1
|
Biondi G, McCormick G, Fernandez MP. The Drosophila circadian clock gene cycle controls the development of clock neurons. PLoS Genet 2024; 20:e1011441. [PMID: 39432537 PMCID: PMC11527286 DOI: 10.1371/journal.pgen.1011441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/31/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Daily behavioral and physiological rhythms are controlled by the brain's circadian timekeeping system, a synchronized network of neurons that maintains endogenous molecular oscillations. These oscillations are based on transcriptional feedback loops of clock genes, which in Drosophila include the transcriptional activators Clock (Clk) and cycle (cyc). While the mechanisms underlying this molecular clock are very well characterized, the roles that the core clock genes play in neuronal physiology and development are much less understood. The Drosophila timekeeping center is composed of ~150 clock neurons, among which the four small ventral lateral neurons (sLNvs) are the most dominant pacemakers under constant conditions. Here, we show that downregulating the clock gene cyc specifically in the Pdf-expressing neurons leads to decreased fasciculation both in larval and adult brains. This effect is due to a developmental role of cyc, as both knocking down cyc or expressing a dominant negative form of cyc exclusively during development lead to defasciculation phenotypes in adult clock neurons. Clk downregulation also leads to developmental effects on sLNv morphology. Our results reveal a non-circadian role for cyc, shedding light on the additional functions of circadian clock genes in the development of the nervous system.
Collapse
Affiliation(s)
- Grace Biondi
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Gina McCormick
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Maria P. Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Iyer AR, Scholz-Carlson E, Bell E, Biondi G, Richhariya S, Fernandez MP. The Circadian Neuropeptide PDF has Sexually Dimorphic Effects on Activity Rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578273. [PMID: 38352594 PMCID: PMC10862788 DOI: 10.1101/2024.01.31.578273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The circadian system regulates the timing of multiple molecular, physiological, metabolic, and behavioral phenomena. In Drosophila as in other species, most of the research on how the timekeeping system in the brain controls timing of behavioral outputs has been conducted in males, or sex was not included as a biological variable. The main circadian pacemaker neurons in Drosophila release the neuropeptide Pigment Dispersing Factor (PDF), which functions as a key synchronizing factor in the network with complex effects on other clock neurons. Lack of Pdf or its receptor, PdfR, results in most flies displaying arrhythmicity in activity-rest cycles under constant conditions. However, our results show that female circadian rhythms are less affected by mutations in both Pdf and PdfR. Crispr-Cas9 mutagenesis of Pdf specifically in the ventral lateral neurons (LNvs) also has a greater effect on male rhythms. We tested the influence of the M-cells over the circadian network and show that speeding up the molecular clock specifically in the M-cells leads to sexually dimorphic phenotypes, with a more pronounced effect on male rhythmic behavior. Our results suggest that the female circadian system is more resilient to manipulations of the PDF pathway and that circadian timekeeping is more distributed across the clock neuron network in females.
Collapse
|
3
|
Neitz AF, Carter BM, Ceriani MF, Ellisman MH, de la Iglesia HO. Suprachiasmatic nucleus VIPergic fibers show a circadian rhythm of expansion and retraction. Curr Biol 2024; 34:4056-4061.e2. [PMID: 39127047 PMCID: PMC11387125 DOI: 10.1016/j.cub.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
In animals, overt circadian rhythms of physiology and behavior are centrally regulated by a circadian clock located in specific brain regions. In the fruit fly Drosophila and in mammals, these clocks rely on single-cell oscillators, but critical for their function as central circadian pacemakers are network properties that change dynamically throughout the circadian cycle as well as in response to environmental stimuli.1,2,3 In the fly, this plasticity involves circadian rhythms of expansion and retraction of clock neuron fibers.4,5,6,7,8,9,10,11,12,13,14 Whether these drastic structural changes are a universal property of central neuronal pacemakers is unknown. To address this question, we studied neurons of the mouse suprachiasmatic nucleus (SCN) that express vasoactive intestinal polypeptide (VIP), which are critical for the SCN to function as a central circadian pacemaker. By targeting the expression of the fluorescent protein tdTomato to these neurons and using tissue clearing techniques to visualize all SCN VIPergic neurons and their fibers, we show that, similar to clock neurons in the fly, VIPergic fibers undergo a daily rhythm of expansion and retraction, with maximal branching during the day. This rhythm is circadian, as it persists under constant environmental conditions and is present in both males and females. We propose that circadian structural remodeling of clock neurons represents a key feature of central circadian pacemakers that is likely critical to regulate network properties, the response to environmental stimuli, and the regulation of circadian outputs.
Collapse
Affiliation(s)
- Alexandra F Neitz
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Molecular & Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Bryn M Carter
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | - Mark H Ellisman
- National Center for Molecular Imaging Research, Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0608, USA
| | - Horacio O de la Iglesia
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Molecular & Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Hamanaka Y, Hasebe M, Shiga S. Neural mechanism of circadian clock-based photoperiodism in insects and snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:601-625. [PMID: 37596422 PMCID: PMC11226556 DOI: 10.1007/s00359-023-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
The photoperiodic mechanism distinguishes between long and short days, and the circadian clock system is involved in this process. Although the necessity of circadian clock genes for photoperiodic responses has been demonstrated in many species, how the clock system contributes to photoperiodic mechanisms remains unclear. A comprehensive study, including the functional analysis of relevant genes and physiology of their expressing cells, is necessary to understand the molecular and cellular mechanisms. Since Drosophila melanogaster exhibits a shallow photoperiodism, photoperiodic mechanisms have been studied in non-model species, starting with brain microsurgery and neuroanatomy, followed by genetic manipulation in some insects. Here, we review and discuss the involvement of the circadian clock in photoperiodic mechanisms in terms of neural networks in insects. We also review recent advances in the neural mechanisms underlying photoperiodic responses in insects and snails, and additionally circadian clock systems in snails, whose involvement in photoperiodism has hardly been addressed yet. Brain neurosecretory cells, insulin-like peptide/diuretic hormone44-expressing pars intercerebralis neurones in the bean bug Riptortus pedestris and caudo-dorsal cell hormone-expressing caudo-dorsal cells in the snail Lymnaea stagnalis, both promote egg laying under long days, and their electrical excitability is attenuated under short and medium days, which reduces oviposition. The photoperiodic responses of the pars intercerebralis neurones are mediated by glutamate under the control of the clock gene period. Thus, we are now able to assess the photoperiodic response by neurosecretory cell activity to investigate the upstream mechanisms, that is, the photoperiodic clock and counter.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
5
|
Lymer S, Patel K, Lennon J, Blau J. Circadian clock neurons use activity-regulated gene expression for structural plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595887. [PMID: 38826237 PMCID: PMC11142243 DOI: 10.1101/2024.05.25.595887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Drosophila s-LNv circadian pacemaker neurons show dramatic structural plasticity, with their projections expanded at dawn and then retracted by dusk. This predictable plasticity makes s-LNvs ideal to study molecular mechanisms of plasticity. Although s-LNv plasticity is controlled by their molecular clock, changing s-LNv excitability also regulates plasticity. Here, we tested the idea that s-LNvs use activity-regulated genes to control plasticity. We found that inducing expression of either of the activity-regulated transcription factors Hr38 or Sr (orthologs of mammalian Nr4a1 and Egr1) is sufficient to rapidly expand s-LNv projections. Conversely, transiently knocking down expression of either Hr38 or sr blocks expansion of s-LNv projections at dawn. We show that Hr38 rapidly induces transcription of sif, which encodes a Rac1 GEF required for s-LNv plasticity rhythms. We conclude that the s-LNv molecular clock controls s-LNv excitability, which couples to an activity-regulated gene expression program to control s-LNv plasticity.
Collapse
|
6
|
Ehrlich A, Xu AA, Luminari S, Kidd S, Treiber CD, Russo J, Blau J. Tango-seq: overlaying transcriptomics on connectomics to identify neurons downstream of Drosophila clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595372. [PMID: 38826334 PMCID: PMC11142192 DOI: 10.1101/2024.05.22.595372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
Collapse
Affiliation(s)
- Alison Ehrlich
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Angelina A Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Sofia Luminari
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Simon Kidd
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, UK
- Current address: Department of Biology, University of Oxford, UK
| | - Jordan Russo
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
7
|
Hofbauer B, Zandawala M, Reinhard N, Rieger D, Werner C, Evers JF, Wegener C. The neuropeptide pigment-dispersing factor signals independently of Bruchpilot-labelled active zones in daily remodelled terminals of Drosophila clock neurons. Eur J Neurosci 2024; 59:2665-2685. [PMID: 38414155 DOI: 10.1111/ejn.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The small ventrolateral neurons (sLNvs) are key components of the central clock in the Drosophila brain. They signal via the neuropeptide pigment-dispersing factor (PDF) to align the molecular clockwork of different central clock neurons and to modulate downstream circuits. The dorsal terminals of the sLNvs undergo daily morphological changes that affect presynaptic sites organised by the active zone protein Bruchpilot (BRP), a homolog of mammalian ELKS proteins. However, the role of these presynaptic sites for PDF release is ill-defined. Here, we combined expansion microscopy with labelling of active zones by endogenously tagged BRP to examine the spatial correlation between PDF-containing dense-core vesicles and BRP-labelled active zones. We found that the number of BRP-labelled puncta in the sLNv terminals was similar while their density differed between Zeitgeber time (ZT) 2 and 14. The relative distance between BRP- and PDF-labelled puncta was increased in the morning, around the reported time of PDF release. Spontaneous dense-core vesicle release profiles of sLNvs in a publicly available ssTEM dataset (FAFB) consistently lacked spatial correlation to BRP-organised active zones. RNAi-mediated downregulation of brp and other active zone proteins expressed by the sLNvs did not affect PDF-dependent locomotor rhythmicity. In contrast, down-regulation of genes encoding proteins of the canonical vesicle release machinery, the dense-core vesicle-related protein CADPS, as well as PDF impaired locomotor rhythmicity. Taken together, our study suggests that PDF release from the sLNvs is independent of BRP-organised active zones, while BRP may be redistributed to active zones in a time-dependent manner.
Collapse
Affiliation(s)
- Benedikt Hofbauer
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, USA
| | - Nils Reinhard
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dirk Rieger
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Werner
- Biocenter, Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jan Felix Evers
- Centre for organismal studies COS, Universität Heidelberg, Heidelberg, Germany
- Cairn GmbH, Heidelberg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Szypulski K, Tyszka A, Pyza E, Damulewicz M. Autophagy as a new player in the regulation of clock neurons physiology of Drosophila melanogaster. Sci Rep 2024; 14:6085. [PMID: 38480808 PMCID: PMC10937918 DOI: 10.1038/s41598-024-56649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Axonal terminals of the small ventral lateral neurons (sLNvs), the circadian clock neurons of Drosophila, show daily changes in their arborization complexity, with many branches in the morning and their shrinkage during the night. This complex phenomenon is precisely regulated by several mechanisms. In the present study we describe that one of them is autophagy, a self-degradative process, also involved in changes of cell membrane size and shape. Our results showed that autophagosome formation and processing in PDF-expressing neurons (both sLNv and lLNv) are rhythmic and they have different patterns in the cell bodies and terminals. These rhythmic changes in the autophagy activity seem to be important for neuronal plasticity. We found that autophagosome cargos are different during the day and night, and more proteins involved in membrane remodeling are present in autophagosomes in the morning. In addition, we described for the first time that Atg8-positive vesicles are also present outside the sLNv terminals, which suggests that secretory autophagy might be involved in regulating the clock signaling network. Our data indicate that rhythmic autophagy in clock neurons affect the pacemaker function, through remodeling of terminal membrane and secretion of specific proteins from sLNvs.
Collapse
Affiliation(s)
- Kornel Szypulski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Tyszka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
9
|
Gundermann DG, Lymer S, Blau J. A rapid and dynamic role for FMRP in the plasticity of adult neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555985. [PMID: 37693612 PMCID: PMC10491314 DOI: 10.1101/2023.09.01.555985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.
Collapse
Affiliation(s)
- Daniel G Gundermann
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Seana Lymer
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Current address: Proteintech Genomics, 11588 Sorrento Valley Rd, San Diego, CA 92121
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
10
|
Van Drunen R, Eckel-Mahan K. Circadian rhythms as modulators of brain health during development and throughout aging. Front Neural Circuits 2023; 16:1059229. [PMID: 36741032 PMCID: PMC9893507 DOI: 10.3389/fncir.2022.1059229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
The circadian clock plays a prominent role in neurons during development and throughout aging. This review covers topics pertinent to the role of 24-h rhythms in neuronal development and function, and their tendency to decline with aging. Pharmacological or behavioral modification that augment the function of our internal clock may be central to decline of cognitive disease and to future chronotherapy for aging-related diseases of the central nervous system.
Collapse
|
11
|
Damulewicz M, Doktór B, Baster Z, Pyza E. The Role of Glia Clocks in the Regulation of Sleep in Drosophila melanogaster. J Neurosci 2022; 42:6848-6860. [PMID: 35906073 PMCID: PMC9463985 DOI: 10.1523/jneurosci.2340-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
In Drosophila melanogaster, the pacemaker located in the brain plays the main role in maintaining circadian rhythms; however, peripheral oscillators including glial cells, are also crucial components of the circadian network. In the present study, we investigated an impact of oscillators located in astrocyte-like glia, the chiasm giant glia of the optic lobe, epithelial and subperineurial glia on sleep of Drosophila males. We described that oscillators located in astrocyte-like glia and chiasm giant glia are necessary to maintain daily changes in clock neurons arborizations, while those located in epithelial glia regulate amplitude of these changes. Finally, we showed that communication between glia and neurons through tripartite synapses formed by epithelial glia and, in effect, neurotransmission regulation plays important role in wake-promoting during the day.SIGNIFICANCE STATEMENT Circadian clock or pacemaker regulates many aspects of animals' physiology and behavior. The pacemaker is located in the brain and is composed of neurons. However, there are also additional oscillators, called peripheral clocks, which synchronize the main clock. Despite the critical role of glia in the clock machinery, little is known which type of glia houses peripheral oscillators and how they affect neuronal clocks. This study using Drosophila shows that oscillators in specific glia types maintain awakeness during the day by regulating the daily plasticity of clock neurons.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow 30-387, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
12
|
Jarabo P, Barredo CG, de Pablo C, Casas-Tinto S, Martin FA. Alignment between glioblastoma internal clock and environmental cues ameliorates survival in Drosophila. Commun Biol 2022; 5:644. [PMID: 35773327 PMCID: PMC9247055 DOI: 10.1038/s42003-022-03600-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Virtually every single living organism on Earth shows a circadian (i.e. "approximately a day") internal rhythm that is coordinated with planet rotation (i.e. 24 hours). External cues synchronize the central clock of the organism. Consequences of biological rhythm disruptions have been extensively studied on cancer. Still, mechanisms underlying these alterations, and how they favor tumor development remain largely unknown. Here, we show that glioblastoma-induced neurodegeneration also causes circadian alterations in Drosophila. Preventing neurodegeneration in all neurons by genetic means reestablishes normal biological rhythms. Interestingly, in early stages of tumor development, the central pacemaker lengthens its period, whereas in later stages this is severely disrupted. The re-adjustment of the external light:dark period to longer glioblastoma-induced internal rhythms delays glioblastoma progression and ameliorates associated deleterious effects, even after the tumor onset.
Collapse
Affiliation(s)
| | | | - Carmen de Pablo
- Cajal Institute (CSIC), Av Dr Arce 37, 28002, Madrid, Spain.,Drosophila Models for Human Disease Unit, Instituto de Salud Carlos III-IIER, 28220, Madrid, Spain
| | - Sergio Casas-Tinto
- Cajal Institute (CSIC), Av Dr Arce 37, 28002, Madrid, Spain. .,Drosophila Models for Human Disease Unit, Instituto de Salud Carlos III-IIER, 28220, Madrid, Spain.
| | | |
Collapse
|
13
|
Seng C, Luo W, Földy C. Circuit formation in the adult brain. Eur J Neurosci 2022; 56:4187-4213. [PMID: 35724981 PMCID: PMC9546018 DOI: 10.1111/ejn.15742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience—such as neurological disorders, adult‐brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming—which demonstrates robust circuit formation in adult brain. In some cases, adult‐brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.
Collapse
Affiliation(s)
- Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| |
Collapse
|
14
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Damulewicz M, Szypulski K, Pyza E. Glia-Neurons Cross-Talk Regulated Through Autophagy. Front Physiol 2022; 13:886273. [PMID: 35574462 PMCID: PMC9099418 DOI: 10.3389/fphys.2022.886273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Autophagy is a self-degradative process which plays a role in removing misfolded or aggregated proteins, clearing damaged organelles, but also in changes of cell membrane size and shape. The aim of this phenomenon is to deliver cytoplasmic cargo to the lysosome through the intermediary of a double membrane-bound vesicle (autophagosome), that fuses with a lysosome to form autolysosome, where cargo is degraded by proteases. Products of degradation are transported back to the cytoplasm, where they can be re-used. In the present study we showed that autophagy is important for proper functioning of the glia and that it is involved in the regulation of circadian structural changes in processes of the pacemaker neurons. This effect is mainly observed in astrocyte-like glia, which play a role of peripheral circadian oscillators in the Drosophila brain.
Collapse
|
16
|
Perception of Daily Time: Insights from the Fruit Flies. INSECTS 2021; 13:insects13010003. [PMID: 35055846 PMCID: PMC8780729 DOI: 10.3390/insects13010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
We create mental maps of the space that surrounds us; our brains also compute time—in particular, the time of day. Visual, thermal, social, and other cues tune the clock-like timekeeper. Consequently, the internal clock synchronizes with the external day-night cycles. In fact, daylength itself varies, causing the change of seasons and forcing our brain clock to accommodate layers of plasticity. However, the core of the clock, i.e., its molecular underpinnings, are highly resistant to perturbations, while the way animals adapt to the daily and annual time shows tremendous biological diversity. How can this be achieved? In this review, we will focus on 75 pairs of clock neurons in the Drosophila brain to understand how a small neural network perceives and responds to the time of the day, and the time of the year.
Collapse
|
17
|
Decapentaplegic Acutely Defines the Connectivity of Central Pacemaker Neurons in Drosophila. J Neurosci 2021; 41:8338-8350. [PMID: 34429376 DOI: 10.1523/jneurosci.0397-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Rhythmic rest-activity cycles are controlled by an endogenous clock. In Drosophila, this clock resides in ∼150 neurons organized in clusters whose hierarchy changes in response to environmental conditions. The concerted activity of the circadian network is necessary for the adaptive responses to synchronizing environmental stimuli. Thus far, work was devoted to unravel the logic of the coordination of different clusters focusing on neurotransmitters and neuropeptides. We further explored communication in the adult male brain through ligands belonging to the bone morphogenetic protein (BMP) pathway. Herein we show that the lateral ventral neurons (LNvs) express the small morphogen decapentaplegic (DPP). DPP expression in the large LNvs triggered a period lengthening phenotype, the downregulation of which caused reduced rhythmicity and affected anticipation at dawn and dusk, underscoring DPP per se conveys time-of-day relevant information. Surprisingly, DPP expression in the large LNvs impaired circadian remodeling of the small LNv axonal terminals, likely through local modulation of the guanine nucleotide exchange factor Trio. These findings open the provocative possibility that the BMP pathway is recruited to strengthen/reduce the connectivity among specific clusters along the day and thus modulate the contribution of the clusters to the circadian network.SIGNIFICANCE STATEMENT The circadian clock relies on the communication between groups of so-called clock neurons to coordinate physiology and behavior to the optimal times across the day, predicting and adapting to a changing environment. The circadian network relies on neurotransmitters and neuropeptides to fine-tune connectivity among clock neurons and thus give rise to a coherent output. Herein we show that decapentaplegic, a ligand belonging to the BMP retrograde signaling pathway required for coordinated growth during development, is recruited by a group of circadian neurons in the adult brain to trigger structural remodeling of terminals on a daily basis.
Collapse
|
18
|
Machado Almeida P, Lago Solis B, Stickley L, Feidler A, Nagoshi E. Neurofibromin 1 in mushroom body neurons mediates circadian wake drive through activating cAMP-PKA signaling. Nat Commun 2021; 12:5758. [PMID: 34599173 PMCID: PMC8486785 DOI: 10.1038/s41467-021-26031-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
Various behavioral and cognitive states exhibit circadian variations in animals across phyla including Drosophila melanogaster, in which only ~0.1% of the brain's neurons contain circadian clocks. Clock neurons transmit the timing information to a plethora of non-clock neurons via poorly understood mechanisms. Here, we address the molecular underpinning of this phenomenon by profiling circadian gene expression in non-clock neurons that constitute the mushroom body, the center of associative learning and sleep regulation. We show that circadian clocks drive rhythmic expression of hundreds of genes in mushroom body neurons, including the Neurofibromin 1 (Nf1) tumor suppressor gene and Pka-C1. Circadian clocks also drive calcium rhythms in mushroom body neurons via NF1-cAMP/PKA-C1 signaling, eliciting higher mushroom body activity during the day than at night, thereby promoting daytime wakefulness. These findings reveal the pervasive, non-cell-autonomous circadian regulation of gene expression in the brain and its role in sleep.
Collapse
Affiliation(s)
- Pedro Machado Almeida
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Blanca Lago Solis
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Luca Stickley
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Alexis Feidler
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland ,grid.412750.50000 0004 1936 9166Present Address: University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Emi Nagoshi
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| |
Collapse
|
19
|
Abstract
Circadian clocks are biochemical time-keeping machines that synchronize animal behavior and physiology with planetary rhythms. In Drosophila, the core components of the clock comprise a transcription/translation feedback loop and are expressed in seven neuronal clusters in the brain. Although it is increasingly evident that the clocks in each of the neuronal clusters are regulated differently, how these clocks communicate with each other across the circadian neuronal network is less clear. Here, we review the latest evidence that describes the physical connectivity of the circadian neuronal network . Using small ventral lateral neurons as a starting point, we summarize how one clock may communicate with another, highlighting the signaling pathways that are both upstream and downstream of these clocks. We propose that additional efforts are required to understand how temporal information generated in each circadian neuron is integrated across a neuronal circuit to regulate rhythmic behavior.
Collapse
Affiliation(s)
- Myra Ahmad
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Deniz Top
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
20
|
Hidalgo S, Campusano JM, Hodge JJL. Assessing olfactory, memory, social and circadian phenotypes associated with schizophrenia in a genetic model based on Rim. Transl Psychiatry 2021; 11:292. [PMID: 34001859 PMCID: PMC8128896 DOI: 10.1038/s41398-021-01418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia shows high heritability and several of the genes associated with this disorder are involved in calcium (Ca2+) signalling and synaptic function. One of these is the Rab-3 interacting molecule-1 (RIM1), which has recently been associated with schizophrenia by Genome Wide Association Studies (GWAS). However, its contribution to the pathophysiology of this disorder remains unexplored. In this work, we use Drosophila mutants of the orthologue of RIM1, Rim, to model some aspects of the classical and non-classical symptoms of schizophrenia. Rim mutants showed several behavioural features relevant to schizophrenia including social distancing and altered olfactory processing. These defects were accompanied by reduced evoked Ca2+ influx and structural changes in the presynaptic terminals sent by the primary olfactory neurons to higher processing centres. In contrast, expression of Rim-RNAi in the mushroom bodies (MBs), the main memory centre in flies, spared learning and memory suggesting a differential role of Rim in different synapses. Circadian deficits have been reported in schizophrenia. We observed circadian locomotor activity deficits in Rim mutants, revealing a role of Rim in the pacemaker ventral lateral clock neurons (LNvs). These changes were accompanied by impaired day/night remodelling of dorsal terminal synapses from a subpopulation of LNvs and impaired day/night release of the circadian neuropeptide pigment dispersing factor (PDF) from these terminals. Lastly, treatment with the commonly used antipsychotic haloperidol rescued Rim locomotor deficits to wildtype. This work characterises the role of Rim in synaptic functions underlying behaviours disrupted in schizophrenia.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Song BJ, Sharp SJ, Rogulja D. Daily rewiring of a neural circuit generates a predictive model of environmental light. SCIENCE ADVANCES 2021; 7:7/13/eabe4284. [PMID: 33762336 PMCID: PMC7990339 DOI: 10.1126/sciadv.abe4284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/03/2021] [Indexed: 05/02/2023]
Abstract
Behavioral responsiveness to external stimulation is shaped by context. We studied how sensory information can be contextualized, by examining light-evoked locomotor responsiveness of Drosophila relative to time of day. We found that light elicits an acute increase in locomotion (startle) that is modulated in a time-of-day-dependent manner: Startle is potentiated during the nighttime, when light is unexpected, but is suppressed during the daytime. The internal daytime-nighttime context is generated by two interconnected and functionally opposing populations of circadian neurons-LNvs generating the daytime state and DN1as generating the nighttime state. Switching between the two states requires daily remodeling of LNv and DN1a axons such that the maximum presynaptic area in one population coincides with the minimum in the other. We propose that a dynamic model of environmental light resides in the shifting connectivities of the LNv-DN1a circuit, which helps animals evaluate ongoing conditions and choose a behavioral response.
Collapse
Affiliation(s)
- Bryan J Song
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Slater J Sharp
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
High-Frequency Neuronal Bursting is Essential for Circadian and Sleep Behaviors in Drosophila. J Neurosci 2020; 41:689-710. [PMID: 33262246 DOI: 10.1523/jneurosci.2322-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms have been extensively studied in Drosophila; however, still little is known about how the electrical properties of clock neurons are specified. We have performed a behavioral genetic screen through the downregulation of candidate ion channels in the lateral ventral neurons (LNvs) and show that the hyperpolarization-activated cation current Ih is important for the behaviors that the LNvs influence: temporal organization of locomotor activity, analyzed in males, and sleep, analyzed in females. Using whole-cell patch clamp electrophysiology we demonstrate that small LNvs (sLNvs) are bursting neurons, and that Ih is necessary to achieve the high-frequency bursting firing pattern characteristic of both types of LNvs in females. Since firing in bursts has been associated to neuropeptide release, we hypothesized that Ih would be important for LNvs communication. Indeed, herein we demonstrate that Ih is fundamental for the recruitment of pigment dispersing factor (PDF) filled dense core vesicles (DCVs) to the terminals at the dorsal protocerebrum and for their timed release, and hence for the temporal coordination of circadian behaviors.SIGNIFICANCE STATEMENT Ion channels are transmembrane proteins with selective permeability to specific charged particles. The rich repertoire of parameters that may gate their opening state, such as voltage-sensitivity, modulation by second messengers and specific kinetics, make this protein family a determinant of neuronal identity. Ion channel structure is evolutionary conserved between vertebrates and invertebrates, making any discovery easily translatable. Through a screen to uncover ion channels with roles in circadian rhythms, we have identified the Ih channel as an important player in a subset of clock neurons of the fruit fly. We show that lateral ventral neurons (LNvs) need Ih to fire action potentials in a high-frequency bursting mode and that this is important for peptide transport and the control of behavior.
Collapse
|
23
|
Flyer-Adams JG, Rivera-Rodriguez EJ, Yu J, Mardovin JD, Reed ML, Griffith LC. Regulation of Olfactory Associative Memory by the Circadian Clock Output Signal Pigment-Dispersing Factor (PDF). J Neurosci 2020; 40:9066-9077. [PMID: 33106351 PMCID: PMC7673005 DOI: 10.1523/jneurosci.0782-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Dissociation between the output of the circadian clock and external environmental cues is a major cause of human cognitive dysfunction. While the effects of ablation of the molecular clock on memory have been studied in many systems, little has been done to test the role of specific clock circuit output signals. To address this gap, we examined the effects of mutations of Pigment-dispersing factor (Pdf) and its receptor, Pdfr, on associative memory in male and female Drosophila Loss of PDF signaling significantly decreases the ability to form associative memory. Appetitive short-term memory (STM), which in wild-type (WT) is time-of-day (TOD) independent, is decreased across the day by mutation of Pdf or Pdfr, but more substantially in the morning than in the evening. This defect is because of PDFR expression in adult neurons outside the core clock circuit and the mushroom body (MB) Kenyon cells (KCs). The acquisition of a TOD difference in mutants implies the existence of multiple oscillators that act to normalize memory formation across the day for appetitive processes. Interestingly, aversive STM requires PDF but not PDFR, suggesting that there are valence-specific pathways downstream of PDF that regulate memory formation. These data argue that the circadian clock uses circuit-specific and molecularly diverse output pathways to enhance the ability of animals to optimize responses to changing conditions.SIGNIFICANCE STATEMENT From humans to invertebrates, cognitive processes are influenced by organisms' internal circadian clocks, the pace of which is linked to the solar cycle. Disruption of this link is increasingly common (e.g., jetlag, social jetlag disorders) and causes cognitive impairments that are costly and long lasting. A detailed understanding of how the internal clock regulates cognition is critical for the development of therapeutic methods. Here, we show for the first time that olfactory associative memory in Drosophila requires signaling by Pigment-dispersing factor (PDF), a neuromodulatory signaling peptide produced only by circadian clock circuit neurons. We also find a novel role for the clock circuit in stabilizing appetitive sucrose/odor memory across the day.
Collapse
Affiliation(s)
- Johanna G Flyer-Adams
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Emmanuel J Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Junwei Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Jacob D Mardovin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Martha L Reed
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
24
|
Duhart JM, Herrero A, de la Cruz G, Ispizua JI, Pírez N, Ceriani MF. Circadian Structural Plasticity Drives Remodeling of E Cell Output. Curr Biol 2020; 30:5040-5048.e5. [PMID: 33065014 DOI: 10.1016/j.cub.2020.09.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
Behavioral outputs arise as a result of highly regulated yet flexible communication among neurons. The Drosophila circadian network includes 150 neurons that dictate the temporal organization of locomotor activity; under light-dark (LD) conditions, flies display a robust bimodal pattern. The pigment-dispersing factor (PDF)-positive small ventral lateral neurons (sLNv) have been linked to the generation of the morning activity peak (the "M cells"), whereas the Cryptochrome (CRY)-positive dorsal lateral neurons (LNds) and the PDF-negative sLNv are necessary for the evening activity peak (the "E cells") [1, 2]. While each group directly controls locomotor output pathways [3], an interplay between them along with a third dorsal cluster (the DN1ps) is necessary for the correct timing of each peak and for adjusting behavior to changes in the environment [4-7]. M cells set the phase of roughly half of the circadian neurons (including the E cells) through PDF [5, 8-10]. Here, we show the existence of synaptic input provided by the evening oscillator onto the M cells. Both structural and functional approaches revealed that E-to-M cell connectivity changes across the day, with higher excitatory input taking place before the day-to-night transition. We identified two different neurotransmitters, acetylcholine and glutamate, released by E cells that are relevant for robust circadian output. Indeed, we show that acetylcholine is responsible for the excitatory input from E cells to M cells, which show preferential responsiveness to acetylcholine during the evening. Our findings provide evidence of an excitatory feedback between circadian clusters and unveil an important plastic remodeling of the E cells' synaptic connections.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Anastasia Herrero
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Gabriel de la Cruz
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Juan I Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - Nicolás Pírez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires 1405-BWE, Argentina.
| |
Collapse
|
25
|
Rouyer F, Chatterjee A. Circadian Clocks: Structural Plasticity on the Input Side. Curr Biol 2020; 30:R890-R893. [PMID: 32750352 DOI: 10.1016/j.cub.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Key Drosophila clock neurons remodel their axonal arborization on a daily basis. The current view is that remodelling is part of the control of clock neuron output but new data support a major role in modulating sensory inputs.
Collapse
Affiliation(s)
- François Rouyer
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France.
| | - Abhishek Chatterjee
- Institut des Neurosciences Paris-Saclay, Université Paris-Sud, Université Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
26
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
27
|
Coupling Neuropeptide Levels to Structural Plasticity in Drosophila Clock Neurons. Curr Biol 2020; 30:3154-3166.e4. [PMID: 32619484 DOI: 10.1016/j.cub.2020.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
We have previously reported that pigment dispersing factor (PDF) neurons, which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections, a phenomenon called circadian structural plasticity. Axonal arborizations display higher complexity during the day and become simpler at night, and this remodeling involves changes in the degree of connectivity. This phenomenon depends on the clock present within the ventrolateral neurons (LNvs) as well as in glia. In this work, we characterize in detail the contribution of the PDF neuropeptide to structural plasticity at different times across the day. Using diverse genetic strategies to temporally restrict its downregulation, we demonstrate that even subtle alterations to PDF cycling at the dorsal protocerebrum correlate with impaired remodeling, underscoring its relevance for the characteristic morning spread; PDF released from the small LNvs (sLNvs) and the large LNvs (lLNvs) contribute to the process. Moreover, forced depolarization recruits activity-dependent mechanisms to mediate growth only at night, overcoming the restriction imposed by the clock on membrane excitability. Interestingly, the active process of terminal remodeling requires PDF receptor (PDFR) signaling acting locally through the cyclic-nucleotide-gated channel ion channel subunit A (CNGA). Thus, clock-dependent PDF signaling shapes the connectivity of these essential clock neurons on daily basis.
Collapse
|
28
|
Baik LS, Nave C, Au DD, Guda T, Chevez JA, Ray A, Holmes TC. Circadian Regulation of Light-Evoked Attraction and Avoidance Behaviors in Daytime- versus Nighttime-Biting Mosquitoes. Curr Biol 2020; 30:3252-3259.e3. [PMID: 32619483 DOI: 10.1016/j.cub.2020.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/24/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022]
Abstract
Mosquitoes pose widespread threats to humans and other animals as disease vectors [1]. Day- versus night-biting mosquitoes occupy distinct time-of-day niches [2, 3]. Here, we explore day- versus night-biting female and male mosquitoes' innate temporal attraction/avoidance behavioral responses to light and their regulation by circadian circuit and molecular mechanisms. Day-biting mosquitoes Aedes aegypti, particularly females, are attracted to light during the day regardless of spectra. In contrast, night-biting mosquitoes, Anopheles coluzzii, specifically avoid ultraviolet (UV) and blue light during the day. Behavioral attraction to/avoidance of light in both species change with time of day and show distinct sex and circadian neural circuit differences. Males of both diurnal and nocturnal mosquito species show reduced UV light avoidance in anticipation of evening onset relative to females. The circadian neural circuits of diurnal/day- and nocturnal/night-biting mosquitoes based on PERIOD (PER) and pigment-dispersing factor (PDF) expression show similar but distinct circuit organizations between species. The basis of diurnal versus nocturnal behaviors is driven by molecular clock timing, which cycles in anti-phase between day- versus night-biting mosquitoes. Observed differences at the neural circuit and protein levels provide insight into the fundamental basis underlying diurnality versus nocturnality. Molecular disruption of the circadian clock severely interferes with light-evoked attraction/avoidance behaviors in mosquitoes. In summary, attraction/avoidance behaviors show marked differences between day- versus night-biting mosquitoes, but both classes of mosquitoes are circadian and light regulated, which may be applied toward species-specific control of harmful mosquitoes.
Collapse
Affiliation(s)
- Lisa S Baik
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Ceazar Nave
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - David D Au
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Tom Guda
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Joshua A Chevez
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Anandasankar Ray
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Fernandez MP, Pettibone HL, Bogart JT, Roell CJ, Davey CE, Pranevicius A, Huynh KV, Lennox SM, Kostadinov BS, Shafer OT. Sites of Circadian Clock Neuron Plasticity Mediate Sensory Integration and Entrainment. Curr Biol 2020; 30:2225-2237.e5. [PMID: 32386535 DOI: 10.1016/j.cub.2020.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 01/22/2023]
Abstract
Networks of circadian timekeeping in the brain display marked daily changes in neuronal morphology. In Drosophila melanogaster, the striking daily structural remodeling of the dorsal medial termini of the small ventral lateral neurons has long been hypothesized to mediate endogenous circadian timekeeping. To test this model, we have specifically abrogated these sites of daily neuronal remodeling through the reprogramming of neural development and assessed the effects on circadian timekeeping and clock outputs. Remarkably, the loss of these sites has no measurable effects on endogenous circadian timekeeping or on any of the major output functions of the small ventral lateral neurons. Rather, their loss reduces sites of glutamatergic sensory neurotransmission that normally encodes naturalistic time cues from the environment. These results support an alternative model: structural plasticity in critical clock neurons is the basis for proper integration of light and temperature and gates sensory inputs into circadian clock neuron networks.
Collapse
Affiliation(s)
- Maria P Fernandez
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA; Department of Neuroscience and Behavior, Barnard College of Columbia University, New York City, NY 10027, USA.
| | - Hannah L Pettibone
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph T Bogart
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA
| | - Casey J Roell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles E Davey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ausra Pranevicius
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York City, NY 10027, USA
| | - Khang V Huynh
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara M Lennox
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boyan S Kostadinov
- Mathematics Department, NYC College of Technology, City University of New York, Brooklyn, NY 11201, USA
| | - Orie T Shafer
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Cassar M, Law AD, Chow ES, Giebultowicz JM, Kretzschmar D. Disease-Associated Mutant Tau Prevents Circadian Changes in the Cytoskeleton of Central Pacemaker Neurons. Front Neurosci 2020; 14:232. [PMID: 32292325 PMCID: PMC7118733 DOI: 10.3389/fnins.2020.00232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
A hallmark feature of Alzheimer's disease (AD) and other Tauopathies, like Frontotemporal Dementia with Parkinsonism linked to chromosome 17 (FTDP-17), is the accumulation of neurofibrillary tangles composed of the microtubule-associated protein Tau. As in AD, symptoms of FTDP-17 include cognitive decline, neuronal degeneration, and disruptions of sleep patterns. However, mechanisms by which Tau may lead to these disturbances in sleep and activity patterns are unknown. To identify such mechanisms, we have generated novel Drosophila Tauopathy models by replacing endogenous fly dTau with normal human Tau (hTau) or the FTDP-17 causing hTauV337M mutation. This mutation is localized in one of the microtubule-binding domains of hTau and has a dominant effect. Analyzing heterozygous flies, we found that aged hTauV337M flies show neuronal degeneration and locomotion deficits when compared to wild type or hTauWT flies. Furthermore, hTauV337M flies are hyperactive and they show a fragmented sleep pattern. These changes in the sleep/activity pattern are accompanied by morphological changes in the projection pattern of the central pacemaker neurons. These neurons show daily fluctuations in their connectivity, whereby synapses are increased during the day and reduced during sleep. Synapse formation requires cytoskeletal changes that can be detected by the accumulation of the end-binding protein 1 (EB1) at the site of synapse formation. Whereas, hTauWT flies show the normal day/night changes in EB1 accumulation, hTauV337M flies do not show this fluctuation. This suggests that hTauV337M disrupts sleep patterns by interfering with the cytoskeletal changes that are required for the synaptic homeostasis of central pacemaker neurons.
Collapse
Affiliation(s)
- Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Alexander D Law
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Eileen S Chow
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Jadwiga M Giebultowicz
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
31
|
Ly S, Lee DA, Strus E, Prober DA, Naidoo N. Evolutionarily Conserved Regulation of Sleep by the Protein Translational Regulator PERK. Curr Biol 2020; 30:1639-1648.e3. [PMID: 32169212 DOI: 10.1016/j.cub.2020.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Sleep is a cross-species phenomenon whose evolutionary and biological function remain poorly understood. Clinical and animal studies suggest that sleep disturbance is significantly associated with disruptions in protein homeostasis-or proteostasis-in the brain, but the mechanism of this link has not been explored. In the cell, the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) pathway modulates proteostasis by transiently inhibiting protein synthesis in response to proteostatic stress. In this study, we examined the role of the PERK pathway in sleep regulation and provide the first evidence that PERK signaling is required to regulate normal sleep in both vertebrates and invertebrates. We show that pharmacological inhibition of PERK reduces sleep in both Drosophila and zebrafish, indicating an evolutionarily conserved requirement for PERK in sleep. Genetic knockdown of PERK activity also reduces sleep in Drosophila, whereas PERK overexpression induces sleep. Finally, we demonstrate that changes in PERK signaling directly impact wake-promoting neuropeptide expression, revealing a mechanism through which proteostatic pathways can affect sleep and wake behavior. Taken together, these results demonstrate that protein synthesis pathways like PERK could represent a general mechanism of sleep and wake regulation and provide greater insight into the relationship between sleep and proteostasis.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ewa Strus
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
King AN, Sehgal A. Molecular and circuit mechanisms mediating circadian clock output in the Drosophila brain. Eur J Neurosci 2020; 51:268-281. [PMID: 30059181 PMCID: PMC6353709 DOI: 10.1111/ejn.14092] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
Abstract
A central question in the circadian biology field concerns the mechanisms that translate ~24-hr oscillations of the molecular clock into overt rhythms. Drosophila melanogaster is a powerful system that provided the first understanding of how molecular clocks are generated and is now illuminating the neural basis of circadian behavior. The identity of ~150 clock neurons in the Drosophila brain and their roles in shaping circadian rhythms of locomotor activity have been described before. This review summarizes mechanisms that transmit time-of-day signals from the clock, within the clock network as well as downstream of it. We also discuss the identification of functional multisynaptic circuits between clock neurons and output neurons that regulate locomotor activity.
Collapse
Affiliation(s)
- Anna N. King
- Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
33
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 604] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
34
|
Arnes M, Alaniz ME, Karam CS, Cho JD, Lopez G, Javitch JA, Santa-Maria I. Role of Tau Protein in Remodeling of Circadian Neuronal Circuits and Sleep. Front Aging Neurosci 2019; 11:320. [PMID: 31824299 PMCID: PMC6881280 DOI: 10.3389/fnagi.2019.00320] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Multiple neurological, physiological, and behavioral functions are synchronized by circadian clocks into daily rhythms. Neurodegenerative diseases such as Alzheimer's disease and related tauopathies are associated with a decay of circadian rhythms, disruption of sleep patterns, and impaired cognitive function but the mechanisms underlying these alterations are still unclear. Traditional approaches in neurodegeneration research have focused on understanding how pathology impinges on circadian function. Since in Alzheimer's disease and related tauopathies tau proteostasis is compromised, here we sought to understand the role of tau protein in neuronal circadian biology and related behavior. Considering molecular mechanisms underlying circadian rhythms are conserved from Drosophila to humans, here we took advantage of a recently developed tau-deficient Drosophila line to show that loss of tau promotes dysregulation of daily circadian rhythms and sleep patterns. Strikingly, tau deficiency dysregulates the structural plasticity of the small ventral lateral circadian pacemaker neurons by disrupting the temporal cytoskeletal remodeling of its dorsal axonal projections and by inducing a slight increase in the cytoplasmic accumulation of core clock proteins. Taken together, these results suggest that loss of tau function participates in the regulation of circadian rhythms by modulating the correct operation and connectivity of core circadian networks and related behavior.
Collapse
Affiliation(s)
- Mercedes Arnes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Maria E. Alaniz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Caline S. Karam
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Joshua D. Cho
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan A. Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
35
|
Splice variants of DOMINO control Drosophila circadian behavior and pacemaker neuron maintenance. PLoS Genet 2019; 15:e1008474. [PMID: 31658266 PMCID: PMC6837581 DOI: 10.1371/journal.pgen.1008474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/07/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks control daily rhythms in behavior and physiology. In Drosophila, the small ventral lateral neurons (sLNvs) expressing PIGMENT DISPERSING FACTOR (PDF) are the master pacemaker neurons generating locomotor rhythms. Despite the importance of sLNvs and PDF in circadian behavior, little is known about factors that control sLNvs maintenance and PDF accumulation. Here, we identify the Drosophila SWI2/SNF2 protein DOMINO (DOM) as a key regulator of circadian behavior. Depletion of DOM in circadian neurons eliminates morning anticipatory activity under light dark cycle and impairs behavioral rhythmicity in constant darkness. Interestingly, the two major splice variants of DOM, DOM-A and DOM-B have distinct circadian functions. DOM-A depletion mainly leads to arrhythmic behavior, while DOM-B knockdown lengthens circadian period without affecting the circadian rhythmicity. Both DOM-A and DOM-B bind to the promoter regions of key pacemaker genes period and timeless, and regulate their protein expression. However, we identify that only DOM-A is required for the maintenance of sLNvs and transcription of pdf. Lastly, constitutive activation of PDF-receptor signaling rescued the arrhythmia and period lengthening of DOM downregulation. Taken together, our findings reveal that two splice variants of DOM play distinct roles in circadian rhythms through regulating abundance of pacemaker proteins and sLNvs maintenance. Circadian rhythms are critical for timing of animal bodily functions. In flies, sLNvs are the master pacemaker neurons regulating locomotor rhythms, which release the neuropeptide PDF. Little is known about factors that control sLNvs maintenance and PDF accumulation. Here, we identified the Drosophila chromatin remodeler DOMINO (DOM) as a new regulator of circadian behavior. Depletion of DOM in circadian neurons impaired behavioral rhythmicity in constant darkness. Interestingly, two splice variants of DOM have distinct functions. DOM-A depletion mainly led to arrhythmia, while DOM-B knockdown lengthened circadian period. Furthermore, we found DOM-A is critical for the maintenance of sLNvs and transcription of pdf. Our findings reveal that DOM splice variants play distinct roles in rhythms through different mechanisms.
Collapse
|
36
|
Liu C, Meng Z, Wiggin TD, Yu J, Reed ML, Guo F, Zhang Y, Rosbash M, Griffith LC. A Serotonin-Modulated Circuit Controls Sleep Architecture to Regulate Cognitive Function Independent of Total Sleep in Drosophila. Curr Biol 2019; 29:3635-3646.e5. [PMID: 31668619 DOI: 10.1016/j.cub.2019.08.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Both the structure and the amount of sleep are important for brain function. Entry into deep, restorative stages of sleep is time dependent; short sleep bouts selectively eliminate these states. Fragmentation-induced cognitive dysfunction is a feature of many common human sleep pathologies. Whether sleep structure is normally regulated independent of the amount of sleep is unknown. Here, we show that in Drosophila melanogaster, activation of a subset of serotonergic neurons fragments sleep without major changes in the total amount of sleep, dramatically reducing long episodes that may correspond to deep sleep states. Disruption of sleep structure results in learning deficits that can be rescued by pharmacologically or genetically consolidating sleep. We identify two reciprocally connected sets of ellipsoid body neurons that form the heart of a serotonin-modulated circuit that controls sleep architecture. Taken together, these findings define a circuit essential for controlling the structure of sleep independent of its amount.
Collapse
Affiliation(s)
- Chang Liu
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Zhiqiang Meng
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | | | - Junwei Yu
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Martha L Reed
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Fang Guo
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang province 310058, China
| | - Yunpeng Zhang
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rosbash
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
37
|
Schlichting M, Díaz MM, Xin J, Rosbash M. Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. eLife 2019; 8:e48301. [PMID: 31613223 PMCID: PMC6794074 DOI: 10.7554/elife.48301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Animal circadian rhythms persist in constant darkness and are driven by intracellular transcription-translation feedback loops. Although these cellular oscillators communicate, isolated mammalian cellular clocks continue to tick away in darkness without intercellular communication. To investigate these issues in Drosophila, we assayed behavior as well as molecular rhythms within individual brain clock neurons while blocking communication within the ca. 150 neuron clock network. We also generated CRISPR-mediated neuron-specific circadian clock knockouts. The results point to two key clock neuron groups: loss of the clock within both regions but neither one alone has a strong behavioral phenotype in darkness; communication between these regions also contributes to circadian period determination. Under these dark conditions, the clock within one region persists without network communication. The clock within the famous PDF-expressing s-LNv neurons however was strongly dependent on network communication, likely because clock gene expression within these vulnerable sLNvs depends on neuronal firing or light.
Collapse
Affiliation(s)
- Matthias Schlichting
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Madelen M Díaz
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Jason Xin
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| | - Michael Rosbash
- Department of BiologyHoward Hughes Medical Institute, Brandeis UniversityWalthamUnited States
| |
Collapse
|
38
|
Foster S, Christiansen T, Antle MC. Modeling the Influence of Synaptic Plasticity on After-effects. J Biol Rhythms 2019; 34:645-657. [PMID: 31436125 DOI: 10.1177/0748730419871189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While circadian rhythms in physiology and behavior demonstrate remarkable day-to-day precision, they are also able to exhibit plasticity in a variety of parameters and under a variety of conditions. After-effects are one type of plasticity in which exposure to non-24-h light-dark cycles (T-cycles) will alter the animal's free-running rhythm in subsequent constant conditions. We use a mathematical model to explore whether the concept of synaptic plasticity can explain the observation of after-effects. In this model, the SCN is composed of a set of individual oscillators randomly selected from a normally distributed population. Each cell receives input from a defined set of oscillators, and the overall period of a cell is a weighted average of its own period and that of its inputs. The influence that an input has on its target's period is determined by the proximity of the input cell's period to the imposed T-cycle period, such that cells with periods near T will have greater influence. Such an arrangement is able to duplicate the phenomenon of after-effects, with relatively few inputs per cell (~4-5) being required. When the variability of periods between oscillators is low, the system is quite robust and results in minimal after-effects, while systems with greater between-cell variability exhibit greater magnitude after-effects. T-cycles that produce maximal after-effects have periods within ~2.5 to 3 h of the population period. Overall, this model demonstrates that synaptic plasticity in the SCN network could contribute to plasticity of the circadian period.
Collapse
Affiliation(s)
- Semra Foster
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tom Christiansen
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael C Antle
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Nian X, Chen W, Bai W, Zhao Z, Zhang Y. miR-263b Controls Circadian Behavior and the Structural Plasticity of Pacemaker Neurons by Regulating the LIM-Only Protein Beadex. Cells 2019; 8:cells8080923. [PMID: 31426557 PMCID: PMC6721658 DOI: 10.3390/cells8080923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
: Circadian clocks drive rhythmic physiology and behavior to allow adaption to daily environmental changes. In Drosophila, the small ventral lateral neurons (sLNvs) are primary pacemakers that control circadian rhythms. Circadian changes are observed in the dorsal axonal projections of the sLNvs, but their physiological importance and the underlying mechanism are unclear. Here, we identified miR-263b as an important regulator of circadian rhythms and structural plasticity of sLNvs in Drosophila. Depletion of miR-263b (miR-263bKO) in flies dramatically impaired locomotor rhythms under constant darkness. Indeed, miR-263b is required for the structural plasticity of sLNvs. miR-263b regulates circadian rhythms through inhibition of expression of the LIM-only protein Beadex (Bx). Consistently, overexpression of Bx or loss-of-function mutation (BxhdpR26) phenocopied miR-263bKO and miR-263b overexpression in behavior and molecular characteristics. In addition, mutating the miR-263b binding sites in the Bx 3' UTR using CRISPR/Cas9 recapitulated the circadian phenotypes of miR-263bKO flies. Together, these results establish miR-263b as an important regulator of circadian locomotor behavior and structural plasticity.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Wenfeng Chen
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
- Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Weiwei Bai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
40
|
Neuronal Myocyte-Specific Enhancer Factor 2D (MEF2D) Is Required for Normal Circadian and Sleep Behavior in Mice. J Neurosci 2019; 39:7958-7967. [PMID: 31420455 DOI: 10.1523/jneurosci.0411-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/08/2019] [Accepted: 08/10/2019] [Indexed: 11/21/2022] Open
Abstract
The transcription factor, myocyte enhancer factor-2 (MEF2), is required for normal circadian behavior in Drosophila; however, its role in the mammalian circadian system has not been established. Of the four mammalian Mef2 genes, Mef2d is highly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, a region critical for coordinating peripheral circadian clocks. Using both conventional and brain-specific Mef2d KO (Mef2d -/-) mouse lines, we demonstrate that MEF2D is essential for maintaining the length of the circadian free-running period of locomotor activity and normal sleep patterns in male mice. Crossing Mef2d -/- with Per2::luc reporter mice, we show that these behavioral changes are achieved without altering the endogenous period of the master circadian oscillator in the SCN. Together, our data suggest that alterations in behavior in Mef2d -/- mice may be the result of an effect on SCN output, rather than an effect on timekeeping within the SCN itself. These findings add to the growing body of evidence that MEF2 proteins play important roles in the brain.SIGNIFICANCE STATEMENT These studies are the first to show a role for MEF2 proteins in the brain outside of the hippocampus, and our findings suggest that these proteins may play diverse roles in the CNS. It is important to continue to build on our understanding of the roles of proteins acting in the SCN because SCN dysfunction underlies jet lag in humans and influences the response to shift work schedules, which are now known as risk factors for the development of cancer. Our work on MEF2D could be the basis for opening new lines of research in the development and regulation of circadian rhythms.
Collapse
|
41
|
Rudisill SS, Martin BR, Mankowski KM, Tessier CR. Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit. Biol Trace Elem Res 2019; 189:241-250. [PMID: 30022428 PMCID: PMC6338522 DOI: 10.1007/s12011-018-1442-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in producing these neurological defects, however, remains unclear. Invertebrates provide an attractive model to study the effects of iron on neuronal development since many of the genes involved in iron metabolism are conserved, and the organisms are amenable to genetic and cytological techniques. We have examined synapse growth specifically under conditions of iron deficiency in the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and transport, does not affect synapse growth in these cells. Together, these data indicate that dietary iron is necessary for central brain synapse formation in the fly and further validate the use of this model to study the function of iron homeostasis on brain development.
Collapse
Affiliation(s)
- Samuel S Rudisill
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Bradley R Martin
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Kevin M Mankowski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Charles R Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA.
| |
Collapse
|
42
|
Hamid R, Hajirnis N, Kushwaha S, Saleem S, Kumar V, Mishra RK. Drosophila Choline transporter non-canonically regulates pupal eclosion and NMJ integrity through a neuronal subset of mushroom body. Dev Biol 2019; 446:80-93. [DOI: 10.1016/j.ydbio.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
|
43
|
Pírez N, Bernabei-Cornejo SG, Fernandez-Acosta M, Duhart JM, Ceriani MF. Contribution of non-circadian neurons to the temporal organization of locomotor activity. Biol Open 2019; 8:bio.039628. [PMID: 30530810 PMCID: PMC6361196 DOI: 10.1242/bio.039628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the fruit fly, Drosophila melanogaster, the daily cycle of rest and activity is a rhythmic behavior that relies on the activity of a small number of neurons. The small ventral lateral neurons (sLNvs) are considered key in the control of locomotor rhythmicity. Previous work from our laboratory has showed that these neurons undergo structural remodeling on their axonal projections on a daily basis. Such remodeling endows sLNvs with the possibility to make synaptic contacts with different partners at different times throughout the day, as has been previously described. By using different genetic tools to alter membrane excitability of the sLNv putative postsynaptic partners, we tested their functional role in the control of locomotor activity. We also used optical imaging to test the functionality of these contacts. We found that these different neuronal groups affect the consolidation of rhythmic activity, suggesting that non-circadian cells are part of the circuit that controls locomotor activity. Our results suggest that new neuronal groups, in addition to the well-characterized clock neurons, contribute to the operations of the circadian network that controls locomotor activity in D. melanogaster. Summary: Here we characterized the impact of different putative postsynaptic partners of the sLNvs on the control of rhythmic locomotor behavior. We found that some of these novel neuronal clusters are relevant for the control of locomotor activity.
Collapse
Affiliation(s)
- Nicolás Pírez
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Sofia G Bernabei-Cornejo
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - Magdalena Fernandez-Acosta
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - José M Duhart
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), 1425 Buenos Aires, Argentina
| |
Collapse
|
44
|
Mansilla A, Jordán-Álvarez S, Santana E, Jarabo P, Casas-Tintó S, Ferrús A. Molecular mechanisms that change synapse number. J Neurogenet 2018; 32:155-170. [DOI: 10.1080/01677063.2018.1506781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Responses to Intermittent Light Stimulation Late in the Night Phase Before Dawn. Clocks Sleep 2018; 1:26-41. [PMID: 33089153 PMCID: PMC7509681 DOI: 10.3390/clockssleep1010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 12/04/2022] Open
Abstract
The circadian clock is comprised of two oscillators that independently track sunset (evening) and sunrise (morning), though little is known about how light responses differ in each. Here, we quantified the morning oscillator’s responses to 19 separate pulse trains, collecting observations from over 1300 Drosophila at ZT23. Our results show that the advances in activity onset produced by these protocols depended on the tempo of light administration even when total exposure was conserved across a 15-min window. Moreover, patterns of stimulation previously shown to optimize the evening oscillator’s delay resetting at ZT13 (an hour after dusk) were equally effective for the M oscillator at ZT23 (an hour before dawn), though the morning oscillator was by comparison more photosensitive and could benefit from a greater number of fractionation strategies that better converted light into phase-shifting drive. These data continue to build the case that the reading frames for the pacemaker’s time-of-day estimates at dusk and dawn are not uniform and suggest that the “photologic” for the evening versus morning oscillator’s resetting might be dissociable.
Collapse
|
46
|
NonA and CPX Link the Circadian Clockwork to Locomotor Activity in Drosophila. Neuron 2018; 99:768-780.e3. [PMID: 30057203 DOI: 10.1016/j.neuron.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/27/2018] [Accepted: 07/01/2018] [Indexed: 11/20/2022]
Abstract
Drosophila NonA and its mammalian ortholog NONO are members of the Drosophila behavior and human splicing (DBHS) family. NONO also has a strong circadian connection: it associates with the circadian repressor protein PERIOD (PER) and contributes to circadian timekeeping. Here, we investigate NonA, which is required for proper levels of evening locomotor activity as well as a normal free-running period in Drosophila. NonA is associated with the positive transcription factor CLOCK/CYCLE (CLK/CYC), interacts directly with complexin (cpx) pre-mRNA, and upregulates gene expression, including the gene cpx. Downregulation of cpx expression in circadian neurons phenocopies NonA downregulation, whereas cpx overexpression rescues the nonA RNAi phenotypes, indicating that cpx is an important NonA target gene. As the cpx protein contributes to proper neurotransmitter and neuropeptide release in response to calcium, these results and others indicate that this control is important for the normal circadian regulation of locomotor activity.
Collapse
|
47
|
Franco DL, Frenkel L, Ceriani MF. The Underlying Genetics of Drosophila Circadian Behaviors. Physiology (Bethesda) 2018; 33:50-62. [PMID: 29212892 DOI: 10.1152/physiol.00020.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Life is shaped by circadian clocks. This review focuses on how behavioral genetics in the fruit fly unveiled what is known today about circadian physiology. We will briefly summarize basic properties of the clock and focus on some clock-controlled behaviors to highlight how communication between central and peripheral oscillators defines their properties.
Collapse
Affiliation(s)
- D Lorena Franco
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, CONICET, San Carlos de Bariloche, Río Negro, Argentina; and
| | - Lia Frenkel
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir (FIL)-Instituto de Investigaciones Bioquímicas-IIBBA-CONICET, Buenos Aires, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir (FIL)-Instituto de Investigaciones Bioquímicas-IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
Hicks SD, Khurana N, Williams J, Dowd Greene C, Uhlig R, Middleton FA. Diurnal oscillations in human salivary microRNA and microbial transcription: Implications for human health and disease. PLoS One 2018; 13:e0198288. [PMID: 30020932 PMCID: PMC6051604 DOI: 10.1371/journal.pone.0198288] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
The microbiome plays a vital role in human health and disease. Interaction between human hosts and the microbiome occurs through a number of mechanisms, including transcriptomic regulation by microRNA (miRNA). In animal models, circadian variations in miRNA and microbiome elements have been described, but patterns of co-expression and potential diurnal interaction in humans have not. We investigated daily oscillations in salivary miRNA and microbial RNA to explore relationships between these components of the gut-brain-axis and their implications in human health. Nine subjects provided 120 saliva samples at designated times, on repeated days. Samples were divided into three sets for exploration and cross-validation. Identification and quantification of host miRNA and microbial RNA was performed using next generation sequencing. Three stages of statistical analyses were used to identify circadian oscillators: 1) a two-way analysis of variance in the first two sample sets identified host miRNAs and microbial RNAs whose abundance varied with collection time (but not day); 2) multivariate modeling identified subsets of these miRNAs and microbial RNAs strongly-associated with collection time, and evaluated their predictive ability in an independent hold-out sample set; 3) regulation of circadian miRNAs and microbial RNAs was explored in data from autistic children with disordered sleep (n = 77), relative to autistic peers with typical sleep (n = 63). Eleven miRNAs and 11 microbial RNAs demonstrated consistent diurnal oscillation across sample sets and accurately predicted collection time in the hold-out set. Associations among five circadian miRNAs and four circadian microbial RNAs were observed. We termed the 11 miRNAs CircaMiRs. These CircaMiRs had 1,127 predicted gene targets, with enrichment for both circadian gene targets and metabolic signaling processes. Four CircaMiRs had "altered" expression patterns among children with disordered sleep. Thus, novel and correlated circadian oscillations in human miRNA and microbial RNA exist and may have distinct implications in human health and disease.
Collapse
Affiliation(s)
- Steven D. Hicks
- Department of Pediatrics, Penn State University Hershey Medical Center, Hershey, PA, United States of America
| | - Neil Khurana
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Quadrant Biosciences, Inc., Syracuse, NY, United States of America
| | - Jeremy Williams
- Quadrant Biosciences, Inc., Syracuse, NY, United States of America
| | | | - Richard Uhlig
- Quadrant Biosciences, Inc., Syracuse, NY, United States of America
| | - Frank A. Middleton
- Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States of America
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, United States of America
| |
Collapse
|
49
|
Chatterjee A, Lamaze A, De J, Mena W, Chélot E, Martin B, Hardin P, Kadener S, Emery P, Rouyer F. Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock. Curr Biol 2018; 28:2007-2017.e4. [PMID: 29910074 PMCID: PMC6039274 DOI: 10.1016/j.cub.2018.04.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023]
Abstract
The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Angélique Lamaze
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Joydeep De
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Wilson Mena
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Béatrice Martin
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77845-3258, USA
| | | | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
50
|
Wang Q, Abruzzi KC, Rosbash M, Rio DC. Striking circadian neuron diversity and cycling of Drosophila alternative splicing. eLife 2018; 7:35618. [PMID: 29863472 PMCID: PMC6025963 DOI: 10.7554/elife.35618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Although alternative pre-mRNA splicing (AS) significantly diversifies the neuronal proteome, the extent of AS is still unknown due in part to the large number of diverse cell types in the brain. To address this complexity issue, we used an annotation-free computational method to analyze and compare the AS profiles between small specific groups of Drosophila circadian neurons. The method, the Junction Usage Model (JUM), allows the comprehensive profiling of both known and novel AS events from specific RNA-seq libraries. The results show that many diverse and novel pre-mRNA isoforms are preferentially expressed in one class of clock neuron and also absent from the more standard Drosophila head RNA preparation. These AS events are enriched in potassium channels important for neuronal firing, and there are also cycling isoforms with no detectable underlying transcriptional oscillations. The results suggest massive AS regulation in the brain that is also likely important for circadian regulation.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Center for RNA Systems Biology (CRSB), University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States
| | - Katharine C Abruzzi
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavior Genomics, Brandeis University, Waltham, United States
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavior Genomics, Brandeis University, Waltham, United States
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Center for RNA Systems Biology (CRSB), University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States
| |
Collapse
|