1
|
Ittiprasert W, Brindley PJ. CRISPR-based functional genomics for schistosomes and related flatworms. Trends Parasitol 2024:S1471-4922(24)00287-3. [PMID: 39426911 DOI: 10.1016/j.pt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
CRISPR genome editing is actively used for schistosomes and other flukes. The ability to genetically manipulate these flatworms enables deeper investigation of their (patho)biological nature. CRISPR gene knockout (KO) demonstrated that a liver fluke growth mediator contributes to disease progression. Genome safe harbor sites have been predicted in Schistosoma mansoni and targeted for transgene insertion. CRISPR-based diagnosis has been demonstrated for infection with schistosomes and Opisthorchis viverrini. This review charts the progress, and the state of play, and posits salient questions for the field to address. Derivation of heritably transgenic loss-of-function or gain-of-function lines is the next milestone.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
2
|
Langleib M, Calvelo J, Costábile A, Castillo E, Tort JF, Hoffmann FG, Protasio AV, Koziol U, Iriarte A. Evolutionary analysis of species-specific duplications in flatworm genomes. Mol Phylogenet Evol 2024; 199:108141. [PMID: 38964593 DOI: 10.1016/j.ympev.2024.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Platyhelminthes, also known as flatworms, is a phylum of bilaterian invertebrates infamous for their parasitic representatives. The classes Cestoda, Monogenea, and Trematoda comprise parasitic helminths inhabiting multiple hosts, including fishes, humans, and livestock, and are responsible for considerable economic damage and burden on human health. As in other animals, the genomes of flatworms have a wide variety of paralogs, genes related via duplication, whose origins could be mapped throughout the evolution of the phylum. Through in-silico analysis, we studied inparalogs, i.e., species-specific duplications, focusing on their biological functions, expression changes, and evolutionary rate. These genes are thought to be key players in the adaptation process of species to each particular niche. Our results showed that genes related with specific functional terms, such as response to stress, transferase activity, oxidoreductase activity, and peptidases, are overrepresented among inparalogs. This trend is conserved among species from different classes, including free-living species. Available expression data from Schistosoma mansoni, a parasite from the trematode class, demonstrated high conservation of expression patterns between inparalogs, but with notable exceptions, which also display evidence of rapid evolution. We discuss how natural selection may operate to maintain these genes and the particular duplication models that fit better to the observations. Our work supports the critical role of gene duplication in the evolution of flatworms, representing the first study of inparalogs evolution at the genome-wide level in this group.
Collapse
Affiliation(s)
- Mauricio Langleib
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alicia Costábile
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Estela Castillo
- Laboratorio de Biología Parasitaria, Instituto de Higiene, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi, United States of America; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, United States of America
| | - Anna V Protasio
- Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP, Cambridge, United Kingdom
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Ivanković M, Brand JN, Pandolfini L, Brown T, Pippel M, Rozanski A, Schubert T, Grohme MA, Winkler S, Robledillo L, Zhang M, Codino A, Gustincich S, Vila-Farré M, Zhang S, Papantonis A, Marques A, Rink JC. A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence. Nat Commun 2024; 15:8215. [PMID: 39294119 PMCID: PMC11410931 DOI: 10.1038/s41467-024-52380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
The planarian Schmidtea mediterranea is being studied as a model species for regeneration, but the assembly of planarian genomes remains challenging. Here, we report a high-quality haplotype-phased, chromosome-scale genome assembly of the sexual S2 strain of S. mediterranea and high-quality chromosome-scale assemblies of its three close relatives, S. polychroa, S. nova, and S. lugubris. Using hybrid gene annotations and optimized ATAC-seq and ChIP-seq protocols for regulatory element annotation, we provide valuable genome resources for the planarian research community and a first comparative perspective on planarian genome evolution. Our analyses reveal substantial divergence in protein-coding sequences and regulatory regions but considerable conservation within promoter and enhancer annotations. We also find frequent retrotransposon-associated chromosomal inversions and interchromosomal translocations within the genus Schmidtea and, remarkably, independent and nearly complete losses of ancestral metazoan synteny in Schmidtea and two other flatworm groups. Overall, our results suggest that platyhelminth genomes can evolve without syntenic constraints.
Collapse
Affiliation(s)
- Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luca Pandolfini
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Til Schubert
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Laura Robledillo
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Meng Zhang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Azzurra Codino
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Gustincich
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Faculty of Biology und Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
de Miguel Bonet MDM, Hartenstein V. Ultrastructural analysis and 3D reconstruction of the frontal sensory-glandular complex and its neural projections in the platyhelminth Macrostomum lignano. Cell Tissue Res 2024:10.1007/s00441-024-03901-x. [PMID: 38898317 DOI: 10.1007/s00441-024-03901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.
Collapse
Affiliation(s)
- Maria Del Mar de Miguel Bonet
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Biomedicine and Biotechnology, University of Alcalá (UAH), Madrid, Spain
- BioWorld Science, Clarivate Analytics, Barcelona, Spain
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
5
|
Gąsiorowski L, Chai C, Rozanski A, Purandare G, Ficze F, Mizi A, Wang B, Rink JC. Regeneration in the absence of canonical neoblasts in an early branching flatworm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595708. [PMID: 38853907 PMCID: PMC11160568 DOI: 10.1101/2024.05.24.595708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The remarkable regenerative abilities of flatworms are closely linked to neoblasts - adult pluripotent stem cells that are the only division-competent cell type outside of the reproductive system. Although the presence of neoblast-like cells and whole-body regeneration in other animals has led to the idea that these features may represent the ancestral metazoan state, the evolutionary origin of both remains unclear. Here we show that the catenulid Stenostomum brevipharyngium, a member of the earliest-branching flatworm lineage, lacks conventional neoblasts despite being capable of whole-body regeneration and asexual reproduction. Using a combination of single-nuclei transcriptomics, in situ gene expression analysis, and functional experiments, we find that cell divisions are not restricted to a single cell type and are associated with multiple fully differentiated somatic tissues. Furthermore, the cohort of germline multipotency genes, which are considered canonical neoblast markers, are not expressed in dividing cells, but in the germline instead, and we experimentally show that they are neither necessary for proliferation nor regeneration. Overall, our results challenge the notion that canonical neoblasts are necessary for flatworm regeneration and open up the possibility that neoblast-like cells may have evolved convergently in different animals, independent of their regenerative capacity.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gargi Purandare
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Fruzsina Ficze
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
6
|
Zhang D, Jakovlić I, Zou H, Liu F, Xiang CY, Gusang Q, Tso S, Xue S, Zhu WJ, Li Z, Wu J, Wang GT. Strong mitonuclear discordance in the phylogeny of Neodermata and evolutionary rates of Polyopisthocotylea. Int J Parasitol 2024; 54:213-223. [PMID: 38185351 DOI: 10.1016/j.ijpara.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The genomic evolution of Polyopisthocotylea remains poorly understood in comparison to the remaining three classes of Neodermata: Monopisthocotylea, Cestoda, and Trematoda. Moreover, the evolutionary sequence of major events in the phylogeny of Neodermata remains unresolved. Herein we sequenced the mitogenome and transcriptome of the polyopisthocotylean Diplorchis sp., and conducted comparative evolutionary analyses using nuclear (nDNA) and mitochondrial (mtDNA) genomic datasets of Neodermata. We found strong mitonuclear discordance in the phylogeny of Neodermata. Polyopisthocotylea exhibited striking mitonuclear discordance in relative evolutionary rates: the fastest-evolving mtDNA in Neodermata and a comparatively slowly-evolving nDNA genome. This was largely attributable to its very long stem branch in mtDNA topologies, not exhibited by the nDNA data. We found indications that the fast evolution of mitochondrial genomes of Polyopisthocotylea may be driven both by relaxed purifying selection pressures and elevated levels of directional selection. We identified mitochondria-associated genes encoded in the nuclear genome: they exhibited unique evolutionary rates, but not correlated with the evolutionary rate of mtDNA, and there is no evidence for compensatory evolution (they evolved slower than the rest of the genome). Finally, there appears to exist an exceptionally large (≈6.3 kb) nuclear mitochondrial DNA segment (numt) in the nuclear genome of newly sequenced Diplorchis sp. A 3'-end segment of the 16S rRNA gene encoded by the numt was expressed, suggesting that this gene acquired novel, regulatory functions after the transposition to the nuclear genome. In conclusion, Polyopisthocotylea appears to be the lineage with the fastest-evolving mtDNA sequences among all of Bilateria, but most of the substitutions were accumulated deep in the evolutionary history of this lineage. As the nuclear genome does not exhibit a similar pattern, the circumstances underpinning this evolutionary phenomenon remain a mystery.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Ivan Jakovlić
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Liu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; Institute of Aquatic Sciences, Tibet Academy of Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China
| | - Chuan-Yu Xiang
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qunzong Gusang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Sonam Tso
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Shenggui Xue
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Wen-Jin Zhu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Zhenxin Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China
| | - Jihua Wu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Gui-Tang Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850011, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
8
|
Lewin TD, Luo YJ. Transitions and trade-offs in regeneration. Nat Ecol Evol 2023; 7:1965-1966. [PMID: 37857890 DOI: 10.1038/s41559-023-02179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Vila-Farré M, Rozanski A, Ivanković M, Cleland J, Brand JN, Thalen F, Grohme MA, von Kannen S, Grosbusch AL, Vu HTK, Prieto CE, Carbayo F, Egger B, Bleidorn C, Rasko JEJ, Rink JC. Evolutionary dynamics of whole-body regeneration across planarian flatworms. Nat Ecol Evol 2023; 7:2108-2124. [PMID: 37857891 PMCID: PMC10697840 DOI: 10.1038/s41559-023-02221-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Regenerative abilities vary dramatically across animals. Even amongst planarian flatworms, well-known for complete regeneration from tiny body fragments, some species have restricted regeneration abilities while others are almost entirely regeneration incompetent. Here, we assemble a diverse live collection of 40 planarian species to probe the evolution of head regeneration in the group. Combining quantification of species-specific head-regeneration abilities with a comprehensive transcriptome-based phylogeny reconstruction, we show multiple independent transitions between robust whole-body regeneration and restricted regeneration in freshwater species. RNA-mediated genetic interference inhibition of canonical Wnt signalling in RNA-mediated genetic interference-sensitive species bypassed all head-regeneration defects, suggesting that the Wnt pathway is linked to the emergence of planarian regeneration defects. Our finding that Wnt signalling has multiple roles in the reproductive system of the model species Schmidtea mediterranea raises the possibility that a trade-off between egg-laying, asexual reproduction by fission/regeneration and Wnt signalling drives regenerative trait evolution. Although quantitative comparisons of Wnt signalling levels, yolk content and reproductive strategy across our species collection remained inconclusive, they revealed divergent Wnt signalling roles in the reproductive system of planarians. Altogether, our study establishes planarians as a model taxon for comparative regeneration research and presents a framework for the mechanistic evolution of regenerative abilities.
Collapse
Affiliation(s)
- Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - James Cleland
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Felix Thalen
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
- Cardio-CARE, Medizincampus Davos, Davos, Switzerland
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | - Hanh T-K Vu
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlos E Prieto
- Department of Zoology & Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Carbayo
- Laboratório de Ecologia e Evolução. Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Bernhard Egger
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-Universität Göttingen, Göttingen, Germany
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
10
|
Van Steenkiste NWL, Wakeman KC, Söderström B, Leander BS. Patterns of host-parasite associations between marine meiofaunal flatworms (Platyhelminthes) and rhytidocystids (Apicomplexa). Sci Rep 2023; 13:21050. [PMID: 38030717 PMCID: PMC10687266 DOI: 10.1038/s41598-023-48233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
Microturbellarians are abundant and ubiquitous members of marine meiofaunal communities around the world. Because of their small body size, these microscopic animals are rarely considered as hosts for parasitic organisms. Indeed, many protists, both free-living and parasitic ones, equal or surpass meiofaunal animals in size. Despite several anecdotal records of "gregarines", "sporozoans", and "apicomplexans" parasitizing microturbellarians in the literature-some of them dating back to the nineteenth century-these single-celled parasites have never been identified and characterized. More recently, the sequencing of eukaryotic microbiomes in microscopic invertebrates have revealed a hidden diversity of protist parasites infecting microturbellarians and other meiofaunal animals. Here we show that apicomplexans isolated from twelve taxonomically diverse rhabdocoel taxa and one species of proseriate collected in four geographically distinct areas around the Pacific Ocean (Okinawa, Hokkaido, and British Columbia) and the Caribbean Sea (Curaçao) all belong to the apicomplexan genus Rhytidocystis. Based on comprehensive molecular phylogenies of Rhabdocoela and Proseriata inferred from both 18S and 28S rDNA sequences, as well as a molecular phylogeny of Marosporida inferred from 18S rDNA sequences, we determine the phylogenetic positions of the microturbellarian hosts and their parasites. Multiple lines of evidence, including morphological and molecular data, show that at least nine new species of Rhytidocystis infect the microturbellarian hosts collected in this study, more than doubling the number of previously recognized species of Rhytidocystis, all of which infect polychaete hosts. A cophylogenetic analysis examining patterns of phylosymbiosis between hosts and parasites suggests a complex picture of overall incongruence between host and parasite phylogenies, and varying degrees of geographic signals and taxon specificity.
Collapse
Affiliation(s)
- Niels W L Van Steenkiste
- Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada.
- Hakai Institute, Heriot Bay, Quadra Island, BC, Canada.
| | - Kevin C Wakeman
- Institute for the Advancement of High Education, Hokkaido University, Sapporo, Japan.
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Brian S Leander
- Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Gąsiorowski L, Dittmann IL, Brand JN, Ruhwedel T, Möbius W, Egger B, Rink JC. Convergent evolution of the sensory pits in and within flatworms. BMC Biol 2023; 21:266. [PMID: 37993917 PMCID: PMC10664644 DOI: 10.1186/s12915-023-01768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Unlike most free-living platyhelminths, catenulids, the sister group to all remaining flatworms, do not have eyes. Instead, the most prominent sensory structures in their heads are statocysts or sensory pits. The latter, found in the family Stenostomidae, are concave depressions located laterally on the head that represent one of the taxonomically important traits of the family. In the past, the sensory pits of flatworms have been homologized with the cephalic organs of nemerteans, a clade that occupies a sister position to platyhelminths in some recent phylogenies. To test for this homology, we studied morphology and gene expression in the sensory pits of the catenulid Stenostomum brevipharyngium. RESULTS We used confocal and electron microscopy to investigate the detailed morphology of the sensory pits, as well as their formation during regeneration and asexual reproduction. The most prevalent cell type within the organ is epidermally-derived neuron-like cells that have cell bodies embedded deeply in the brain lobes and long neurite-like processes extending to the bottom of the pit. Those elongated processes are adorned with extensive microvillar projections that fill up the cavity of the pit, but cilia are not associated with the sensory pit. We also studied the expression patterns of some of the transcription factors expressed in the nemertean cephalic organs during the development of the pits. Only a single gene, pax4/6, is expressed in both the cerebral organs of nemerteans and sensory pits of S. brevipharyngium, challenging the idea of their deep homology. CONCLUSIONS Since there is no morphological or molecular correspondence between the sensory pits of Stenostomum and the cerebral organs of nemerteans, we reject their homology. Interestingly, the major cell type contributing to the sensory pits of stenostomids shows ultrastructural similarities to the rhabdomeric photoreceptors of other flatworms and expresses ortholog of the gene pax4/6, the pan-bilaterian master regulator of eye development. We suggest that the sensory pits of stenostomids might have evolved from the ancestral rhabdomeric photoreceptors that lost their photosensitivity and evolved secondary function. The mapping of head sensory structures on plathelminth phylogeny indicates that sensory pit-like organs evolved many times independently in flatworms.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Isabel Lucia Dittmann
- Institut Für Zoologie, Universität Innsbruck, Technikerstraße 25 6020, Innsbruck, Austria
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Torben Ruhwedel
- Electron Microscopy Facility, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Facility, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Bernhard Egger
- Institut Für Zoologie, Universität Innsbruck, Technikerstraße 25 6020, Innsbruck, Austria
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Sekii K, Watanabe T, Ito R, Yoshikawa A, Ichikawa-Seki M, Sakamoto K, Kobayashi K. Fractionation of a sex-inducing substance from flatworms using open-column chromatography and reverse-phase high-performance liquid chromatography. STAR Protoc 2023; 4:102625. [PMID: 39491554 PMCID: PMC10628896 DOI: 10.1016/j.xpro.2023.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024] Open
Abstract
A substance that sexualizes planarians, an ancestral group of parasitic flatworms, is widely present in planarians and parasitic flatworms. Here, we present a protocol for extracting and purifying the active fraction with sex-inducing activity. We describe steps for homogenization of flatworms, sample concentration, open-column chromatography, and reverse-phase high-performance liquid chromatography. We then detail a feeding bioassay to confirm sex-inducing activity. The obtained active fraction may positively affect parasitic flatworm sexual maturation and can be tested by adding it into the culture media. For complete details on the use and execution of this protocol, please refer to Sekii et al. (2023).1.
Collapse
Affiliation(s)
- Kiyono Sekii
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan; Faculty of Business and Commerce, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan
| | - Taro Watanabe
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Riku Ito
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Akitoshi Yoshikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kimitoshi Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan.
| | - Kazuya Kobayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
13
|
Brabec J, Salomaki ED, Kolísko M, Scholz T, Kuchta R. The evolution of endoparasitism and complex life cycles in parasitic platyhelminths. Curr Biol 2023; 33:4269-4275.e3. [PMID: 37729914 DOI: 10.1016/j.cub.2023.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Within flatworms, the vast majority of parasitism is innate to Neodermata, the most derived and diversified group of the phylum Platyhelminthes.1,2 The four major lineages of Neodermata maintain various combinations of life strategies.3 They include both externally (ecto-) and internally feeding (endo-) parasites. Some lineages complete their life cycles directly by infecting a single host, whereas others succeed only through serial infections of multiple hosts of various vertebrate and invertebrate groups. Food sources and modes of digestion add further combinatorial layers to the often incompletely understood mosaic of neodermatan life histories. Their evolutionary trajectories have remained molecularly unresolved because of conflicting evolutionary inferences and a lack of genomic data.4 Here, we generated transcriptomes for nine early branching neodermatan representatives and performed detailed phylogenomic analyses to address these critical gaps. Polyopisthocotylea, mostly hematophagous ectoparasites, form a group with the mostly hematophagous but endoparasitic trematodes (Trematoda), rather than sharing a common ancestor with Monopisthocotylea, ectoparasitic epithelial feeders. Phylogenetic placement of the highly specialized endoparasitic Cestoda alters depending on the model. Regardless of this uncertainty, this study brings an unconventional perspective on the evolution of platyhelminth parasitism, rejecting a common origin for the endoparasitic lifestyle intrinsic to cestodes and trematodes. Instead, our data indicate that complex life cycles and invasion of vertebrates' gut lumen, the hallmark features of these parasites, evolved independently within Neodermata. We propose the demise of the traditionally recognized class Monogenea and the promotion of its two subclasses to the class level as Monopisthocotyla new class and Polyopisthocotyla new class.
Collapse
Affiliation(s)
- Jan Brabec
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, 180 George St, Providence, RI 02906, USA
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| |
Collapse
|
14
|
Hookabe N, Jimi N, Ogawa A, Tsuchiya M, Sluys R. The Abyssal Parasitic Flatworm Fecampia cf. abyssicola: New Records, Anatomy, and Molecular Phylogeny, with a Discussion on Its Systematic Position. THE BIOLOGICAL BULLETIN 2023; 245:77-87. [PMID: 38976850 DOI: 10.1086/730857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractThe order Fecampiida, a group of parasitic turbellarians, has been poorly studied in terms of its species diversity, morphology, and ecology. Fecampiida is positioned within the monophyletic clade Adiaphanida, along with Tricladida and Prolecithophora, but their phylogenetic relationships are not well understood. Although the nervous and muscular systems of only two species in Fecampiida have been studied, recent research inferred morphological similarities between Fecampiida and Prolecithophora. In this study, we collected fecampiid cocoons and juveniles at depths of 1861-4438 m in Japanese waters. We identified the species on the basis of swimming juvenile specimens and by using histological and molecular methods, while we also examined its musculature and nervous system. Our study revealed a more complex nervous system than previously reported, with dorsal, lateral, and ventral pairs of longitudinal nerve cords connected through an anterior neuropile and posterior transverse commissures. While the nervous and muscular morphology suggested similarities with Prolecithophora, our phylogenetic analysis did not support a close relationship between Fecampiida and Prolecithophora.
Collapse
|
15
|
Goodheart JA, Collins AG, Cummings MP, Egger B, Rawlinson KA. A phylogenomic approach to resolving interrelationships of polyclad flatworms, with implications for life-history evolution. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220939. [PMID: 36998763 PMCID: PMC10049750 DOI: 10.1098/rsos.220939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Platyhelminthes (flatworms) are a diverse invertebrate phylum useful for exploring life-history evolution. Within Platyhelminthes, only two clades develop through a larval stage: free-living polyclads and parasitic neodermatans. Neodermatan larvae are considered evolutionarily derived, whereas polyclad larvae are hypothesized to be ancestral due to ciliary band similarities among polyclad and other spiralian larvae. However, larval evolution has been challenging to investigate within polyclads due to low support for deeper phylogenetic relationships. To investigate polyclad life-history evolution, we generated transcriptomic data for 21 species of polyclads to build a well-supported phylogeny for the group. The resulting tree provides strong support for deeper nodes, and we recover a new monophyletic clade of early branching cotyleans. We then used ancestral state reconstructions to investigate ancestral modes of development within Polycladida and more broadly within flatworms. In polyclads, we were unable to reconstruct the ancestral state of deeper nodes with significant support because early branching clades show diverse modes of development. This suggests a complex history of larval evolution in polyclads that likely includes multiple losses and/or multiple gains. However, our ancestral state reconstruction across a previously published platyhelminth phylogeny supports a direct developing prorhynchid/polyclad ancestor, which suggests that a larval stage in the life cycle evolved along the polyclad stem lineage or within polyclads.
Collapse
Affiliation(s)
- Jessica A. Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Allen G. Collins
- NMFS, National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, MRC-153, PO Box 37012, Washington, DC 20013, USA
| | - Michael P. Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Bernhard Egger
- Universität Innsbruck, Department of Zoology, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Kate A. Rawlinson
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543
| |
Collapse
|
16
|
Sex-inducing effects toward planarians widely present among parasitic flatworms. iScience 2022; 26:105776. [PMID: 36594009 PMCID: PMC9804148 DOI: 10.1016/j.isci.2022.105776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Various parasitic flatworms infect vertebrates for sexual reproduction, often causing devastating diseases in their hosts. Consequently, flatworms are of great socioeconomic and biomedical importance. Although the cessation of parasitic flatworm sexual reproduction is a major target of anti-parasitic drug design, little is known regarding bioactive compounds controlling flatworm sexual maturation. Using the planarian Dugesia ryukyuensis, we observed that sex-inducing substances found in planarians are also widespread in parasitic flatworms, such as monogeneans and flukes (but not in tapeworms). Reverse-phase HPLC analysis revealed the sex-inducing substance(s) eluting around the tryptophan retention time in the fluke Calicophoron calicophorum, consistent with previous studies on the planarian Bipalium nobile, suggesting that the substance(s) is likely conserved among flatworms. Moreover, six of the 18 ovary-inducing substances identified via transcriptome and metabolome analyses are involved in purine metabolism. Our findings provide a basis for understanding and modifying the life cycles of various parasitic flatworms.
Collapse
|
17
|
Tsuyuki A, Oya Y, Kajihara H. Reversible shifts between interstitial and epibenthic habitats in evolutionary history: Molecular phylogeny of the marine flatworm family Boniniidae (Platyhelminthes: Polycladida: Cotylea) with descriptions of two new species. PLoS One 2022; 17:e0276847. [PMID: 36417389 PMCID: PMC9683627 DOI: 10.1371/journal.pone.0276847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tiny animals in various metazoan phyla inhabit the interstices between sand and/or gravel grains, and adaptive traits in their body plan, such as simplification and size reduction, have attracted research attention. Several possible explanations of how such animals colonized interstitial habitats have been proposed, but their adaptation to this environment has generally been regarded as irreversible. However, the actual evolutionary transitions are not well understood in almost all taxa. In the present study, we show reversible evolutionary shifts from interstitial to epibenthic habitats in the lineage of the polyclad flatworm genus Boninia. In addition, we establish two new species of this genus found from different microhabitats on a single beach in Okinawa Island, Japan: (i) the interstitial species Boninia uru sp. nov. from gravelly sediments and (ii) the epibenthic species Boninia yambarensis sp. nov. from rock undersurfaces. Our observations suggest that rigid microhabitat segregation exists between these two species. Molecular phylogenetic analyses based on the partial 18S and 28S rDNA sequences of the new Boninia species and four other congeners, for which molecular sequences were available in public databases [Boninia antillara (epibenthic), Boninia divae (epibenthic), Boninia neotethydis (interstitial), and an unidentified Boninia sp. (habitat indeterminate)], revealed that the two interstitial species (B. neotethydis and B. uru sp. nov.) were not monophyletic among the three epibenthic species. According to ancestral state reconstruction analysis, the last common ancestor of the analyzed Boninia species inhabited interstitial realms, and a shift to the epibenthic environment occurred at least once. Such an "interstitial to noninterstitial" evolutionary route seems to be rare among Animalia; to date, it has been reported only in acochlidian slugs in the clade Hedylopsacea. Our phylogenetic tree also showed that the sympatric B. uru sp. nov. and B. yambarensis sp. nov. were not in a sister relationship, indicating that they colonized the same beach independently rather than descended in situ from a common ancestor that migrated and settled at the beach.
Collapse
Affiliation(s)
- Aoi Tsuyuki
- Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| | - Yuki Oya
- College of Arts and Sciences, J. F. Oberlin University, Machida, Tokyo, Japan
| | - Hiroshi Kajihara
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
18
|
Grosbusch AL, Bertemes P, Kauffmann B, Gotsis C, Egger B. Do Not Lose Your Head Over the Unequal Regeneration Capacity in Prolecithophoran Flatworms. BIOLOGY 2022; 11:1588. [PMID: 36358289 PMCID: PMC9687166 DOI: 10.3390/biology11111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 10/21/2023]
Abstract
One of the central questions in studying the evolution of regeneration in flatworms remains whether the ancestral flatworm was able to regenerate all body parts, including the head. If so, this ability was subsequently lost in most existent flatworms. The alternative hypothesis is that head regeneration has evolved within flatworms, possibly several times independently. In the well-studied flatworm taxon Tricladida (planarians), most species are able to regenerate a head. Little is known about the regeneration capacity of the closest relatives of Tricladida: Fecampiida and Prolecithophora. Here, we analysed the regeneration capacity of three prolecithophoran families: Pseudostomidae, Plagiostomidae, and Protomonotresidae. The regeneration capacity of prolecithophorans varies considerably between families, which is likely related to the remaining body size of the regenerates. While all studied prolecithophoran species were able to regenerate a tail-shaped posterior end, only some Pseudostomidae could regenerate a part of the pharynx and pharynx pouch. Some Plagiostomidae could regenerate a head including the brain and eyes, provided the roots of the brain were present. The broad spectrum of regeneration capacity in Prolecithophora suggests that head regeneration capacity is not an apomorphy of Adiaphanida.
Collapse
Affiliation(s)
| | | | | | | | - Bernhard Egger
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Gordeev I, Biserova N, Zhukova K, Ekimova I. The first report of a parasitic 'turbellarian' from a cephalopod mollusc, with description of Octopoxenus antarcticus gen. nov., sp. nov. (Platyhelminthes: Fecampiida: Notenteridae). J Helminthol 2022; 96:e73. [PMID: 36250341 DOI: 10.1017/s0022149x22000657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Parasitic 'turbellarians' are known from various animals such as echinoderms, crustaceans, annelids, bivalve and gastropod molluscs. So far, however, no 'turbellarians' have been reported from cephalopods. In this paper we report a parasitic 'turbellarian' from the giant Antarctic octopus, Megaleledone setebos. We dissected two specimens of M. setebos caught in the Ross Sea (Antarctica) and found numerous worms in their intestine and liver. The worms were spherical or oblong and had two morphologically different poles. The frontal pole bears a small conical protrusion containing large elongated pear-shaped frontal glands and large polygonal cells. The ducts of the frontal glands open terminally to form the frontal organ. The caudal pole has an opening shaped as a folded tube connected by the genital pore with a common genital atrium, which continues into a canal with a muscular sheath. The worms were identified as 'turbellarians' from the family Notenteridae (Fecampiida). This family contains only one species, Notentera ivanovi, reported from the gut of a polychaete at the White Sea. The worms that we found in the gastrointestinal tract of the octopuses were morphologically similar to N. ivanovi but differed from it in several important respects. Phylogenetic analysis based on 28S rDNA gene showed that the newly found worm clustered together with other fecampiids in a highly supported clade and was closely related to N. ivanovi. On the basis of these morphological and molecular data, we described a new species, Octopoxenus antarcticus gen. nov., sp. nov. (Fecampiida: Notenteridae), establishing a new genus to accommodate it and provided an updated diagnosis of the family Notenteridae. This is the first report of a parasitic 'turbellarian' from a cephalopod mollusc.
Collapse
Affiliation(s)
- I Gordeev
- Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - N Biserova
- Lomonosov Moscow State University, Moscow, Russia
| | - K Zhukova
- Lomonosov Moscow State University, Moscow, Russia
| | - I Ekimova
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
20
|
Petrov AA, Dmitrieva EV, Plaksina MP. Neuromuscular organization and haptoral armament of Polyclithrum ponticum (Monogenea: Gyrodactylidae). J Helminthol 2022; 96:e74. [PMID: 36226664 DOI: 10.1017/s0022149x22000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most gyrodactylids have a haptor armed with a pair of hamuli, two connecting bars and 16 marginal hooks. In some gyrodactylids, however, the haptor is disc-shaped and reinforced by additional sclerites. The genus Polyclithrum has arguably the most elaborate haptor in this group. This study aimed to gain better understanding of the anatomy of Polyclithrum by examining neuromusculature and haptoral armament of Polyclithrum ponticum, a species parasitizing Mugil cephalus in the Black Sea, with emphasis on haptoral sclerites and musculature in connection with host-attachment mechanisms. Musculature was stained by phalloidin, the nervous system by anti-serotonin and anti-FMRFamide antibodies, and haptoral sclerites were visualized in reflected light. The study provided new information on sclerites: in addition to previously described supplementary sclerites (A1-6), ear-shaped sclerites (ESSs) and two paired groups of ribs, reflected light revealed a rod-shaped process on the ESSs and a pair of small posterior sclerites. The sclerites were shown to be operated by 16 muscles, the most prominent of which were two transverse muscles connecting the hamular roots, three muscles attached to sclerite A2, the muscle fibres of anterior ribs and a set of extrinsic muscles. The nervous system consists of a pair of cerebral ganglia connected by a commissure and three pairs of nerve cords that unite in the haptor to form a loop between the opposite cords. The arrangement of sclerites and muscles suggests that Polyclithrum initiates the attachment by clamping a host's surface with longitudinally folded haptor and then secures its position with marginal hooks.
Collapse
Affiliation(s)
- A A Petrov
- Zoological Institute, Saint-Petersburg, Russia
| | - E V Dmitrieva
- A.O. Kovalevsky Institute of Biology of the Southern Seas, Moscow, Russia
| | - M P Plaksina
- Murmansk Marine Biological Institute, Murmansk, Russia
| |
Collapse
|
21
|
Domínguez MF, Costábile A, Koziol U, Preza M, Brehm K, Tort JF, Castillo E. Cell repertoire and proliferation of germinative cells of the model cestode Mesocestoides corti. Parasitology 2022; 149:1505-1514. [PMID: 35787303 PMCID: PMC11010542 DOI: 10.1017/s0031182022000956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/06/2022]
Abstract
The phylum Platyhelminthes shares a unique population of undifferentiated cells responsible for the proliferation capacity needed for cell renewal, growth, tissue repair and regeneration. These cells have been extensively studied in free-living flatworms, whereas in cestodes the presence of a set of undifferentiated cells, known as germinative cells, has been demonstrated in classical morphology studies, but poorly characterized with molecular biology approaches. Furthermore, several genes have been identified as neoblast markers in free-living flatworms that deserve study in cestode models. Here, different cell types of the model cestode Mesocestoides corti were characterized, identifying differentiated and germinative cells. Muscle cells, tegumental cells, calcareous corpuscle precursor cells and excretory system cells were identified, all of which are non-proliferative, differentiated cell types. Besides those, germinative cells were identified as a population of small cells with proliferative capacity in vivo. Primary cell culture experiments in Dulbecco's Modified Eagle Medium (DMEM), Echinococcus hydatid fluid and hepatocyte conditioned media in non-reductive or reductive conditions confirmed that the germinative cells were the only ones with proliferative capacity. Since several genes have been identified as markers of undifferentiated neoblast cells in free-living flatworms, the expression of pumilio and pL10 genes was analysed by qPCR and in situ hybridization, showing that the expression of these genes was stronger in germinative cells but not restricted to this cell type. This study provides the first tools to analyse and further characterise undifferentiated cells in a model cestode.
Collapse
Affiliation(s)
- María Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alicia Costábile
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Matías Preza
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
22
|
Leite DJ, Piovani L, Telford MJ. Genome assembly of the polyclad flatworm Prostheceraeus crozieri. Genome Biol Evol 2022; 14:6678951. [PMID: 36040059 PMCID: PMC9469890 DOI: 10.1093/gbe/evac133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Polyclad flatworms are widely thought to be one of the least derived of the flatworm classes and, as such, are well placed to investigate evolutionary and developmental features such as spiral cleavage and larval diversification lost in other platyhelminths. Prostheceraeus crozieri, (formerly Maritigrella crozieri), is an emerging model polyclad flatworm that already has some useful transcriptome data but, to date, no sequenced genome. We have used high molecular weight DNA extraction and long-read PacBio sequencing to assemble the highly repetitive (67.9%) P. crozieri genome (2.07 Gb). We have annotated 43,325 genes, with 89.7% BUSCO completeness. Perhaps reflecting its large genome, introns were considerably larger than other free-living flatworms, but evidence of abundant transposable elements suggests genome expansion has been principally via transposable elements activity. This genome resource will be of great use for future developmental and phylogenomic research.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.,Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Laura Piovani
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
23
|
A Krüppel-like factor is required for development and regeneration of germline and yolk cells from somatic stem cells in planarians. PLoS Biol 2022; 20:e3001472. [PMID: 35839223 PMCID: PMC9286257 DOI: 10.1371/journal.pbio.3001472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Sexually reproducing animals segregate their germline from their soma. In addition to gamete-producing gonads, planarian and parasitic flatworm reproduction relies on yolk cell–generating accessory reproductive organs (vitellaria) supporting development of yolkless oocytes. Despite the importance of vitellaria for flatworm reproduction (and parasite transmission), little is known about this unique evolutionary innovation. Here, we examine reproductive system development in the planarian Schmidtea mediterranea, in which pluripotent stem cells generate both somatic and germ cell lineages. We show that a homolog of the pluripotency factor Klf4 is expressed in primordial germ cells (PGCs), presumptive germline stem cells (GSCs), and yolk cell progenitors. Knockdown of this klf4-like (klf4l) gene results in animals that fail to specify or maintain germ cells; surprisingly, they also fail to maintain yolk cells. We find that yolk cells display germ cell–like attributes and that vitellaria are structurally analogous to gonads. In addition to identifying a new proliferative cell population in planarians (yolk cell progenitors) and defining its niche, our work provides evidence supporting the hypothesis that flatworm germ cells and yolk cells share a common evolutionary origin.
Collapse
|
24
|
Martínez-González JDJ, Ríos-Morales SL, Guevara-Flores A, Ramos-Godinez MDP, López-Saavedra A, Rendón JL, Del Arenal Mena IP. Evaluating the effect of curcumin on the metacestode of Taenia crassiceps. Exp Parasitol 2022; 239:108319. [PMID: 35777452 DOI: 10.1016/j.exppara.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Curcumin, a curcuminoid present in the rhizome of the plant Curcuma longa has multiple pharmacological effects including anticarcinogenic and anti-inflammatory properties. This work evaluates the anthelmintic effect of the curcumin molecule (98% pure) on Taenia crassiceps cysticerci viability in vitro. Cysticerci incubated in the presence of increasing concentrations of curcumin showed a dose-dependent mortality correlated with a significant increase in the production of reactive oxygen species and a partial inhibition of thioredoxin-glutathione reductase, the only disulfide reductase present in these parasites. At 500 μM curcumin, a 100% of cysticerci lethality was obtained after 2 h of treatment. These results suggest the curcumin-induced oxidative stress could be in the origin of the anthelminthic effect of curcumin. Mice with cysticerci were injected intraperitoneally with 20, 40, or 60 mM curcumin daily for 30 days. A decrease in the burden of cysticerci (46%) was observed with a 60 mM dose of curcumin, supporting this compound as a potential anthelmintic drug.
Collapse
Affiliation(s)
- José de Jesús Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Sandra Lizeth Ríos-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - María Del Pilar Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Irene Patricia Del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico.
| |
Collapse
|
25
|
Cháves-González LE, Morales-Calvo F, Mora J, Solano-Barquero A, Verocai GG, Rojas A. What lies behind the curtain: Cryptic diversity in helminth parasites of human and veterinary importance. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100094. [PMID: 35800064 PMCID: PMC9253710 DOI: 10.1016/j.crpvbd.2022.100094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Parasite cryptic species are morphologically indistinguishable but genetically distinct organisms, leading to taxa with unclear species boundaries. Speciation mechanisms such as cospeciation, host colonization, taxon pulse, and oscillation may lead to the emergence of cryptic species, influencing host-parasite interactions, parasite ecology, distribution, and biodiversity. The study of cryptic species diversity in helminth parasites of human and veterinary importance has gained relevance, since their distribution may affect clinical and epidemiological features such as pathogenicity, virulence, drug resistance and susceptibility, mortality, and morbidity, ultimately affecting patient management, course, and outcome of treatment. At the same time, the need for recognition of cryptic species diversity has implied a transition from morphological to molecular diagnostic methods, which are becoming more available and accessible in parasitology. Here, we discuss the general approaches for cryptic species delineation and summarize some examples found in nematodes, trematodes and cestodes of medical and veterinary importance, along with the clinical implications of their taxonomic status. Lastly, we highlight the need for the correct interpretation of molecular information, and the correct use of definitions when reporting or describing new cryptic species in parasitology, since molecular and morphological data should be integrated whenever possible.
Collapse
Affiliation(s)
- Luis Enrique Cháves-González
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Fernando Morales-Calvo
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Javier Mora
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Alberto Solano-Barquero
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Alicia Rojas
- Laboratory of Helminthology, Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
26
|
Minelli A, Valero-Gracia A. Spatially and Temporally Distributed Complexity-A Refreshed Framework for the Study of GRN Evolution. Cells 2022; 11:cells11111790. [PMID: 35681485 PMCID: PMC9179533 DOI: 10.3390/cells11111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Irrespective of the heuristic value of interpretations of developmental processes in terms of gene regulatory networks (GRNs), larger-angle views often suffer from: (i) an inadequate understanding of the relationship between genotype and phenotype; (ii) a predominantly zoocentric vision; and (iii) overconfidence in a putatively hierarchical organization of animal body plans. Here, we constructively criticize these assumptions. First, developmental biology is pervaded by adultocentrism, but development is not necessarily egg to adult. Second, during development, many unicells undergo transcriptomic profile transitions that are comparable to those recorded in pluricellular organisms; thus, their study should not be neglected from the GRN perspective. Third, the putatively hierarchical nature of the animal body is mirrored in the GRN logic, but in relating genotype to phenotype, independent assessments of the dynamics of the regulatory machinery and the animal’s architecture are required, better served by a combinatorial than by a hierarchical approach. The trade-offs between spatial and temporal aspects of regulation, as well as their evolutionary consequences, are also discussed. Multicellularity may derive from a unicell’s sequential phenotypes turned into different but coexisting, spatially arranged cell types. In turn, polyphenism may have been a crucial mechanism involved in the origin of complex life cycles.
Collapse
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via U. Bassi 58B, 35132 Padova, Italy
- Correspondence:
| | - Alberto Valero-Gracia
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway;
| |
Collapse
|
27
|
Sticking Together an Updated Model for Temporary Adhesion. Mar Drugs 2022; 20:md20060359. [PMID: 35736161 PMCID: PMC9229212 DOI: 10.3390/md20060359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Non-parasitic flatworms are known to temporarily attach to the substrate by secreting a multicomponent bioadhesive to counteract water movements. However, to date, only species of two higher-level flatworm taxa (Macrostomorpha and Proseriata) have been investigated for their adhesive proteins. Remarkably, the surface-binding protein is not conserved between flatworm taxa. In this study, we sequenced and assembled a draft genome, as well as a transcriptome, and generated a tail-specific positional RNA sequencing dataset of the polyclad Theama mediterranea. This led to the identification of 15 candidate genes potentially involved in temporary adhesion. Using in situ hybridisation and RNA interference, we determined their expression and function. Of these 15 genes, 4 are homologues of adhesion-related genes found in other flatworms. With this work, we provide two novel key components on the flatworm temporary adhesion system. First, we identified a Kringle-domain-containing protein (Tmed-krg1), which was expressed exclusively in the anchor cell. This in silico predicted membrane-bound Tmed-krg1 could potentially bind to the cohesive protein, and a knockdown led to a non-adhesive phenotype. Secondly, a secreted tyrosinase (Tmed-tyr1) was identified, which might crosslink the adhesive proteins. Overall, our findings will contribute to the future development of reversible synthetic glues with desirable properties for medical and industrial applications.
Collapse
|
28
|
Okamura B, Gruhl A, De Baets K. Evolutionary transitions of parasites between freshwater and marine environments. Integr Comp Biol 2022; 62:345-356. [PMID: 35604852 DOI: 10.1093/icb/icac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Evolutionary transitions of organisms between environments have long fascinated biologists but attention has focused almost exclusively on free-living organisms and challenges to achieve such transitions. This bias requires addressing because parasites are a major component of biodiversity. We address this imbalance by focusing on transitions of parasitic animals between marine and freshwater environments. We highlight parasite traits and processes that may influence transition likelihood (e.g. transmission mode, life cycle, host use), and consider mechanisms and directions of transitions. Evidence for transitions in deep time and at present are described, and transitions in our changing world are considered. We propose that environmental transitions may be facilitated for endoparasites because hosts reduce exposure to physiologically challenging environments and argue that adoption of an endoparasitic lifestyle entails an equivalent transitioning process as organisms switch from living in one environment (e.g. freshwater, seawater, or air) to living symbiotically within hosts. Environmental transitions of parasites have repeatedly resulted in novel forms and diversification, contributing to the tree of life. Recognising the potential processes underlying present-day and future environmental transitions is crucial in view of our changing world and the current biodiversity crisis.
Collapse
Affiliation(s)
- Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | | | - Kenneth De Baets
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
29
|
Hao CL, Arken K, Kadir M, Zhang WR, Rong MJ, Wei NW, Liu YJ, Yue C. The complete mitochondrial genomes of Paradiplozoon yarkandense and Paradiplozoon homoion confirm that Diplozoidae evolve at an elevated rate. Parasit Vectors 2022; 15:149. [PMID: 35477556 PMCID: PMC9044634 DOI: 10.1186/s13071-022-05275-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diplozoidae are monogenean (Monogenea: Polyopisthocotylea) fish parasites characterised by a unique life history: two larvae permanently fuse into an X-shaped "Siamese" organism. Taxonomy and phylogeny of Diplozoidae and Polyopisthocotylea remain unresolved due to the unavailability of molecular markers with sufficiently high resolution. Mitogenomes may be a suitable candidate, but there are currently only 12 available for the Polyopisthocotylea (three for Diplozoidae). The only available study of diplozoid mitogenomes found unique base composition patterns and elevated evolution rates in comparison with other Monogenean mitogenomes. METHODS To further explore their evolution and generate molecular data for evolutionary studies, we sequenced the complete mitogenomes of two Diplozoidae species, Paradiplozoon homoion and Paradiplozoon yarkandense, and conducted a number of comparative mitogenomic analyses with other polyopisthocotyleans. RESULTS We found further evidence that mitogenomes of Diplozoidae evolve at a unique, elevated rate, which was reflected in their exceptionally long branches, large sizes, unique base composition, skews, and very low gene sequence similarity levels between the two newly sequenced species. They also exhibited remarkably large overlaps between some genes. Phylogenetic analysis of Polyopisthocotylea resolved all major taxa as monophyletic, and Mazocraeidea was split into two major clades: (Diplozoidae) + (all four remaining families: Diclidophoridae, Chauhaneidae, Mazocraeidae and Microcotylidae). It also provided further confirmation that the genus Paradiplozoon is paraphyletic and requires a taxonomic revision, so the two species may have to be renamed Indodiplozoon homoion and Diplozoon yarkandense comb. nov. CONCLUSIONS Although our findings indicate that mitogenomes may be a promising tool for resolving the phylogeny of Polyopisthocotylea, elevated evolutionary rates of Diplozoidae may cause phylogenetic artefacts, so future studies should pay caution to this problem. Furthermore, as the reason for their elevated evolution remains unknown, Diplozoidae are a remarkably interesting lineage for other types of evolutionary mitogenomic studies.
Collapse
Affiliation(s)
- Cui-Lan Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Kadirden Arken
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Munira Kadir
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Wen-Run Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Meng-Jie Rong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Nian-Wen Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yan-Jun Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Cheng Yue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
30
|
The molecular phylogenetic position of Mariplanella piscadera sp. nov. reveals a new major group of rhabdocoel flatworms: Mariplanellida status novus (Platyhelminthes: Rhabdocoela). ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Ustyantsev KV, Vavilova VY, Blinov AG, Berezikov EV. Macrostomum lignano as a model to study the genetics and genomics of parasitic flatworms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:108-116. [PMID: 34901708 PMCID: PMC8629357 DOI: 10.18699/vj21.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Hundreds of millions of people worldwide are infected by various species of parasitic flatworms. Without
treatment, acute and chronical infections frequently lead to the development of severe pathologies and even death.
Emerging data on a decreasing efficiency of some important anthelmintic compounds and the emergence of resistance to them force the search for alternative drugs. Parasitic flatworms have complex life cycles, are laborious and
expensive in culturing, and have a range of anatomic and physiological adaptations that complicate the application
of standard molecular-biological methods. On the other hand, free-living flatworm species, evolutionarily close to
parasitic flatworms, do not have the abovementioned difficulties, which makes them potential alternative models
to search for and study homologous genes. In this review, we describe the use of the basal free-living flatworm
Macrostomum lignano as such a model. M. lignano has a number of convenient biological and experimental properties, such as fast reproduction, easy and non-expensive laboratory culturing, optical body transparency, obligatory
sexual reproduction, annotated genome and transcriptome assemblies, and the availability of modern molecular
methods, including transgenesis, gene knockdown by RNA interference, and in situ hybridization. All this makes
M. lignano amenable to the most modern approaches of forward and reverse genetics, such as transposon insertional mutagenesis and methods of targeted genome editing by the CRISPR/Cas9 system. Due to the availability of
an increasing number of genome and transcriptome assemblies of different parasitic flatworm species, new knowledge generated by studying M. lignano can be easily translated to parasitic flatworms with the help of modern
bioinformatic methods of comparative genomics and transcriptomics. In support of this, we provide the results of
our bioinformatics search and analysis of genes homologous between M. lignano and parasitic flatworms, which
predicts a list of promising gene targets for subsequent research.
Collapse
Affiliation(s)
- K V Ustyantsev
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V Yu Vavilova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Blinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Berezikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
32
|
(Un)expected Similarity of the Temporary Adhesive Systems of Marine, Brackish, and Freshwater Flatworms. Int J Mol Sci 2021; 22:ijms222212228. [PMID: 34830109 PMCID: PMC8621496 DOI: 10.3390/ijms222212228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Many free-living flatworms have evolved a temporary adhesion system, which allows them to quickly attach to and release from diverse substrates. In the marine Macrostomum lignano, the morphology of the adhesive system and the adhesion-related proteins have been characterised. However, little is known about how temporary adhesion is performed in other aquatic environments. Here, we performed a 3D reconstruction of the M. lignano adhesive organ and compared it to the morphology of five selected Macrostomum, representing two marine, one brackish, and two freshwater species. We compared the protein domains of the two adhesive proteins, as well as an anchor cell-specific intermediate filament. We analysed the gene expression of these proteins by in situ hybridisation and performed functional knockdowns with RNA interference. Remarkably, there are almost no differences in terms of morphology, protein regions, and gene expression based on marine, brackish, and freshwater habitats. This implies that glue components produced by macrostomids are conserved among species, and this set of two-component glue functions from low to high salinity. These findings could contribute to the development of novel reversible biomimetic glues that work in all wet environments and could have applications in drug delivery systems, tissue adhesives, or wound dressings.
Collapse
|
33
|
Guidi L, Balsamo M, Ferraguti M, Todaro MA. Reproductive organs and spermatogenesis of the peculiar spermatozoa of the genus
Kryptodasys
(Gastrotricha, Macrodasyida), with an appraisal of the occurrence and origin of the tail‐less spermatozoa in Gastrotricha. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Loretta Guidi
- Dipartimento di Scienze Biomolecolari Università di Urbino ‘Carlo Bo’ Urbino Italy
| | - Maria Balsamo
- Dipartimento di Scienze Biomolecolari Università di Urbino ‘Carlo Bo’ Urbino Italy
| | - Marco Ferraguti
- Dipartimento di Bioscienze Università degli Studi di Milano Milano Italy
| | - M. Antonio Todaro
- Dipartimento di Scienze della Vita Università di Modena‐Reggio Emilia Modena Italy
| |
Collapse
|
34
|
Kawase O, Iwaya H, Asano Y, Inoue H, Kudo S, Sasahira M, Azuma N, Kondoh D, Ichikawa-Seki M, Xuan X, Sakamoto K, Okamoto H, Nakadate H, Inoue W, Saito I, Narita M, Sekii K, Kobayashi K. Identification of novel yolk ferritins unique to planarians: planarians supply aluminum rather than iron to vitellaria in egg capsules. Cell Tissue Res 2021; 386:391-413. [PMID: 34319433 DOI: 10.1007/s00441-021-03506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
All animals, other than Platyhelminthes, produce eggs containing yolk, referred to as "entolecithal" eggs. However, only Neoophora, in the phylum Platyhelminthes, produce "ectolecithal" eggs (egg capsules), in which yolk is stored in the vitelline cells surrounding oocytes. Vitelline cells are derived from vitellaria (yolk glands). Vitellaria are important reproductive organs that may be studied to elucidate unique mechanisms that have been evolutionarily conserved within Platyhelminthes. Currently, only limited molecular level information is available on vitellaria. The current study identified major vitellaria-specific proteins in a freshwater planarian, Dugesia ryukyuensis, using peptide mass fingerprinting (PMF) and expression analyses. Amino acid sequence analysis and orthology analysis via OrthoFinder ver.2.3.8 indicated that the identified major vitellaria-specific novel yolk ferritins were conserved in planarians (Tricladida). Because ferritins play an important role in Fe (iron) storage, we examined the metal elements contained in vitellaria and ectolecithal eggs, using non-heme iron histochemistry, elemental analysis based on inductively coupled plasma mass spectrometry and transmission electron microscopy- energy-dispersive X-ray spectroscopy analysis. Interestingly, vitellaria and egg capsules contained large amounts of aluminum (Al), but not Fe. The knockdown of the yolk ferritin genes caused a decrease in the volume of egg capsules, abnormality in juveniles, and increase in Al content in vitellaria. Yolk ferritins of D. ryukyuensis may regulate Al concentration in vitellaria via their pooling function of Al and protect the egg capsule production and normal embryogenesis from Al toxicity.
Collapse
Affiliation(s)
- Osamu Kawase
- Department of Biology, Premedical Sciences, Dokkyo Medical University, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Hisashi Iwaya
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiromoto Inoue
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Seiya Kudo
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Motoki Sasahira
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Nobuyuki Azuma
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inaba-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inaba-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hikaru Okamoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hinaki Nakadate
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Wataru Inoue
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Ikuma Saito
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Miyu Narita
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kiyono Sekii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kazuya Kobayashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
35
|
Fontenla S, Rinaldi G, Tort JF. Lost and Found: Piwi and Argonaute Pathways in Flatworms. Front Cell Infect Microbiol 2021; 11:653695. [PMID: 34123869 PMCID: PMC8191739 DOI: 10.3389/fcimb.2021.653695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Platyhelminthes comprise one of the major phyla of invertebrate animals, inhabiting a wide range of ecosystems, and one of the most successful in adapting to parasitic life. Small non-coding RNAs have been implicated in regulating complex developmental transitions in model parasitic species. Notably, parasitic flatworms have lost Piwi RNA pathways but gained a novel Argonaute gene. Herein, we analyzed, contrasted and compared the conservation of small RNA pathways among several free-living species (a paraphyletic group traditionally known as ‘turbellarians’) and parasitic species (organized in the monophyletic clade Neodermata) to disentangle possible adaptations during the transition to parasitism. Our findings showed that complete miRNA and RNAi pathways are present in all analyzed free-living flatworms. Remarkably, whilst all ‘turbellarians’ have Piwi proteins, these were lost in parasitic Neodermantans. Moreover, two clusters of Piwi class Argonaute genes are present in all ‘turbellarians’. Interestingly, we identified a divergent Piwi class Argonaute in free living flatworms exclusively, which we named ‘Fliwi’. In addition, other key proteins of the Piwi pathways were conserved in ‘turbellarians’, while none of them were detected in Neodermatans. Besides Piwi and the canonical Argonaute proteins, a flatworm-specific class of Argonautes (FL-Ago) was identified in the analyzed species confirming its ancestrallity to all Platyhelminthes. Remarkably, this clade was expanded in parasitic Neodermatans, but not in free-living species. These phyla-specific Argonautes showed lower sequence conservation compared to other Argonaute proteins, suggesting that they might have been subjected to high evolutionary rates. However, key residues involved in the interaction with the small RNA and mRNA cleavage in the canonical Argonautes were more conserved in the FL-Agos than in the Piwi Argonautes. Whether this is related to specialized functions and adaptations to parasitism in Neodermatans remains unclear. In conclusion, differences detected in gene conservation, sequence and structure of the Argonaute family suggest tentative biological and evolutionary diversifications that are unique to Platyhelminthes. The remarkable divergencies in the small RNA pathways between free-living and parasitic flatworms indicate that they may have been involved in the adaptation to parasitism of Neodermatans.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | | | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| |
Collapse
|
36
|
Analysis of Fox genes in Schmidtea mediterranea reveals new families and a conserved role of Smed-foxO in controlling cell death. Sci Rep 2021; 11:2947. [PMID: 33536473 PMCID: PMC7859237 DOI: 10.1038/s41598-020-80627-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The forkhead box (Fox) genes encode transcription factors that control several key aspects of development. Present in the ancestor of all eukaryotes, Fox genes underwent several duplications followed by loss and diversification events that gave rise to the current 25 families. However, few Fox members have been identified from the Lophotrochozoa clade, and specifically from planarians, which are a unique model for understanding development, due to the striking plasticity of the adult. The aim of this study was to identify and perform evolutionary and functional studies of the Fox genes of lophotrochozoan species and, specifically, of the planarian Schmidtea mediterranea. Generating a pipeline for identifying Forkhead domains and using phylogenetics allowed us the phylogenetic reconstruction of Fox genes. We corrected the annotation for misannotated genes and uncovered a new family, the QD, present in all metazoans. According to the new phylogeny, the 27 Fox genes found in Schmidtea mediterranea were classified into 12 families. In Platyhelminthes, family losses were accompanied by extensive gene diversification and the appearance of specific families, the A(P) and N(P). Among the newly identified planarian Fox genes, we found a single copy of foxO, which shows an evolutionary conserved role in controlling cell death.
Collapse
|
37
|
Caña-Bozada V, Llera-Herrera R, Fajer-Ávila EJ, Morales-Serna FN. Mitochondrial genome of Scutogyrus longicornis (Monogenea: Dactylogyridea), a parasite of Nile tilapia Oreochromis niloticus. Parasitol Int 2021; 81:102281. [PMID: 33401015 DOI: 10.1016/j.parint.2020.102281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112, Sinaloa, Mexico.
| | - Raúl Llera-Herrera
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico.
| | - Emma J Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112, Sinaloa, Mexico.
| | - F Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112, Sinaloa, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico.
| |
Collapse
|
38
|
Prospective enzymes for omega-3 PUFA biosynthesis found in endoparasitic classes within the phylum Platyhelminthes. J Helminthol 2020; 94:e212. [DOI: 10.1017/s0022149x20000954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
The free-living infectious stages of macroparasites, specifically, the cercariae of trematodes (flatworms), are likely to be significant (albeit underappreciated) vectors of nutritionally important polyunsaturated fatty acids (PUFA) to consumers within aquatic food webs, and other macroparasites could serve similar roles. In the context of de novo omega-3 (n-3) PUFA biosynthesis, it was thought that most animals lack the fatty acid (FA) desaturase enzymes that convert stearic acid (18:0) into ɑ-linolenic acid (ALA; 18:3n-3), the main FA precursor for n-3 long-chain PUFA. Recently, novel sequences of these enzymes were recovered from 80 species from six invertebrate phyla, with experimental confirmation of gene function in five phyla. Given this wide distribution, and the unusual attributes of flatworm genomes, we conducted an additional search for genes for de novo n-3 PUFA in the phylum Platyhelminthes. Searches with experimentally confirmed sequences from Rotifera recovered nine relevant FA desaturase sequences from eight species in four genera in the two exclusively endoparasite classes (Trematoda and Cestoda). These results could indicate adaptations of these particular parasite species, or may reflect the uneven taxonomic coverage of sequence databases. Although additional genomic data and, particularly, experimental study of gene functionality are important future validation steps, our results indicate endoparasitic platyhelminths may have enzymes for de novo n-3 PUFA biosynthesis, thereby contributing to global PUFA production, but also representing a potential target for clinical antihelmintic applications.
Collapse
|
39
|
Kieneke A, Todaro MA. Discovery of two ‘chimeric’ Gastrotricha and their systematic placement based on an integrative approach. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Sublittoral sand from the islands of Sardinia (Italy) and Flores (Azores) – separated by more than 3700 km linear distance and 8 years between two independent sampling campaigns – yielded conspicuous specimens of two bizarre, yet undescribed, species of the marine gastrotrich clade Macrodasyida. These gastrotrichs combine several character traits that were already known from two, non-related genera. Morphological data were carefully analysed and digitally documented, and nuclear and mitochondrial DNA sequences were used for phylogenetic inference. The results of these analyses claim for the erection of a new genus. Specimens of the new taxon have a body length of less than 400 µm and are characterized by a wide, funnel-shaped mouth opening shielded dorsally by an oral hood and possess a posterior peduncle that ends with a Y-shaped pair of appendages that carry the posterior adhesive tubes. Further tubes occur as anterior, ventrolateral and lateral series; the gonads are unpaired and there is a set of two accessory reproductive organs. Molecular phylogenetic analyses confirm the results of former studies and clearly place the new taxon in Thaumastodermatidae. We hereby propose the establishment of Chimaeradasys gen. nov. and describe C. oligotubulatus sp. nov. from the Azores and C. polytubulatus sp. nov. from Sardinia.
Collapse
Affiliation(s)
- Alexander Kieneke
- Senckenberg am Meer Wilhelmshaven, Deutsches Zentrum für Marine Biodiversitätsforschung, Wilhelmshaven, Germany
| | - M Antonio Todaro
- Department of Life Sciences, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
40
|
Poddubnaya LG, Kuchta R, Scholz T. Ultrastructural patterns of the excretory ducts of basal neodermatan groups (Platyhelminthes) and new protonephridial characters of basal cestodes. Parasit Vectors 2020; 13:442. [PMID: 32887664 PMCID: PMC7472586 DOI: 10.1186/s13071-020-04307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The flatworms (Lophotrochozoa: Platyhelminthes) are one of the major phyla of invertebrates but their interrelationships are still not well understood including unravelling the most closely related taxon of the Neodermata, which includes exclusively obligate parasites of all main groups of vertebrates with some 60,000 estimated species. Recent phylogenomic studies indicate that the freshwater 'microturbellarian' Bothrioplana semperi may be the closest ancestor to the Neodermata, but this hypothesis receives little morphological support. Therefore, additional morphological and ultrastructural characters that might help understand interrelations within the Neodermata are needed. METHODS Ultrastructure of the excretory ducts of representatives of the most basal parasitic flatworms (Neodermata), namely monocotylid (Monopisthocotylea) and chimaericolid (Polyopisthocotylea) monogeneans, aspidogastreans (Trematoda), as well as gyrocotylidean and amphilinidean tapeworms (Cestoda), were studied using transmission electron microscopy (TEM). RESULTS The present study revealed the same pattern of the cytoarchitecture of excretory ducts in all studied species of the basal neodermatans. This pattern is characterised by the presence of septate junctions between the adjacent epithelial cells and lateral ciliary flames along different levels of the excretory ducts. Additionally, a new character was observed in the protonephridial terminal cell of Gyrocotyle urna, namely a septate junction between terminal and adjacent duct cells at the level of the distal extremity of the flame tuft. In Amphilina foliacea, a new type of protonephridial cell with multiple flame bulbs and unique character of its weir, which consists of a single row of the ribs, is described. A remarkable difference has been observed between the structure of the luminal surface of the excretory ducts of the studied basal neodermatan groups and B. semperi. CONCLUSIONS The present study does not provide ultrastructural support for a close relationship between the Neodermata and B. semperi.
Collapse
Affiliation(s)
- Larisa G. Poddubnaya
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region 152742 Russia
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
41
|
Curini-Galletti M, Artois T, Di Domenico M, Fontaneto D, Jondelius U, Jörger KM, Leasi F, Martínez A, Norenburg JL, Sterrer W, Todaro MA. Contribution of soft-bodied meiofaunal taxa to Italian marine biodiversity. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1786607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- M. Curini-Galletti
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - T. Artois
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - M. Di Domenico
- Center for Marine Studies, Universidade Federal do Paraná, Curitiba, Brazil
| | - D. Fontaneto
- Molecular Ecology Group, Water Research Institute - CNR, Verbania, Italy
| | - U. Jondelius
- Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - K. M. Jörger
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
| | - F. Leasi
- Department of Biology, Geology and Environmental Science, University of Tennessee, Chattanooga, TN, USA
| | - A. Martínez
- Molecular Ecology Group, Water Research Institute - CNR, Verbania, Italy
| | - J. L. Norenburg
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution (USA), Washington, DC, USA
| | | | - M. A. Todaro
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
42
|
Balsamo M, Artois T, Smith JPS, Todaro MA, Guidi L, Leander BS, Van Steenkiste NWL. The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). HYDROBIOLOGIA 2020; 847:2613-2644. [PMID: 33551466 PMCID: PMC7864459 DOI: 10.1007/s10750-020-04287-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Gastrotricha and Platyhelminthes form a clade called Rouphozoa. Representatives of both taxa are main components of meiofaunal communities, but their role in the trophic ecology of marine and freshwater communities is not sufficiently studied. Traditional collection methods for meiofauna are optimized for Ecdysozoa, and include the use of fixatives or flotation techniques that are unsuitable for the preservation and identification of soft-bodied meiofauna. As a result, rouphozoans are usually underestimated in conventional biodiversity surveys and ecological studies. Here, we give an updated outline of their diversity and taxonomy, with some phylogenetic considerations. We describe successfully tested techniques for their recovery and study, and emphasize current knowledge on the ecology, distribution and dispersal of freshwater gastrotrichs and microturbellarians. We also discuss the opportunities and pitfalls of (meta)barcoding studies as a means of overcoming the taxonomic impediment. Finally, we discuss the importance of rouphozoans in aquatic ecosystems and provide future research directions to fill in crucial gaps in the biology of these organisms needed for understanding their basic role in the ecology of benthos and their place in the trophic networks linking micro-, meio- and macrofauna of freshwater ecosystems.
Collapse
Affiliation(s)
- Maria Balsamo
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - M Antonio Todaro
- Department of Life Sciences, University of Modena-Reggio Emilia, Modena, Italy
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Brian S Leander
- Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
43
|
Monnens M, Thijs S, Briscoe AG, Clark M, Frost EJ, Littlewood DTJ, Sewell M, Smeets K, Artois T, Vanhove MPM. The first mitochondrial genomes of endosymbiotic rhabdocoels illustrate evolutionary relaxation of atp8 and genome plasticity in flatworms. Int J Biol Macromol 2020; 162:454-469. [PMID: 32512097 DOI: 10.1016/j.ijbiomac.2020.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023]
Abstract
The first three mitochondrial (mt) genomes of endosymbiotic turbellarian flatworms are characterised for the rhabdocoels Graffilla buccinicola, Syndesmis echinorum and S. kurakaikina. Interspecific comparison of the three newly obtained sequences and the only previously characterised rhabdocoel, the free-living species Bothromesostoma personatum, reveals high mt genomic variability, including numerous rearrangements. The first intrageneric comparison within rhabdocoels shows that gene order is not fully conserved even between congeneric species. Atp8, until recently assumed absent in flatworms, was putatively annotated in two sequences. Selection pressure was tested in a phylogenetic framework and is shown to be significantly relaxed in this and another protein-coding gene: cox1. If present, atp8 appears highly derived in platyhelminths and its functionality needs to be addressed in future research. Our findings for the first time allude to a large degree of undiscovered (mt) genomic plasticity in rhabdocoels. It merits further attention whether this variation is correlated with a symbiotic lifestyle. Our results illustrate that this phenomenon is widespread in flatworms as a whole and not exclusive to the better-studied neodermatans.
Collapse
Affiliation(s)
- Marlies Monnens
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Sofie Thijs
- Hasselt University, Centre for Environmental Sciences, Research Group Environmental Biology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Miriam Clark
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Emily Joy Frost
- School of Biological Sciences, University of Auckland, New Zealand.
| | - D Tim J Littlewood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Mary Sewell
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Karen Smeets
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Tom Artois
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, Helsinki FI-00014, Finland; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
44
|
Konczal M, Przesmycka KJ, Mohammed RS, Phillips KP, Camara F, Chmielewski S, Hahn C, Guigo R, Cable J, Radwan J. Gene duplications, divergence and recombination shape adaptive evolution of the fish ectoparasite Gyrodactylus bullatarudis. Mol Ecol 2020; 29:1494-1507. [PMID: 32222008 DOI: 10.1111/mec.15421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
Abstract
Determining the molecular basis of parasite adaptation to its host is an important component in understanding host-parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short- and long-term adaptive evolution in the eukaryotic parasite Gyrodactylus bullatarudis infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analysing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G-protein and serine proteases genes, which are probably important in host-parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the idea that recombination between divergent genomes can result in particularly successful parasites.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina J Przesmycka
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, UWI, St. Augustine, Trinidad and Tobago
| | - Karl P Phillips
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland.,Marine Institute, Newport (Mayo), Ireland
| | - Francisco Camara
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
45
|
Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, Font-Martín D, Eckelt K, de Sousa N, García-Fernández J, Saló E, Adell T. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development 2020; 147:dev.184044. [PMID: 32122990 DOI: 10.1242/dev.184044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Kay Eckelt
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Jordi García-Fernández
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| |
Collapse
|
46
|
Miyamoto M, Hattori M, Hosoda K, Sawamoto M, Motoishi M, Hayashi T, Inoue T, Umesono Y. The pharyngeal nervous system orchestrates feeding behavior in planarians. SCIENCE ADVANCES 2020; 6:eaaz0882. [PMID: 32285000 PMCID: PMC7141820 DOI: 10.1126/sciadv.aaz0882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/14/2020] [Indexed: 05/06/2023]
Abstract
Planarians exhibit traits of cephalization but are unique among bilaterians in that they ingest food by means of goal-directed movements of a trunk-positioned pharynx, following protrusion of the pharynx out of the body, raising the question of how planarians control such a complex set of body movements for achieving robust feeding. Here, we use the freshwater planarian Dugesia japonica to show that an isolated pharynx amputated from the planarian body self-directedly executes its entire sequence of feeding functions: food sensing, approach, decisions about ingestion, and intake. Gene-specific silencing experiments by RNA interference demonstrated that the pharyngeal nervous system (PhNS) is required not only for feeding functions of the pharynx itself but also for food-localization movements of individual animals, presumably via communication with the brain. These findings reveal an unexpected central role of the PhNS in the linkage between unique morphological phenotypes and feeding behavior in planarians.
Collapse
Affiliation(s)
- Mai Miyamoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Miki Hattori
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kazutaka Hosoda
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Mika Sawamoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Minako Motoishi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
- Corresponding author. (Y.U.); (T.I.)
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- Corresponding author. (Y.U.); (T.I.)
| |
Collapse
|
47
|
Pandey A, Braun EL. Phylogenetic Analyses of Sites in Different Protein Structural Environments Result in Distinct Placements of the Metazoan Root. BIOLOGY 2020; 9:E64. [PMID: 32231097 PMCID: PMC7235752 DOI: 10.3390/biology9040064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the study of evolutionary relationships. However, genome-scale data have not been able to resolve all relationships in the tree of life; this could reflect, at least in part, the poor-fit of the models used to analyze heterogeneous datasets. Some of the heterogeneity may reflect the different patterns of selection on proteins based on their structures. To test that hypothesis, we developed a pipeline to divide phylogenomic protein datasets into subsets based on secondary structure and relative solvent accessibility. We then tested whether amino acids in different structural environments had distinct signals for the topology of the deepest branches in the metazoan tree. We focused on a dataset that appeared to have a mixture of signals and we found that the most striking difference in phylogenetic signal reflected relative solvent accessibility. Analyses of exposed sites (residues located on the surface of proteins) yielded a tree that placed ctenophores sister to all other animals whereas sites buried inside proteins yielded a tree with a sponge+ctenophore clade. These differences in phylogenetic signal were not ameliorated when we conducted analyses using a set of maximum-likelihood profile mixture models. These models are very similar to the Bayesian CAT model, which has been used in many analyses of deep metazoan phylogeny. In contrast, analyses conducted after recoding amino acids to limit the impact of deviations from compositional stationarity increased the congruence in the estimates of phylogeny for exposed and buried sites; after recoding amino acid trees estimated using the exposed and buried site both supported placement of ctenophores sister to all other animals. Although the central conclusion of our analyses is that sites in different structural environments yield distinct trees when analyzed using models of protein evolution, our amino acid recoding analyses also have implications for metazoan evolution. Specifically, our results add to the evidence that ctenophores are the sister group of all other animals and they further suggest that the placozoa+cnidaria clade found in some other studies deserves more attention. Taken as a whole, these results provide striking evidence that it is necessary to achieve a better understanding of the constraints due to protein structure to improve phylogenetic estimation.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Biology, University of Florida, Gainesville, FL 32611, USA;
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
48
|
Wudarski J, Egger B, Ramm SA, Schärer L, Ladurner P, Zadesenets KS, Rubtsov NB, Mouton S, Berezikov E. The free-living flatworm Macrostomum lignano. EvoDevo 2020; 11:5. [PMID: 32158530 PMCID: PMC7053086 DOI: 10.1186/s13227-020-00150-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
Macrostomum lignano is a free-living flatworm that is emerging as an attractive experimental animal for research on a broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. M. lignano can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as M. lignano can survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing simultaneous hermaphrodite that reproduces in a sexual manner, M. lignano is also used to study sexual selection and other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed characterization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-release glands and genome evolution due to its recent whole-genome duplication.![]()
Collapse
Affiliation(s)
- Jakub Wudarski
- 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Bernhard Egger
- 2Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Steven A Ramm
- 3Department of Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Lukas Schärer
- 4Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Ladurner
- 2Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Kira S Zadesenets
- 5The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
| | - Nikolay B Rubtsov
- 5The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
| | - Stijn Mouton
- 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Eugene Berezikov
- 1European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.,5The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
| |
Collapse
|
49
|
Guijarro-Clarke C, Holland PWH, Paps J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat Ecol Evol 2020; 4:519-523. [PMID: 32094540 DOI: 10.1038/s41559-020-1129-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The animal kingdom shows an astonishing diversity, the product of over 550 million years of animal evolution. The current wealth of genome sequence data offers an opportunity to better understand the genomic basis of this diversity. Here we analyse a sampling of 102 whole genomes including >2.6 million protein sequences. We infer major genomic patterns associated with the variety of animal forms from the superphylum to phylum level. We show that a remarkable amount of gene loss occurred during the evolution of two major groups of bilaterian animals, Ecdysozoa and Deuterostomia, and further loss in several deuterostome lineages. Deuterostomes and protostomes also show large genome novelties. At the phylum level, flatworms, nematodes and tardigrades show the largest reduction of gene complement, alongside gene novelty. These findings paint a picture of evolution in the animal kingdom in which reductive evolution at the protein-coding level played a major role in shaping genome composition.
Collapse
Affiliation(s)
| | | | - Jordi Paps
- School of Biological Sciences, University of Essex, Colchester, UK. .,Department of Zoology, University of Oxford, Oxford, UK. .,School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
50
|
Ip YCA, Tay YC, Gan SX, Ang HP, Tun K, Chou LM, Huang D, Meier R. From marine park to future genomic observatory? Enhancing marine biodiversity assessments using a biocode approach. Biodivers Data J 2019; 7:e46833. [PMID: 31866739 PMCID: PMC6917626 DOI: 10.3897/bdj.7.e46833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Few tropical marine sites have been thoroughly characterised for their animal species, even though they constitute the largest proportion of multicellular diversity. A number of focused biodiversity sampling programmes have amassed immense collections to address this shortfall, but obstacles remain due to the lack of identification tools and large proportion of undescribed species globally. These problems can be partially addressed with DNA barcodes ("biocodes"), which have the potential to facilitate the estimation of species diversity and identify animals to named species via barcode databases. Here, we present the first results of what is intended to be a sustained, systematic study of the marine fauna of Singapore's first marine park, reporting more than 365 animal species, determined based on DNA barcodes and/or morphology represented by 931 specimens (367 zooplankton, 564 macrofauna including 36 fish). Due to the lack of morphological and molecular identification tools, only a small proportion could be identified to species solely based on either morphology (24.5%) or barcodes (24.6%). Estimation of species numbers for some taxa was difficult because of the lack of sufficiently clear barcoding gaps. The specimens were imaged and added to "Biodiversity of Singapore" (http://singapore.biodiversity.online), which now contains images for > 13,000 species occurring in the country.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Ywee Chieh Tay
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
- Temasek Life Sciences Laboratory, Singapore, SingaporeTemasek Life Sciences LaboratorySingaporeSingapore
| | - Su Xuan Gan
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Hui Ping Ang
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Karenne Tun
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Loke Ming Chou
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|