
Collapse
|
4
|
Bu T, Wang L, Wu X, Gao S, Li X, Yun D, Yang X, Li L, Cheng CY, Sun F. The Planar Cell Polarity Protein Fat1 in Sertoli Cell Function. Endocrinology 2024; 165:bqae041. [PMID: 38553880 DOI: 10.1210/endocr/bqae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 04/30/2024]
Abstract
Fat (FAT atypical cadherin) and Dchs (Dachsous cadherin-related protein) in adjacent Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interfaces create an important intercellular bridge whose adhesive function is in turn supported by Fjx1, a nonreceptor Ser/Thr protein kinase. This concept is derived from earlier studies of Drosophila, which has been confirmed in this and earlier reports as well. Herein, we use the approach of knockdown of Fat1 by RNAi using primary cultures of Sertoli cells that mimicked the blood-testis barrier (BTB) in vivo, and a series of coherent experiments including functional assays to monitor the Sertoli cell tight junction (TJ) permeability barrier and a functional in vitro TJ integrity assay to assess the role of Fat1 in the testis. It was shown that planar cell polarity (PCP) protein Fat1 affected Sertoli cell function through its modulation of actin and microtubule cytoskeletal function, altering their polymerization activity through the Fat1/Fjx1 complex. Furthermore, Fat1 is intimately associated with β-catenin and α-N-catenin, as well as with Prickle 1 of the Vangl1/Prickle 1 complex, another PCP core protein to support intercellular interactions to confer PCP. In summary, these findings support the notion that the Fat:Dchs and the Vangl2:Fzd PCP intercellular bridges are tightly associated with basal ES/TJ structural proteins to stabilize PCP function at the Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interface to sustain spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Linxi Li
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuen Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
5
|
Kacker S, Parsad V, Singh N, Hordiichuk D, Alvarez S, Gohar M, Kacker A, Rai SK. Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation. J Dev Biol 2024; 12:12. [PMID: 38804432 PMCID: PMC11130840 DOI: 10.3390/jdb12020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior-posterior to left-right embryonic plane polarity through the polarization of cilia in the Kupffer's vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.
Collapse
Affiliation(s)
- Sandeep Kacker
- Department of Pharmacology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Varuneshwar Parsad
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Naveen Singh
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Daria Hordiichuk
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Stacy Alvarez
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Mahnoor Gohar
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Anshu Kacker
- Department of Histology and Human Physiology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Sunil Kumar Rai
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| |
Collapse
|
6
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587940. [PMID: 38617303 PMCID: PMC11014530 DOI: 10.1101/2024.04.03.587940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain required for normal development. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with four key partners: Lowfat, Dachs, Spiny-legs, and MyoID. Subdivision of the D motif identified distinct regions that are preferentially responsible for association with Lft versus Dachs. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
|
7
|
Fulford AD, Enderle L, Rusch J, Hodzic D, Holder MV, Earl A, Oh RH, Tapon N, McNeill H. Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway. J Cell Biol 2023; 222:e202204059. [PMID: 37071483 PMCID: PMC10120405 DOI: 10.1083/jcb.202204059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 04/19/2023] Open
Abstract
The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved region of the Fat cytoplasmic domain recruits Expanded to the apicolateral junctional zone and stabilizes Expanded. In vivo deletion of Expanded binding regions in Fat causes loss of apical Expanded and promotes tissue overgrowth. Unexpectedly, we find Fat can bind its ligand Dachsous via interactions of their cytoplasmic domains, in addition to the known extracellular interactions. Importantly, Expanded is stabilized by Fat independently of Dachsous binding. These data provide new mechanistic insights into how Fat regulates Expanded, and how Hippo signaling is regulated during organ growth.
Collapse
Affiliation(s)
- Alexander D. Fulford
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Leonie Enderle
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jannette Rusch
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Alex Earl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Robin Hyunseo Oh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Structure of the planar cell polarity cadherins Fat4 and Dachsous1. Nat Commun 2023; 14:891. [PMID: 36797229 PMCID: PMC9935876 DOI: 10.1038/s41467-023-36435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.
Collapse
|
9
|
Chorro A, Verma B, Homfeldt M, Ibáñez B, Lawrence PA, Casal J. Planar cell polarity: intracellular asymmetry and supracellular gradients of Dachsous. Open Biol 2022; 12:220195. [PMID: 36476047 PMCID: PMC9554717 DOI: 10.1098/rsob.220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The slope of a supracellular molecular gradient has long been thought to orient and coordinate planar cell polarity (PCP). Here we demonstrate and measure that gradient. Dachsous (Ds) is a conserved and elemental molecule of PCP; Ds forms intercellular bridges with another cadherin molecule, Fat (Ft), an interaction modulated by the Golgi protein Four-jointed (Fj). Using genetic mosaics and tagged Ds, we measure Ds in vivo in membranes of individual cells over a whole metamere of the Drosophila abdomen. We find as follows. (i) A supracellular gradient rises from head to tail in the anterior compartment (A) and then falls in the posterior compartment (P). (ii) There is more Ds in the front than the rear membranes of all cells in the A compartment, except that compartment's most anterior and most posterior cells. There is more Ds in the rear than in the front membranes of all cells of the P compartment. (iii) The loss of Fj removes intracellular asymmetry anteriorly in the segment and reduces it elsewhere. Additional experiments show that Fj makes PCP more robust. Using Dachs (D) as a molecular indicator of polarity, we confirm that opposing gradients of PCP meet slightly out of register with compartment boundaries.
Collapse
Affiliation(s)
- Adrià Chorro
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Bhavna Verma
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Maylin Homfeldt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Beatríz Ibáñez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
10
|
Brittle A, Warrington SJ, Strutt H, Manning E, Tan SE, Strutt D. Distinct mechanisms of planar polarization by the core and Fat-Dachsous planar polarity pathways in the Drosophila wing. Cell Rep 2022; 40:111419. [PMID: 36170824 PMCID: PMC9631118 DOI: 10.1016/j.celrep.2022.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within a tissue plane, and in animals can be determined by the “core” or Fat-Dachsous pathways. Current models for planar polarity establishment involve two components: tissue-level “global” cues that determine the overall axis of polarity and cell-level feedback-mediated cellular polarity amplification. Here, we investigate the contributions of global cues versus cellular feedback amplification in the core and Fat-Dachsous pathways during Drosophila pupal wing development. We present evidence that these pathways generate planar polarity via distinct mechanisms. Core pathway function is consistent with strong feedback capable of self-organizing cell polarity, which can then be aligned with the tissue axis via weak or transient global cues. Conversely, generation of cell polarity by the Ft-Ds pathway depends on strong global cues in the form of graded patterns of gene expression, which can then be amplified by weak feedback mechanisms. The core and Fat-Dachsous planar polarity pathways function via distinct mechanisms The core can self-organize planar polarity and be oriented by weak upstream cues Fat-Dachsous are oriented by strong gradient cues but show poor self-organization
Collapse
Affiliation(s)
- Amy Brittle
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - Helen Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Elizabeth Manning
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Su Ee Tan
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
11
|
Kudla AM, Miranda X, Nijhout HF. The roles of growth regulation and appendage patterning genes in the morphogenesis of treehopper pronota. Proc Biol Sci 2022; 289:20212682. [PMID: 35673859 PMCID: PMC9174728 DOI: 10.1098/rspb.2021.2682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Treehoppers of the insect family Membracidae have evolved enlarged and elaborate pronotal structures, which is hypothesized to involve co-opted expression of genes that are shared with the wings. Here, we investigate the similarity between the pronotum and wings in relation to growth. Our study reveals that the ontogenetic allometry of the pronotum is similar to that of wings in Membracidae, but not the outgroup. Using transcriptomics, we identify genes related to translation and protein synthesis, which are mutually upregulated. These genes are implicated in the eIF2, eIF4/p70S6K and mTOR pathways, and have known roles in regulating cell growth and proliferation. We find that species-specific differential growth patterning of the pronotum begins as early as the third instar, which suggests that expression of appendage patterning genes occurs long before the metamorphic molt. We propose that a network related to growth and size determination is the more likely mechanism shared with wings. However, regulators upstream of the shared genes in pronotum and wings need to be elucidated to substantiate whether co-option has occurred. Finally, we believe it will be helpful to distinguish the mechanisms leading to pronotal size from those regulating pronotal shape as we make sense of this spectacular evolutionary innovation.
Collapse
Affiliation(s)
- Anna M. Kudla
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ximena Miranda
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
12
|
Li C, Yang L, Wang Y, Du H, Zhang J, Lu Y, Li B, Chen K. Functional analysis of zona pellucida domain protein Dusky in Tribolium castaneum. INSECT SCIENCE 2022; 29:388-398. [PMID: 34237197 DOI: 10.1111/1744-7917.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The zona pellucida domain protein Dusky (Dy) plays a vital role in wing morphogenesis in insects, but little information on its function has been reported. In this study, we found that dy regulated wing cell size, larval and pupal duration, and the metabolism of amino acid and 20-hydroxyecdysone in Tribolium castaneum. Using RNA-seq, 413 differentially expressed genes were identified between physiological buffer-injected and dy-double-stranded RNA-treated larvae, including 88 downregulated genes and 325 upregulated genes. Among these genes, dy knockdown increased CYP18A1 expression to elevate the 26-hydroxylation of 20-hydroxyecdysone, which ultimately led to growth defects in wing cells. Silencing of dy upregulated the transcription of genes encoding tyrosine aminotransferase, 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1, 2-dioxygenase, and Pale to promote the catabolism of tyrosine and phenylalanine, which eventually reduced amino acid content. Furthermore, dy knockdown upregulated 4E-BP expression, and 4E-BP silencing partially phenocopied dy RNA interference-mediated wing morphogenesis. These results suggest that Dy controls 20-hydroxyecdysone and amino acid metabolism to regulate wing morphogenesis in the insect.
Collapse
Affiliation(s)
- Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Youwei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Huanyu Du
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jiangyan Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
13
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
14
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
In search of conserved principles of planar cell polarization. Curr Opin Genet Dev 2021; 72:69-81. [PMID: 34871922 DOI: 10.1016/j.gde.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2023]
Abstract
The making of an embryo and its internal organs entails the spatial coordination of cellular activities. This manifests during tissue morphogenesis as cells change shape, rearrange and divide along preferential axis and during cell differentiation. Cells live in a polarized field and respond to it by polarizing their cellular activities in the plane of the tissue by a phenomenon called planar cell polarization. This phenomenon is ubiquitous in animals and depends on a few conserved planar cell polarity (PCP) pathways. All PCP pathways share two essential characteristics: the existence of local interactions between protein complexes present at the cell surface leading to their asymmetric distribution within cells; a supracellular graded cue that aligns these cellular asymmetries at the tissue level. Here, we discuss the potential common principles of planar cell polarization by comparing the local and global mechanisms employed by the different PCP pathways identified so far. The focus of the review is on the logic of the system rather than the molecules per se.
Collapse
|
16
|
Zhu H. Elucidate growth control mechanisms using reconstructed spatiotemporal distributions of signaling events. Comput Struct Biotechnol J 2021; 19:3618-3627. [PMID: 34257840 PMCID: PMC8249872 DOI: 10.1016/j.csbj.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022] Open
Abstract
A fundamental biological question is how diverse and complex signaling and patterning is controlled correctly to generate distinct tissues, organs, and body plans, but incorrectly in diseased cells and tissues. Signaling pathways important for growth control have been identified, but to identify the mechanisms their transient and context-dependent interactions encode is more difficult. Currently computational systems biology aims to infer the control mechanisms by investigating quantitative changes of gene expression and protein concentrations, but this inference is difficult in nature. We propose it is desirable to explicitly simulate events and orders of gene regulation and protein interactions, which better elucidate control mechanisms, and report a method and tool with three examples. The Drosophila wing model includes Wnt, PCP, and Hippo pathways and mechanical force, incorporates well-confirmed experimental findings, and generates novel results. The other two examples illustrate the building of three-dimensional and large-scale models. These examples support that reconstructed spatiotemporal distributions of key signaling events help elucidate growth control mechanisms. As biologists pay increasing attention to disordered signaling in diseased cells, to develop new modeling methods and tools for conducting new computational studies is important.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou 510515, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochem Soc Trans 2021; 48:1297-1308. [PMID: 32820799 PMCID: PMC7458395 DOI: 10.1042/bst20190404] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.
Collapse
|
18
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
19
|
Popkova A, Rauzi M, Wang X. Cellular and Supracellular Planar Polarity: A Multiscale Cue to Elongate the Drosophila Egg Chamber. Front Cell Dev Biol 2021; 9:645235. [PMID: 33738289 PMCID: PMC7961075 DOI: 10.3389/fcell.2021.645235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Tissue elongation is known to be controlled by oriented cell division, elongation, migration and rearrangement. While these cellular processes have been extensively studied, new emerging supracellular mechanisms driving tissue extension have recently been unveiled. Tissue rotation and actomyosin contractions have been shown to be key processes driving Drosophila egg chamber elongation. First, egg chamber rotation facilitates the dorsal-ventral alignment of the extracellular matrix and of the cell basal actin fibers. Both fiber-like structures form supracellular networks constraining the egg growth in a polarized fashion thus working as 'molecular corsets'. Second, the supracellular actin fiber network, powered by myosin periodic oscillation, contracts anisotropically driving tissue extension along the egg anterior-posterior axis. During both processes, cellular and supracellular planar polarity provide a critical cue to control Drosophila egg chamber elongation. Here we review how different planar polarized networks are built, maintained and function at both cellular and supracellular levels in the Drosophila ovarian epithelium.
Collapse
Affiliation(s)
- Anna Popkova
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Matteo Rauzi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
20
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
21
|
Pietra S, Ng K, Lawrence PA, Casal J. Planar cell polarity in the larval epidermis of Drosophila and the role of microtubules. Open Biol 2020; 10:200290. [PMID: 33295841 PMCID: PMC7776564 DOI: 10.1098/rsob.200290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We investigate planar cell polarity (PCP) in the Drosophila larval epidermis. The intricate pattern of denticles depends on only one system of PCP, the Dachsous/Fat system. Dachsous molecules in one cell bind to Fat molecules in a neighbour cell to make intercellular bridges. The disposition and orientation of these Dachsous–Fat bridges allows each cell to compare two neighbours and point its denticles towards the neighbour with the most Dachsous. Measurements of the amount of Dachsous reveal a peak at the back of the anterior compartment of each segment. Localization of Dachs and orientation of ectopic denticles help reveal the polarity of every cell. We discuss whether these findings support our gradient model of Dachsous activity. Several groups have proposed that Dachsous and Fat fix the direction of PCP via oriented microtubules that transport PCP proteins to one side of the cell. We test this proposition in the larval cells and find that most microtubules grow perpendicularly to the axis of PCP. We find no meaningful bias in the polarity of microtubules aligned close to that axis. We also reexamine published data from the pupal abdomen and find no evidence supporting the hypothesis that microtubular orientation draws the arrow of PCP.
Collapse
Affiliation(s)
- Stefano Pietra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - KangBo Ng
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
22
|
Han X, Wang M, Liu C, Trush O, Takayama R, Akiyama T, Naito T, Tomomizu T, Imamura K, Sato M. DWnt4 and DWnt10 Regulate Morphogenesis and Arrangement of Columnar Units via Fz2/PCP Signaling in the Drosophila Brain. Cell Rep 2020; 33:108305. [PMID: 33113378 DOI: 10.1016/j.celrep.2020.108305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Columns are structural and functional units of the brain. However, the mechanism of column formation remains unclear. The medulla of the fly visual center shares features with the mammalian cerebral cortex, such as columnar and layered structures, and provides a good opportunity to study the mechanisms of column formation. Column formation is initiated by three core neurons in the medulla, namely, Mi1, R8, and R7. The proper orientation of neurons is required for the orientation and arrangement of multiple columns. Their orientations may be under the control of planar cell polarity (PCP) signaling, because it is known to regulate the orientation of cells in two-dimensional tissue structures. In this study, we demonstrate that the ligands DWnt4 and DWnt10 expressed specifically in the ventral medulla and dorsal medulla, respectively, globally regulate the columnar arrangement and orientation of Mi1 and R8 terminals through Fz2/PCP signaling in a three-dimensional space.
Collapse
Affiliation(s)
- Xujun Han
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan; Nano Life Science Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Chuyan Liu
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Olena Trush
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Rie Takayama
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takaaki Akiyama
- Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshiki Naito
- Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Tomomizu
- Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Kousuke Imamura
- Faculty of Electrical, Information and Communication Engineering, Institute of Science and Engineering, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan; Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
23
|
Mangione F, Martín-Blanco E. The Dachsous/Fat/Four-Jointed Pathway Directs the Uniform Axial Orientation of Epithelial Cells in the Drosophila Abdomen. Cell Rep 2019; 25:2836-2850.e4. [PMID: 30517870 DOI: 10.1016/j.celrep.2018.11.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The achievement of the final form of an individual requires not only the control of cell size and differentiation but also integrative directional cues to instruct cell movements, positions, and orientations. In Drosophila, the adult epidermis of the abdomen is created de novo by histoblasts. As these expand and fuse, they uniformly orient along the anteroposterior axis. We found that the Dachsous/Fat/Four-jointed (Ds/Ft/Fj) pathway is key for their alignment. The refinement of the tissue-wide expression of the atypical cadherins Ds and Ft result in their polarization and directional adhesiveness. Mechanistically, the axially oriented changes in histoblasts respond to the redesign of the epithelial field. We suggest that the role of Ds/Ft/Fj in long-range oriented cell alignment is a general function and that the regulation of the expression of its components will be crucial in other morphogenetic models or during tissue repair.
Collapse
Affiliation(s)
- Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Arbouzova NI, Fulford AD, Zhang H, McNeill H. Fat regulates expression of four-jointed reporters in vivo through a 20 bp element independently of the Hippo pathway. Dev Biol 2019; 450:23-33. [DOI: 10.1016/j.ydbio.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/15/2023]
|
25
|
Garrido-Jimenez S, Roman AC, Carvajal-Gonzalez JM. Diminished Expression of Fat and Dachsous PCP Proteins Impaired Centriole Planar Polarization in Drosophila. Front Genet 2019; 10:328. [PMID: 31031805 PMCID: PMC6473044 DOI: 10.3389/fgene.2019.00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/28/2019] [Indexed: 01/20/2023] Open
Abstract
Proper ciliary basal body positioning within a cell is key for cilia functioning. Centriole and basal body positioning depends on signaling pathways such as the planar cell polarity pathway (PCP) governed by Frizzled (Fz-PCP). There have been described two PCP pathways controlled by different protein complexes, the Frizzled-PCP and the Fat-PCP pathway. Centriole planar polarization in non-dividing cells is a dynamic process that depends on the Fz-PCP pathway to properly occur during development from flies to humans. However, the function of the Ft-PCP pathway in centrioles polarization is elusive. Here, we present a descriptive initial analysis of centrioles polarization in Fat-PCP loss of function (LOF) conditions. We found that Fat (Ft) and Dachsous (Ds) LOF showed a marked centrioles polarization defect similar to what we have previously reported in Fz-PCP alterations. Altogether, our data suggest that centriole planar polarization in Drosophila wings depends on both Ft-PCP and Fz-PCP pathways. Further analyses in single and double mutant conditions will be required to address the functional connection between PCP and centriole polarization in flies.
Collapse
Affiliation(s)
- Sergio Garrido-Jimenez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
26
|
Zhang H, Bagherie-Lachidan M, Badouel C, Enderle L, Peidis P, Bremner R, Kuure S, Jain S, McNeill H. FAT4 Fine-Tunes Kidney Development by Regulating RET Signaling. Dev Cell 2019; 48:780-792.e4. [PMID: 30853441 DOI: 10.1016/j.devcel.2019.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
Abstract
FAT4 mutations lead to several human diseases that disrupt the normal development of the kidney. However, the underlying mechanism remains elusive. In studying the duplex kidney phenotypes observed upon deletion of Fat4 in mice, we have uncovered an interaction between the atypical cadherin FAT4 and RET, a tyrosine kinase receptor essential for kidney development. Analysis of kidney development in Fat4-/- kidneys revealed abnormal ureteric budding and excessive RET signaling. Removal of one copy of the RET ligand Gdnf rescues Fat4-/- kidney development, supporting the proposal that loss of Fat4 hyperactivates RET signaling. Conditional knockout analyses revealed a non-autonomous role for Fat4 in regulating RET signaling. Mechanistically, we found that FAT4 interacts with RET through extracellular cadherin repeats. Importantly, expression of FAT4 perturbs the assembly of the RET-GFRA1-GDNF complex, reducing RET signaling. Thus, FAT4 interacts with RET to fine-tune RET signaling, establishing a juxtacrine mechanism controlling kidney development.
Collapse
Affiliation(s)
- Hongtao Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mazdak Bagherie-Lachidan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Caroline Badouel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, Toulouse 31062, France
| | - Leonie Enderle
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Philippos Peidis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Satu Kuure
- GM-unit at Laboratory Animal Centre, HiLIFE and Medicum, University of Helsinki, Helsinki 00014, Finland
| | - Sanjay Jain
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Fisher KH, Strutt D. A theoretical framework for planar polarity establishment through interpretation of graded cues by molecular bridges. Development 2019; 146:146/3/dev168955. [PMID: 30709912 PMCID: PMC6382004 DOI: 10.1242/dev.168955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Planar polarity is a widespread phenomenon found in many tissues, allowing cells to coordinate morphogenetic movements and function. A common feature of animal planar polarity systems is the formation of molecular bridges between cells, which become polarised along a tissue axis. We propose that these bridges provide a general mechanism by which cells interpret different forms of tissue gradients to coordinate directional information. We illustrate this using a generalised and consistent modelling framework, providing a conceptual basis for understanding how different mechanisms of gradient function can generate planar polarity. We make testable predictions of how different gradient mechanisms can influence polarity direction. Summary: This Hypothesis uses a theoretical framework to explore how molecular bridges provide a general mechanism to interpret different forms of tissue gradients to establish planar polarity.
Collapse
Affiliation(s)
- Katherine H Fisher
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
28
|
Early girl is a novel component of the Fat signaling pathway. PLoS Genet 2019; 15:e1007955. [PMID: 30699121 PMCID: PMC6370246 DOI: 10.1371/journal.pgen.1007955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway. During development, organs grow to achieve a consistent final size. The evolutionarily conserved Hippo signaling network plays a central role in organ size control, and when dysregulated can be associated with cancer and other diseases. Fat signaling is one of several upstream pathways that impinge on Hippo signaling to regulate organ growth. We describe here identification of the Drosophila early girl gene as a new component of the Fat signaling pathway. We show that Early girl controls Fat signaling by regulating the levels of the Dachs protein. However Early girl differs from other Fat signaling regulators in that it doesn’t influence planar cell polarity or control the polarity of Dachs localization. early girl encodes a conserved protein that is predicted to influence protein stability, and it can physically associate with Dachs. We also discovered that Early girl acts together with another protein, called Approximated, to regulate the sub-cellular localization of Dachs and a Dachs-interacting protein called Vamana. Altogether, our observations establish Early girl as an essential component of Fat signaling that acts to regulate the levels and localization of Dachs and Vamana.
Collapse
|
29
|
Lawrence PA, Casal J. Planar cell polarity: two genetic systems use one mechanism to read gradients. Development 2018; 145:145/23/dev168229. [DOI: 10.1242/dev.168229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Our aim in this short Primer is to explain the principles of planar cell polarity (PCP) in animal development. The literature in this small field is complex and specialized, but we have extracted a simple and central story from it. We explain our hypothesis that polarity, initially cued by the direction of slope of a multicellular gradient, is interpreted at the cellular level so that each cell becomes molecularly polarised. The mechanism involves a comparison between a cell and its neighbours. To achieve this comparison there are (at least) two disparate and independent molecular systems, each depending on molecular bridges that span between neighbouring cells. Even though the two systems are made up of different molecules, we argue that both systems function in a logically equivalent way.
Collapse
Affiliation(s)
- Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
30
|
Gou J, Lin L, Othmer HG. A Model for the Hippo Pathway in the Drosophila Wing Disc. Biophys J 2018; 115:737-747. [PMID: 30041810 PMCID: PMC6103738 DOI: 10.1016/j.bpj.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/18/2023] Open
Abstract
Although significant progress has been made toward understanding morphogen-mediated patterning in development, control of the size and shape of tissues via local and global signaling is poorly understood. In particular, little is known about how cell-cell interactions are involved in the control of tissue size. The Hippo pathway in the Drosophila wing disc involves cell-cell interactions via cadherins, which lead to modulation of Yorkie, a cotranscriptional factor that affects control of the cell cycle and growth, and studies involving over- and underexpression of components of this pathway reveal conditions that lead to tissue over- or undergrowth. Here, we develop a mathematical model of the Hippo pathway that can qualitatively explain these observations, made in both whole-disc mutants and mutant-clone experiments. We find that a number of nonintuitive experimental results can be explained by subtle changes in the balances between inputs to the Hippo pathway and suggest some predictions that can be tested experimentally. We also show that certain components of the pathway are polarized at the single-cell level, which replicates observations of planar cell polarity. Because the signal transduction and growth control pathways are highly conserved between Drosophila and mammalian systems, the model we formulate can be used as a framework to guide future experimental work on the Hippo pathway in both Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Lin Lin
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
31
|
Chen J, Castelvecchi GD, Li-Villarreal N, Raught B, Krezel AM, McNeill H, Solnica-Krezel L. Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages. Dev Cell 2018; 45:376-391.e5. [PMID: 29738714 PMCID: PMC5983389 DOI: 10.1016/j.devcel.2018.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023]
Abstract
Atypical cadherin Dachsous (Dchs) is a conserved regulator of planar cell polarity, morphogenesis, and tissue growth during animal development. Dchs functions in part by regulating microtubules by unknown molecular mechanisms. Here we show that maternal zygotic (MZ) dchs1b zebrafish mutants exhibit cleavage furrow progression defects and impaired midzone microtubule assembly associated with decreased microtubule turnover. Mechanistically, Dchs1b interacts via a conserved motif in its intracellular domain with the tetratricopeptide motifs of Ttc28 and regulates its subcellular distribution. Excess Ttc28 impairs cleavages and decreases microtubule turnover, while ttc28 inactivation increases turnover. Moreover, ttc28 deficiency in dchs1b mutants suppresses the microtubule dynamics and midzone microtubule assembly defects. Dchs1b also binds to Aurora B, a known regulator of cleavages and microtubules. Embryonic cleavages in MZdchs1b mutants exhibit increased, and in MZttc28 mutants decreased, sensitivity to Aurora B inhibition. Thus, Dchs1b regulates microtubule dynamics and embryonic cleavages by interacting with Ttc28 and Aurora B.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gina D Castelvecchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Li C, Li B, Ma S, Lü P, Chen K. Dusky works upstream of Four-jointed and Forked in wing morphogenesis in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2017; 26:677-686. [PMID: 28677915 DOI: 10.1111/imb.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dusky (dy) is required for cytoskeletal reorganization during wing morphogenesis in Drosophila melanogaster, but which genes participate together with dy for wing morphogenesis has remained unclear. In Tribolium castaneum, dy is highly expressed at the late embryonic stage. Tissue-specific expression analysis indicated high expression levels of dy in the epidermis, head and fat body of late-stage larvae. RNA interference (RNAi) targeting dy significantly decreased adult wing size and caused improper folding of the elytra. Meanwhile, dy knockdown reduced the transcription of four-jointed (fj) and forked (f). Our results show that fj RNAi reduces adult wing size and that silencing f results in abnormal wing folding in T. castaneum. Interestingly, knocking down fj and f simultaneously phenocopies dy RNAi, suggesting that dy probably acts upstream of fj and f to regulate wing morphogenesis in T. castaneum.
Collapse
Affiliation(s)
- C Li
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Ma
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - P Lü
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - K Chen
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Integrating planar polarity and tissue mechanics in computational models of epithelial morphogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Difference in Dachsous Levels between Migrating Cells Coordinates the Direction of Collective Cell Migration. Dev Cell 2017; 42:479-497.e10. [DOI: 10.1016/j.devcel.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
35
|
Loza O, Heemskerk I, Gordon-Bar N, Amir-Zilberstein L, Jung Y, Sprinzak D. A synthetic planar cell polarity system reveals localized feedback on Fat4-Ds1 complexes. eLife 2017; 6:e24820. [PMID: 28826487 PMCID: PMC5576920 DOI: 10.7554/elife.24820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
The atypical cadherins Fat and Dachsous (Ds) have been found to underlie planar cell polarity (PCP) in many tissues. Theoretical models suggest that polarity can arise from localized feedbacks on Fat-Ds complexes at the cell boundary. However, there is currently no direct evidence for the existence or mechanism of such feedbacks. To directly test the localized feedback model, we developed a synthetic biology platform based on mammalian cells expressing the human Fat4 and Ds1. We show that Fat4-Ds1 complexes accumulate on cell boundaries in a threshold-like manner and exhibit dramatically slower dynamics than unbound Fat4 and Ds1. This suggests a localized feedback mechanism based on enhanced stability of Fat4-Ds1 complexes. We also show that co-expression of Fat4 and Ds1 in the same cells is sufficient to induce polarization of Fat4-Ds1 complexes. Together, these results provide direct evidence that localized feedbacks on Fat4-Ds1 complexes can give rise to PCP.
Collapse
Affiliation(s)
- Olga Loza
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Idse Heemskerk
- Department of BiosciencesRice UniversityHoustonUnited States
| | - Nadav Gordon-Bar
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Liat Amir-Zilberstein
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Yunmin Jung
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
36
|
Wortman JC, Nahmad M, Zhang PC, Lander AD, Yu CC. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium. PLoS Comput Biol 2017; 13:e1005610. [PMID: 28671940 PMCID: PMC5515495 DOI: 10.1371/journal.pcbi.1005610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/18/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj. In the tissues of a developing organism, specialized proteins can control cell growth and give cells a sense of direction, e.g., which way is the head or the tail, by having their concentration vary throughout the tissue. In cells of the developing fruit fly wing, a protein called Dachs localizes on the side of the cell closest to the center of the tissue, indicating a directionality. The localization of Dachs is determined by the spatial distribution, around the periphery of a cell, of intercellular bonds of the proteins Fat and Dachsous between adjacent cells. Here we asked how this cell directionality is affected when cells divide and when the concentration of Dachsous changes over time. We use a computational model to show that as the circular step-up region of the Dachsous concentration profile sweeps radially outward, like rings radiating outward from where a pebble was dropped in a pond, it leaves polarized cells in its wake. Our model also shows how cells can naturally recover their directionality after cell division.
Collapse
Affiliation(s)
- Juliana C. Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Marcos Nahmad
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Peng Cheng Zhang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Clare C. Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
|
38
|
Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol 2017; 48:1-9. [PMID: 28364663 DOI: 10.1016/j.ceb.2017.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
Cell polarity regulation is critical for defining membrane domains required for the establishment and maintenance of the apical-basal axis in epithelial cells (apico-basal polarity), asymmetric cell divisions, planar organization of tissues (planar cell polarity), and the formation of the front-rear axis in cell migration (front-rear polarity). In the vinegar fly, Drosophila melanogaster, cell polarity regulators also interact with the Hippo tissue growth control signaling pathway. In this review we survey the recent Drosophila literature linking cell polarity regulators with the Hippo pathway in epithelial tissue growth, neural stem cell asymmetric divisions and in cell migration in physiological and tumorigenic settings.
Collapse
|
39
|
Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 2017; 18:375-388. [PMID: 28293032 DOI: 10.1038/nrm.2017.11] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) is an essential feature of animal tissues, whereby distinct polarity is established within the plane of a cell sheet. Tissue-wide establishment of PCP is driven by multiple global cues, including gradients of gene expression, gradients of secreted WNT ligands and anisotropic tissue strain. These cues guide the dynamic, subcellular enrichment of PCP proteins, which can self-assemble into mutually exclusive complexes at opposite sides of a cell. Endocytosis, endosomal trafficking and degradation dynamics of PCP components further regulate planar tissue patterning. This polarization propagates throughout the whole tissue, providing a polarity axis that governs collective morphogenetic events such as the orientation of subcellular structures and cell rearrangements. Reflecting the necessity of polarized cellular behaviours for proper development and function of diverse organs, defects in PCP have been implicated in human pathologies, most notably in severe birth defects.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
40
|
Montes AJ, Morata G. Homeostatic response to blocking cell division in Drosophila imaginal discs: Role of the Fat/Dachsous (Ft/Ds) pathway. Dev Biol 2017; 424:113-123. [PMID: 28300568 DOI: 10.1016/j.ydbio.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/28/2022]
Abstract
One major problem in developmental biology is the identification of the mechanisms that control the final size of tissues and organs. We are addressing this issue in the imaginal discs of Drosophila by analysing the response to blocking cell division in large domains in the wing and leg discs. The affected domains may be zones of restricted lineage like compartments, or zones of open lineage that may integrate cells from the surrounding territory. Our results reveal the existence of a powerful homeostatic mechanism that can compensate for gross differences in growth rates and builds structures of normal size. This mechanism functions at the level of whole discs, inducing additional cell proliferation to generate the cells that populate the cell division-arrested territory and generating an active recruitment process to integrate those cells. The activation of this response mechanism is mediated by alterations in the normal activity of PCP genes of the Fat/Ds system: in discs mutant for dachs, ds or four jointed the response mechanism is not activated.
Collapse
Affiliation(s)
| | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| |
Collapse
|
41
|
de Bock CE, Hughes MR, Snyder K, Alley S, Sadeqzadeh E, Dun MD, McNagny KM, Molloy TJ, Hondermarck H, Thorne RF. Protein interaction screening identifies SH3RF1 as a new regulator of FAT1 protein levels. FEBS Lett 2017; 591:667-678. [PMID: 28129444 DOI: 10.1002/1873-3468.12569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 01/14/2023]
Abstract
Mutations and ectopic FAT1 cadherin expression are implicated in a broad spectrum of diseases ranging from developmental disorders to cancer. The regulation of FAT1 and its downstream signalling pathways remain incompletely understood. We hypothesized that identification of additional proteins interacting with the FAT1 cytoplasmic tail would further delineate its regulation and function. A yeast two-hybrid library screen carried out against the juxtamembrane region of the cytoplasmic tail of FAT1 identified the E3 ubiquitin-protein ligase SH3RF1 as the most frequently recovered protein-binding partner. Ablating SH3RF1 using siRNA increased cellular FAT1 protein levels and stabilized expression at the cell surface, while overexpression of SH3RF1 reduced FAT1 levels. We conclude that SH3RF1 acts as a negative post-translational regulator of FAT1 levels.
Collapse
Affiliation(s)
- Charles E de Bock
- VIB Center for the Biology of Disease, Leuven, Belgium.,Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Kimberly Snyder
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Steven Alley
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Elham Sadeqzadeh
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Matt D Dun
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - Timothy J Molloy
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Hubert Hondermarck
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Rick F Thorne
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
42
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Yamashita S, Michiue T. Boundary propagation of planar cell polarity is robust against cell packing pattern. J Theor Biol 2016; 410:44-54. [PMID: 27647257 DOI: 10.1016/j.jtbi.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022]
Abstract
Planar cell polarity is an important property of epithelial tissue. The boundary propagation model was proposed as the mechanism of PCP induction, while it has been doubted whether it can induce PCP on wide tissue. Using simulation, a set of proteins can be shown to induce PCP, but it does not explain why and how the set can induce PCP. In this study, we made theoretical model and simulation model to explore when and how the boundary propagation induce PCP. We incorporated multipolar cell in our model. Intracellular interactions have been thought to amplify polarity of a cell, but we propose instead that they are to keep a cell-cell interface polarized, and bipolarity of cell is obtained as a result. We show that the boundary propagation can propagate polarity as long as average size of local cell group is constant and levels of PCP proteins are balanced in every cell. Therefore, this model provide an explanation for PCP induction on a tissue with multiple cell types.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
44
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M. Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 2016; 38:1234-1245. [PMID: 27774671 DOI: 10.1002/bies.201600154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Planar cell polarity (PCP)-signaling and associated tissue polarization are evolutionarily conserved. A well documented feature of PCP-signaling in vertebrates is its link to centriole/cilia positioning, although the relationship of PCP and ciliogenesis is still debated. A recent report in Drosophila established that Frizzled (Fz)-PCP core signaling has an instructive input to polarized centriole positioning in non-ciliated Drosophila wing epithelia as a PCP read-out. Here, we review the impact of this observation in the context of recent descriptions of the relationship(s) of core Fz-PCP signaling and cilia/centriole positioning in epithelial and non-epithelial cells. All existing data are consistent with a model where Fz-PCP signaling functions upstream of centriole/cilia positioning, independent of ciliogenesis. The combined data sets indicate that the Fz-Dsh PCP complex is instructive for centriole/ciliary positioning via an actin-based mechanism. Thereby, centriole/cilia/centrosome positioning can be considered an evolutionarily conserved readout and common downstream effect of PCP-signaling from flies to mammals.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
45
|
Misra JR, Irvine KD. Vamana Couples Fat Signaling to the Hippo Pathway. Dev Cell 2016; 39:254-266. [PMID: 27746048 DOI: 10.1016/j.devcel.2016.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.
Collapse
Affiliation(s)
- Jyoti R Misra
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA.
| |
Collapse
|
46
|
Aw WY, Devenport D. Planar cell polarity: global inputs establishing cellular asymmetry. Curr Opin Cell Biol 2016; 44:110-116. [PMID: 27576155 DOI: 10.1016/j.ceb.2016.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/31/2023]
Abstract
Many tissues develop coordinated patterns of cell polarity that align with respect to the tissue axes. This phenomenon refers to planar cell polarity (PCP) and is controlled by multiple conserved PCP modules. A key feature of PCP proteins is their asymmetric localization within the tissue plane, whose orientation is guided by global directional cues. Here, we highlight current models and recent findings on the role of tissue-level gradients, local organizer signals, and mechanical forces in establishing the global patterns of PCP.
Collapse
Affiliation(s)
- Wen Yih Aw
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
47
|
Vrabioiu AM, Struhl G. Fat/Dachsous Signaling Promotes Drosophila Wing Growth by Regulating the Conformational State of the NDR Kinase Warts. Dev Cell 2016; 35:737-49. [PMID: 26702832 DOI: 10.1016/j.devcel.2015.11.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
Abstract
Nuclear Dbf2-related (NDR) kinases play a central role in limiting growth in most animals. Signals that promote growth do so in part by suppressing the activation of NDR kinases by STE20/Hippo kinases. Here, we identify another mechanism for downregulating NDR kinase activity. Specifically, we show that activity of the Drosophila NDR kinase Warts in the developing wing depends on its transition from an inactive, "closed" conformation to a potentially active, "open" conformation mediated by Mats, a conserved Mps1-binder (Mob) protein. Further, we show that signaling interactions between the protocadherins Fat and Dachsous, organized by the morphogens Wingless and Decapentaplegic, suppress Warts by acting via the atypical myosin Dachs to inhibit or reverse this transition. The regulation of Warts conformation by Mats, Fat/Dachsous signaling, and Dachs appears independent of Warts phosphorylation by Hippo kinase, establishing a precedent for the control of NDR kinases, and hence growth, by distinct allosteric and phosphorylation mechanisms.
Collapse
Affiliation(s)
- Alina M Vrabioiu
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
48
|
Saavedra P, Brittle A, Palacios IM, Strutt D, Casal J, Lawrence PA. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila. Biol Open 2016; 5:397-408. [PMID: 26935392 PMCID: PMC4890672 DOI: 10.1242/bio.017152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
The epidermal patterns of all three larval instars (L1-L3) ofDrosophilaare made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Amy Brittle
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - David Strutt
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| |
Collapse
|
49
|
Sharp KA, Axelrod JD. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms. Biol Open 2016; 5:229-36. [PMID: 26863941 PMCID: PMC4810745 DOI: 10.1242/bio.016162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.
Collapse
Affiliation(s)
- Katherine A Sharp
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Bosveld F, Guirao B, Wang Z, Rivière M, Bonnet I, Graner F, Bellaïche Y. Modulation of junction tension by tumor-suppressors and proto-oncogenes regulates cell-cell contacts. Development 2016; 143:623-34. [DOI: 10.1242/dev.127993] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
Tumor-suppressor and proto-oncogenes play critical roles in tissue proliferation. Furthermore, deregulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in somatic clones shape correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical elasticity. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor-suppressor and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, Fat (Ft) and Dachsous (Ds) tumor-suppressors regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the time evolution of ft mutant cells and clones, we show that ft clones reduce their cell-cell contact with surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposite changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tensions is modulated by the activation of Yorkie, Myc and Ras yielding similar contact reductions with wt cells. Together our data highlight mechanical roles for proto-oncogene and tumor-suppressor pathways in cell-cell interactions.
Collapse
Affiliation(s)
- Floris Bosveld
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Boris Guirao
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Zhimin Wang
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mathieu Rivière
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Isabelle Bonnet
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - François Graner
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|