1
|
Sekiguchi M, Reinhard N, Fukuda A, Katoh S, Rieger D, Helfrich-Förster C, Yoshii T. A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN 1p) of Drosophila melanogaster Can Control Morning and Evening Activity. J Biol Rhythms 2024; 39:463-483. [PMID: 39082442 DOI: 10.1177/07487304241263130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons.
Collapse
Affiliation(s)
- Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shun Katoh
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Klose MK, Kim J, Schmidt BF, Levitan ES. Circadian Vesicle Capture Prepares Clock Neuron Synapses for Daily Phase-Delayed Neuropeptide Release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569590. [PMID: 38106047 PMCID: PMC10723267 DOI: 10.1101/2023.12.01.569590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Drosophila sLNv clock neurons release the neuropeptide PDF to control circadian rhythms. Strikingly, PDF content in sLNv terminals is rhythmic with a peak in the morning hours prior to the onset of activity-dependent release. Because synaptic PDF accumulation, rather than synaptic release, aligns with the late-night elevations in both sLNv neuron excitability and Ca2+, we explored the dependence of presynaptic neuropeptide accumulation on neuropeptide vesicle transport, electrical activity and the circadian clock. Live imaging reveals that anterograde axonal transport is constant throughout the day and capture of circulating neuropeptide vesicles rhythmically boosts presynaptic neuropeptide content hours prior to release. The late-night surge in vesicle capture, like release, requires electrical activity and results in a large releasable pool of presynaptic vesicles to support the later burst of neuropeptide release. The circadian clock is also required suggesting that it controls the switch from vesicle capture to exocytosis, which are normally coupled activity-dependent processes. This toggling of activity transduction maximizes rhythmic synaptic neuropeptide release needed for robust circadian behavior and resolves the previously puzzling delay in timing of synaptic neuropeptide release relative to changes in sLNv clock neuron physiology.
Collapse
Affiliation(s)
- Markus K. Klose
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junghun Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brigitte F. Schmidt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edwin S. Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Ehrlich A, Xu AA, Luminari S, Kidd S, Treiber CD, Russo J, Blau J. Tango-seq: overlaying transcriptomics on connectomics to identify neurons downstream of Drosophila clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595372. [PMID: 38826334 PMCID: PMC11142192 DOI: 10.1101/2024.05.22.595372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
Collapse
Affiliation(s)
- Alison Ehrlich
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Angelina A Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Sofia Luminari
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Simon Kidd
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, UK
- Current address: Department of Biology, University of Oxford, UK
| | - Jordan Russo
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
4
|
Rodan AR. Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies. Physiology (Bethesda) 2024; 39:0. [PMID: 38411570 PMCID: PMC11368518 DOI: 10.1152/physiol.00006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.
Collapse
Affiliation(s)
- Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Hofbauer B, Zandawala M, Reinhard N, Rieger D, Werner C, Evers JF, Wegener C. The neuropeptide pigment-dispersing factor signals independently of Bruchpilot-labelled active zones in daily remodelled terminals of Drosophila clock neurons. Eur J Neurosci 2024; 59:2665-2685. [PMID: 38414155 DOI: 10.1111/ejn.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The small ventrolateral neurons (sLNvs) are key components of the central clock in the Drosophila brain. They signal via the neuropeptide pigment-dispersing factor (PDF) to align the molecular clockwork of different central clock neurons and to modulate downstream circuits. The dorsal terminals of the sLNvs undergo daily morphological changes that affect presynaptic sites organised by the active zone protein Bruchpilot (BRP), a homolog of mammalian ELKS proteins. However, the role of these presynaptic sites for PDF release is ill-defined. Here, we combined expansion microscopy with labelling of active zones by endogenously tagged BRP to examine the spatial correlation between PDF-containing dense-core vesicles and BRP-labelled active zones. We found that the number of BRP-labelled puncta in the sLNv terminals was similar while their density differed between Zeitgeber time (ZT) 2 and 14. The relative distance between BRP- and PDF-labelled puncta was increased in the morning, around the reported time of PDF release. Spontaneous dense-core vesicle release profiles of sLNvs in a publicly available ssTEM dataset (FAFB) consistently lacked spatial correlation to BRP-organised active zones. RNAi-mediated downregulation of brp and other active zone proteins expressed by the sLNvs did not affect PDF-dependent locomotor rhythmicity. In contrast, down-regulation of genes encoding proteins of the canonical vesicle release machinery, the dense-core vesicle-related protein CADPS, as well as PDF impaired locomotor rhythmicity. Taken together, our study suggests that PDF release from the sLNvs is independent of BRP-organised active zones, while BRP may be redistributed to active zones in a time-dependent manner.
Collapse
Affiliation(s)
- Benedikt Hofbauer
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, USA
| | - Nils Reinhard
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dirk Rieger
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Werner
- Biocenter, Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jan Felix Evers
- Centre for organismal studies COS, Universität Heidelberg, Heidelberg, Germany
- Cairn GmbH, Heidelberg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Mitra R, Richhariya S, Hasan G. Orai-mediated calcium entry determines activity of central dopaminergic neurons by regulation of gene expression. eLife 2024; 12:RP88808. [PMID: 38289659 PMCID: PMC10945566 DOI: 10.7554/elife.88808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Maturation and fine-tuning of neural circuits frequently require neuromodulatory signals that set the excitability threshold, neuronal connectivity, and synaptic strength. Here, we present a mechanistic study of how neuromodulator-stimulated intracellular Ca2+ signals, through the store-operated Ca2+ channel Orai, regulate intrinsic neuronal properties by control of developmental gene expression in flight-promoting central dopaminergic neurons (fpDANs). The fpDANs receive cholinergic inputs for release of dopamine at a central brain tripartite synapse that sustains flight (Sharma and Hasan, 2020). Cholinergic inputs act on the muscarinic acetylcholine receptor to stimulate intracellular Ca2+ release through the endoplasmic reticulum (ER) localised inositol 1,4,5-trisphosphate receptor followed by ER-store depletion and Orai-mediated store-operated Ca2+ entry (SOCE). Analysis of gene expression in fpDANs followed by genetic, cellular, and molecular studies identified Orai-mediated Ca2+ entry as a key regulator of excitability in fpDANs during circuit maturation. SOCE activates the transcription factor trithorax-like (Trl), which in turn drives expression of a set of genes, including Set2, that encodes a histone 3 lysine 36 methyltransferase (H3K36me3). Set2 function establishes a positive feedback loop, essential for receiving neuromodulatory cholinergic inputs and sustaining SOCE. Chromatin-modifying activity of Set2 changes the epigenetic status of fpDANs and drives expression of key ion channel and signalling genes that determine fpDAN activity. Loss of activity reduces the axonal arborisation of fpDANs within the MB lobe and prevents dopamine release required for the maintenance of long flight.
Collapse
Affiliation(s)
- Rishav Mitra
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
7
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
8
|
Gundermann DG, Lymer S, Blau J. A rapid and dynamic role for FMRP in the plasticity of adult neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555985. [PMID: 37693612 PMCID: PMC10491314 DOI: 10.1101/2023.09.01.555985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.
Collapse
Affiliation(s)
- Daniel G Gundermann
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Seana Lymer
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Current address: Proteintech Genomics, 11588 Sorrento Valley Rd, San Diego, CA 92121
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
9
|
Riva S, Ispizua JI, Breide MT, Polcowñuk S, Lobera JR, Ceriani MF, Risau-Gusman S, Franco DL. Mating disrupts morning anticipation in Drosophila melanogaster females. PLoS Genet 2022; 18:e1010258. [PMID: 36548223 PMCID: PMC9779042 DOI: 10.1371/journal.pgen.1010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
After mating, the physiology of Drosophila females undergo several important changes, some of which are reflected in their rest-activity cycles. To explore the hypothesis that mating modifies the temporal organization of locomotor activity patterns, we recorded fly activity by a video tracking method. Monitoring rest-activity patterns under light/dark (LD) cycles indicated that mated females lose their ability to anticipate the night-day transition, in stark contrast to males and virgins. This postmating response is mediated by the activation of the sex peptide receptor (SPR) mainly on pickpocket (ppk) expressing neurons, since reducing expression of this receptor in these neurons restores the ability to anticipate the LD transition in mated females. Furthermore, we provide evidence of connectivity between ppk+ neurons and the pigment-dispersing factor (PDF)-positive ventral lateral neurons (sLNv), which play a central role in the temporal organization of daily activity. Since PDF has been associated to the generation of the morning activity peak, we hypothesized that the mating signal could modulate PDF levels. Indeed, we confirm that mated females have reduced PDF levels at the dorsal protocerebrum; moreover, SPR downregulation in ppk+ neurons mimics PDF levels observed in males. In sum, our results are consistent with a model whereby mating-triggered signals reach clock neurons in the fly central nervous system to modulate the temporal organization of circadian behavior according to the needs of the new status.
Collapse
Affiliation(s)
- Sabrina Riva
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Juan Ignacio Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - María Trinidad Breide
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Sofía Polcowñuk
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - José Ricardo Lobera
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - María Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - Sebastian Risau-Gusman
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
- * E-mail: (SRG); (DLF)
| | - Diana Lorena Franco
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
- * E-mail: (SRG); (DLF)
| |
Collapse
|
10
|
Iyer AR, Sheeba V. A new player in circadian networks: Role of electrical synapses in regulating functions of the circadian clock. Front Physiol 2022; 13:968574. [PMID: 36406999 PMCID: PMC9669436 DOI: 10.3389/fphys.2022.968574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies have indicated that coherent circadian rhythms in behaviour can be manifested only when the underlying circadian oscillators function as a well-coupled network. The current literature suggests that circadian pacemaker neuronal networks rely heavily on communication mediated by chemical synapses comprising neuropeptides and neurotransmitters to regulate several behaviours and physiological processes. It has become increasingly clear that chemical synapses closely interact with electrical synapses and function together in the neuronal networks of most organisms. However, there are only a few studies which have examined the role of electrical synapses in circadian networks and here, we review our current understanding of gap junction proteins in circadian networks of various model systems. We describe the general mechanisms by which electrical synapses function in neural networks, their interactions with chemical neuromodulators and their contributions to the regulation of circadian rhythms. We also discuss the various methods available to characterize functional electrical synapses in these networks and the potential directions that remain to be explored to understand the roles of this relatively understudied mechanism of communication in modulating circadian behaviour.
Collapse
Affiliation(s)
- Aishwarya Ramakrishnan Iyer
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, United States
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
- *Correspondence: Vasu Sheeba,
| |
Collapse
|
11
|
Tang M, Cao LH, Yang T, Ma SX, Jing BY, Xiao N, Xu S, Leng KR, Yang D, Li MT, Luo DG. An extra-clock ultradian brain oscillator sustains circadian timekeeping. SCIENCE ADVANCES 2022; 8:eabo5506. [PMID: 36054358 PMCID: PMC10848952 DOI: 10.1126/sciadv.abo5506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The master circadian clock generates 24-hour rhythms to orchestrate daily behavior, even running freely under constant conditions. Traditionally, the master clock is considered self-sufficient in sustaining free-running timekeeping via its cell-autonomous molecular clocks and interneuronal communications within the circadian neural network. Here, we find a set of bona fide ultradian oscillators in the Drosophila brain that support free-running timekeeping, despite being located outside the master clock circuit and lacking clock gene expression. These extra-clock electrical oscillators (xCEOs) generate cell-autonomous ultradian bursts, pacing widespread burst firing and promoting rhythmic resting membrane potentials in clock neurons via parallel monosynaptic connections. Silencing xCEOs disrupts daily electrical rhythms in clock neurons and impairs cycling of neuropeptide pigment dispersing factor, leading to the loss of free-running locomotor rhythms. Together, we conclude that the master clock is not self-sufficient to sustain free-running behavior rhythms but requires additional endogenous inputs to the clock from the extra-clock ultradian brain oscillators.
Collapse
Affiliation(s)
- Min Tang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
- PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Hui Cao
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Si-Xing Ma
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Bi-Yang Jing
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Na Xiao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuang Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kang-Rui Leng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Meng-Tong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
McClure CD, Hassan A, Aughey GN, Butt K, Estacio-Gómez A, Duggal A, Ying Sia C, Barber AF, Southall TD. An auxin-inducible, GAL4-compatible, gene expression system for Drosophila. eLife 2022; 11:e67598. [PMID: 35363137 PMCID: PMC8975555 DOI: 10.7554/elife.67598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/27/2022] [Indexed: 01/04/2023] Open
Abstract
The ability to control transgene expression, both spatially and temporally, is essential for studying model organisms. In Drosophila, spatial control is primarily provided by the GAL4/UAS system, whilst temporal control relies on a temperature-sensitive GAL80 (which inhibits GAL4) and drug-inducible systems. However, these are not ideal. Shifting temperature can impact on many physiological and behavioural traits, and the current drug-inducible systems are either leaky, toxic, incompatible with existing GAL4-driver lines, or do not generate effective levels of expression. Here, we describe the auxin-inducible gene expression system (AGES). AGES relies on the auxin-dependent degradation of a ubiquitously expressed GAL80, and therefore, is compatible with existing GAL4-driver lines. Water-soluble auxin is added to fly food at a low, non-lethal, concentration, which induces expression comparable to uninhibited GAL4 expression. The system works in both larvae and adults, providing a stringent, non-lethal, cost-effective, and convenient method for temporally controlling GAL4 activity in Drosophila.
Collapse
Affiliation(s)
- Colin D McClure
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Amira Hassan
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Gabriel N Aughey
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Khushbakht Butt
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, the State University of New JerseyNew BrunswickUnited States
| | | | - Aneisha Duggal
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Chee Ying Sia
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Annika F Barber
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, the State University of New JerseyNew BrunswickUnited States
| | - Tony D Southall
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
13
|
Schellinger JN, Sun Q, Pleinis JM, An SW, Hu J, Mercenne G, Titos I, Huang CL, Rothenfluh A, Rodan AR. Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Curr Biol 2022; 32:1429-1438.e6. [PMID: 35303418 PMCID: PMC8972083 DOI: 10.1016/j.cub.2022.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 12/21/2022]
Abstract
Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies.1,2 Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels.3 However, results have been contradictory,4-9 and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response.10 Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLNv) pacemaker neurons. In control flies, intracellular chloride increases in sLNvs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.11Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLNv pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.
Collapse
Affiliation(s)
- Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Qifei Sun
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung-Wan An
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jianrui Hu
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Gaëlle Mercenne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Adrian Rothenfluh
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148, USA.
| |
Collapse
|
14
|
Consolidation and maintenance of long-term memory involve dual functions of the developmental regulator Apterous in clock neurons and mushroom bodies in the Drosophila brain. PLoS Biol 2021; 19:e3001459. [PMID: 34860826 PMCID: PMC8641882 DOI: 10.1371/journal.pbio.3001459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs. A neurogenetic study using Drosophila reveals that the centrally expressed LIM-homeodomain transcription factor Apterous plays a crucial neuron-type-dependent role in two different memory processes - consolidation and maintenance of long-term memory.
Collapse
|
15
|
The E3 ubiquitin ligase adaptor Tango10 links the core circadian clock to neuropeptide and behavioral rhythms. Proc Natl Acad Sci U S A 2021; 118:2110767118. [PMID: 34799448 PMCID: PMC8617488 DOI: 10.1073/pnas.2110767118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of Transport and Golgi organization 10 (Tango10) with poor behavioral rhythmicity. Tango10 expression in pacemaker neurons expressing the neuropeptide PIGMENT-DISPERSING FACTOR (PDF) is required for robust rhythms. Loss of Tango10 results in elevated PDF accumulation in nerve terminals even in mutants lacking a functional core clock. TANGO10 protein itself is rhythmically expressed in PDF terminals. Mass spectrometry of TANGO10 complexes reveals interactions with the E3 ubiquitin ligase CULLIN 3 (CUL3). CUL3 depletion phenocopies Tango10 mutant effects on PDF even in the absence of the core clock gene timeless Patch clamp electrophysiology in Tango10 mutant neurons demonstrates elevated spontaneous firing potentially due to reduced voltage-gated Shaker-like potassium currents. We propose that Tango10/Cul3 transduces molecular oscillations from the core clock to neuropeptide release important for behavioral rhythms.
Collapse
|
16
|
Decapentaplegic Acutely Defines the Connectivity of Central Pacemaker Neurons in Drosophila. J Neurosci 2021; 41:8338-8350. [PMID: 34429376 DOI: 10.1523/jneurosci.0397-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Rhythmic rest-activity cycles are controlled by an endogenous clock. In Drosophila, this clock resides in ∼150 neurons organized in clusters whose hierarchy changes in response to environmental conditions. The concerted activity of the circadian network is necessary for the adaptive responses to synchronizing environmental stimuli. Thus far, work was devoted to unravel the logic of the coordination of different clusters focusing on neurotransmitters and neuropeptides. We further explored communication in the adult male brain through ligands belonging to the bone morphogenetic protein (BMP) pathway. Herein we show that the lateral ventral neurons (LNvs) express the small morphogen decapentaplegic (DPP). DPP expression in the large LNvs triggered a period lengthening phenotype, the downregulation of which caused reduced rhythmicity and affected anticipation at dawn and dusk, underscoring DPP per se conveys time-of-day relevant information. Surprisingly, DPP expression in the large LNvs impaired circadian remodeling of the small LNv axonal terminals, likely through local modulation of the guanine nucleotide exchange factor Trio. These findings open the provocative possibility that the BMP pathway is recruited to strengthen/reduce the connectivity among specific clusters along the day and thus modulate the contribution of the clusters to the circadian network.SIGNIFICANCE STATEMENT The circadian clock relies on the communication between groups of so-called clock neurons to coordinate physiology and behavior to the optimal times across the day, predicting and adapting to a changing environment. The circadian network relies on neurotransmitters and neuropeptides to fine-tune connectivity among clock neurons and thus give rise to a coherent output. Herein we show that decapentaplegic, a ligand belonging to the BMP retrograde signaling pathway required for coordinated growth during development, is recruited by a group of circadian neurons in the adult brain to trigger structural remodeling of terminals on a daily basis.
Collapse
|
17
|
Nettnin EA, Sallese TR, Nasseri A, Saurabh S, Cavanaugh DJ. Dorsal clock neurons in Drosophila sculpt locomotor outputs but are dispensable for circadian activity rhythms. iScience 2021; 24:103001. [PMID: 34505011 PMCID: PMC8413890 DOI: 10.1016/j.isci.2021.103001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
The circadian system is comprised three components: a network of core clock cells in the brain that keeps time, input pathways that entrain clock cells to the environment, and output pathways that use this information to ensure appropriate timing of physiological and behavioral processes throughout the day. Core clock cells can be divided into molecularly distinct populations that likely make unique functional contributions. Here we clarify the role of the dorsal neuron 1 (DN1) population of clock neurons in the transmission of circadian information by the Drosophila core clock network. Using an intersectional genetic approach that allowed us to selectively and comprehensively target DN1 cells, we show that suppressing DN1 neuronal activity alters the magnitude of daily activity and sleep without affecting overt rhythmicity. This suggests that DN1 cells are dispensable for both the generation of circadian information and the propagation of this information across output circuits. Intersectional genetic approach targets DN1 cells comprehensively and selectively DN1p silencing alters distribution and amount of activity and sleep across the day DN1p cell firing is neither necessary nor sufficient for circadian activity rhythms DN1a silencing subtly alters total activity and sleep but leaves rhythmicity intact
Collapse
Affiliation(s)
- Ella A Nettnin
- Department of Biology, Loyola University Chicago, Chicago IL 60660, USA
| | - Thomas R Sallese
- Department of Biology, Loyola University Chicago, Chicago IL 60660, USA
| | - Anita Nasseri
- Department of Biology, Loyola University Chicago, Chicago IL 60660, USA
| | - Sumit Saurabh
- Department of Biology, Loyola University Chicago, Chicago IL 60660, USA
| | | |
Collapse
|
18
|
Jaumouillé E, Koch R, Nagoshi E. Uncovering the Roles of Clocks and Neural Transmission in the Resilience of Drosophila Circadian Network. Front Physiol 2021; 12:663339. [PMID: 34122135 PMCID: PMC8188733 DOI: 10.3389/fphys.2021.663339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Studies of circadian locomotor rhythms in Drosophila melanogaster gave evidence to the preceding theoretical predictions on circadian rhythms. The molecular oscillator in flies, as in virtually all organisms, operates using transcriptional-translational feedback loops together with intricate post-transcriptional processes. Approximately150 pacemaker neurons, each equipped with a molecular oscillator, form a circuit that functions as the central pacemaker for locomotor rhythms. Input and output pathways to and from the pacemaker circuit are dissected to the level of individual neurons. Pacemaker neurons consist of functionally diverse subclasses, including those designated as the Morning/Master (M)-oscillator essential for driving free-running locomotor rhythms in constant darkness and the Evening (E)-oscillator that drives evening activity. However, accumulating evidence challenges this dual-oscillator model for the circadian circuit organization and propose the view that multiple oscillators are coordinated through network interactions. Here we attempt to provide further evidence to the revised model of the circadian network. We demonstrate that the disruption of molecular clocks or neural output of the M-oscillator during adulthood dampens free-running behavior surprisingly slowly, whereas the disruption of both functions results in an immediate arrhythmia. Therefore, clocks and neural communication of the M-oscillator act additively to sustain rhythmic locomotor output. This phenomenon also suggests that M-oscillator can be a pacemaker or a downstream path that passively receives rhythmic inputs from another pacemaker and convey output signals. Our results support the distributed network model and highlight the remarkable resilience of the Drosophila circadian pacemaker circuit, which can alter its topology to maintain locomotor rhythms.
Collapse
Affiliation(s)
| | | | - Emi Nagoshi
- Department of Genetics and Evolution, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Cavieres-Lepe J, Ewer J. Reciprocal Relationship Between Calcium Signaling and Circadian Clocks: Implications for Calcium Homeostasis, Clock Function, and Therapeutics. Front Mol Neurosci 2021; 14:666673. [PMID: 34045944 PMCID: PMC8144308 DOI: 10.3389/fnmol.2021.666673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
In animals, circadian clocks impose a daily rhythmicity to many behaviors and physiological processes. At the molecular level, circadian rhythms are driven by intracellular transcriptional/translational feedback loops (TTFL). Interestingly, emerging evidence indicates that they can also be modulated by multiple signaling pathways. Among these, Ca2+ signaling plays a key role in regulating the molecular rhythms of clock genes and of the resulting circadian behavior. In addition, the application of in vivo imaging approaches has revealed that Ca2+ is fundamental to the synchronization of the neuronal networks that make up circadian pacemakers. Conversely, the activity of circadian clocks may influence Ca2+ signaling. For instance, several genes that encode Ca2+ channels and Ca2+-binding proteins display a rhythmic expression, and a disruption of this cycling affects circadian function, underscoring their reciprocal relationship. Here, we review recent advances in our understanding of how Ca2+ signaling both modulates and is modulated by circadian clocks, focusing on the regulatory mechanisms described in Drosophila and mice. In particular, we examine findings related to the oscillations in intracellular Ca2+ levels in circadian pacemakers and how they are regulated by canonical clock genes, neuropeptides, and light stimuli. In addition, we discuss how Ca2+ rhythms and their associated signaling pathways modulate clock gene expression at the transcriptional and post-translational levels. We also review evidence based on transcriptomic analyzes that suggests that mammalian Ca2+ channels and transporters (e.g., ryanodine receptor, ip3r, serca, L- and T-type Ca2+ channels) as well as Ca2+-binding proteins (e.g., camk, cask, and calcineurin) show rhythmic expression in the central brain clock and in peripheral tissues such as the heart and skeletal muscles. Finally, we discuss how the discovery that Ca2+ signaling is regulated by the circadian clock could influence the efficacy of pharmacotherapy and the outcomes of clinical interventions.
Collapse
Affiliation(s)
- Javier Cavieres-Lepe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
20
|
Abstract
Drosophila melanogaster is a powerful model organism used to study circadian rhythms, historically for elucidating the molecular basis of the clock and, more recently, for allowing for dissection of neural circuits underlying rhythmic behavior. The fly can be used to investigate the neuronal basis of complex behaviors at single-neuron resolution. Patch clamp electrophysiology permits single-neuron recording of resting membrane potential and action potential firing in response to genetic or environmental manipulations or application of drugs and neurotransmitters. Here we describe a protocol for dissecting Drosophila brains for electrophysiology, setting up and using a patch clamp system, and analyzing firing data around the circadian day and in stimulation-response experiments to test for functional neuronal connectivity in circadian circuits.
Collapse
|
21
|
Neonicotinoids disrupt memory, circadian behaviour and sleep. Sci Rep 2021; 11:2061. [PMID: 33479461 PMCID: PMC7820356 DOI: 10.1038/s41598-021-81548-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Globally, neonicotinoids are the most used insecticides, despite their well-documented sub-lethal effects on beneficial insects. Neonicotinoids are nicotinic acetylcholine receptor agonists. Memory, circadian rhythmicity and sleep are essential for efficient foraging and pollination and require nicotinic acetylcholine receptor signalling. The effect of field-relevant concentrations of the European Union-banned neonicotinoids: imidacloprid, clothianidin, thiamethoxam and thiacloprid were tested on Drosophila memory, circadian rhythms and sleep. Field-relevant concentrations of imidacloprid, clothianidin and thiamethoxam disrupted learning, behavioural rhythmicity and sleep whilst thiacloprid exposure only affected sleep. Exposure to imidacloprid and clothianidin prevented the day/night remodelling and accumulation of pigment dispersing factor (PDF) neuropeptide in the dorsal terminals of clock neurons. Knockdown of the neonicotinoid susceptible Dα1 and Dβ2 nicotinic acetylcholine receptor subunits in the mushroom bodies or clock neurons recapitulated the neonicotinoid like deficits in memory or sleep/circadian behaviour respectively. Disruption of learning, circadian rhythmicity and sleep are likely to have far-reaching detrimental effects on beneficial insects in the field.
Collapse
|
22
|
High-Frequency Neuronal Bursting is Essential for Circadian and Sleep Behaviors in Drosophila. J Neurosci 2020; 41:689-710. [PMID: 33262246 DOI: 10.1523/jneurosci.2322-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms have been extensively studied in Drosophila; however, still little is known about how the electrical properties of clock neurons are specified. We have performed a behavioral genetic screen through the downregulation of candidate ion channels in the lateral ventral neurons (LNvs) and show that the hyperpolarization-activated cation current Ih is important for the behaviors that the LNvs influence: temporal organization of locomotor activity, analyzed in males, and sleep, analyzed in females. Using whole-cell patch clamp electrophysiology we demonstrate that small LNvs (sLNvs) are bursting neurons, and that Ih is necessary to achieve the high-frequency bursting firing pattern characteristic of both types of LNvs in females. Since firing in bursts has been associated to neuropeptide release, we hypothesized that Ih would be important for LNvs communication. Indeed, herein we demonstrate that Ih is fundamental for the recruitment of pigment dispersing factor (PDF) filled dense core vesicles (DCVs) to the terminals at the dorsal protocerebrum and for their timed release, and hence for the temporal coordination of circadian behaviors.SIGNIFICANCE STATEMENT Ion channels are transmembrane proteins with selective permeability to specific charged particles. The rich repertoire of parameters that may gate their opening state, such as voltage-sensitivity, modulation by second messengers and specific kinetics, make this protein family a determinant of neuronal identity. Ion channel structure is evolutionary conserved between vertebrates and invertebrates, making any discovery easily translatable. Through a screen to uncover ion channels with roles in circadian rhythms, we have identified the Ih channel as an important player in a subset of clock neurons of the fruit fly. We show that lateral ventral neurons (LNvs) need Ih to fire action potentials in a high-frequency bursting mode and that this is important for peptide transport and the control of behavior.
Collapse
|
23
|
Flyer-Adams JG, Rivera-Rodriguez EJ, Yu J, Mardovin JD, Reed ML, Griffith LC. Regulation of Olfactory Associative Memory by the Circadian Clock Output Signal Pigment-Dispersing Factor (PDF). J Neurosci 2020; 40:9066-9077. [PMID: 33106351 PMCID: PMC7673005 DOI: 10.1523/jneurosci.0782-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Dissociation between the output of the circadian clock and external environmental cues is a major cause of human cognitive dysfunction. While the effects of ablation of the molecular clock on memory have been studied in many systems, little has been done to test the role of specific clock circuit output signals. To address this gap, we examined the effects of mutations of Pigment-dispersing factor (Pdf) and its receptor, Pdfr, on associative memory in male and female Drosophila Loss of PDF signaling significantly decreases the ability to form associative memory. Appetitive short-term memory (STM), which in wild-type (WT) is time-of-day (TOD) independent, is decreased across the day by mutation of Pdf or Pdfr, but more substantially in the morning than in the evening. This defect is because of PDFR expression in adult neurons outside the core clock circuit and the mushroom body (MB) Kenyon cells (KCs). The acquisition of a TOD difference in mutants implies the existence of multiple oscillators that act to normalize memory formation across the day for appetitive processes. Interestingly, aversive STM requires PDF but not PDFR, suggesting that there are valence-specific pathways downstream of PDF that regulate memory formation. These data argue that the circadian clock uses circuit-specific and molecularly diverse output pathways to enhance the ability of animals to optimize responses to changing conditions.SIGNIFICANCE STATEMENT From humans to invertebrates, cognitive processes are influenced by organisms' internal circadian clocks, the pace of which is linked to the solar cycle. Disruption of this link is increasingly common (e.g., jetlag, social jetlag disorders) and causes cognitive impairments that are costly and long lasting. A detailed understanding of how the internal clock regulates cognition is critical for the development of therapeutic methods. Here, we show for the first time that olfactory associative memory in Drosophila requires signaling by Pigment-dispersing factor (PDF), a neuromodulatory signaling peptide produced only by circadian clock circuit neurons. We also find a novel role for the clock circuit in stabilizing appetitive sucrose/odor memory across the day.
Collapse
Affiliation(s)
- Johanna G Flyer-Adams
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Emmanuel J Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Junwei Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Jacob D Mardovin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Martha L Reed
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
24
|
Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in Drosophila. J Neurosci 2020; 40:9617-9633. [PMID: 33172977 DOI: 10.1523/jneurosci.1488-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Dopamine is a wake-promoting neuromodulator in mammals and fruit flies. In Drosophila melanogaster, the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNvs) and small ventrolateral neurons (s-LNvs) have been identified as wake-promoting neurons within the clock neuron network. The l-LNvs are innervated by dopaminergic neurons, and earlier work proposed that dopamine signaling raises cAMP levels in the l-LNvs and thus induces excitatory electrical activity (action potential firing), which results in wakefulness and inhibits sleep. Here, we test this hypothesis by combining cAMP imaging and patch-clamp recordings in isolated brains. We find that dopamine application indeed increases cAMP levels and depolarizes the l-LNvs, but, surprisingly, it does not result in increased firing rates. Downregulation of the excitatory D1-like dopamine receptor (Dop1R1) in the l-LNvs and s-LNvs, but not of Dop1R2, abolished the depolarization of l-LNvs in response to dopamine. This indicates that dopamine signals via Dop1R1 to the l-LNvs. Downregulation of Dop1R1 or Dop1R2 in the l-LNvs and s-LNvs does not affect sleep in males. Unexpectedly, we find a moderate decrease of daytime sleep with downregulation of Dop1R1 and of nighttime sleep with downregulation of Dop1R2. Since the l-LNvs do not use Dop1R2 receptors and the s-LNvs also respond to dopamine, we conclude that the s-LNvs are responsible for the observed decrease in nighttime sleep. In summary, dopamine signaling in the wake-promoting LNvs is not required for daytime arousal, but likely promotes nighttime sleep via the s-LNvs.SIGNIFICANCE STATEMENT In insect and mammalian brains, sleep-promoting networks are intimately linked to the circadian clock, and the mechanisms underlying sleep and circadian timekeeping are evolutionarily ancient and highly conserved. Here we show that dopamine, one important sleep modulator in flies and mammals, plays surprisingly complex roles in the regulation of sleep by clock-containing neurons. Dopamine inhibits neurons in a central brain sleep center to promote sleep and excites wake-promoting circadian clock neurons. It is therefore predicted to promote wakefulness through both of these networks. Nevertheless, our results reveal that dopamine acting on wake-promoting clock neurons promotes sleep, revealing a previously unappreciated complexity in the dopaminergic control of sleep.
Collapse
|
25
|
Tackenberg MC, Giannoni-Guzmán MA, Sanchez-Perez E, Doll CA, Agosto-Rivera JL, Broadie K, Moore D, McMahon DG. Neonicotinoids disrupt circadian rhythms and sleep in honey bees. Sci Rep 2020; 10:17929. [PMID: 33087835 PMCID: PMC7578099 DOI: 10.1038/s41598-020-72041-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication.
Collapse
Affiliation(s)
| | | | - Erik Sanchez-Perez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Caleb A Doll
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 8004, USA
| | - José L Agosto-Rivera
- Department of Biology, University of Puerto Rico - Río Piedras, San Juan, PR, USA
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Darrell Moore
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Douglas G McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
26
|
Duhart JM, Herrero A, de la Cruz G, Ispizua JI, Pírez N, Ceriani MF. Circadian Structural Plasticity Drives Remodeling of E Cell Output. Curr Biol 2020; 30:5040-5048.e5. [PMID: 33065014 DOI: 10.1016/j.cub.2020.09.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
Behavioral outputs arise as a result of highly regulated yet flexible communication among neurons. The Drosophila circadian network includes 150 neurons that dictate the temporal organization of locomotor activity; under light-dark (LD) conditions, flies display a robust bimodal pattern. The pigment-dispersing factor (PDF)-positive small ventral lateral neurons (sLNv) have been linked to the generation of the morning activity peak (the "M cells"), whereas the Cryptochrome (CRY)-positive dorsal lateral neurons (LNds) and the PDF-negative sLNv are necessary for the evening activity peak (the "E cells") [1, 2]. While each group directly controls locomotor output pathways [3], an interplay between them along with a third dorsal cluster (the DN1ps) is necessary for the correct timing of each peak and for adjusting behavior to changes in the environment [4-7]. M cells set the phase of roughly half of the circadian neurons (including the E cells) through PDF [5, 8-10]. Here, we show the existence of synaptic input provided by the evening oscillator onto the M cells. Both structural and functional approaches revealed that E-to-M cell connectivity changes across the day, with higher excitatory input taking place before the day-to-night transition. We identified two different neurotransmitters, acetylcholine and glutamate, released by E cells that are relevant for robust circadian output. Indeed, we show that acetylcholine is responsible for the excitatory input from E cells to M cells, which show preferential responsiveness to acetylcholine during the evening. Our findings provide evidence of an excitatory feedback between circadian clusters and unveil an important plastic remodeling of the E cells' synaptic connections.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Anastasia Herrero
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Gabriel de la Cruz
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Juan I Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Nicolás Pírez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina.
| |
Collapse
|
27
|
Damulewicz M, Ispizua JI, Ceriani MF, Pyza EM. Communication Among Photoreceptors and the Central Clock Affects Sleep Profile. Front Physiol 2020; 11:993. [PMID: 32848895 PMCID: PMC7431659 DOI: 10.3389/fphys.2020.00993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Light is one of the most important factors regulating rhythmical behavior of Drosophila melanogaster. It is received by different photoreceptors and entrains the circadian clock, which controls sleep. The retina is known to be essential for light perception, as it is composed of specialized light-sensitive cells which transmit signal to deeper parts of the brain. In this study we examined the role of specific photoreceptor types and peripheral oscillators located in these cells in the regulation of sleep pattern. We showed that sleep is controlled by the visual system in a very complex way. Photoreceptors expressing Rh1, Rh3 are involved in night-time sleep regulation, while cells expressing Rh5 and Rh6 affect sleep both during the day and night. Moreover, Hofbauer-Buchner (HB) eyelets which can directly contact with s-LN v s and l-LN v s play a wake-promoting function during the day. In addition, we showed that L2 interneurons, which receive signal from R1-6, form direct synaptic contacts with l-LN v s, which provides new light input to the clock network.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Juan I. Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Maria F. Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Elzbieta M. Pyza
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| |
Collapse
|
28
|
Coupling Neuropeptide Levels to Structural Plasticity in Drosophila Clock Neurons. Curr Biol 2020; 30:3154-3166.e4. [PMID: 32619484 DOI: 10.1016/j.cub.2020.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
We have previously reported that pigment dispersing factor (PDF) neurons, which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections, a phenomenon called circadian structural plasticity. Axonal arborizations display higher complexity during the day and become simpler at night, and this remodeling involves changes in the degree of connectivity. This phenomenon depends on the clock present within the ventrolateral neurons (LNvs) as well as in glia. In this work, we characterize in detail the contribution of the PDF neuropeptide to structural plasticity at different times across the day. Using diverse genetic strategies to temporally restrict its downregulation, we demonstrate that even subtle alterations to PDF cycling at the dorsal protocerebrum correlate with impaired remodeling, underscoring its relevance for the characteristic morning spread; PDF released from the small LNvs (sLNvs) and the large LNvs (lLNvs) contribute to the process. Moreover, forced depolarization recruits activity-dependent mechanisms to mediate growth only at night, overcoming the restriction imposed by the clock on membrane excitability. Interestingly, the active process of terminal remodeling requires PDF receptor (PDFR) signaling acting locally through the cyclic-nucleotide-gated channel ion channel subunit A (CNGA). Thus, clock-dependent PDF signaling shapes the connectivity of these essential clock neurons on daily basis.
Collapse
|
29
|
Bu B, Chen L, Zheng L, He W, Zhang L. Nipped-A regulates the Drosophila circadian clock via histone deubiquitination. EMBO J 2020; 39:e101259. [PMID: 31538360 PMCID: PMC6939192 DOI: 10.15252/embj.2018101259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Psychiatric diseases are often accompanied by circadian disruptions, but the molecular underpinnings remain largely unclear. To address this, we screened genes that have been previously reported to be associated with psychiatric diseases and found that TRRAP, a gene associated with schizophrenia, is involved in circadian rhythm regulation. Knocking down Nipped-A, the Drosophila homolog of human TRRAP, leads to lengthened period of locomotor rhythms in flies. Molecular analysis demonstrates that NIPPED-A sets the pace of the clock by increasing the mRNA and protein levels of core clock genes timeless (tim) and Par domain protein 1ε (Pdp1ε). Furthermore, we found that NIPPED-A promotes the transcription of tim and Pdp1ε possibly by facilitating deubiquitination of histone H2B via the deubiquitination module of the transcription co-activator Spt-Ada-Gcn5 acetyltransferase complex. Taken together, these findings reveal a novel role for NIPPED-A in epigenetic regulation of the clock.
Collapse
Affiliation(s)
- Bei Bu
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
- Henan Key Laboratory of Reproduction and GeneticsCenter for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lixia Chen
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Liubin Zheng
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weiwei He
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubeiChina
- Institute of Brain ResearchHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
30
|
King AN, Sehgal A. Molecular and circuit mechanisms mediating circadian clock output in the Drosophila brain. Eur J Neurosci 2020; 51:268-281. [PMID: 30059181 PMCID: PMC6353709 DOI: 10.1111/ejn.14092] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
Abstract
A central question in the circadian biology field concerns the mechanisms that translate ~24-hr oscillations of the molecular clock into overt rhythms. Drosophila melanogaster is a powerful system that provided the first understanding of how molecular clocks are generated and is now illuminating the neural basis of circadian behavior. The identity of ~150 clock neurons in the Drosophila brain and their roles in shaping circadian rhythms of locomotor activity have been described before. This review summarizes mechanisms that transmit time-of-day signals from the clock, within the clock network as well as downstream of it. We also discuss the identification of functional multisynaptic circuits between clock neurons and output neurons that regulate locomotor activity.
Collapse
Affiliation(s)
- Anna N. King
- Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
31
|
Kozlov A, Nagoshi E. Decoding Drosophila circadian pacemaker circuit. CURRENT OPINION IN INSECT SCIENCE 2019; 36:33-38. [PMID: 31376574 DOI: 10.1016/j.cois.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Drosophila circadian circuit is one of the best described neural circuits but is complex enough to obscure our understanding of how it actually works. Animals' rhythmic behavior, the seemingly simple outcome of their internal clocks, relies on the interaction of heterogeneous clock neurons that are spread across the brain. Direct observations of their coordinated network interactions can bring us forward in understanding the circuit. The current challenge is to observe activity of each of these neurons over a long span of time - hours to days - in live animals. Here we review the progress in circadian circuit interrogation powered by in vivo calcium imaging.
Collapse
Affiliation(s)
- Anatoly Kozlov
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211, Geneva-4, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211, Geneva-4, Switzerland.
| |
Collapse
|
32
|
Smith P, Buhl E, Tsaneva-Atanasova K, Hodge JJL. Shaw and Shal voltage-gated potassium channels mediate circadian changes in Drosophila clock neuron excitability. J Physiol 2019; 597:5707-5722. [PMID: 31612994 DOI: 10.1113/jp278826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023] Open
Abstract
As in mammals, Drosophila circadian clock neurons display rhythms of activity with higher action potential firing rates and more positive resting membrane potentials during the day. This rhythmic excitability has been widely observed but, critically, its regulation remains unresolved. We have characterized and modelled the changes underlying these electrical activity rhythms in the lateral ventral clock neurons (LNvs). We show that currents mediated by the voltage-gated potassium channels Shaw (Kv3) and Shal (Kv4) oscillate in a circadian manner. Disruption of these channels, by expression of dominant negative (DN) subunits, leads to changes in circadian locomotor activity and shortens lifespan. LNv whole-cell recordings then show that changes in Shaw and Shal currents drive changes in action potential firing rate and that these rhythms are abolished when the circadian molecular clock is stopped. A whole-cell biophysical model using Hodgkin-Huxley equations can recapitulate these changes in electrical activity. Based on this model and by using dynamic clamp to manipulate clock neurons directly, we can rescue the pharmacological block of Shaw and Shal, restore the firing rhythm, and thus demonstrate the critical importance of Shaw and Shal. Together, these findings point to a key role for Shaw and Shal in controlling circadian firing of clock neurons and show that changes in clock neuron currents can account for this. Moreover, with dynamic clamp we can switch the LNvs between morning-like and evening-like states of electrical activity. We conclude that changes in Shaw and Shal underlie the daily oscillation in LNv firing rate.
Collapse
Affiliation(s)
- Philip Smith
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
33
|
Schlichting M, Díaz MM, Xin J, Rosbash M. Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. eLife 2019; 8:e48301. [PMID: 31613223 PMCID: PMC6794074 DOI: 10.7554/elife.48301] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Animal circadian rhythms persist in constant darkness and are driven by intracellular transcription-translation feedback loops. Although these cellular oscillators communicate, isolated mammalian cellular clocks continue to tick away in darkness without intercellular communication. To investigate these issues in Drosophila, we assayed behavior as well as molecular rhythms within individual brain clock neurons while blocking communication within the ca. 150 neuron clock network. We also generated CRISPR-mediated neuron-specific circadian clock knockouts. The results point to two key clock neuron groups: loss of the clock within both regions but neither one alone has a strong behavioral phenotype in darkness; communication between these regions also contributes to circadian period determination. Under these dark conditions, the clock within one region persists without network communication. The clock within the famous PDF-expressing s-LNv neurons however was strongly dependent on network communication, likely because clock gene expression within these vulnerable sLNvs depends on neuronal firing or light.
Collapse
Affiliation(s)
- Matthias Schlichting
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Madelen M Díaz
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Jason Xin
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Michael Rosbash
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| |
Collapse
|
34
|
Schlichting M, Weidner P, Diaz M, Menegazzi P, Dalla Benetta E, Helfrich-Förster C, Rosbash M. Light-Mediated Circuit Switching in the Drosophila Neuronal Clock Network. Curr Biol 2019; 29:3266-3276.e3. [PMID: 31564496 DOI: 10.1016/j.cub.2019.08.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/28/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
The circadian clock is a timekeeper but also helps adapt physiology to the outside world. This is because an essential feature of clocks is their ability to adjust (entrain) to the environment, with light being the most important signal. Whereas cryptochrome-mediated entrainment is well understood in Drosophila, integration of light information via the visual system lacks a neuronal or molecular mechanism. Here, we show that a single photoreceptor subtype is essential for long-day adaptation. These cells activate key circadian neurons, namely the large ventral-lateral neurons (lLNvs), which release the neuropeptide pigment-dispersing factor (PDF). RNAi and rescue experiments show that PDF from these cells is necessary and sufficient for delaying the timing of the evening (E) activity in long-day conditions. This contrasts to PDF that derives from the small ventral-lateral neurons (sLNvs), which are essential for constant darkness (DD) rhythmicity. Using a cell-specific CRISPR/Cas9 assay, we show that lLNv-derived PDF directly interacts with neurons important for E activity timing. Interestingly, this pathway is specific for long-day adaptation and appears to be dispensable in equinox or DD conditions. The results therefore indicate that external cues cause a rearrangement of neuronal hierarchy, which contributes to behavioral plasticity.
Collapse
Affiliation(s)
- Matthias Schlichting
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | - Patrick Weidner
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA; Department for Neurobiology and Genetics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Madelen Diaz
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Pamela Menegazzi
- Department for Neurobiology and Genetics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elena Dalla Benetta
- Department for Neurobiology and Genetics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
35
|
Nian X, Chen W, Bai W, Zhao Z, Zhang Y. miR-263b Controls Circadian Behavior and the Structural Plasticity of Pacemaker Neurons by Regulating the LIM-Only Protein Beadex. Cells 2019; 8:cells8080923. [PMID: 31426557 PMCID: PMC6721658 DOI: 10.3390/cells8080923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
: Circadian clocks drive rhythmic physiology and behavior to allow adaption to daily environmental changes. In Drosophila, the small ventral lateral neurons (sLNvs) are primary pacemakers that control circadian rhythms. Circadian changes are observed in the dorsal axonal projections of the sLNvs, but their physiological importance and the underlying mechanism are unclear. Here, we identified miR-263b as an important regulator of circadian rhythms and structural plasticity of sLNvs in Drosophila. Depletion of miR-263b (miR-263bKO) in flies dramatically impaired locomotor rhythms under constant darkness. Indeed, miR-263b is required for the structural plasticity of sLNvs. miR-263b regulates circadian rhythms through inhibition of expression of the LIM-only protein Beadex (Bx). Consistently, overexpression of Bx or loss-of-function mutation (BxhdpR26) phenocopied miR-263bKO and miR-263b overexpression in behavior and molecular characteristics. In addition, mutating the miR-263b binding sites in the Bx 3' UTR using CRISPR/Cas9 recapitulated the circadian phenotypes of miR-263bKO flies. Together, these results establish miR-263b as an important regulator of circadian locomotor behavior and structural plasticity.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Wenfeng Chen
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Weiwei Bai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
36
|
Niu Y, Liu Z, Nian X, Xu X, Zhang Y. miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2. PLoS Genet 2019; 15:e1007655. [PMID: 31356596 PMCID: PMC6687186 DOI: 10.1371/journal.pgen.1007655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/08/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Circadian clocks control the timing of animal behavioral and physiological rhythms. Fruit flies anticipate daily environmental changes and exhibit two peaks of locomotor activity around dawn and dusk. microRNAs are small non-coding RNAs that play important roles in post-transcriptional regulation. Here we identify Drosophila miR-210 as a critical regulator of circadian rhythms. Under light-dark conditions, flies lacking miR-210 (miR-210KO) exhibit a dramatic 2 hrs phase advance of evening anticipatory behavior. However, circadian rhythms and molecular pacemaker function are intact in miR-210KO flies under constant darkness. Furthermore, we identify that miR-210 determines the evening phase of activity through repression of the cell adhesion molecule Fasciclin 2 (Fas2). Ablation of the miR-210 binding site within the 3' UTR of Fas2 (Fas2ΔmiR-210) by CRISPR-Cas9 advances the evening phase as in miR-210KO. Indeed, miR-210 genetically interacts with Fas2. Moreover, Fas2 abundance is significantly increased in the optic lobe of miR-210KO. In addition, overexpression of Fas2 in the miR-210 expressing cells recapitulates the phase advance behavior phenotype of miR-210KO. Together, these results reveal a novel mechanism by which miR-210 regulates circadian locomotor behavior.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Zhenxing Liu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Xiaoge Nian
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuehan Xu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| |
Collapse
|
37
|
Bu B, He W, Song L, Zhang L. Nuclear Envelope Protein MAN1 Regulates the Drosophila Circadian Clock via Period. Neurosci Bull 2019; 35:969-978. [PMID: 31230212 DOI: 10.1007/s12264-019-00404-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 01/28/2023] Open
Abstract
Almost all organisms exhibit ~24-h rhythms, or circadian rhythms, in a plentitude of biological processes. These rhythms are driven by endogenous molecular clocks consisting of a series of transcriptional and translational feedback loops. Previously, we have shown that the inner nuclear membrane protein MAN1 regulates this clock and thus the locomotor rhythm in flies, but the mechanism remains unclear. Here, we further confirmed the previous findings and found that knocking down MAN1 in the pacemaker neurons of adult flies is sufficient to lengthen the period of the locomotor rhythm. Molecular analysis revealed that knocking down MAN1 led to reduced mRNA and protein levels of the core clock gene period (per), likely by reducing its transcription. Over-expressing per rescued the long period phenotype caused by MAN1 deficiency whereas per mutation had an epistatic effect on MAN1, indicating that MAN1 sets the pace of the clock by targeting per.
Collapse
Affiliation(s)
- Bei Bu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiwei He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Song
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
38
|
Ri H, Lee J, Sonn JY, Yoo E, Lim C, Choe J. Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors. Mol Cells 2019; 42:301-312. [PMID: 31091556 PMCID: PMC6530642 DOI: 10.14348/molcells.2019.2451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5 ) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB ) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.
Collapse
Affiliation(s)
- Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jongbin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jun Young Sonn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
39
|
Bulthuis N, Spontak KR, Kleeman B, Cavanaugh DJ. Neuronal Activity in Non-LNv Clock Cells Is Required to Produce Free-Running Rest:Activity Rhythms in Drosophila. J Biol Rhythms 2019; 34:249-271. [PMID: 30994046 DOI: 10.1177/0748730419841468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian rhythms in behavior and physiology are produced by central brain clock neurons that can be divided into subpopulations based on molecular and functional characteristics. It has become clear that coherent behavioral rhythms result from the coordinated action of these clock neuron populations, but many questions remain regarding the organizational logic of the clock network. Here we used targeted genetic tools in Drosophila to eliminate either molecular clock function or neuronal activity in discrete clock neuron subsets. We find that neuronal firing is necessary across multiple clock cell populations to produce free-running rhythms of rest and activity. In contrast, such rhythms are much more subtly affected by molecular clock suppression in the same cells. These findings demonstrate that network connectivity can compensate for a lack of molecular oscillations within subsets of clock cells. We further show that small ventrolateral (sLNv) clock neurons, which have been characterized as master pacemakers under free-running conditions, cannot drive rhythms independent of communication between other cells of the clock network. In particular, we pinpoint an essential contribution of the dorsolateral (LNd) clock neurons, and show that manipulations that affect LNd function reduce circadian rhythm strength without affecting molecular cycling in sLNv cells. These results suggest a hierarchical organization in which circadian information is first consolidated among one or more clock cell populations before accessing output pathways that control locomotor activity.
Collapse
|
40
|
Chen KF, Lowe S, Lamaze A, Krätschmer P, Jepson J. Neurocalcin regulates nighttime sleep and arousal in Drosophila. eLife 2019; 8:e38114. [PMID: 30865587 PMCID: PMC6415939 DOI: 10.7554/elife.38114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
Sleep-like states in diverse organisms can be separated into distinct stages, each with a characteristic arousal threshold. However, the molecular pathways underlying different sleep stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during both day and night, with night sleep associated with higher arousal thresholds compared to day sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in promoting sleep during the night but not the day by suppressing nocturnal arousal and hyperactivity. We show that both circadian and light-sensing pathways define the temporal window in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing synaptic release from a dispersed wake-promoting neural network and demonstrate that the mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance the understanding of how sleep stages are genetically defined.
Collapse
Affiliation(s)
- Ko-Fan Chen
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - Simon Lowe
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - Angélique Lamaze
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - Patrick Krätschmer
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| | - James Jepson
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
41
|
Curran JA, Buhl E, Tsaneva-Atanasova K, Hodge JJL. Age-dependent changes in clock neuron structural plasticity and excitability are associated with a decrease in circadian output behavior and sleep. Neurobiol Aging 2019; 77:158-168. [PMID: 30825692 PMCID: PMC6491500 DOI: 10.1016/j.neurobiolaging.2019.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
Aging has significant effects on circadian behavior across a wide variety of species, but the underlying mechanisms are poorly understood. Previous work has demonstrated the age-dependent decline in behavioral output in the model organism Drosophila. We demonstrate that this age-dependent decline in circadian output is combined with changes in daily activity of Drosophila. Aging also has a large impact on sleep behavior, significantly increasing sleep duration while reducing latency. We used electrophysiology to record from large ventral lateral neurons of the Drosophila circadian clock, finding a significant decrease in input resistance with age but no significant changes in spontaneous electrical activity or membrane potential. We propose this change contributes to observed behavioral and sleep changes in light-dark conditions. We also demonstrate a reduction in the daily plasticity of the architecture of the small ventral lateral neurons, likely underlying the reduction in circadian rhythmicity during aging. These results provide further insights into the effect of aging on circadian biology, demonstrating age-related changes in electrical activity in conjunction with the decline in behavioral outputs.
Collapse
Affiliation(s)
- Jack A Curran
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
42
|
Pírez N, Bernabei-Cornejo SG, Fernandez-Acosta M, Duhart JM, Ceriani MF. Contribution of non-circadian neurons to the temporal organization of locomotor activity. Biol Open 2019; 8:bio.039628. [PMID: 30530810 PMCID: PMC6361196 DOI: 10.1242/bio.039628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the fruit fly, Drosophila melanogaster, the daily cycle of rest and activity is a rhythmic behavior that relies on the activity of a small number of neurons. The small ventral lateral neurons (sLNvs) are considered key in the control of locomotor rhythmicity. Previous work from our laboratory has showed that these neurons undergo structural remodeling on their axonal projections on a daily basis. Such remodeling endows sLNvs with the possibility to make synaptic contacts with different partners at different times throughout the day, as has been previously described. By using different genetic tools to alter membrane excitability of the sLNv putative postsynaptic partners, we tested their functional role in the control of locomotor activity. We also used optical imaging to test the functionality of these contacts. We found that these different neuronal groups affect the consolidation of rhythmic activity, suggesting that non-circadian cells are part of the circuit that controls locomotor activity. Our results suggest that new neuronal groups, in addition to the well-characterized clock neurons, contribute to the operations of the circadian network that controls locomotor activity in D. melanogaster. Summary: Here we characterized the impact of different putative postsynaptic partners of the sLNvs on the control of rhythmic locomotor behavior. We found that some of these novel neuronal clusters are relevant for the control of locomotor activity.
Collapse
Affiliation(s)
- Nicolás Pírez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Sofia G Bernabei-Cornejo
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Magdalena Fernandez-Acosta
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - José M Duhart
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| |
Collapse
|
43
|
A Distinct Visual Pathway Mediates High-Intensity Light Adaptation of the Circadian Clock in Drosophila. J Neurosci 2019; 39:1621-1630. [PMID: 30606757 DOI: 10.1523/jneurosci.1497-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
To provide organisms with a fitness advantage, circadian clocks have to react appropriately to changes in their environment. High-intensity (HI) light plays an essential role in the adaptation to hot summer days, which especially endanger insects of desiccation or prey visibility. Here, we show that solely increasing light intensity leads to an increased midday siesta in Drosophila behavior. Interestingly, this change is independent of the fly's circadian photoreceptor cryptochrome and is solely caused by a small visual organ, the Hofbauer-Buchner eyelets. Using receptor knock-downs, immunostaining, and recently developed calcium tools, we show that the eyelets activate key core clock neurons, namely the s-LNvs, at HI. This activation delays the decrease of PERIOD (PER) in the middle of the day and propagates to downstream target clock neurons that prolong the siesta. We show a new pathway for integrating light-intensity information into the clock network, suggesting new network properties and surprising parallels between Drosophila and the mammalian system.SIGNIFICANCE STATEMENT The ability of animals to adapt to their ever-changing environment plays an important role in their fitness. A key player in this adaptation is the circadian clock. For animals to predict the changes of day and night, they must constantly monitor, detect and incorporate changes in the environment. The appropriate incorporation and reaction to high-intensity (HI) light is of special importance for insects because they might suffer from desiccation during hot summer days. We show here that different photoreceptors have specialized functions to integrate low-intensity, medium-intensity, or HI light into the circadian system in Drosophila These results show surprising parallels to mammalian mechanisms, which also use different photoreceptor subtypes to respond to different light intensities.
Collapse
|
44
|
Control of Sleep Onset by Shal/K v4 Channels in Drosophila Circadian Neurons. J Neurosci 2018; 38:9059-9071. [PMID: 30185460 DOI: 10.1523/jneurosci.0777-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Sleep is highly conserved across animal species. Both wake- and sleep-promoting neurons are implicated in the regulation of wake-sleep transition at dusk in Drosophila However, little is known about how they cooperate and whether they act via different mechanisms. Here, we demonstrated that in female Drosophila, sleep onset was specifically delayed by blocking the Shaker cognate L channels [Shal; also known as voltage-gated K+ channel 4 (Kv4)] in wake-promoting cells, including large ventral lateral neurons (l-LNvs) and pars intercerebralis (PI), but not in sleep-promoting dorsal neurons (DN1s). Delayed sleep onset was also observed in males by blocking Kv4 activity in wake-promoting neurons. Electrophysiological recordings show that Kv4 channels contribute A-type currents in LNvs and PI cells, but are much less conspicuous in DN1s. Interestingly, blocking Kv4 in wake-promoting neurons preferentially increased firing rates at dusk ∼ZT13, when the resting membrane potentials and firing rates were at lower levels. Furthermore, pigment-dispersing factor (PDF) is essential for the regulation of sleep onset by Kv4 in l-LNvs, and downregulation of PDF receptor (PDFR) in PI neurons advanced sleep onset, indicating Kv4 controls sleep onset via regulating PDF/PDFR signaling in wake-promoting neurons. We propose that Kv4 acts as a sleep onset controller by suppressing membrane excitability in a clock-dependent manner to balance the wake-sleep transition at dusk. Our results have important implications for the understanding and treatment of sleep disorders such as insomnia.SIGNIFICANCE STATEMENT The mechanisms by which our brains reversibly switch from waking to sleep state remain an unanswered and intriguing question in biological research. In this study, we identified that Shal/Kv4, a well known voltage-gated K+ channel, acts as a controller of wake-sleep transition at dusk in Drosophila circadian neurons. We find that interference of Kv4 function with a dominant-negative form (DNKv4) in subsets of circadian neurons specifically disrupts sleep onset at dusk, although Kv4 itself does not exhibit circadian oscillation. Kv4 preferentially downregulates neuronal firings at ZT9-ZT17, supporting that it plays an essential role in wake-sleep transition at dusk. Our findings may help understand and eventually treat sleep disorders such as insomnia.
Collapse
|
45
|
High-Amplitude Circadian Rhythms in Drosophila Driven by Calcineurin-Mediated Post-translational Control of sarah. Genetics 2018; 209:815-828. [PMID: 29724861 DOI: 10.1534/genetics.118.300808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Post-translational control is a crucial mechanism for circadian timekeeping. Evolutionarily conserved kinases and phosphatases have been implicated in circadian phosphorylation and the degradation of clock-relevant proteins, which sustain high-amplitude rhythms with 24-hr periodicity in animal behaviors and physiology. Here, we report a novel clock function of the heterodimeric Ca2+/calmodulin-dependent phosphatase calcineurin and its regulator sarah (sra) in Drosophila Genomic deletion of the sra locus dampened circadian locomotor activity rhythms in free-running constant dark after entrainment in light-dark cycles. Poor rhythms in sra mutant behaviors were accompanied by lower expression of two oscillating clock proteins, PERIOD (PER) and TIMELESS (TIM), at the post-transcriptional level. RNA interference-mediated sra depletion in circadian pacemaker neurons was sufficient to phenocopy loss-of-function mutation in sra On the other hand, a constitutively active form of the catalytic calcineurin subunit, Pp2B-14DACT, shortened circadian periodicity in locomotor behaviors and phase-advanced PER and TIM rhythms when overexpressed in clock neurons. Heterozygous sra deletion induced behavioral arrhythmicity in Pp2B-14DACT flies, whereas sra overexpression rescued short periods in these animals. Finally, pharmacological inhibition of calcineurin in either wild-type flies or clock-less S2 cells decreased the levels of PER and TIM, likely by facilitating their proteasomal degradation. Taken together, these data suggest that sra negatively regulates calcineurin by cell-autonomously titrating calcineurin-dependent stabilization of PER and TIM proteins, thereby sustaining high-amplitude behavioral rhythms in Drosophila.
Collapse
|
46
|
Mezan S, Feuz JD, Deplancke B, Kadener S. PDF Signaling Is an Integral Part of the Drosophila Circadian Molecular Oscillator. Cell Rep 2017; 17:708-719. [PMID: 27732848 PMCID: PMC5081397 DOI: 10.1016/j.celrep.2016.09.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks generate 24-hr rhythms in physiology and behavior. Despite numerous studies, it is still uncertain how circadian rhythms emerge from their molecular and neural constituents. Here, we demonstrate a tight connection between the molecular and neuronal circadian networks. Using fluorescent transcriptional reporters in a Drosophila ex vivo brain culture system, we identified a reciprocal negative regulation between the master circadian regulator CLK and expression of pdf, the main circadian neuropeptide. We show that PDF feedback is required for maintaining normal oscillation pattern in CLK-driven transcription. Interestingly, we found that CLK and neuronal firing suppresses pdf transcription, likely through a common pathway involving the transcription factors DHR38 and SR, establishing a direct link between electric activity and the circadian system. In sum, our work provides evidence for the existence of an uncharacterized CLK-PDF feedback loop that tightly wraps together the molecular oscillator with the circadian neuronal network in Drosophila. Monitoring circadian transcription ex vivo using fluorescent reporters CLK activation in the LNvs provokes downregulation in CLK activity in LNds and DNs Reciprocal negative regulation of CLK activity and pdf transcription and signaling PDF signaling is required for the normal oscillation pattern in CLK activity
Collapse
Affiliation(s)
- Shaul Mezan
- Biological Chemistry Department, Silberman Institute of Life Sciences, the Hebrew University, Jerusalem 91904, Israel
| | - Jean Daniel Feuz
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, the Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
47
|
Herrero A, Duhart JM, Ceriani MF. Neuronal and Glial Clocks Underlying Structural Remodeling of Pacemaker Neurons in Drosophila. Front Physiol 2017; 8:918. [PMID: 29184510 PMCID: PMC5694478 DOI: 10.3389/fphys.2017.00918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
A number of years ago we reported that ventral Lateral Neurons (LNvs), which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections. This structural plasticity gives rise to changes in the degree of connectivity, which could provide a means of transmitting time of day information. Thus far, work from different laboratories has shown that circadian remodeling of adult projections relies on activity-dependent and -independent mechanisms. In terms of clock- dependent mechanisms, several neuronal types undergoing circadian remodeling hinted to a differential effect of clock genes; while per mutants exhibited poorly developed axonal terminals giving rise to low complexity arbors, tim mutants displayed a characteristic hyper branching phenotype, suggesting these genes could be playing additional roles to those ascribed to core clock function. To shed light onto this possibility we altered clock gene levels through RNAi- mediated downregulation and expression of a dominant negative form exclusively in the adult LNvs. These experiments confirmed that the LNv clock is necessary to drive the remodeling process. We next explored the contribution of glia to the structural plasticity of the small LNvs through acute disruption of their internal clock. Interestingly, impaired glial clocks also abolished circadian structural remodeling, without affecting other clock-controlled outputs. Taken together our data shows that both neuronal and glial clocks are recruited to define the architecture of the LNv projections along the day, thus enabling a precise reconfiguration of the circadian network.
Collapse
Affiliation(s)
| | | | - Maria F. Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
Gunawardhana KL, Hardin PE. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila. Curr Biol 2017; 27:3442-3453.e4. [PMID: 29103936 DOI: 10.1016/j.cub.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLNv) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms.
Collapse
Affiliation(s)
- Kushan L Gunawardhana
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
49
|
Eriksson A, Raczkowska M, Navawongse R, Choudhury D, Stewart JC, Tang YL, Wang Z, Claridge-Chang A. Neuromodulatory circuit effects on Drosophila feeding behaviour and metabolism. Sci Rep 2017; 7:8839. [PMID: 28821829 PMCID: PMC5562903 DOI: 10.1038/s41598-017-08466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/07/2017] [Indexed: 12/02/2022] Open
Abstract
Animals have evolved to maintain homeostasis in a changing external environment by adapting their internal metabolism and feeding behaviour. Metabolism and behaviour are coordinated by neuromodulation; a number of the implicated neuromodulatory systems are homologous between mammals and the vinegar fly, an important neurogenetic model. We investigated whether silencing fly neuromodulatory networks would elicit coordinated changes in feeding, behavioural activity and metabolism. We employed transgenic lines that allowed us to inhibit broad cellular sets of the dopaminergic, serotonergic, octopaminergic, tyraminergic and neuropeptide F systems. The genetically-manipulated animals were assessed for changes in their overt behavioural responses and metabolism by monitoring eleven parameters: activity; climbing ability; individual feeding; group feeding; food discovery; both fed and starved respiration; fed and starved lipid content; and fed/starved body weight. The results from these 55 experiments indicate that individual neuromodulatory system effects on feeding behaviour, motor activity and metabolism are dissociated.
Collapse
Affiliation(s)
- Anders Eriksson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Marlena Raczkowska
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rapeechai Navawongse
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Deepak Choudhury
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 638075, Singapore
| | - James C Stewart
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yi Ling Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Zhiping Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 638075, Singapore
| | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Duke-NUS Medical School, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Physiology, NUS Yong Loo Lin School of Medicine, Singapore, 138673, Singapore.
| |
Collapse
|
50
|
Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster. Genetics 2017; 207:593-607. [PMID: 28801530 DOI: 10.1534/genetics.117.300139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period (per) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model.
Collapse
|