1
|
Pigeault R, Ruser A, Ramírez-Martínez NC, Geelhoed SCV, Haelters J, Nachtsheim DA, Schaffeld T, Sveegaard S, Siebert U, Gilles A. Maritime traffic alters distribution of the harbour porpoise in the North Sea. MARINE POLLUTION BULLETIN 2024; 208:116925. [PMID: 39260144 DOI: 10.1016/j.marpolbul.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The North Sea is one of the most industrialised marine regions globally. We integrated cetacean-dedicated aerial surveys (2015-2022) with environmental covariates and ship positions from the Automatic Identification System (AIS) to investigate the disturbance radius and duration on harbour porpoise distribution. This study is based on 81,511 km of line-transect survey effort, during which 6511 harbour porpoise groups (8597 individuals) were sighted. Several proxies for ship disturbance were compared, identifying those best explaining the observed distribution. Better model performance was achieved by integrating maritime traffic, with frequent traffic representing the most significant disturbance to harbour porpoise distribution. Porpoises avoided areas frequented by numerous vessels up to distances of 9 km. The number of ships and average approach distance over time improved model performance, while reasons for the lower performance of predicted ship sound levels remain unclear. This study demonstrates the short-term effects of maritime traffic on harbour porpoise distribution.
Collapse
Affiliation(s)
- Rémi Pigeault
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Nadya C Ramírez-Martínez
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany; Fundación Macuáticos Colombia, Calle 27 # 79-167, Medellin, Antioquia, Colombia
| | | | | | - Dominik A Nachtsheim
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Signe Sveegaard
- Department of Ecoscience, Marine Mammal Research, Aarhus University, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany; Department of Ecoscience, Marine Mammal Research, Aarhus University, Denmark
| | - Anita Gilles
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany.
| |
Collapse
|
2
|
Ivanchikova J, Tregenza N, Popov D, Meshkova G, Paiu R, Timofte C, Amaha Öztürk A, Tonay AM, Dede A, Özsandıkçı U, Kopaliani N, Dekanoidze D, Gurielidze Z, Vishnyakova K, Hammond PS, Gol'din P. Seasonal and diel patterns in Black Sea harbour porpoise acoustic activity in 2020-2022. Ecol Evol 2024; 14:e70182. [PMID: 39391820 PMCID: PMC11464542 DOI: 10.1002/ece3.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024] Open
Abstract
The Black Sea is a semi-enclosed inland sea with an unevenly distributed extensive coastal shelf area and anoxic deep waters. It is inhabited by common and bottlenose dolphins, as well as harbour porpoises, all represented by local subspecies. Between September 2020 and October 2022, 19 F-PODs deployed by research teams from Bulgaria, Georgia, Romania, Türkiye and Ukraine collected data on acoustic activity of Black Sea harbour porpoises. Strong seasonal and diel patterns were found, which varied in three regions. In the south-eastern part of the Black Sea, harbour porpoise acoustic activity was higher from January to May, with a peak in April. This pattern agrees with the seasonal anchovy migration from the winter spawning grounds in warmer waters in the south-eastern region to feeding grounds on the productive shallow north-west shelf. The diel pattern showed strong nocturnal acoustic activity, which is consistent with anchovy vertical migration. Porpoises on the western side of the Black Sea exhibited a bimodal seasonal pattern in acoustic activity, with a larger peak in April and a smaller one in October. Diel activity was primarily nocturnal. On the north-west shelf, harbour porpoise acoustic activity was mostly recorded during the warm period from April to October. The diel pattern showed activity mainly during daylight with two peaks: a smaller one approximately at dawn and a larger one at dusk. This pattern is similar to the vertical migrations of sprat. Overall, the results of the study were consistent with the prey being an important driver of seasonal and diel dynamics of harbour porpoise acoustic activity.
Collapse
Affiliation(s)
- Julia Ivanchikova
- Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | | | - Dimitar Popov
- Green Balkans NGOPlovdivBulgaria
- Department of Zoology, Faculty of BiologyPlovdiv UniversityPlovdivBulgaria
| | | | - Romulus‐Marian Paiu
- Mare Nostrum NGOConstantaRomania
- Faculty of BiologyBucharest UniversityBucharestRomania
| | | | - Ayaka Amaha Öztürk
- Faculty of Aquatic SciencesIstanbul UniversityIstanbulTurkey
- Turkish Marine Research Foundation (TUDAV)IstanbulTurkey
| | - Arda M. Tonay
- Faculty of Aquatic SciencesIstanbul UniversityIstanbulTurkey
- Turkish Marine Research Foundation (TUDAV)IstanbulTurkey
| | - Ayhan Dede
- Faculty of Aquatic SciencesIstanbul UniversityIstanbulTurkey
- Turkish Marine Research Foundation (TUDAV)IstanbulTurkey
| | - Uğur Özsandıkçı
- Turkish Marine Research Foundation (TUDAV)IstanbulTurkey
- Faculty of FisheriesSinop UniversitySinopTurkey
| | | | | | | | - Karina Vishnyakova
- BioEcoLinks NGOOdesaUkraine
- Ukrainian Scientific Centre of Ecology of the SeaOdesaUkraine
| | - Philip S. Hammond
- Sea Mammal Research Unit, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Pavel Gol'din
- Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
- BioEcoLinks NGOOdesaUkraine
- Ukrainian Scientific Centre of Ecology of the SeaOdesaUkraine
| |
Collapse
|
3
|
Tennessen JB, Holt MM, Wright BM, Hanson MB, Emmons CK, Giles DA, Hogan JT, Thornton SJ, Deecke VB. Males miss and females forgo: Auditory masking from vessel noise impairs foraging efficiency and success in killer whales. GLOBAL CHANGE BIOLOGY 2024; 30:e17490. [PMID: 39254237 DOI: 10.1111/gcb.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 09/11/2024]
Abstract
Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal-borne biologging tags temporarily attached to individuals from two populations of fish-eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors-searching (slow-click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 μPa (15-45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, Washington, USA
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Brianna M Wright
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - M Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Candice K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | | | | | - Sheila J Thornton
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - Volker B Deecke
- Institute of Science and Environment, University of Cumbria, Ambleside, Cumbria, UK
| |
Collapse
|
4
|
Koschinski S, Owen K, Lehnert K, Kamińska K. Current species protection does not serve its porpoise-Knowledge gaps on the impact of pressures on the Critically Endangered Baltic Proper harbour porpoise population, and future recommendations for its protection. Ecol Evol 2024; 14:e70156. [PMID: 39267689 PMCID: PMC11392595 DOI: 10.1002/ece3.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Successful management requires information on pressures that threaten a species and areas where conservation actions are needed. The Baltic Proper harbour porpoise population was first listed as Critically Endangered by the International Union for the Conservation of Nature in 2008. Now, 16 years later, there is no change in conservation status despite ample conservation policy calling for its protection and an urgent need for management action to protect this population. Here, we provide an overview of the current status of the population, highlight knowledge gaps on the impact of pressures, and make recommendations for management of anthropogenic activities. Based on an exceeded limit for anthropogenic mortality, the high concentrations of contaminants in the Baltic Sea, combined with reductions in prey availability and increases in underwater noise, it is inferred that this population is likely still decreasing in size and conservation action becomes more urgent. As bycatch and unprotected underwater explosions result in direct mortality, they must be reduced to zero. Inputs of contaminants, waste, and existing and emerging noise sources should be minimised and regulated. Additionally, ecosystem-based sustainable management of fisheries is paramount in order to ensure prey availability, and maintain a healthy Baltic Sea. Stranding networks to routinely assess individuals for genetic population assignment and health need to be expanded, to identify rare samples from this population. Knowledge is still scarce on the population-level impact of each threat, along with the cumulative impact of multiple pressures on the population. However, the current knowledge and management instruments are sufficient to apply effective protection for the population now. While bycatch is the main pressure impacting this population, urgent conservation action is needed across all anthropogenic activities. Extinction of the Baltic Proper harbour porpoise population is a choice: decision-makers have the fate of this genetically and biologically distinct marine mammal population in their hands.
Collapse
Affiliation(s)
| | - Kylie Owen
- Department of Population Analysis and MonitoringSwedish Museum of Natural HistoryStockholmSweden
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Katarzyna Kamińska
- Department of FisheriesMinistry of Agriculture and Rural DevelopmentWarsawPoland
| |
Collapse
|
5
|
Rojano-Doñate L, Teilmann J, Wisniewska DM, Jensen FH, Siebert U, McDonald BI, Elmegaard SL, Sveegaard S, Dietz R, Johnson M, Madsen PT. Low hunting costs in an expensive marine mammal predator. SCIENCE ADVANCES 2024; 10:eadj7132. [PMID: 38748803 PMCID: PMC11318689 DOI: 10.1126/sciadv.adj7132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/11/2024] [Indexed: 08/15/2024]
Abstract
Many large terrestrial mammalian predators use energy-intensive, high-risk, high-gain strategies to pursue large, high-quality prey. However, similar-sized marine mammal predators with even higher field metabolic rates (FMRs) consistently target prey three to six orders of magnitude smaller than themselves. Here, we address the question of how these active and expensive marine mammal predators can gain sufficient energy from consistently targeting small prey during breath-hold dives. Using harbor porpoises as model organisms, we show that hunting small aquatic prey is energetically cheap (<20% increase in FMR) for these marine predators, but it requires them to spend a large proportion (>60%) of time foraging. We conclude that this grazing foraging strategy on small prey is viable for marine mammal predators despite their high FMR because they can hunt near continuously at low marginal expense. Consequently, cessation of foraging due to human disturbance comes at a high cost, as porpoises must maintain their high thermoregulation costs with a reduced energy intake.
Collapse
Affiliation(s)
- Laia Rojano-Doñate
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Jonas Teilmann
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | - Frants H. Jensen
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Siri L. Elmegaard
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Signe Sveegaard
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Mark Johnson
- Department of Biology, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
6
|
Owen K, Carlström J, Eriksson P, Andersson M, Nordström R, Lalander E, Sveegaard S, Kyhn LA, Griffiths ET, Cosentino M, Tougaard J. Rerouting of a major shipping lane through important harbour porpoise habitat caused no detectable change in annual occurrence or foraging patterns. MARINE POLLUTION BULLETIN 2024; 202:116294. [PMID: 38537499 DOI: 10.1016/j.marpolbul.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Shipping is one of the largest industries globally, with well-known negative impacts on the marine environment. Despite the known negative short-term (minutes to hours) impact of shipping on individual animal behavioural responses, very little is understood about the long-term (months to years) impact on marine species presence and area use. This study took advantage of a planned rerouting of a major shipping lane leading into the Baltic Sea, to investigate the impact on the presence and foraging behaviour of a marine species known to be sensitive to underwater noise, the harbour porpoise (Phocoena phocoena). Passive acoustic monitoring data were collected from 15 stations over two years. Against predictions, no clear change occurred in monthly presence or foraging behaviour of the porpoises, despite the observed changes in noise and vessel traffic. However, long-term heightened noise levels may still impact communication, echolocation, or stress levels of individuals, and needs further investigation.
Collapse
Affiliation(s)
- Kylie Owen
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, Frescativägen 40, Stockholm 104 05, Sweden.
| | - Julia Carlström
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, Frescativägen 40, Stockholm 104 05, Sweden
| | - Pia Eriksson
- Department of Population Analysis and Monitoring, Swedish Museum of Natural History, Frescativägen 40, Stockholm 104 05, Sweden
| | - Mathias Andersson
- Department of Defence Technology, FOI-Swedish Defence Research Agency, Stockholm, Sweden
| | - Robin Nordström
- Department of Defence Technology, FOI-Swedish Defence Research Agency, Stockholm, Sweden
| | - Emilia Lalander
- Department of Defence Technology, FOI-Swedish Defence Research Agency, Stockholm, Sweden
| | - Signe Sveegaard
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Line A Kyhn
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Emily T Griffiths
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Mel Cosentino
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Jakob Tougaard
- Section for Marine Mammal Research, Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Wang Z, Duan P, Akamatsu T, Wang K, Wang D. Increased Yangtze finless porpoise presence in urban Wuhan waters of the Yangtze River during fishing closures. Ecol Evol 2024; 14:e11247. [PMID: 38584767 PMCID: PMC10994980 DOI: 10.1002/ece3.11247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Wuhan, a highly urbanized and rapidly growing region within China's Yangtze Economic Zone, has historically been identified as a gap area for the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) based on daytime visual surveys. However, there has been a noticeable increase in porpoise sightings since 2020. This study employed passive acoustic monitoring to investigate porpoise distribution in Wuhan between 2020 and 2022. Generalized linear models were used to explore the relationship between shipping, hydrological patterns, light intensity, and porpoise biosonar activity. Over 603 days of effective monitoring, the daily positive rate for porpoise biosonar detection reached 43%, with feeding-related buzz signals accounting for 55% of all porpoise biosonar signals. However, the proportion of minutes during which porpoise presence was detected was 0.18%, suggesting that while porpoises may frequent the area, their visits were brief and mainly focused on feeding. A significant temporal trend emerged, showing higher porpoise biosonar detection during winter (especially in February) and 2022. Additionally, periods without boat traffic correlated with increased porpoise activity. Hydrological conditions and light levels exhibited significant negative correlations with porpoise activity. Specifically, porpoise sonar detections were notably higher during the night, twilight, and new moon phases. It is highly conceivable that both fishing bans and COVID-19 pandemic-related lockdowns contributed to the heightened presence of porpoises in Wuhan. The rapid development of municipal transportation and shipping in Wuhan and resulting underwater noise pollution have emerged as a significant threat to the local porpoise population. Accordingly, it is imperative for regulatory bodies to effectively address this environmental stressor and formulate targeted protection measures to ensure the conservation of the finless porpoise.
Collapse
Affiliation(s)
- Zhi‐Tao Wang
- School of Marine ScienceNingbo UniversityNingboZhejiangChina
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Peng‐Xiang Duan
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Tomonari Akamatsu
- Ocean Policy Research Institutethe Sasakawa Peace FoundationMinato‐ku, TokyoJapan
| | - Ke‐Xiong Wang
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Ding Wang
- Institute of HydrobiologyChinese Academy of SciencesWuhanChina
| |
Collapse
|
8
|
Silva MP, Oliveira C, Prieto R, Silva MA, New L, Pérez‐Jorge S. Bioenergetic modelling of a marine top predator's responses to changes in prey structure. Ecol Evol 2024; 14:e11135. [PMID: 38529024 PMCID: PMC10961477 DOI: 10.1002/ece3.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Determining how animals allocate energy, and how external factors influence this allocation, is crucial to understand species' life history requirements and response to disturbance. This response is driven in part by individuals' energy balance, prey characteristics, foraging behaviour and energy required for essential functions. We developed a bioenergetic model to estimate minimum foraging success rate (FSR), that is, the lowest possible prey capture rate for individuals to obtain the minimum energy intake needed to meet daily metabolic requirements, for female sperm whale (Physeter macrocephalus). The model was based on whales' theoretical energetic requirements using foraging and prey characteristics from animal-borne tags and stomach contents, respectively. We used this model to simulate two prey structure change scenarios: (1) decrease in mean prey size, thus lower prey energy content and (2) decrease in prey size variability, reducing the variability in prey energy content. We estimate the whales need minimum of ~14% FSR to meet their energetic requirements, and energy intake is more sensitive to energy content changes than a decrease in energy variability. To estimate vulnerability to prey structure changes, we evaluated the compensation level required to meet bioenergetic demands. Considering a minimum 14% FSR, whales would need to increase energy intake by 21% (5-35%) and 49% (27-67%) to compensate for a 15% and 30% decrease in energy content, respectively. For a 30% and 50% decrease in energy variability, whales would need to increase energy intake by 13% (0-23%) and 24% (10-35%) to meet energetic demands, respectively. Our model demonstrates how foraging and prey characteristics can be used to estimate impact of changing prey structure in top predator energetics, which can help inform bottom-up effects on marine ecosystems. We showed the importance of considering different FSR in bioenergetics models, as it can have decisive implications on estimates of energy acquired and affect the conclusions about top predator's vulnerability to possible environmental fluctuations.
Collapse
Affiliation(s)
- Mariana P. Silva
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Cláudia Oliveira
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Rui Prieto
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Mónica A. Silva
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Leslie New
- Department of Mathematics and Computer ScienceUrsinus CollegeCollegevillePennsylvaniaUSA
| | - Sergi Pérez‐Jorge
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| |
Collapse
|
9
|
Chambault P, Teilmann J, Tervo O, Sinding MHS, Heide-Jørgensen MP. The nightscape of the Arctic winter shapes the diving behavior of a marine predator. Sci Rep 2024; 14:3908. [PMID: 38365829 PMCID: PMC10873309 DOI: 10.1038/s41598-024-53953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Predator-prey interactions in marine ecosystems are dynamically influenced by light, as demonstrated by diel vertical migrations of low-trophic level organisms. At high latitudes, the long winter nights can provide foraging opportunities for marine predators targeting vertically migrating prey closer to the surface at night. However, there is limited documentation of such diel patterns in marine predators under extreme light regimes. To address this, we recorded the diving behavior of 17 harbour porpoises just south of the Arctic circle in West Greenland, from summer to winter. Unlike classical diel vertical migration, the porpoises dove 24-37% deeper at night and the frequency of deep dives (> 100 m) increased tenfold as they entered the darkest months. The daily mean depth was negatively correlated with daylength, suggesting an increased diving activity when approaching the polar night. Our findings suggest a light-mediated strategy in which harbour porpoises would either target (i) benthic prey, (ii) pelagic prey migrating seasonally towards the seafloor, or (iii) vertically migrating prey that may be otherwise inaccessible in deeper waters at night, therefore maximizing feeding activity during extended periods of darkness. Extreme light regimes observed at high latitudes are therefore critical in structuring pelagic communities and food webs.
Collapse
Affiliation(s)
- Philippine Chambault
- Greenland Institute of Natural Resources, Strandgade 91, 2, 1401, Copenhagen, Denmark.
- Department of Ecology and Evolutionary Biology, The University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| | - Jonas Teilmann
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Outi Tervo
- Greenland Institute of Natural Resources, Strandgade 91, 2, 1401, Copenhagen, Denmark
| | - Mikkel Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 1350, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Stidsholt L, Scholz C, Hermanns U, Teige T, Post M, Stapelfeldt B, Reusch C, Voigt CC. Low foraging rates drive large insectivorous bats away from urban areas. GLOBAL CHANGE BIOLOGY 2024; 30:e17063. [PMID: 38273536 DOI: 10.1111/gcb.17063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Urbanization has significant impacts on wildlife and ecosystems and acts as an environmental filter excluding certain species from local ecological communities. Specifically, it may be challenging for some animals to find enough food in urban environments to achieve a positive energy balance. Because urban environments favor small-sized bats with low energy requirements, we hypothesized that common noctules (Nyctalus noctula) acquire food at a slower rate and rely less on conspecifics to find prey in urban than in rural environments due to a low food abundance and predictable distribution of insects in urban environments. To address this, we estimated prey sizes and measured prey capture rates, foraging efforts, and the presence of conspecifics during hunting of 22 common noctule bats equipped with sensor loggers in an urban and rural environment. Even though common noctule bats hunted similar-sized prey in both environments, urban bats captured prey at a lower rate (mean: 2.4 vs. 6.3 prey attacks/min), and a lower total amount of prey (mean: 179 vs. 377 prey attacks/foraging bout) than conspecifics from rural environments. Consequently, the energy expended to capture prey was higher for common noctules in urban than in rural environments. In line with our prediction, urban bats relied less on group hunting, likely because group hunting was unnecessary in an environment where the spatial distribution of prey insects is predictable, for example, in parks or around floodlights. While acknowledging the limitations of a small sample size and low number of spatial replicates, our study suggests that scarce food resources may make urban habitats unfavorable for large bat species with higher energy requirements compared to smaller bat species. In conclusion, a lower food intake may displace larger species from urban areas making habitats with high insect biomass production key for protecting large bat species in urban environments.
Collapse
Affiliation(s)
- Laura Stidsholt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Carolin Scholz
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Tobias Teige
- Büro für faunistisch-ökologische Fachgutachten, Berlin, Germany
| | - Martin Post
- Natura-2000 Station für Fledermäuse, Förderverein Naturpark Nossentiner/Schwinzer Heide e.V., Karow, Mecklenburg-Vorpommern, Germany
| | - Bianca Stapelfeldt
- Natura-2000 Station für Fledermäuse, Förderverein Naturpark Nossentiner/Schwinzer Heide e.V., Karow, Mecklenburg-Vorpommern, Germany
| | - Christine Reusch
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
11
|
Frankish CK, von Benda-Beckmann AM, Teilmann J, Tougaard J, Dietz R, Sveegaard S, Binnerts B, de Jong CAF, Nabe-Nielsen J. Ship noise causes tagged harbour porpoises to change direction or dive deeper. MARINE POLLUTION BULLETIN 2023; 197:115755. [PMID: 37976591 DOI: 10.1016/j.marpolbul.2023.115755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Shipping is the most pervasive source of marine noise pollution globally, yet its impact on sensitive fauna remains unclear. We tracked 10 harbour porpoises for 5-10 days to determine exposure and behavioural reactions to modelled broadband noise (10 Hz-20 kHz, VHF-weighted) from individual ships monitored by AIS. Porpoises spent a third of their time experiencing ship noise above ambient, to which they regularly reacted by moving away during daytime and diving deeper during night. However, even ships >2 km away (noise levels of 93 ± 14 dB re 1 μPa2) caused animals to react 5-9 % of the time (∼18.6 ships/day). Ships can thus influence the behaviour and habitat use of cetaceans over long distances, with worrying implications for fitness in coastal areas where anthropogenic noise from dense ship traffic repeatedly disrupt their natural behaviour.
Collapse
Affiliation(s)
- Caitlin K Frankish
- Marine Mammal Research Section, Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Alexander M von Benda-Beckmann
- Acoustics and Sonar Research Group, Netherlands Organization for Applied and Scientific Research (TNO), The Hague, the Netherlands
| | - Jonas Teilmann
- Marine Mammal Research Section, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Jakob Tougaard
- Marine Mammal Research Section, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Rune Dietz
- Marine Mammal Research Section, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Signe Sveegaard
- Marine Mammal Research Section, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Bas Binnerts
- Acoustics and Sonar Research Group, Netherlands Organization for Applied and Scientific Research (TNO), The Hague, the Netherlands
| | - Christ A F de Jong
- Acoustics and Sonar Research Group, Netherlands Organization for Applied and Scientific Research (TNO), The Hague, the Netherlands
| | - Jacob Nabe-Nielsen
- Marine Mammal Research Section, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
12
|
Ben Chehida Y, Stelwagen T, Hoekendijk JPA, Ferreira M, Eira C, Torres‐Pereira A, Nicolau L, Thumloup J, Fontaine MC. Harbor porpoise losing its edge: Genetic time series suggests a rapid population decline in Iberian waters over the last 30 years. Ecol Evol 2023; 13:e10819. [PMID: 38089896 PMCID: PMC10714065 DOI: 10.1002/ece3.10819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
Impact of climate change is expected to be especially noticeable at the edges of a species' distribution, where they meet suboptimal habitat conditions. In Mauritania and Iberia, two genetically differentiated populations of harbor porpoises (Phocoena phocoena) form an ecotype adapted to local upwelling conditions and distinct from other ecotypes further north on the NE Atlantic continental shelf and in the Black Sea. By analyzing the evolution of mitochondrial genetic variation in the Iberian population between two temporal cohorts (1990-2002 vs. 2012-2015), we report a substantial decrease in genetic diversity. Phylogenetic analyses including neighboring populations identified two porpoises in southern Iberia carrying a divergent haplotype closely related to those from the Mauritanian population, yet forming a distinct lineage. This suggests that Iberian porpoises may not be as isolated as previously thought, indicating possible dispersion from Mauritania or an unknown population in between, but none from the northern ecotype. Demo-genetic scenario testing by approximate Bayesian computation showed that the rapid decline in the Iberian mitochondrial diversity was not simply due to the genetic drift of a small population, but models support instead a substantial decline in effective population size, possibly resulting from environmental stochasticity, prey depletion, or acute fishery bycatches. These results illustrate the value of genetics time series to inform demographic trends and emphasize the urgent need for conservation measures to ensure the viability of this small harbor porpoise population in Iberian waters.
Collapse
Affiliation(s)
- Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- Department of BiologyUniversity of YorkYorkUK
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Tjibbe Stelwagen
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus FryslânUniversity of GroningenLeeuwardenThe Netherlands
| | - Jeroen P. A. Hoekendijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea ResearchUtrecht UniversityTexelThe Netherlands
- Wageningen University & Research CentreWageningenThe Netherlands
| | - Marisa Ferreira
- MATB‐Portuguese Wildlife Society (SPVS)Figueira da FozPortugal
| | - Catarina Eira
- MATB‐Portuguese Wildlife Society (SPVS)Figueira da FozPortugal
- ECOMARE, Universidade de AveiroAveiroPortugal
- Centre for Environmental and Marine Studies CESAMUniversity of AveiroAveiroPortugal
| | - Andreia Torres‐Pereira
- MATB‐Portuguese Wildlife Society (SPVS)Figueira da FozPortugal
- ECOMARE, Universidade de AveiroAveiroPortugal
- Centre for Environmental and Marine Studies CESAMUniversity of AveiroAveiroPortugal
| | - Lidia Nicolau
- MATB‐Portuguese Wildlife Society (SPVS)Figueira da FozPortugal
| | - Julie Thumloup
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Michael C. Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| |
Collapse
|
13
|
Chevallay M, Goulet P, Madsen PT, Campagna J, Campagna C, Guinet C, Johnson MP. Large sensory volumes enable Southern elephant seals to exploit sparse deep-sea prey. Proc Natl Acad Sci U S A 2023; 120:e2307129120. [PMID: 37844247 PMCID: PMC10614626 DOI: 10.1073/pnas.2307129120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
The ability of echolocating toothed whales to detect and classify prey at long ranges enables efficient searching and stalking of sparse prey in these time-limited dives. However, nonecholocating deep-diving seals such as elephant seals appear to have much less sensory advantage over their prey. Both elephant seals and their prey rely on visual and hydrodynamic cues that may be detectable only at short ranges in the deep ocean, leading us to hypothesize that elephant seals must adopt a less efficient reactive mode of hunting that requires high prey densities. To test that hypothesis, we deployed high-resolution sonar and movement tags on 25 females to record simultaneous predator and prey behavior during foraging interactions. We demonstrate that elephant seals have a sensory advantage over their prey that allows them to potentially detect prey 5 to 10 s before striking. The corresponding prey detection ranges of 7 to 17 m enable stealthy approaches and prey-specific capture tactics. In comparison, prey react at a median range of 0.7 m, close to the neck extension range of striking elephant seals. Estimated search swathes of 150 to 900 m2 explain how elephant seals can locate up to 2,000 prey while swimming more than 100 km per day. This efficient search capability allows elephant seals to subsist on prey densities that are consonant with the deep scattering layer resources estimated by hydroacoustic surveys but which are two orders of magnitude lower than the prey densities needed by a reactive hunter.
Collapse
Affiliation(s)
- Mathilde Chevallay
- Centre d’Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, Villiers-en-Bois79360, France
| | - Pauline Goulet
- Centre d’Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, Villiers-en-Bois79360, France
| | | | - Julieta Campagna
- Centro Nacional Patagónico, Centro Científico Tecnológico del Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn9120, Argentina
| | | | - Christophe Guinet
- Centre d’Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, Villiers-en-Bois79360, France
| | | |
Collapse
|
14
|
Macaulay JDJ, Rojano-Doñate L, Ladegaard M, Tougaard J, Teilmann J, Marques TA, Siebert U, Madsen PT. Implications of porpoise echolocation and dive behaviour on passive acoustic monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1982-1995. [PMID: 37782119 DOI: 10.1121/10.0021163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
Harbour porpoises are visually inconspicuous but highly soniferous echolocating marine predators that are regularly studied using passive acoustic monitoring (PAM). PAM can provide quality data on animal abundance, human impact, habitat use, and behaviour. The probability of detecting porpoise clicks within a given area (P̂) is a key metric when interpreting PAM data. Estimates of P̂ can be used to determine the number of clicks per porpoise encounter that may have been missed on a PAM device, which, in turn, allows for the calculation of abundance and ideally non-biased comparison of acoustic data between habitats and time periods. However, P̂ is influenced by several factors, including the behaviour of the vocalising animal. Here, the common implicit assumption that changes in animal behaviour have a negligible effect on P̂ between different monitoring stations or across time is tested. Using a simulation-based approach informed by acoustic biologging data from 22 tagged harbour porpoises, it is demonstrated that porpoise behavioural states can have significant (up to 3× difference) effects on P̂. Consequently, the behavioural state of the animals must be considered in analysis of animal abundance to avoid substantial over- or underestimation of the true abundance, habitat use, or effects of human disturbance.
Collapse
Affiliation(s)
- Jamie Donald John Macaulay
- Department of Biology-Zoophysiology, Aarhus University, C. F. Møllers Allé 3, building 1131, 8000 Aarhus C, Denmark
| | - Laia Rojano-Doñate
- Department of Biology-Zoophysiology, Aarhus University, C. F. Møllers Allé 3, building 1131, 8000 Aarhus C, Denmark
| | - Michael Ladegaard
- Department of Biology-Zoophysiology, Aarhus University, C. F. Møllers Allé 3, building 1131, 8000 Aarhus C, Denmark
| | - Jakob Tougaard
- Department of Ecoscience-Marine Mammal Research, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jonas Teilmann
- Department of Ecoscience-Marine Mammal Research, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Tiago A Marques
- Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Ursula Siebert
- Department of Ecoscience-Marine Mammal Research, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter Teglberg Madsen
- Department of Biology-Zoophysiology, Aarhus University, C. F. Møllers Allé 3, building 1131, 8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Moss CF, Ortiz ST, Wahlberg M. Adaptive echolocation behavior of bats and toothed whales in dynamic soundscapes. J Exp Biol 2023; 226:jeb245450. [PMID: 37161774 PMCID: PMC10184770 DOI: 10.1242/jeb.245450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
Collapse
Affiliation(s)
- Cynthia F. Moss
- Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sara Torres Ortiz
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|
16
|
Watanabe YY, Papastamatiou YP. Biologging and Biotelemetry: Tools for Understanding the Lives and Environments of Marine Animals. Annu Rev Anim Biosci 2023; 11:247-267. [PMID: 36790885 DOI: 10.1146/annurev-animal-050322-073657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Addressing important questions in animal ecology, physiology, and environmental science often requires in situ information from wild animals. This difficulty is being overcome by biologging and biotelemetry, or the use of miniaturized animal-borne sensors. Although early studies recorded only simple parameters of animal movement, advanced devices and analytical methods can now provide rich information on individual and group behavior, internal states, and the surrounding environment of free-ranging animals, especially those in marine systems. We summarize the history of technologies used to track marine animals. We then identify seven major research categories of marine biologging and biotelemetry and explain significant achievements, as well as future opportunities. Big data approaches via international collaborations will be key to tackling global environmental issues (e.g., climate change impacts), and curiosity about the secret lives of marine animals will also remain a major driver of biologging and biotelemetry studies.
Collapse
Affiliation(s)
- Yuuki Y Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo, Japan; .,Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo, Japan
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| |
Collapse
|
17
|
Booth CG, Guilpin M, Darias-O’Hara AK, Ransijn JM, Ryder M, Rosen D, Pirotta E, Smout S, McHuron EA, Nabe-Nielsen J, Costa DP. Estimating energetic intake for marine mammal bioenergetic models. CONSERVATION PHYSIOLOGY 2023; 11:coac083. [PMID: 36756464 PMCID: PMC9900471 DOI: 10.1093/conphys/coac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Bioenergetics is the study of how animals achieve energetic balance. Energetic balance results from the energetic expenditure of an individual and the energy they extract from their environment. Ingested energy depends on several extrinsic (e.g prey species, nutritional value and composition, prey density and availability) and intrinsic factors (e.g. foraging effort, success at catching prey, digestive processes and associated energy losses, and digestive capacity). While the focus in bioenergetic modelling is often on the energetic costs an animal incurs, the robust estimation of an individual's energy intake is equally critical for producing meaningful predictions. Here, we review the components and processes that affect energy intake from ingested gross energy to biologically useful net energy (NE). The current state of knowledge of each parameter is reviewed, shedding light on research gaps to advance this field. The review highlighted that the foraging behaviour of many marine mammals is relatively well studied via biologging tags, with estimates of success rate typically assumed for most species. However, actual prey capture success rates are often only assumed, although we note studies that provide approaches for its estimation using current techniques. A comprehensive collation of the nutritional content of marine mammal prey species revealed a robust foundation from which prey quality (comprising prey species, size and energy density) can be assessed, though data remain unavailable for many prey species. Empirical information on various energy losses following ingestion of prey was unbalanced among marine mammal species, with considerably more literature available for pinnipeds. An increased understanding and accurate estimate of each of the components that comprise a species NE intake are an integral part of bioenergetics. Such models provide a key tool to investigate the effects of disturbance on marine mammals at an individual and population level and to support effective conservation and management.
Collapse
Affiliation(s)
- Cormac G Booth
- Corresponding author: SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK.
| | | | - Aimee-Kate Darias-O’Hara
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Janneke M Ransijn
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Megan Ryder
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Dave Rosen
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall,
Vancouver, BC V6T 1Z4, Canada
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling,
The Observatory, Buchanan
Gardens, University of St. Andrews, St. Andrews,
KY16 9LZ, UK
| | - Sophie Smout
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Ave NE, Seattle, WA, 98105, USA
| | - Jacob Nabe-Nielsen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Aarhus, DK-4000
Roskilde, Denmark
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 130
McAlister Way, Santa Cruz, CA, 95064, USA
| |
Collapse
|
18
|
Mogensen LMW, Mei Z, Hao Y, Hudson MA, Wang D, Turvey ST. Spatiotemporal relationships of threatened cetaceans and anthropogenic threats in the lower Yangtze system. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.929959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The impacts of fisheries interactions on cetaceans can be challenging to determine, often requiring multiple complementary investigative approaches. The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis), one of the few Critically Endangered cetaceans, is endemic to the middle-lower Yangtze drainage, a system impacted by multiple anthropogenic pressures. Bycatch mortality is implicated in regional porpoise decline, but the significance and dynamics of porpoise interactions with fishing activities and other threats remain poorly understood. We conducted boat-based surveys to map seasonal distributions and spatial congruence of porpoises and two potential threats (fishing and sand-mining), and an interview survey of fishing communities to understand temporal patterns and drivers of regional fishing activity, across Poyang Lake and the adjoining Yangtze mainstem. Variation in harmful and non-harmful gear use (non-fixed nets versus static pots and traps) between these landscapes might be an important factor affecting local porpoise status. Within Poyang Lake, spatial correlations between porpoises and threats were relatively weak, seasonal porpoise and threat hotspots were located in different regions, and two protected areas had higher porpoise encounter rates and densities than some unprotected sections. However, porpoise hotspots were mostly in unprotected areas, threats were widely observed across reserves, and more fishing and sand-mining was seasonally observed within reserves than within unprotected areas. Compared to null distributions, porpoises were detected significantly closer to fishing activities in summer and further from sand-mining in winter, indicating possible spatial risks of gear entanglement and disturbance. Reported porpoise bycatch deaths are associated with fixed and non-fixed nets, hook-based gears, and electrofishing. Longitudinal patterns in reported gear use indicate that hook-based fishing has decreased substantially and is generally conducted by older fishers, and significantly fewer respondents now practice fishing as their sole source of income, but electrofishing has increased. This combined research approach indicates a continued potential risk to porpoises from changing fisheries interactions and other threats, highlighting the importance of fishing restrictions and appropriate support for fishing communities impacted by this legislation. A potential “win–win” for both biodiversity and local livelihoods could be achieved through wider use of static pots and traps, which are not associated with bycatch deaths.
Collapse
|
19
|
Ridgway S, Dibble DS, Baird M. Sights and sounds dolphins, Tursiops truncatus preying on native fish of San Diego Bay and offshore in the Pacific Ocean. PLoS One 2022; 17:e0265382. [PMID: 35976877 PMCID: PMC9385007 DOI: 10.1371/journal.pone.0265382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
For the first time, dolphins wearing video cameras were observed capturing and eating live native fish. While freely swimming in San Diego Bay, one dolphin caught 69 resident fish, 64 demersal, 5 near surface, while the other caught 40, 36 demersal and 4 near the surface. Two other dolphins were observed capturing 135 live native fish in a sea water pool. Two additional dolphins were observed feeding opportunistically during open water sessions in the Pacific Ocean. Notably, one of these dolphins was observed to consume 8 yellow-bellied sea snakes (Hydrophis platurus). Searching dolphins clicked at intervals of 20 to 50 ms. On approaching prey, click intervals shorten into a terminal buzz and then a squeal. Squeals were bursts of clicks that varied in duration, peak frequency, and amplitude. Squeals continued as the dolphin seized, manipulated and swallowed the prey. If fish escaped, the dolphin continued the chase and sonar clicks were heard less often than the continuous terminal buzz and squeal. During captures, the dolphins’ lips flared to reveal nearly all of the teeth. The throat expanded outward. Fish continued escape swimming even as they entered the dolphins’ mouth, yet the dolphin appeared to suck the fish right down.
Collapse
Affiliation(s)
- Sam Ridgway
- National Marine Mammal Foundation, San Diego, CA, United States of America
- Department of Pathology, School of Medicine University of California, San Diego, CA, United States of America
- * E-mail:
| | | | - Mark Baird
- National Marine Mammal Foundation, San Diego, CA, United States of America
| |
Collapse
|
20
|
McHuron EA, Adamczak S, Arnould JPY, Ashe E, Booth C, Bowen WD, Christiansen F, Chudzinska M, Costa DP, Fahlman A, Farmer NA, Fortune SME, Gallagher CA, Keen KA, Madsen PT, McMahon CR, Nabe-Nielsen J, Noren DP, Noren SR, Pirotta E, Rosen DAS, Speakman CN, Villegas-Amtmann S, Williams R. Key questions in marine mammal bioenergetics. CONSERVATION PHYSIOLOGY 2022; 10:coac055. [PMID: 35949259 PMCID: PMC9358695 DOI: 10.1093/conphys/coac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key' questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.
Collapse
Affiliation(s)
- Elizabeth A McHuron
- Corresponding author: Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, WA, 98195, USA.
| | - Stephanie Adamczak
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Erin Ashe
- Oceans Initiative, Seattle, WA, 98102, USA
| | - Cormac Booth
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
| | - W Don Bowen
- Biology Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Center for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch, Murdoch University, WA 6150, Australia
| | - Magda Chudzinska
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 9XL, UK
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, 46005 Valencia, Spain
- Kolmården Wildlife Park, 618 92 Kolmården, Sweden
| | - Nicholas A Farmer
- NOAA/National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, FL, 33701, USA
| | - Sarah M E Fortune
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cara A Gallagher
- Plant Ecology and Nature Conservation, University of Potsdam, 14476 Potsdam, Germany
| | - Kelly A Keen
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Clive R McMahon
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| | | | - Dawn P Noren
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Shawn R Noren
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, UK
| | - David A S Rosen
- Institute for Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1ZA, Canada
| | - Cassie N Speakman
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Stella Villegas-Amtmann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | |
Collapse
|
21
|
Torres-Pereira A, Araújo H, Matos FL, Bastos-Santos J, Sá S, Ferreira M, Martínez-Cedeira J, López A, Sequeira M, Vingada J, Eira C. Harbour Porpoise Abundance in Portugal over a 5-Year Period and Estimates of Potential Distribution. Animals (Basel) 2022; 12:1935. [PMID: 35953924 PMCID: PMC9367303 DOI: 10.3390/ani12151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
The Iberian porpoise population is small and under potentially unsustainable removal by fisheries bycatch. Recently, a marine Site of Community Importance (SCI) was legally approved in Portugal, but no measures ensued to promote porpoise conservation. Information about porpoise abundance and distribution is fundamental to guide any future conservation measures. Annual aerial surveys conducted between 2011 and 2015 show a low overall porpoise abundance and density (2254 individuals; 0.090 ind/km2, CV = 21.99%) in the Portuguese coast. The highest annual porpoise estimates were registered in 2013 (3207 individuals, 0.128 ind/km2), followed by a sharp decrease in 2014 (1653 individuals, 0.066 ind/km2). The porpoise density and abundance estimated in 2015 remained lower than the 2013 estimates. A potential distribution analysis of the Iberian porpoise population was performed using ensembles of small models (ESMs) with MaxEnt and showed that the overall habitat suitability is particularly high in the Portuguese northern area. The analysis also suggested a different pattern in porpoise potential distribution across the study period. These results emphasize the importance of further porpoise population assessments to fully understand the spatial and temporal porpoise habitat use in the Iberian Peninsula as well as the urgent need for on-site threat mitigation measures.
Collapse
Affiliation(s)
- Andreia Torres-Pereira
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.L.M.); (S.S.); (A.L.); (C.E.)
- ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (H.A.); (M.F.); (J.V.)
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal;
| | - Hélder Araújo
- ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (H.A.); (M.F.); (J.V.)
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal;
| | - Fábio L. Matos
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.L.M.); (S.S.); (A.L.); (C.E.)
| | - Jorge Bastos-Santos
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal;
| | - Sara Sá
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.L.M.); (S.S.); (A.L.); (C.E.)
- ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (H.A.); (M.F.); (J.V.)
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal;
| | - Marisa Ferreira
- ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (H.A.); (M.F.); (J.V.)
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal;
| | - José Martínez-Cedeira
- Coordinadora para o Estudio dos Mamíferos Mariños (CEMMA), Apdo, 156-36380 Gondomar, Spain;
| | - Alfredo López
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.L.M.); (S.S.); (A.L.); (C.E.)
- ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (H.A.); (M.F.); (J.V.)
- Coordinadora para o Estudio dos Mamíferos Mariños (CEMMA), Apdo, 156-36380 Gondomar, Spain;
| | - Marina Sequeira
- Instituto da Conservação da Natureza e Florestas (ICNF), Av. da República 16, 1050-191 Lisboa, Portugal;
| | - José Vingada
- ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (H.A.); (M.F.); (J.V.)
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal;
| | - Catarina Eira
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (F.L.M.); (S.S.); (A.L.); (C.E.)
- ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (H.A.); (M.F.); (J.V.)
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal;
| |
Collapse
|
22
|
King SL, Jensen FH. Rise of the machines: Integrating technology with playback experiments to study cetacean social cognition in the wild. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephanie L. King
- School of Biological Sciences University of Bristol BS8 1TQ Bristol United Kingdom
| | - Frants H. Jensen
- Biology department, Syracuse University 107 College Place 13244 Syracuse NY USA
| |
Collapse
|
23
|
Czapanskiy MF, Ponganis PJ, Fahlbusch JA, Schmitt TL, Goldbogen JA. An accelerometer-derived ballistocardiogram method for detecting heartrates in free-ranging marine mammals. J Exp Biol 2022; 225:275276. [PMID: 35502794 PMCID: PMC9167577 DOI: 10.1242/jeb.243872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022]
Abstract
Physio-logging methods, which use animal-borne devices to record physiological variables, are entering a new era driven by advances in sensor development. However, existing datasets collected with traditional bio-loggers, such as accelerometers, still contain untapped eco-physiological information. Here, we present a computational method for extracting heart rate from high-resolution accelerometer data using a ballistocardiogram. We validated our method with simultaneous accelerometer–electrocardiogram tag deployments in a controlled setting on a killer whale (Orcinus orca) and demonstrate the predictions correspond with previously observed cardiovascular patterns in a blue whale (Balaenoptera musculus), including the magnitude of apneic bradycardia and increase in heart rate prior to and during ascent. Our ballistocardiogram method may be applied to mine heart rates from previously collected accelerometery data and expand our understanding of comparative cardiovascular physiology. Highlighted Article: Validation of a computational method for extracting heart rate in free-ranging cetaceans from high-resolution accelerometer data using a ballistocardiogram.
Collapse
Affiliation(s)
- Max F Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, USA
| | - James A Fahlbusch
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - T L Schmitt
- Animal Health Department, SeaWorld of California, USA
| | | |
Collapse
|
24
|
Macaulay J, Kingston A, Coram A, Oswald M, Swift R, Gillespie D, Northridge S. Passive acoustic tracking of the three‐dimensional movements and acoustic behaviour of toothed whales in close proximity to static nets. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jamie Macaulay
- Sea Mammal Research Unit Scottish Oceans Institute Scotland, UK
| | - Al Kingston
- Sea Mammal Research Unit Scottish Oceans Institute Scotland, UK
| | - Alex Coram
- Sea Mammal Research Unit Scottish Oceans Institute Scotland, UK
| | - Michael Oswald
- Sea Mammal Research Unit Scottish Oceans Institute Scotland, UK
| | - René Swift
- Sea Mammal Research Unit Scottish Oceans Institute Scotland, UK
| | - Doug Gillespie
- Sea Mammal Research Unit Scottish Oceans Institute Scotland, UK
| | | |
Collapse
|
25
|
Amundin M, Carlström J, Thomas L, Carlén I, Teilmann J, Tougaard J, Loisa O, Kyhn LA, Sveegaard S, Burt ML, Pawliczka I, Koza R, Arciszewski B, Galatius A, Laaksonlaita J, MacAuley J, Wright AJ, Gallus A, Dähne M, Acevedo‐Gutiérrez A, Benke H, Koblitz J, Tregenza N, Wennerberg D, Brundiers K, Kosecka M, Tiberi Ljungqvist C, Jussi I, Jabbusch M, Lyytinen S, Šaškov A, Blankett P. Estimating the abundance of the critically endangered Baltic Proper harbour porpoise ( Phocoena phocoena) population using passive acoustic monitoring. Ecol Evol 2022; 12:e8554. [PMID: 35222950 PMCID: PMC8858216 DOI: 10.1002/ece3.8554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers' spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1105 individuals (95% CI, point estimate 491) during May-October within the population's proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.
Collapse
Affiliation(s)
| | - Julia Carlström
- AquaBiota Water ResearchStockholmSweden
- Present address:
Department of Environmental Research and MonitoringSwedish Museum of Natural HistoryStockholmSweden
| | - Len Thomas
- Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsUK
| | - Ida Carlén
- AquaBiota Water ResearchStockholmSweden
- Present address:
Department of ZoologyStockholm UniversityStockholmSweden
| | - Jonas Teilmann
- Marine Mammal ResearchDepartment of BioscienceAarhus UniversityRoskildeDenmark
| | - Jakob Tougaard
- Marine Mammal ResearchDepartment of BioscienceAarhus UniversityRoskildeDenmark
| | - Olli Loisa
- Turku University of Applied SciencesTurkuFinland
| | - Line A. Kyhn
- Marine Mammal ResearchDepartment of BioscienceAarhus UniversityRoskildeDenmark
| | - Signe Sveegaard
- Marine Mammal ResearchDepartment of BioscienceAarhus UniversityRoskildeDenmark
| | - M. Louise Burt
- Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsUK
| | - Iwona Pawliczka
- Prof. Krzysztof Skóra Hel Marine StationDepartment of Oceanography and GeographyUniversity of GdańskHelPoland
| | - Radomil Koza
- Prof. Krzysztof Skóra Hel Marine StationDepartment of Oceanography and GeographyUniversity of GdańskHelPoland
| | - Bartlomiej Arciszewski
- Prof. Krzysztof Skóra Hel Marine StationDepartment of Oceanography and GeographyUniversity of GdańskHelPoland
| | - Anders Galatius
- Marine Mammal ResearchDepartment of BioscienceAarhus UniversityRoskildeDenmark
| | | | - Jamie MacAuley
- School of BiologyBute BuildingUniversity of St AndrewsSt AndrewsUK
- Present address:
Department of Biology ‐ ZoophysiologyAarhus UniversityAarhusDenmark
| | - Andrew J. Wright
- Marine Mammal ResearchDepartment of BioscienceAarhus UniversityRoskildeDenmark
- Present address:
Fisheries and Oceans CanadaMaritimes, DartmouthNova ScotiaCanada
| | | | | | | | | | - Jens Koblitz
- German Oceanographic MuseumStralsundGermany
- Present address:
Max Planck Institute of Animal BehaviorKonstanzGermany
- Present address:
Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
- Present address:
Department of BiologyUniversity of KonstanzKonstanzGermany
| | | | - Daniel Wennerberg
- Kolmarden Wildlife ParkKolmårdenSweden
- Present address:
Swedish Meteorological and Hydrological Institute, Core ServicesNorrköpingSweden
| | | | - Monika Kosecka
- Prof. Krzysztof Skóra Hel Marine StationDepartment of Oceanography and GeographyUniversity of GdańskHelPoland
- Present address:
Scottish Association for Marine ScienceUniversity of Highlands and IslandsObanUK
| | - Cinthia Tiberi Ljungqvist
- Kolmarden Wildlife ParkKolmårdenSweden
- Present address:
County Administrative Board of StockholmStockholmSweden
| | - Ivar Jussi
- ProMare NPOVintriku Saula küla, Kose valdHarjumaaEstonia
| | | | | | - Aleksej Šaškov
- Marine Research instituteKlaipėda UniversityKlaipėdaLithuania
| | | |
Collapse
|
26
|
Ransijn JM, Hammond PS, Leopold MF, Sveegaard S, Smout SC. Integrating disparate datasets to model the functional response of a marine predator: A case study of harbour porpoises in the southern North Sea. Ecol Evol 2021; 11:17458-17470. [PMID: 34938521 PMCID: PMC8668753 DOI: 10.1002/ece3.8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 11/12/2022] Open
Abstract
Quantifying consumption and prey choice for marine predator species is key to understanding their interaction with prey species, fisheries, and the ecosystem as a whole. However, parameterizing a functional response for large predators can be challenging because of the difficulty in obtaining the required data on predator diet and on the availability of multiple prey species.This study modeled a multi-species functional response (MSFR) to describe the relationship between consumption by harbour porpoises (Phocoena phocoena) and the availability of multiple prey species in the southern North Sea. Bayesian methodology was employed to estimate MSFR parameters and to incorporate uncertainties in diet and prey availability estimates. Prey consumption was estimated from stomach content data from stranded harbour porpoises. Prey availability to harbour porpoises was estimated based on the spatial overlap between prey distributions, estimated from fish survey data, and porpoise foraging range in the days prior to stranding predicted from telemetry data.Results indicated a preference for sandeels in the study area. Prey switching behavior (change in preference dependent on prey abundance) was confirmed by the favored type III functional response model. Variation in the size of the foraging range (estimated area where harbour porpoises could have foraged prior to stranding) did not alter the overall pattern of the results or conclusions.Integrating datasets on prey consumption from strandings, predator foraging distribution using telemetry, and prey availability from fish surveys into the modeling approach provides a methodological framework that may be appropriate for fitting MSFRs for other predators.
Collapse
Affiliation(s)
- Janneke M Ransijn
- Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews St Andrews UK
| | - Philip S Hammond
- Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews St Andrews UK
| | - Mardik F Leopold
- Wageningen Marine Research Wageningen University & Research Den Helder The Netherlands
| | | | - Sophie C Smout
- Sea Mammal Research Unit Scottish Oceans Institute University of St Andrews St Andrews UK
| |
Collapse
|
27
|
van den Heuvel-Greve MJ, van den Brink AM, Kotterman MJJ, Kwadijk CJAF, Geelhoed SCV, Murphy S, van den Broek J, Heesterbeek H, Gröne A, IJsseldijk LL. Polluted porpoises: Generational transfer of organic contaminants in harbour porpoises from the southern North Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148936. [PMID: 34328906 DOI: 10.1016/j.scitotenv.2021.148936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and hexachlorobenzene (HCB), bioaccumulate in marine ecosystems. Top predators contain high levels of POPs in their lipid-rich tissues, which may result in adverse effects on their reproductive, immune and endocrine functions. Harbour porpoises (Phocoena phocoena) are among the smallest of cetaceans and live under high metabolic demand, making them particularly vulnerable to environmental pressures. Using samples from individuals of all maturity classes and sexes stranded along the southern North Sea (n = 121), we show the generational transfer of PCBs, PBDEs and HCB from adults to foetuses. Porpoise placentas contained 1.3-8.2 mg/kg lipid weight (lw) Sum-17PCB, <dl-0.08 mg/kg lw Sum-17PBDE and 0.14-0.16 mg/kg lw HCB, which were similar to concentrations in foetus blubber. Contaminant levels increased significantly after birth through suckling. Milk samples contained 0.20-33.8 mg/kg lw Sum-17PCB, 0.002-0.51 mg/kg lw Sum-17PBDE and 0.03-0.21 mg/kg lw HCB. Especially lower halogenated and more toxic contaminants were transferred to calves, exposing them to high levels of contaminants early in life. Of all animals included in this study, 38.5% had PCB concentrations exceeding a threshold level for negative health effects (>9 mg/kg lw). This was particularly true for adult males (92.3% >9 mg/kg lw), while adult females had relatively low PCB levels (10.5% >9 mg/kg lw) due to offloading. Nutritional stress led to higher offloading in the milk, causing a greater potential for toxicity in calves of nutritionally stressed females. No correlation between PCB concentration and parasite infestation was detected, although the probability of a porpoise dying due to infectious disease or debilitation increased with increasing PCB concentrations. Despite current regulations to reduce pollution, these results provide further evidence of potential health effects of POPs on harbour porpoises of the southern North Sea, which may consequently increase their susceptibility to other pressures.
Collapse
Affiliation(s)
- Martine J van den Heuvel-Greve
- Wageningen Marine Research, P.O. Box 77, 4400 AB Yerseke, the Netherlands; Wageningen University, Marine Animal Ecology, P.O. Box 338, 6700 AH Wageningen, the Netherlands.
| | | | | | | | - Steve C V Geelhoed
- Wageningen Marine Research, P.O. Box 77, 4400 AB Yerseke, the Netherlands
| | - Sinéad Murphy
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, H91 T8NW, Ireland
| | - Jan van den Broek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Lonneke L IJsseldijk
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
28
|
Brennecke D, Wahlberg M, Gilles A, Siebert U. Age and lunar cycle predict harbor porpoise bycatch in the south-western Baltic Sea. PeerJ 2021; 9:e12284. [PMID: 34760359 PMCID: PMC8556710 DOI: 10.7717/peerj.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
The harbor porpoise, Phocoena phocoena, is the only cetacean regularly occurring in the Baltic Sea. During the last decades, several anthropogenic activities have affected porpoises in the Baltic region. Most notably is bycatch in static fishing gear, such as gill nets, which is the main human-induced cause of death in odontocetes. There is still considerable uncertainty about which factors influence the amount of bycatch. In the present study, we reviewed bycatch data collected from 1987 to 2016 from the south-western Baltic Sea. There was a significant difference in bycatch due to seasonality and region, and there was a higher bycatch rate in juveniles than in adults. The only abiotic factor associated with bycatch was the lunar cycle, with more animals bycaught during a full moon. These results improve our understanding of which biotic and abiotic factors are associated with bycatch of Baltic harbor porpoises, which can be used to strengthen conservation endeavors such as managing fishing efforts.
Collapse
Affiliation(s)
- Dennis Brennecke
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Schleswig-Holstein, Germany.,University of Southern Denmark, Department of Biology, Marine Biological Research Centre, Kerteminde, Denmark.,Leibniz Institute for Science and Mathematics Education, Kiel, Schleswig-Holstein, Germany
| | - Magnus Wahlberg
- University of Southern Denmark, Department of Biology, Marine Biological Research Centre, Kerteminde, Denmark
| | - Anita Gilles
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Schleswig-Holstein, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Schleswig-Holstein, Germany
| |
Collapse
|
29
|
Martín López LM, Aguilar de Soto N, Madsen PT, Johnson M. Overall dynamic body acceleration measures activity differently on large versus small aquatic animals. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Lucía Martina Martín López
- School of Environmental Sciences University of Liverpool Liverpool UK
- Ipar Perspective Asociación Karabiondo Kalea Sopela Spain
| | - Natacha Aguilar de Soto
- BIOECOMAC Department of Animal Biology, Edaphology and Geology University of La Laguna Tenerife Spain
| | - Peter T. Madsen
- Zoophysiology Department of Biology Aarhus University Aarhus Denmark
| | - Mark Johnson
- Zoophysiology Department of Biology Aarhus University Aarhus Denmark
- Aarhus Institute of Advanced Studies Aarhus University Aarhus Denmark
| |
Collapse
|
30
|
McDonald BI, Elmegaard SL, Johnson M, Wisniewska DM, Rojano-Doñate L, Galatius A, Siebert U, Teilmann J, Madsen PT. High heart rates in hunting harbour porpoises. Proc Biol Sci 2021; 288:20211596. [PMID: 34753357 PMCID: PMC8580435 DOI: 10.1098/rspb.2021.1596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The impressive breath-hold capabilities of marine mammals are facilitated by both enhanced O2 stores and reductions in the rate of O2 consumption via peripheral vasoconstriction and bradycardia, called the dive response. Many studies have focused on the extreme role of the dive response in maximizing dive duration in marine mammals, but few have addressed how these adjustments may compromise the capability to hunt, digest and thermoregulate during routine dives. Here, we use DTAGs, which record heart rate together with foraging and movement behaviour, to investigate how O2 management is balanced between the need to dive and forage in five wild harbour porpoises that hunt thousands of small prey daily during continuous shallow diving. Dive heart rates were moderate (median minimum 47-69 bpm) and relatively stable across dive types, dive duration (0.5-3.3 min) and activity. A moderate dive response, allowing for some perfusion of peripheral tissues, may be essential for fuelling the high field metabolic rates required to maintain body temperature and support digestion during diving in these small, continuously feeding cetaceans. Thus, despite having the capacity to prolong dives via a strong dive response, for these shallow-diving cetaceans, it appears to be more efficient to maintain circulation while diving: extreme heart rate gymnastics are for deep dives and emergencies, not everyday use.
Collapse
Affiliation(s)
- Birgitte I. McDonald
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA 93933, USA
| | - Siri L. Elmegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark,Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| | - Danuta M. Wisniewska
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, 79360 Villiers en Bois, France
| | - Laia Rojano-Doñate
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Anders Galatius
- Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 25761 Büsum, Germany
| | - Jonas Teilmann
- Marine Mammal Research, Bioscience to Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
31
|
Gallagher CA, Chimienti M, Grimm V, Nabe-Nielsen J. Energy-mediated responses to changing prey size and distribution in marine top predator movements and population dynamics. J Anim Ecol 2021; 91:241-254. [PMID: 34739086 DOI: 10.1111/1365-2656.13627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
Climate change is modifying the structure of marine ecosystems, including that of fish communities. Alterations in abiotic and biotic conditions can decrease fish size and change community spatial arrangement, ultimately impacting predator species which rely on these communities. To conserve predators and understand the drivers of observed changes in their population dynamics, we must advance our understanding of how shifting environmental conditions can impact populations by limiting food available to individuals. To investigate the impacts of changing fish size and spatial aggregation on a top predator population, we applied an existing agent-based model parameterized for harbour porpoises Phocoena phocoena which represents animal energetics and movements in high detail. We used this framework to quantify the impacts of shifting prey size and spatial aggregation on porpoise movement, space use, energetics and population dynamics. Simulated individuals were more likely to switch from area-restricted search to transit behaviour with increasing prey size, particularly when starving, due to elevated resource competition. In simulations with highly aggregated prey, higher prey encounter rates counteracted resource competition, resulting in no impacts of prey spatial aggregation on movement behaviour. Reduced energy intake with decreasing prey size and aggregation level caused population decline, with a 15% decrease in fish length resulting in total population collapse Increasing prey consumption rates by 42.8 ± 4.5% could offset population declines; however, this increase was 21.3 ± 12.7% higher than needed to account for changes in total energy availability alone. This suggests that animals in realistic seascapes require additional energy to locate smaller prey which should be considered when assessing the impacts of decreased energy availability. Changes in prey size and aggregation influenced movements and population dynamics of simulated harbour porpoises, revealing that climate-induced changes in prey structure, not only prey abundance, may threaten predator populations. We demonstrate how a population model with realistic animal movements and process-based energetics can be used to investigate population consequences of shifting food availability, such as those mediated by climate change, and provide a mechanistic explanation for how changes in prey structure can impact energetics, behaviour and ultimately viability of predator populations.
Collapse
Affiliation(s)
- Cara A Gallagher
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.,Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Marianna Chimienti
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.,Centre d'Etudes Biologiques de Chizé, Villiers-en-Bois, France
| | - Volker Grimm
- Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany.,Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | |
Collapse
|
32
|
Paitach RL, Amundin M, Teixeira G, Cremer MJ. Echolocation variability of franciscana dolphins (Pontoporia blainvillei) between estuarine and open-sea habitats, with insights into foraging patterns. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:3987. [PMID: 34852630 DOI: 10.1121/10.0007277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Environmental and ecological factors can trigger changes in the acoustic repertoire of cetaceans. This study documents the first use of a well-established passive acoustic monitoring device (C-POD) to analyze echolocation sounds and behavior of franciscana dolphins in different habitats: estuary [Babitonga Bay (BB)] and open sea [Itapirubá Beach (IB)]. A total of 10 924 click trains were recorded in BB and 6 093 in IB. An inter-click interval < 10 ms (so called "feeding buzzes") was used as a proxy for foraging activity. The main difference in the acoustic parameters between the two habitats was related to the frequency spectrum, with higher maximum and lower modal and minimum click frequencies in BB, and a train frequency range of 17 kHz, against 10 kHz in IB. Also, the click emission rate (clicks/s) was almost 20% higher in BB. Both studied habitats showed a high proportion of feeding buzzes (BB = 68%; IB = 58%), but with a higher probability of occurrence in BB (p < 0.001) and at night (p < 0.001) in both habitats. The C-PODs showed great potential to monitor occurrence, bioacoustics parameters, and echolocation behavior of franciscana dolphins. Longer-term temporal and spatial monitoring are necessary for elucidating several issues raised in this study.
Collapse
Affiliation(s)
- Renan L Paitach
- Post-Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, s/n, Bloco E, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Mats Amundin
- Kolmarden Wildlife Park, SE-618 92 Kolmarden, Sweden
| | - Gabriel Teixeira
- Post-Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, s/n, Bloco E, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Marta J Cremer
- Post-Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, s/n, Bloco E, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
33
|
Vance H, Madsen PT, Aguilar de Soto N, Wisniewska DM, Ladegaard M, Hooker S, Johnson M. Echolocating toothed whales use ultra-fast echo-kinetic responses to track evasive prey. eLife 2021; 10:68825. [PMID: 34696826 PMCID: PMC8547948 DOI: 10.7554/elife.68825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Visual predators rely on fast-acting optokinetic responses to track and capture agile prey. Most toothed whales, however, rely on echolocation for hunting and have converged on biosonar clicking rates reaching 500/s during prey pursuits. If echoes are processed on a click-by-click basis, as assumed, neural responses 100× faster than those in vision are required to keep pace with this information flow. Using high-resolution biologging of wild predator-prey interactions, we show that toothed whales adjust clicking rates to track prey movement within 50–200 ms of prey escape responses. Hypothesising that these stereotyped biosonar adjustments are elicited by sudden prey accelerations, we measured echo-kinetic responses from trained harbour porpoises to a moving target and found similar latencies. High biosonar sampling rates are, therefore, not supported by extreme speeds of neural processing and muscular responses. Instead, the neurokinetic response times in echolocation are similar to those of tracking responses in vision, suggesting a common neural underpinning. In the animal world, split-second decisions determine whether a predator eats, or its prey survives. There is a strong evolutionary advantage to fast reacting brains and bodies. For example, the eye muscles of hunting cheetahs must lock on to a gazelle and keep track of it, no matter how quickly or unpredictably it moves. In fact, in monkeys and primates, these muscles can react to sudden movements in as little as 50 milliseconds – faster than the blink of an eye. But what about animals that do not rely on vision to hunt? To find food at night or in the deep ocean, whales and porpoises make short ultrasonic sounds, or ‘clicks’, and then listen for returning echoes. As they close in on a prey, they need to click faster to get quicker updates on its location. What is unclear is how fast they react to the echoes. Just before a kill, a harbour porpoise can click over 500 times a second: if they wait for the echo from one click before making the next one, they would need responses 100 times faster than human eyes. Exploring this topic is difficult, as it requires tracking predator and prey at the same time. Vance et al. took up the challenge by building sound and movement recorders that attach to whales with suction cups. These were used on two different hunters: deep-diving beaked whales and shallow-hunting harbour porpoises. Both species adapted their click rate depending on how far they were from their prey, but their response times were similar to visual responses in monkeys and humans. This means that whales and porpoises do not act on each echo before clicking again: instead, they respond to groups of tens of clicks at a time. This suggests that their brains may be wired in much the same way as the ones of visual animals. In the ocean, increased human activity creates a dangerous noise pollution that disrupts the delicate hunting mechanism of whales and porpoises. Better understanding how these animals find their food may therefore help conservation efforts.
Collapse
Affiliation(s)
- Heather Vance
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Natacha Aguilar de Soto
- BIOECOMAC, Department of Animal Biology, Edaphology and Geology, University of La Laguna, La Laguna, Spain
| | | | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Sascha Hooker
- Sea Mammal Research Unit, University of St Andrews, St Andrews, United Kingdom
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Videsen SKA, Simon M, Johnson M, Madsen PT, Christiansen F. Cryptic vocal behavior of foraging humpback whales on feeding grounds in West Greenland. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2879. [PMID: 34717496 DOI: 10.1121/10.0006735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Male humpback whales (Megaptera novaeangliae) sing in mating aggregations in the form of song displays, but much less is known about how both sexes use sound on their feeding grounds. Here, we test different hypotheses about the function of vocalizations in 14 foraging humpback whales tagged with sound and movement recording Dtags in Greenland. We show that this population of foraging humpback whales have an overall low call rate of 11.9 calls h-1 (inter-quartile range = 12.1) with no support for the hypotheses that they employ sound in the localization or manipulation of prey nor in the coordination of lunge feeding. The calls had a mean received level of 135 ± 5dB re 1 μPa, which is some 30 dB lower than maximum levels of song recorded on similar deployed tags, suggesting a much smaller active space of these vocalizations. This reduced active space might, in concert with low call rates, serve to mitigate eavesdropping by predatory killer whales or conspecifics competing for the same prey resources. We conclude that feeding humpback whales in Greenland produce low level, infrequent calls suggesting that calling is not a prerequisite for successful feeding, but likely serves to mediate within group social interactions.
Collapse
Affiliation(s)
- Simone K A Videsen
- Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, P.O. Box 570, Kivioq 2, 3900 Nuuk, Greenland
| | - Mark Johnson
- Sea Mammal Research Unit, University of St Andrews, Fife KY16 8LB, United Kingdom
| | | | | |
Collapse
|
35
|
Keen KA, Beltran RS, Pirotta E, Costa DP. Emerging themes in Population Consequences of Disturbance models. Proc Biol Sci 2021; 288:20210325. [PMID: 34428966 PMCID: PMC8385386 DOI: 10.1098/rspb.2021.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Assessing the non-lethal effects of disturbance from human activities is necessary for wildlife conservation and management. However, linking short-term responses to long-term impacts on individuals and populations is a significant hurdle for evaluating the risks of a proposed activity. The Population Consequences of Disturbance (PCoD) framework conceptually describes how disturbance can lead to changes in population dynamics, and its real-world application has led to a suite of quantitative models that can inform risk assessments. Here, we review PCoD models that forecast the possible consequences of a range of disturbance scenarios for marine mammals. In so doing, we identify common themes and highlight general principles to consider when assessing risk. We find that, when considered holistically, these models provide valuable insights into which contextual factors influence a population's degree of exposure and sensitivity to disturbance. We also discuss model assumptions and limitations, identify data gaps and suggest future research directions to enable PCoD models to better inform risk assessments and conservation and management decisions. The general principles explored can help wildlife managers and practitioners identify and prioritize the populations most vulnerable to disturbance and guide industry in planning activities that avoid or mitigate population-level effects.
Collapse
Affiliation(s)
- Kelly A. Keen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Roxanne S. Beltran
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, UK
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
| | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| |
Collapse
|
36
|
Czapanskiy MF, Savoca MS, Gough WT, Segre PS, Wisniewska DM, Cade DE, Goldbogen JA. Modelling short‐term energetic costs of sonar disturbance to cetaceans using high‐resolution foraging data. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Max F. Czapanskiy
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - Matthew S. Savoca
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - William T. Gough
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - Paolo S. Segre
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| | - Danuta M. Wisniewska
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
- Centre d'Etudes Biologiques de Chizé CNRS‐Université de La Rochelle Villiers‐en‐Bois France
| | - David E. Cade
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
- Institute of Marine Sciences University of California Santa Cruz CA USA
| | - Jeremy A. Goldbogen
- Hopkins Marine Station Department of Biology Stanford University Pacific Grove CA USA
| |
Collapse
|
37
|
Watanabe YY, Goldbogen JA. Too big to study? The biologging approach to understanding the behavioural energetics of ocean giants. J Exp Biol 2021; 224:270831. [PMID: 34232316 DOI: 10.1242/jeb.202747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Wild animals are under selective pressure to optimise energy budgets; therefore, quantifying energy expenditure, intake and allocation to specific activities is important if we are to understand how animals survive in their environment. One approach toward estimating energy budgets has involved measuring oxygen consumption rates under controlled conditions and constructing allometric relationships across species. However, studying 'giant' marine vertebrates (e.g. pelagic sharks, whales) in this way is logistically difficult or impossible. An alternative approach involves the use of increasingly sophisticated electronic tags that have allowed recordings of behaviour, internal states and the surrounding environment of marine animals. This Review outlines how we could study the energy expenditure and intake of free-living ocean giants using this 'biologging' technology. There are kinematic, physiological and theoretical approaches for estimating energy expenditure, each of which has merits and limitations. Importantly, tag-derived energy proxies can hardly be validated against oxygen consumption rates for giant species. The proxies are thus qualitative, rather than quantitative, estimates of energy expenditure, and have more limited utilities. Despite this limitation, these proxies allow us to study the energetics of ocean giants in their behavioural context, providing insight into how these animals optimise their energy budgets under natural conditions. We also outline how information on energy intake and foraging behaviour can be gained from tag data. These methods are becoming increasingly important owing to the natural and anthropogenic environmental changes faced by ocean giants that can alter their energy budgets, fitness and, ultimately, population sizes.
Collapse
Affiliation(s)
- Yuuki Y Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan.,Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo 190-8518, Japan
| | - Jeremy A Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
38
|
Elmegaard SL, McDonald BI, Teilmann J, Madsen PT. Heart rate and startle responses in diving, captive harbour porpoises (Phocoena phocoena) exposed to transient noise and sonar. Biol Open 2021; 10:bio058679. [PMID: 34133736 PMCID: PMC8249908 DOI: 10.1242/bio.058679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Anthropogenic noise can alter marine mammal behaviour and physiology, but little is known about cetacean cardiovascular responses to exposures, despite evidence that acoustic stressors, such as naval sonars, may lead to decompression sickness. Here, we measured heart rate and movements of two trained harbour porpoises during controlled exposure to 6-9 kHz sonar-like sweeps and 40 kHz peak-frequency noise pulses, designed to evoke acoustic startle responses. The porpoises initially responded to the sonar sweep with intensified bradycardia despite unaltered behaviour/movement, but habituated rapidly to the stimuli. In contrast, 40 kHz noise pulses consistently evoked rapid muscle flinches (indicative of startles), but no behavioural or heart rate changes. We conclude that the autonomous startle response appears decoupled from, or overridden by, cardiac regulation in diving porpoises, whereas certain novel stimuli may motivate oxygen-conserving cardiovascular measures. Such responses to sound exposure may contribute to gas mismanagement for deeper-diving cetaceans.
Collapse
Affiliation(s)
- Siri L. Elmegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
- Marine Mammal Research, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | - Birgitte I. McDonald
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA 95039-9647, USA
| | - Jonas Teilmann
- Marine Mammal Research, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
39
|
Ben Chehida Y, Loughnane R, Thumloup J, Kaschner K, Garilao C, Rosel PE, Fontaine MC. No leading-edge effect in North Atlantic harbor porpoises: Evolutionary and conservation implications. Evol Appl 2021; 14:1588-1611. [PMID: 34178106 PMCID: PMC8210799 DOI: 10.1111/eva.13227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding species responses to past environmental changes can help forecast how they will cope with ongoing climate changes. Harbor porpoises are widely distributed in the North Atlantic and were deeply impacted by the Pleistocene changes with the split of three subspecies. Despite major impacts of fisheries on natural populations, little is known about population connectivity and dispersal, how they reacted to the Pleistocene changes, and how they will evolve in the future. Here, we used phylogenetics, population genetics, and predictive habitat modeling to investigate population structure and phylogeographic history of the North Atlantic porpoises. A total of 925 porpoises were characterized at 10 microsatellite loci and one quarter of the mitogenome (mtDNA). A highly divergent mtDNA lineage was uncovered in one porpoise off Western Greenland, suggesting that a cryptic group may occur and could belong to a recently discovered mesopelagic ecotype off Greenland. Aside from it and the southern subspecies, spatial genetic variation showed that porpoises from both sides of the North Atlantic form a continuous system belonging to the same subspecies (Phocoena phocoena phocoena). Yet, we identified important departures from random mating and restricted dispersal forming a highly significant isolation by distance (IBD) at both mtDNA and nuclear markers. A ten times stronger IBD at mtDNA compared with nuclear loci supported previous evidence of female philopatry. Together with the lack of spatial trends in genetic diversity, this IBD suggests that migration-drift equilibrium has been reached, erasing any genetic signal of a leading-edge effect that accompanied the predicted recolonization of the northern habitats freed from Pleistocene ice. These results illuminate the processes shaping porpoise population structure and provide a framework for designing conservation strategies and forecasting future population evolution.
Collapse
Affiliation(s)
- Yacine Ben Chehida
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Roisin Loughnane
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Julie Thumloup
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Kristin Kaschner
- Department of Biometry and Environmental System AnalysisFaculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
| | | | - Patricia E. Rosel
- Southeast Fisheries Science CenterNational Marine Fisheries ServiceNOAALafayetteLAUSA
| | - Michael C. Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
- Laboratoire MIVEGEC (Université de Montpellier, CNRS, IRD)Montpellier Cedex 5France
- Centre de Recherche en Écologie et Évolution de la Santé (CREESMontpellier Cedex 5France
| |
Collapse
|
40
|
Torres Ortiz S, Stedt J, Midtiby HS, Egemose HD, Wahlberg M. Group hunting in harbour porpoises ( Phocoena phocoena). CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cooperative hunting involves individual predators relating in time and space to each other’s actions to more efficiently track down and catch prey. The evolution of advanced cognitive abilities and sociality in animals are strongly associated with cooperative hunting abilities as has been shown in lions, chimpanzees, and dolphins. Much less is known about cooperative hunting in seemingly unsocial animals, such as the harbour porpoise (Phocoena phocoena (Linnaeus, 1758)). Using drones, we were able to record 159 hunting sequences of porpoises, out of which 95 sequences involved more than one porpoise. To better understand if the harbour porpoises were individually attracted by the fish school or formed an organized hunting strategy, the behaviour of each individual porpoise in relation to the targeted fish school was analysed. The results indicate role specialization, which is considered the most sophisticated form of collaborative hunting and only rarely seen in animals. Our study challenges previous knowledge about harbour porpoises and opens up for the possibility of other seemingly non-social species employing sophisticated collaborative hunting methods.
Collapse
Affiliation(s)
- Sara Torres Ortiz
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| | - Johanna Stedt
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Henrik Skov Midtiby
- Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Henrik Dyrberg Egemose
- Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
41
|
Martin MJ, Torres Ortiz S, Reyes Reyes MV, Marino A, Iñíguez Bessega M, Wahlberg M. Commerson’s dolphins (Cephalorhynchus commersonii) can relax acoustic crypsis. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03035-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Adachi T, Takahashi A, Costa DP, Robinson PW, Hückstädt LA, Peterson SH, Holser RR, Beltran RS, Keates TR, Naito Y. Forced into an ecological corner: Round-the-clock deep foraging on small prey by elephant seals. SCIENCE ADVANCES 2021; 7:7/20/eabg3628. [PMID: 33980496 PMCID: PMC8115928 DOI: 10.1126/sciadv.abg3628] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 06/01/2023]
Abstract
Small mesopelagic fishes dominate the world's total fish biomass, yet their ecological importance as prey for large marine animals is poorly understood. To reveal the little-known ecosystem dynamics, we identified prey, measured feeding events, and quantified the daily energy balance of 48 deep-diving elephant seals throughout their oceanic migrations by leveraging innovative technologies: animal-borne smart accelerometers and video cameras. Seals only attained positive energy balance after feeding 1000 to 2000 times per day on small fishes, which required continuous deep diving (80 to 100% of each day). Interspecies allometry suggests that female elephant seals have exceptional diving abilities relative to their body size, enabling them to exploit a unique foraging niche on small but abundant mesopelagic fish. This unique foraging niche requires extreme round-the-clock deep diving, limiting the behavioral plasticity of elephant seals to a changing mesopelagic ecosystem.
Collapse
Affiliation(s)
- Taiki Adachi
- National Institute of Polar Research, Tachikawa, Tokyo, Japan.
| | | | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Luis A Hückstädt
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Sarah H Peterson
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rachel R Holser
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Theresa R Keates
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Yasuhiko Naito
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| |
Collapse
|
43
|
Detection of foraging behavior from accelerometer data using U-Net type convolutional networks. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Currie JJ, van Aswegen M, Stack SH, West KL, Vivier F, Bejder L. Rapid weight loss in free ranging pygmy killer whales (Feresa attenuata) and the implications for anthropogenic disturbance of odontocetes. Sci Rep 2021; 11:8181. [PMID: 33854117 PMCID: PMC8046785 DOI: 10.1038/s41598-021-87514-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding the impacts of foraging disruptions to odontocete body condition is fundamental to quantifying biological effects of human disturbance and environmental changes on cetacean populations. Here, reductions in body volume of free-ranging pygmy killer whales (Feresa attenuata) were calculated using repeated measurements of the same individuals obtained through Unoccupied Aerial System (UAS)-photogrammetry during a prolonged disruption in foraging activity arising from a 21-day stranding event. Stranded individuals were used to verify UAS-derived volume and length estimates through 3D-imaging, water displacement, and post-mortem measurements. We show that (a) UAS estimates of length were within 1.5% of actual body length and UAS volume estimates were within 10-13% of actual volume, (b) foraging disruption resulted in a daily decrease of 2% of total body mass/day, and (c) pygmy killer whales can lose up to 27% of their total body weight within 17 days. These findings highlight the use of UAS as a promising new method to remotely monitor changes in body condition and animal health, which can be used to determine the potential effects of anthropogenic disturbance and environmental change on free-ranging odontocetes.
Collapse
Affiliation(s)
| | - Martin van Aswegen
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | | | - Kristi L West
- Hawaii Institute of Marine Biology, Kaneohe, HI, USA
- Human Nutrition Food and Animal Sciences, College of Tropical Agriculture and Human Resources, Honolulu, HI, USA
| | - Fabien Vivier
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Lars Bejder
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
45
|
Todd VLG, Williamson LD, Jiang J, Cox SE, Todd IB, Ruffert M. Prediction of marine mammal auditory-impact risk from Acoustic Deterrent Devices used in Scottish aquaculture. MARINE POLLUTION BULLETIN 2021; 165:112171. [PMID: 33621906 DOI: 10.1016/j.marpolbul.2021.112171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Acoustic Deterrent Devices (ADDs) are used worldwide to deter pinnipeds from predating fish-aquaculture facilities. Desk-based noise-propagation modelling of six commercial ADD models, and a 'fictional' ADD was performed, the latter involving alternating source level, frequency, duty cycle, noise-exposure duration, and number of ADDs active simultaneously. Potential auditory impacts on marine mammals were explored using the Southall et al. (2019) criteria. Depending on operational characteristics, real ADDs were predicted to cause Temporary Threshold Shift (TTS) to Very High Frequency (VHF) cetaceans at ranges of 4-31 km, and a single fictional device operating at the highest outputs tested was predicted to cause TTS to VHF cetaceans at up to 32 km. Cumulative effects of 23 real fish-farm ADDs produced noise across large swathes of the Inner-Hebrides. The single variable causing greatest reduction in potential impact to marine mammals from fictional ADDs was SL.
Collapse
Affiliation(s)
- Victoria L G Todd
- Ocean Science Consulting Limited, Spott Road, Dunbar, East Lothian, Scotland, EH42 1RR, UK.
| | - Laura D Williamson
- Ocean Science Consulting Limited, Spott Road, Dunbar, East Lothian, Scotland, EH42 1RR, UK.
| | - Jian Jiang
- Ocean Science Consulting Limited, Spott Road, Dunbar, East Lothian, Scotland, EH42 1RR, UK.
| | - Sophie E Cox
- Ocean Science Consulting Limited, Spott Road, Dunbar, East Lothian, Scotland, EH42 1RR, UK.
| | - Ian B Todd
- Ocean Science Consulting Limited, Spott Road, Dunbar, East Lothian, Scotland, EH42 1RR, UK.
| | - Maximilian Ruffert
- School of Mathematics & Maxwell Institute, University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK.
| |
Collapse
|
46
|
von Benda-Beckmann AM, Isojunno S, Zandvliet M, Ainslie MA, Wensveen PJ, Tyack PL, Kvadsheim PH, Lam FPA, Miller PJO. Modeling potential masking of echolocating sperm whales exposed to continuous 1-2 kHz naval sonar. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2908. [PMID: 33940877 DOI: 10.1121/10.0004769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Modern active sonar systems can (almost) continuously transmit and receive sound, which can lead to more masking of important sounds for marine mammals than conventional pulsed sonar systems transmitting at a much lower duty cycle. This study investigated the potential of 1-2 kHz active sonar to mask echolocation-based foraging of sperm whales by modeling their echolocation detection process. Continuous masking for an echolocating sperm whale facing a sonar was predicted for sonar sound pressure levels of 160 dB re 1 μPa2, with intermittent masking at levels of 120 dB re 1 μPa2, but model predictions strongly depended on the animal orientation, harmonic content of the sonar, click source level, and target strength of the prey. The masking model predicted lower masking potential of buzz clicks compared to regular clicks, even though the energy source level is much lower. For buzz clicks, the lower source level is compensated for by the reduced two-way propagation loss to nearby prey during buzzes. These results help to predict what types of behavioral changes could indicate masking in the wild. Several key knowledge gaps related to masking potential of sonar in echolocating odontocetes were identified that require further investigation to assess the significance of masking.
Collapse
Affiliation(s)
- A M von Benda-Beckmann
- Acoustics and Sonar, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 96864, The Hague 2509 JG, The Netherlands
| | - S Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| | - M Zandvliet
- Acoustics and Sonar, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 96864, The Hague 2509 JG, The Netherlands
| | - M A Ainslie
- JASCO Applied Sciences (Deutschland) GmbH, Eschborn, Germany
| | - P J Wensveen
- Faculty of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 102 Reykjavik, Iceland
| | - P L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| | - P H Kvadsheim
- Sensor and Surveillance Systems, Norwegian Defense Research Establishment (FFI), NO-3191 Horten, Norway
| | - F P A Lam
- Acoustics and Sonar, Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 96864, The Hague 2509 JG, The Netherlands
| | - P J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, United Kingdom
| |
Collapse
|
47
|
Stidsholt L, Greif S, Goerlitz HR, Beedholm K, Macaulay J, Johnson M, Madsen PT. Hunting bats adjust their echolocation to receive weak prey echoes for clutter reduction. SCIENCE ADVANCES 2021; 7:7/10/eabf1367. [PMID: 33658207 PMCID: PMC7929515 DOI: 10.1126/sciadv.abf1367] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/21/2021] [Indexed: 05/27/2023]
Abstract
How animals extract information from their surroundings to guide motor patterns is central to their survival. Here, we use echo-recording tags to show how wild hunting bats adjust their sensory strategies to their prey and natural environment. When searching, bats maximize the chances of detecting small prey by using large sensory volumes. During prey pursuit, they trade spatial for temporal information by reducing sensory volumes while increasing update rate and redundancy of their sensory scenes. These adjustments lead to very weak prey echoes that bats protect from interference by segregating prey sensory streams from the background using a combination of fast-acting sensory and motor strategies. Counterintuitively, these weak sensory scenes allow bats to be efficient hunters close to background clutter broadening the niches available to hunt for insects.
Collapse
Affiliation(s)
- Laura Stidsholt
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Stefan Greif
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Kristian Beedholm
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jamie Macaulay
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
48
|
Gallagher CA, Grimm V, Kyhn LA, Kinze CC, Nabe-Nielsen J. Movement and Seasonal Energetics Mediate Vulnerability to Disturbance in Marine Mammal Populations. Am Nat 2021; 197:296-311. [PMID: 33625969 DOI: 10.1086/712798] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn marine environments, noise from human activities is increasing dramatically, causing animals to alter their behavior and forage less efficiently. These alterations incur energetic costs that can result in reproductive failure and death and may ultimately influence population viability, yet the link between population dynamics and individual energetics is poorly understood. We present an energy budget model for simulating effects of acoustic disturbance on populations. It accounts for environmental variability and individual state, while incorporating realistic animal movements. Using harbor porpoises (Phocoena phocoena) as a case study, we evaluated population consequences of disturbance from seismic surveys and investigated underlying drivers of vulnerability. The framework reproduced empirical estimates of population structure and seasonal variations in energetics. The largest effects predicted for seismic surveys were in late summer and fall and were unrelated to local abundance, but instead were related to lactation costs, water temperature, and body fat. Our results demonstrate that consideration of temporal variation in individual energetics and their link to costs associated with disturbances is imperative when predicting disturbance impacts. These mechanisms are general to animal species, and the framework presented here can be used for gaining new insights into the spatiotemporal variability of animal movements and energetics that control population dynamics.
Collapse
|
49
|
Lewanzik D, Goerlitz HR. Task-dependent vocal adjustments to optimize biosonar-based information acquisition. J Exp Biol 2021; 224:jeb234815. [PMID: 33234681 DOI: 10.1242/jeb.234815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023]
Abstract
Animals need to acquire adequate and sufficient information to guide movements, yet information acquisition and processing are costly. Animals thus face a trade-off between gathering too little and too much information and, accordingly, actively adapt sensory input through motor control. Echolocating animals provide a unique opportunity to study the dynamics of adaptive sensing in naturally behaving animals, as every change in the outgoing echolocation signal directly affects information acquisition and the perception of the dynamic acoustic scene. Here, we investigated the flexibility with which bats dynamically adapt information acquisition depending on a task. We recorded the echolocation signals of wild-caught Western barbastelle bats (Barbastella barbastellus) while they were flying through an opening, drinking on the wing, landing on a wall and capturing prey. We show that the echolocation signal sequences during target approach differed in a task-dependent manner; bats started the target approach earlier and increased the information update rate more when the task became increasingly difficult, and bats also adjusted the dynamics of call duration shortening and peak frequency shifts accordingly. These task-specific differences existed from the onset of object approach, implying that bats plan their sensory-motor programme for object approach exclusively based on information received from search call echoes. We provide insight into how echolocating animals deal with the constraints they face when sequentially sampling the world through sound by adjusting acoustic information flow from slow to extremely fast in a highly dynamic manner. Our results further highlight the paramount importance of high behavioural flexibility for acquiring information.
Collapse
Affiliation(s)
- Daniel Lewanzik
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| |
Collapse
|
50
|
Beedholm K, Malinka C, Ladegaard M, Madsen PT. Do echolocating toothed whales direct their acoustic gaze on- or off-target in a static detection task? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:581. [PMID: 33514151 DOI: 10.1121/10.0003357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Echolocating mammals produce directional sound beams with high source levels to improve echo-to-noise ratios and reduce clutter. Recent studies have suggested that the differential spectral gradients of such narrow beams are exploited to facilitate target localization by pointing the beam slightly off targets to maximize the precision of angular position estimates [maximizing bearing Fisher information (FI)]. Here, we test the hypothesis that echolocating toothed whales focus their acoustic gaze askew during target detection to maximize spectral cues by investigating the acoustic gaze direction of two trained delphinids (Tursiops truncatus and Pseudorca crassidens) echolocating to detect an aluminum cylinder behind a hydrophone array in a go/no-go paradigm. The animals rarely placed their beam axis directly on the target, nor within the narrow range around the off-axis angle that maximizes FI. However, the target was, for each trial, ensonified within the swath of the half-power beam width, and hence we conclude that the animals solved the detection task using a strategy that seeks to render high echo-to-noise ratios rather than maximizing bearing FI. We posit that biosonar beam adjustment and acoustic gaze strategies are likely task-dependent and that maximizing bearing FI by pointing off-axis does not improve target detection performance.
Collapse
Affiliation(s)
- Kristian Beedholm
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Chloe Malinka
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|