1
|
Jafarinia H, Shi L, Wolfenson H, Carlier A. YAP phosphorylation within integrin adhesions: Insights from a computational model. Biophys J 2024; 123:3658-3668. [PMID: 39233443 PMCID: PMC11560305 DOI: 10.1016/j.bpj.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Mechanical and biochemical cues intricately activate Yes-associated protein (YAP), which is pivotal for the cellular responses to these stimuli. Recent findings reveal an unexplored role of YAP in influencing the apoptotic process. It has been shown that, on soft matrices, YAP is recruited to small adhesions, phosphorylated at Y357, and translocated into the nucleus triggering apoptosis. Interestingly, YAP Y357 phosphorylation is significantly reduced in larger mature focal adhesions on stiff matrices. Building upon these novel insights, we have developed a stochastic model to delve deeper into the complex dynamics of YAP phosphorylation within integrin adhesions. Our findings emphasize several key points: firstly, increasing the cytosolic diffusion rate of YAP correlates with higher levels of phosphorylated YAP (pYAP); secondly, increasing the number of binding sites and distributing them across the membrane surface, mimicking smaller adhesions, leads to higher pYAP levels, particularly at lower diffusion rates. Moreover, we show that the binding and release rate of YAP to adhesions as well as adhesion lifetimes significantly influence the size effect of adhesion-induced YAP phosphorylation. The results highlight the complex and dynamic interplay between adhesion lifetime, the rate of pYAP unbinding from adhesions, and dephosphorylation rates, collectively shaping overall pYAP levels. In summary, our work advances the understanding of YAP mechanotransduction and opens avenues for experimental validation.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Robitaille MC, Kim C, Christodoulides JA, Calhoun PJ, Kang W, Liu J, Byers JM, Raphael MP. Topographical depth reveals contact guidance mechanism distinct from focal adhesion confinement. Cytoskeleton (Hoboken) 2024; 81:238-248. [PMID: 38226738 DOI: 10.1002/cm.21810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 01/17/2024]
Abstract
Cellular response to the topography of their environment, known as contact guidance, is a crucial aspect to many biological processes yet remains poorly understood. A prevailing model to describe cellular contact guidance involves the lateral confinement of focal adhesions (FA) by topography as an underlying mechanism governing how cells can respond to topographical cues. However, it is not clear how this model is consistent with the well-documented depth-dependent contact guidance responses in the literature. To investigate this model, we fabricated a set of contact guidance chips with lateral dimensions capable of confining focal adhesions and relaxing that confinement at various depths. We find at the shallowest depth of 330 nm, the model of focal adhesion confinement is consistent with our observations. However, the cellular response at depths of 725 and 1000 nm is inadequately explained by this model. Instead, we observe a distinct reorganization of F-actin at greater depths in which topographically induced cell membrane deformation alters the structure of the cytoskeleton. These results are consistent with an alternative curvature-hypothesis to explain cellular response to topographical cues. Together, these results indicate a confluence of two molecular mechanisms operating at increased induced membrane curvature that govern how cells sense and respond to topography.
Collapse
Affiliation(s)
| | - Chunghwan Kim
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | | | | | - Wonmo Kang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Jinny Liu
- U.S. Naval Research Laboratory, Washington, DC, USA
| | - Jeff M Byers
- U.S. Naval Research Laboratory, Washington, DC, USA
| | | |
Collapse
|
3
|
Moody JC, Qadota H, Benian GM. The RhoGAP RRC-1 is required for the assembly or stability of integrin adhesion complexes and is a member of the PIX pathway in muscle. Mol Biol Cell 2024; 35:ar58. [PMID: 38446619 PMCID: PMC11064667 DOI: 10.1091/mbc.e23-03-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
GTPases cycle between active GTP bound and inactive GDP bound forms. Exchange of GDP for GTP is catalyzed by guanine nucleotide exchange factors (GEFs). GTPase activating proteins (GAPs) accelerate GTP hydrolysis, to promote the GDP bound form. We reported that the RacGEF, PIX-1, is required for assembly of integrin adhesion complexes (IAC) in striated muscle of Caenorhabditis elegans. In C. elegans, IACs are found at the muscle cell boundaries (MCBs), and bases of sarcomeric M-lines and dense bodies (Z-disks). Screening C. elegans mutants in proteins containing RhoGAP domains revealed that loss of function of rrc-1 results in loss of IAC components at MCBs, disorganization of M-lines and dense bodies, and reduced whole animal locomotion. RRC-1 localizes to MCBs, like PIX-1. The localization of RRC-1 at MCBs requires PIX-1, and the localization of PIX-1 requires RRC-1. Loss of function of CED-10 (Rac) shows lack of PIX-1 and RRC-1 at MCBs. RRC-1 exists in a complex with PIX-1. Transgenic rescue of rrc-1 was achieved with wild type RRC-1 but not RRC-1 with a missense mutation in a highly conserved residue of the RhoGAP domain. Our results are consistent with RRC-1 being a RhoGAP for the PIX pathway in muscle.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
4
|
Peng Y, Qu R, Yang Y, Fan T, Sun B, Khan AU, Wu S, Liu W, Zhu J, Chen J, Li X, Dai J, Ouyang J. Regulation of the integrin αVβ3- actin filaments axis in early osteogenic differentiation of human mesenchymal stem cells under cyclic tensile stress. Cell Commun Signal 2023; 21:308. [PMID: 37904190 PMCID: PMC10614380 DOI: 10.1186/s12964-022-01027-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/24/2022] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVβ3. METHODS We inhibited the function of integrin αVβ3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, β-actin, integrin αVβ3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization. RESULTS Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVβ3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2. CONCLUSIONS Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVβ3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.
Collapse
Affiliation(s)
- Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqing Liu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junxin Chen
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Xiaoqing Li
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Mair DB, Elmasli C, Kim JH, Barreto AD, Ding S, Gu L, Weinberg SH, Kim T, Kim DH, Li R. The Arp2/3 complex enhances cell migration on elastic substrates. Mol Biol Cell 2023; 34:ar67. [PMID: 36989030 PMCID: PMC10295479 DOI: 10.1091/mbc.e22-06-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cell migration on soft surfaces occurs in both physiological and pathological processes such as corticogenesis during embryonic development and cancer invasion and metastasis. The Arp2/3 complex in neural progenitor cells was previously demonstrated to be necessary for cell migration on soft elastic substrate but not on stiff surfaces, but the underlying mechanism was unclear. Here, we integrate computational and experimental approaches to elucidate how the Arp2/3 complex enables cell migration on soft surfaces. We found that lamellipodia comprised of a branched actin network nucleated by the Arp2/3 complex distribute forces over a wider area, thus decreasing stress in the substrate. Additionally, we found that interactions between parallel focal adhesions within lamellipodia prolong cell-substrate interactions by compensating for the failure of neighboring adhesions. Together with decreased substrate stress, this leads to the observed improvements in migratory ability on soft substrates in cells utilizing lamellipodia-dependent mesenchymal migration when compared with filopodia-based migration. These results show that the Arp2/3 complex-dependent lamellipodia provide multiple distinct mechanical advantages to gliomas migrating on soft 2D substrates, which can contribute to their invasive potential.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ceylin Elmasli
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218
| | - June Hyung Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Amanda D. Barreto
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering, Florida International University College of Engineering and Computing, Miami, FL 33199
| | - Supeng Ding
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205
| | - Seth H. Weinberg
- Department of Biomedical Engineering, The Ohio State University, Wexner Medical Center, Columbus, OH 43210
- Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218
- Mechanobiology Institute and Department of Biological Science, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
6
|
Wu X, Peng W, Liu G, Wang S, Duan B, Yu J, Yang H, Huang C. Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration. Adv Healthc Mater 2023; 12:e2202611. [PMID: 36640447 DOI: 10.1002/adhm.202202611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Dentin is a natural extracellular matrix, but its availability in bone grafting and tissue engineering applications is underestimated due to a lack of proper treatment. In this study, the concept of extrafibrillar demineralization is introduced into the construction of dentin-derived biomaterials for bone regeneration for the first time. Calcium chelating agents with large molecular weights are used to selectively remove the extrafibrillar apatite minerals without disturbing the intrafibrillar minerals within dentin collagen, resulting in the formation of an extrafibrillarly demineralized dentin matrix (EDM). EDM with distinctive nanotopography and bone-like mechanical properties is found to significantly promote cell adhesion, migration, and osteogenic differentiation in vitro while enhancing in vivo bone healing of rat calvarial defects. The outstanding osteogenic performance of EDM is further confirmed to be related to the activation of the focal adhesion-cytoskeleton-nucleus mechanotransduction axis. Overall, this study shows that extrafibrillar demineralization of dentin has great potential to produce hierarchical collagen-based scaffolds for bone regeneration, and this facile top-down fabrication method brings about new ideas for the biomedical application of naturally derived bioactive materials.
Collapse
Affiliation(s)
- Xiaoyi Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Wenan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Gufeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Shilei Wang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
The explorations of dynamic interactions of paxillin at the focal adhesions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140825. [PMID: 35926716 DOI: 10.1016/j.bbapap.2022.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Paxillin is one of the most important adapters in integrin-mediated adhesions that performs numerous crucial functions relying on its dynamic interactions. Its structural behavior serves different purposes, providing a base for several activities. The various domains of paxillin display different functions in the whole process of cell movements and have a significant role in cell adhesion, migration, signal transmission, and protein-protein interactions. On the other hand, some paxillin-associated proteins provide a unique spatiotemporal mechanism for regulating its dynamic characteristics in the tissue homeostasis and make it a more complex and decisive protein at the focal adhesions. This review briefly describes the structural adaptations and molecular mechanisms of recruitment of paxillin into adhesions, explains paxillin's binding dynamics and impact on adhesion stability and turnover, and reveals a variety of paxillin-associated regulatory mechanisms and how paxillin is embedded into the signaling networks.
Collapse
|
8
|
Chandra A, Butler MT, Bear JE, Haugh JM. Modeling cell protrusion predicts how myosin II and actin turnover affect adhesion-based signaling. Biophys J 2022; 121:102-118. [PMID: 34861242 PMCID: PMC8758409 DOI: 10.1016/j.bpj.2021.11.2889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Orchestration of cell migration is essential for development, tissue regeneration, and the immune response. This dynamic process integrates adhesion, signaling, and cytoskeletal subprocesses across spatial and temporal scales. In mesenchymal cells, adhesion complexes bound to extracellular matrix mediate both biochemical signal transduction and physical interaction with the F-actin cytoskeleton. Here, we present a mathematical model that offers insight into both aspects, considering spatiotemporal dynamics of nascent adhesions, active signaling molecules, mechanical clutching, actin treadmilling, and nonmuscle myosin II contractility. At the core of the model is a positive feedback loop, whereby adhesion-based signaling promotes generation of barbed ends at, and protrusion of, the cell's leading edge, which in turn promotes formation and stabilization of nascent adhesions. The model predicts a switch-like transition and optimality of membrane protrusion, determined by the balance of actin polymerization and retrograde flow, with respect to extracellular matrix density. The model, together with new experimental measurements, explains how protrusion can be modulated by mechanical effects (nonmuscle myosin II contractility and adhesive bond stiffness) and F-actin turnover.
Collapse
Affiliation(s)
- Ankit Chandra
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
9
|
Hu X, Zhang Y. Developing biomaterials to mediate the spatial distribution of integrins. BIOPHYSICS REVIEWS 2021; 2:041302. [PMID: 38504718 PMCID: PMC10903404 DOI: 10.1063/5.0055746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 03/21/2024]
Abstract
Innovation in material design to regulate cell behavior and function is one of the primary tasks in materials science. Integrins, a family of cell surface-adhesion receptors that mechanically connect the extracellular matrix (ECM) to the intracellular cytoskeleton, have long served as primary targets for the design of biomaterials because their activity is not only critical to a wide range of cell and tissue functions but also subject to very tight and complex regulations from the outside environment. To review the recent progress of material innovations targeting the spatial distribution of integrins, we first introduce the interaction mechanisms between cells and the ECM by highlighting integrin-based cell adhesions, describing how integrins respond to environmental stimuli, including variations in ligand presentation, mechanical cues, and topographical variations. Then, we overview the current development of soft materials in guiding cell behaviors and functions via spatial regulation of integrins. Finally, we discuss the current limitations of these technologies and the advances that may be achieved in the future. Undoubtedly, synthetic soft materials that mediate the spatial distribution of integrins play an important role in biomaterial innovations for advancing biomedical applications and addressing fundamental biological questions.
Collapse
Affiliation(s)
- Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
10
|
Alday-Parejo B, Ghimire K, Coquoz O, Albisetti GW, Tamò L, Zaric J, Stalin J, Rüegg C. MAGI1 localizes to mature focal adhesion and modulates endothelial cell adhesion, migration and angiogenesis. Cell Adh Migr 2021; 15:126-139. [PMID: 33823745 PMCID: PMC8115569 DOI: 10.1080/19336918.2021.1911472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MAGI1 is an intracellular adaptor protein that stabilizes cell junctions and regulates epithelial and endothelial integrity. Here, we report that that in endothelial cells MAGI1 colocalizes with paxillin, β3-integrin, talin 1, tensin 3 and α-4-actinin at mature focal adhesions and actin stress fibers, and regulates their dynamics. Downregulation of MAGI1 reduces focal adhesion formation and maturation, cell spreading, actin stress fiber formation and RhoA/Rac1 activation. MAGI1 silencing increases phosphorylation of paxillin at Y118, an indicator of focal adhesion turnover. MAGI1 promotes integrin-dependent endothelial cells adhesion to ECM, reduces invasion and tubulogenesisin vitro and suppresses angiogenesis in vivo. Our results identify MAGI1 as anovel component of focal adhesions, and regulator of focal adhesion dynamics, cell adhesion, invasion and angiogenesis.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kedar Ghimire
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Oriana Coquoz
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gioele W Albisetti
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Institute of Pharmacology and Toxicology, Section of Neuropharmacology, University of Zürich, Zürich, Switzerland
| | - Luca Tamò
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Jelena Zaric
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Jimmy Stalin
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Henning Stumpf B, Ambriović-Ristov A, Radenovic A, Smith AS. Recent Advances and Prospects in the Research of Nascent Adhesions. Front Physiol 2020; 11:574371. [PMID: 33343382 PMCID: PMC7746844 DOI: 10.3389/fphys.2020.574371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Nascent adhesions are submicron transient structures promoting the early adhesion of cells to the extracellular matrix. Nascent adhesions typically consist of several tens of integrins, and serve as platforms for the recruitment and activation of proteins to build mature focal adhesions. They are also associated with early stage signaling and the mechanoresponse. Despite their crucial role in sampling the local extracellular matrix, very little is known about the mechanism of their formation. Consequently, there is a strong scientific activity focused on elucidating the physical and biochemical foundation of their development and function. Precisely the results of this effort will be summarized in this article.
Collapse
Affiliation(s)
- Bernd Henning Stumpf
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
12
|
Moody JC, Qadota H, Reedy AR, Okafor CD, Shanmugan N, Matsunaga Y, Christian CJ, Ortlund EA, Benian GM. The Rho-GEF PIX-1 directs assembly or stability of lateral attachment structures between muscle cells. Nat Commun 2020; 11:5010. [PMID: 33024114 PMCID: PMC7538588 DOI: 10.1038/s41467-020-18852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/15/2020] [Indexed: 01/11/2023] Open
Abstract
PIX proteins are guanine nucleotide exchange factors (GEFs) that activate Rac and Cdc42, and are known to have numerous functions in various cell types. Here, we show that a PIX protein has an important function in muscle. From a genetic screen in C. elegans, we found that pix-1 is required for the assembly of integrin adhesion complexes (IACs) at borders between muscle cells, and is required for locomotion of the animal. A pix-1 null mutant has a reduced level of activated Rac in muscle. PIX-1 localizes to IACs at muscle cell boundaries, M-lines and dense bodies. Mutations in genes encoding proteins at known steps of the PIX signaling pathway show defects at muscle cell boundaries. A missense mutation in a highly conserved residue in the RacGEF domain results in normal levels of PIX-1 protein, but a reduced level of activated Rac in muscle, and abnormal IACs at muscle cell boundaries.
Collapse
Affiliation(s)
- Jasmine C Moody
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - April R Reedy
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - C Denise Okafor
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Niveda Shanmugan
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | | | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Rohena C, Kalogriopoulos N, Rajapakse N, Roy S, Lopez-Sanchez I, Ablack J, Sahoo D, Ghosh P. GIV•Kindlin Interaction Is Required for Kindlin-Mediated Integrin Recognition and Activation. iScience 2020; 23:101209. [PMID: 32535026 PMCID: PMC7300163 DOI: 10.1016/j.isci.2020.101209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 11/16/2022] Open
Abstract
Cells perceive and respond to the extracellular matrix via integrin receptors; their dysregulation has been implicated in inflammation and cancer metastasis. Here we show that a guanine nucleotide-exchange modulator of trimeric-GTPase Gαi, GIV (a.k.a Girdin), directly binds the integrin adaptor Kindlin-2. A non-canonical short linear motif within the C terminus of GIV binds Kindlin-2-FERM3 domain at a site that is distinct from the binding site for the canonical NPxY motif on the -integrin tail. Binding of GIV to Kindlin-2 allosterically enhances Kindlin-2's affinity for β1-integrin. Consequently, integrin activation and clustering are maximized, which augments cell adhesion, spreading, and invasion. Findings elucidate how the GIV•Kindlin-2 complex has a 2-fold impact: it allosterically synergizes integrin activation and enables β1-integrins to indirectly access and modulate trimeric GTPases via the complex. Furthermore, Cox proportional-hazard models on tumor transcriptomics provide trans-scale evidence of synergistic interactions between GIV•Kindlin-2•β1-integrin on time to progression to metastasis. GIV and Kindlin (K2), two integrin adaptors that promote metastasis, bind each other Binding of GIV or integrin to K2 allosterically enhances GIV•K2•integrin complexes Binding is required for the maximal recruitment of GIV and K2 to active integrins Binding facilitates integrin clustering, activation, tumor cell adhesion, invasion
Collapse
Affiliation(s)
- Cristina Rohena
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA
| | - Nicholas Kalogriopoulos
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA
| | - Jailal Ablack
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, CA 92093, USA; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, CA 92093, USA; Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
14
|
Zheng H, Tian Y, Gao Q, Yu Y, Xia X, Feng Z, Dong F, Wu X, Sui L. Hierarchical Micro-Nano Topography Promotes Cell Adhesion and Osteogenic Differentiation via Integrin α2-PI3K-AKT Signaling Axis. Front Bioeng Biotechnol 2020; 8:463. [PMID: 32509748 PMCID: PMC7248375 DOI: 10.3389/fbioe.2020.00463] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Surface topography dictates important aspects of cell biological behaviors. In our study, hierarchical micro-nano topography (SLM-AHT) with micro-scale grooves and nano-scale pores was fabricated and compared with smooth topography (S) and irregular micro-scale topography (SLA) surfaces to investigate mechanism involved in cell-surface interactions. Integrin α2 had a higher expression level on SLM-AHT surface compared with S and SLA surfaces, and the expression levels of osteogenic markers icluding Runx2, Col1a1, and Ocn were concomitantly upregulated on SLM-AHT surface. Moreover, formation of mature focal adhesions were significantly enhanced in SLM-AHT group. Noticablely, silencing integrin α2 could wipe out the difference of osteogenic gene expression among surfaces with different topography, indicating a crucial role of integrin α2 in topography induced osteogenic differentiation. In addition, PI3K-AKT signaling was proved to be regulated by integrin α2 and consequently participate in this process. Taken together, our findings illustrated that integrin α2-PI3K-AKT signaling axis plays a key role in hierarchical micro-nano topography promoting cell adhesion and osteogenic differentiation.
Collapse
Affiliation(s)
- Huimin Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yujuan Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qian Gao
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yingjie Yu
- Health Science Center, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyou Xia
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhipeng Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Feng Dong
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
16
|
MacKay L, Khadra A. The bioenergetics of integrin-based adhesion, from single molecule dynamics to stability of macromolecular complexes. Comput Struct Biotechnol J 2020; 18:393-416. [PMID: 32128069 PMCID: PMC7044673 DOI: 10.1016/j.csbj.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
The forces actively generated by motile cells must be transmitted to their environment in a spatiotemporally regulated manner, in order to produce directional cellular motion. This task is accomplished through integrin-based adhesions, large macromolecular complexes that link the actin-cytoskelton inside the cell to its external environment. Despite their relatively large size, adhesions exhibit rapid dynamics, switching between assembly and disassembly in response to chemical and mechanical cues exerted by cytoplasmic biochemical signals, and intracellular/extracellular forces, respectively. While in material science, force typically disrupts adhesive contact, in this biological system, force has a more nuanced effect, capable of causing assembly or disassembly. This initially puzzled experimentalists and theorists alike, but investigation into the mechanisms regulating adhesion dynamics have progressively elucidated the origin of these phenomena. This review provides an overview of recent studies focused on the theoretical understanding of adhesion assembly and disassembly as well as the experimental studies that motivated them. We first concentrate on the kinetics of integrin receptors, which exhibit a complex response to force, and then investigate how this response manifests itself in macromolecular adhesion complexes. We then turn our attention to studies of adhesion plaque dynamics that link integrins to the actin-cytoskeleton, and explain how force can influence the assembly/disassembly of these macromolecular structure. Subsequently, we analyze the effect of force on integrins populations across lengthscales larger than single adhesions. Finally, we cover some theoretical studies that have considered both integrins and the adhesion plaque and discuss some potential future avenues of research.
Collapse
Affiliation(s)
- Laurent MacKay
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
18
|
Bauer TJ, Gombocz E, Krüger M, Sahana J, Corydon TJ, Bauer J, Infanger M, Grimm D. Augmenting cancer cell proteomics with cellular images - A semantic approach to understand focal adhesion. J Biomed Inform 2019; 100:103320. [PMID: 31669288 DOI: 10.1016/j.jbi.2019.103320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/13/2023]
Abstract
If monolayers of cancer cells are exposed to microgravity, some of the cells cease adhering to the bottom of a culture flask and join three-dimensional aggregates floating in the culture medium. Searching reasons for this change in phenotype, we performed proteome analyses and learnt that accumulation and posttranslational modification of proteins involved in cell-matrix and cell-cell adhesion are affected. To further investigate these proteins, we developed a methodology to find histological images about focal adhesion complex (FA) proteins. Selecting proteins expressed by human FTC-133 and MCF-7 cancer cells and known to be incorporated in FA, we transformed the experimental data to RDF to establish a core semantic knowledgebase. Applying iterative SPARQL queries to Linked Open Databases, we augmented these data with additional functional, transformation- and aggregation-related relationships. Using reasoning, we retrieved publications with images about the spatial arrangement of proteins incorporated in FA. Contextualizing those images enabled us to gain insights about FA of cells changing their site of growth, and to independently validate our experimental results. This new way to link experimental proteome data to biomedical knowledge from various sources via searching images may generally be applied in science when images are a tool of knowledge dissemination.
Collapse
Affiliation(s)
- Thomas J Bauer
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Erich Gombocz
- Melissa Informatics, 2550 Ninth Street, Suite 114, Berkeley, CA, USA.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany; Department of Biomedicine, Aarhus University, Hoeg-Guldbergsgade 10, DK-8000 Aarhus C, Denmark; Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University-Magdeburg, D-39120 Magdeburg, Germany.
| |
Collapse
|
19
|
Shannon MJ, Pineau J, Griffié J, Aaron J, Peel T, Williamson DJ, Zamoyska R, Cope AP, Cornish GH, Owen DM. Differential nanoscale organisation of LFA-1 modulates T-cell migration. J Cell Sci 2019; 133:jcs.232991. [PMID: 31471459 PMCID: PMC7614863 DOI: 10.1242/jcs.232991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022] Open
Abstract
Effector T-cells rely on integrins to drive adhesion and migration to facilitate their immune function. The heterodimeric transmembrane integrin LFA-1 (αLβ2 integrin) regulates adhesion and migration of effector T-cells through linkage of the extracellular matrix with the intracellular actin treadmill machinery. Here, we quantified the velocity and direction of F-actin flow in migrating T-cells alongside single-molecule localisation of transmembrane and intracellular LFA-1. Results showed that actin retrograde flow positively correlated and immobile actin negatively correlated with T-cell velocity. Plasma membrane-localised LFA-1 forms unique nano-clustering patterns in the leading edge, compared to the mid-focal zone, of migrating T-cells. Deleting the cytosolic phosphatase PTPN22, loss-of-function mutations of which have been linked to autoimmune disease, increased T-cell velocity, and leading-edge co-clustering of pY397 FAK, pY416 Src family kinases and LFA-1. These data suggest that differential nanoclustering patterns of LFA-1 in migrating T-cells may instruct intracellular signalling. Our data presents a paradigm where T-cells modulate the nanoscale organisation of adhesion and signalling molecules to fine tune their migration speed, with implications for the regulation of immune and inflammatory responses.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Michael J Shannon
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - Judith Pineau
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - Juliette Griffié
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Tamlyn Peel
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbiological Sciences, King's College London, London SE1 1UL, UK
| | - David J Williamson
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - Rose Zamoyska
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbiological Sciences, King's College London, London SE1 1UL, UK
| | - Georgina H Cornish
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbiological Sciences, King's College London, London SE1 1UL, UK
| | - Dylan M Owen
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK .,Institute of Immunology and Immunotherapy and Department of Mathematics and Centre for Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TQ, UK
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Osteocytes are the main mechanosensitive cells in bone. Integrin-based adhesions have been shown to facilitate mechanotransduction, and therefore play an important role in load-induced bone formation. This review outlines the role of integrins in osteocyte function (cell adhesion, signalling, and mechanotransduction) and possible role in disease. RECENT FINDINGS Both β1 and β3 integrins subunits have been shown to be required for osteocyte mechanotransduction. Antagonism of these integrin subunits in osteocytes resulted in impaired responses to fluid shear stress. Various disease states (osteoporosis, osteoarthritis, bone metastases) have been shown to result in altered integrin expression and function. Osteocyte integrins are required for normal cell function, with dysregulation of integrins seen in disease. Understanding the mechanism of faulty integrins in disease may aid in the creation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ivor P Geoghegan
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - David A Hoey
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland
| | - Laoise M McNamara
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
21
|
Afewerki T, Ahmed S, Warren D. Emerging regulators of vascular smooth muscle cell migration. J Muscle Res Cell Motil 2019; 40:185-196. [PMID: 31254136 PMCID: PMC6726670 DOI: 10.1007/s10974-019-09531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall and normally adopt a quiescent, contractile phenotype. VSMC migration is tightly controlled, however, disease associated changes in the soluble and insoluble environment promote VSMC migration. Classically, studies investigating VSMC migration have described the influence of soluble factors. Emerging data has highlighted the importance of insoluble factors, including extracellular matrix stiffness and porosity. In this review, we will recap on the important signalling pathways that regulate VSMC migration and reflect on the potential importance of emerging regulators of VSMC function.
Collapse
Affiliation(s)
- TecLino Afewerki
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
22
|
Qin Y, Chen K, Gu W, Dong X, Lei R, Chang Y, Bai X, Xia S, Zeng L, Zhang J, Ma S, Li J, Li S, Xing G. Small size fullerenol nanoparticles suppress lung metastasis of breast cancer cell by disrupting actin dynamics. J Nanobiotechnology 2018; 16:54. [PMID: 29935539 PMCID: PMC6015447 DOI: 10.1186/s12951-018-0380-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Tumor metastasis is the primary cause of mortality in cancer patients. Migratory breast cancer cells in lymphatic and blood vessels seek new sites and form metastatic colonies in the lung and bone, and then these cancer cells often wreak considerable havoc. With advances in nanotechnology, nanomaterials and nanotechnologies are widely applied in tumor therapy. In this paper, small size fullerenol nanoparticles, which are separated by isoelectric focusing electrophoresis (IFE) for discrepancy of isoelectric point (pI), are used in the study of tumor metastasis. RESULTS In this study, the commendable inhibition of tumor metastasis was uncovered by intravenous injection of purified fullerenol fraction with special surface charge and functional groups, which was separated by IFE for discrepancy of pI. By investigating the actin dynamics in several cancer cell lines, we found these small size fullerenol nanoparticles disturbed actin dynamics. Young's modulus detection and cell migration assays revealed that fullerenol lowered stiffness and restrained migration of breast cancer cells. Filopodia, the main supporting structures of actin bundles, are important for cell motility and adhesion. Scanning electron microscopy showed that fullerenol reduced the number and length of filopodia. Simultaneously, the inhibition of integrin to form clusters on filopodias, which was likely induced by reorganizing of actin cytoskeleton, impacted cancer cell adhesion and motility. CONCLUSIONS With intravenous injection of these fullerenol nanoparticles, tumor metastasis is well inhibited in vivo. The underlying mechanism most likely to be attributed to the effect of fullerenol nanoparticles on disturbing actin dynamics. With the disordered actin fiber, cell function is varied, including decreased cell stiffness, reduced filopodia formation, and inactivated integrin.
Collapse
Affiliation(s)
- Yanxia Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Weihong Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Ruihong Lei
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Xue Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Shibo Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Li Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Sihan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
23
|
Sun M, Zaman MH. Modeling, signaling and cytoskeleton dynamics: integrated modeling-experimental frameworks in cell migration. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:10.1002/wsbm.1365. [PMID: 27863122 PMCID: PMC5338640 DOI: 10.1002/wsbm.1365] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
Cell migration is a complex and multistep process involved in homeostasis maintenance, morphogenesis, and disease development, such as cancer metastasis. Modeling cell migration and the relevant cytoskeleton dynamics have profound implications for studying fundamental development and disease diagnosis. This review focuses on some recent models of both cell migration and migration-related cytoskeleton dynamics, addressing issues such as the difference between amoeboid and mesenchymal migration modes, and between single-cell migration and collective cell migration. The review also highlights the computational integration among variable external cues, especially the biochemical and mechanical signaling that affects cell migration. Finally, we aim to identify the gaps in our current knowledge and potential strategies to develop integrated modeling-experimental frameworks for multiscale behavior integrating gene expression, cell signaling, mechanics, and multicellular dynamics. WIREs Syst Biol Med 2017, 9:e1365. doi: 10.1002/wsbm.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute
| |
Collapse
|