1
|
Xie K, Ren Y, Huang Y, Wang L, Li L, Ye H, Yang C, Wang S, Xu G, Chen A. A conserved nuclear factor YC subunit, NF-YC3, is essential for arbuscule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17195. [PMID: 39642156 DOI: 10.1111/tpj.17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Establishing reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi is an important evolutionary strategy of most terrestrial plants to adapt to environmental stresses, especially phosphate (Pi) deficiencies. Identifying the key genes essential for AM symbiosis in plants and dissecting their functional mechanisms will be helpful for the breeding of new crop varieties with enhanced nutrient uptake efficiency. Here, we report a nuclear factor YC subunit-encoding gene, OsNF-YC3, whose expression is specifically induced in arbuscule-containing cells, plays an essential role in AM symbiosis. Knockout of OsNF-YC3 resulted in stunted arbuscule morphology and substantially decreased P accumulation, while overexpressing OsNF-YC3 enhanced mycorrhization and Pi uptake efficiency. OsNF-YC3 is directly regulated by OsPHRs, the major regulators of Pi starvation responses. Chromatin immunoprecipitation sequencing analysis uncovered multiple genes with crucial roles in arbuscule development as its potential downstream targets, including the AM-specific Pi transporter gene OsPT11. OsNF-YC3 can form a heterotrimer with the other two NF-Y subunits, OsNF-YA11 and OsNF-YB11, in yeast. Loss of OsNF-YA11 function also severely impaired arbuscule development in its mutants. Overall, our results highlight an essential role of OsNF-YC3 and its potential interacting NF-Y subunit, OsNF-YA11, in regulating AM symbiosis and arbuscule development.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingxiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lechuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanghang Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Chien H, Kuo TY, Yao CH, Su YR, Chang YT, Guo ZL, Chang KC, Hsieh YH, Yang SY. Nuclear factors NF-YC3 and NF-YBs positively regulate arbuscular mycorrhizal symbiosis in tomato. PLANT PHYSIOLOGY 2024; 196:1840-1856. [PMID: 39028839 DOI: 10.1093/plphys/kiae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/21/2024]
Abstract
The involvement of nuclear factor Y (NF-Y) in transcriptional reprogramming during arbuscular mycorrhizal symbiosis has been demonstrated in several plant species. However, a comprehensive picture is lacking. We showed that the spatial expression of NF-YC3 was observed in cortical cells containing arbuscules via the cis-regulatory element GCC boxes. Moreover, the NF-YC3 promoter was transactivated by the combination of CYCLOPS and autoactive calcium and calmodulin-dependent kinase (CCaMK) via GCC boxes. Knockdown of NF-YC3 significantly reduced the abundance of all intraradical fungal structures and affected arbuscule size. BCP1, SbtM1, and WRI5a, whose expression associated with NF-YC3 levels, might be downstream of NF-YC3. NF-YC3 interacted with NF-YB3a, NF-YB5c, or NF-YB3b, in yeast (Saccharomyces cerevisiae) and in planta, and interacted with NF-YA3a in yeast. Spatial expression of 3 NF-YBs was observed in all cell layers of roots under both mock and mycorrhizal conditions. Simultaneous knockdown of 3 NF-YBs, but not individually, reduced the fungal colonization level, suggesting that there might be functional redundancy of NF-YBs to regulate AM symbiosis. Collectively, our data suggest that NF-YC3 and NF-YBs positively regulate AM symbiosis in tomato, and arbuscule-related NF-YC3 may be an important downstream gene of the common symbiosis signaling pathway.
Collapse
Affiliation(s)
- Heng Chien
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yu Kuo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Hung Yao
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ru Su
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Zheng-Lin Guo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Chieh Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Heng Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Alhusayni S, Kersten N, Huisman R, Geurts R, Klein J. Ectopic expression of the GRAS-type transcriptional regulator NSP2 in Parasponia triggers contrasting effects on symbioses. FRONTIERS IN PLANT SCIENCE 2024; 15:1468812. [PMID: 39539299 PMCID: PMC11557437 DOI: 10.3389/fpls.2024.1468812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Introduction Plants strictly control root endosymbioses with nutrient-scavenging arbuscular endomycorrhizal fungi or nodule inducing diazotrophic bacteria. The GRAS-type transcriptional regulator NODULATION SIGNALING PATHWAY 2 (NSP2) is a conserved hub in this process. The NSP2-regulated transcriptional network is instrumental in balancing nutrient homeostasis with symbiotic interactions. NSP2 activity is modulated post-transcriptionally by a specific microRNA. Overriding this control mechanism by ectopic expression of a miRNA-resistant NSP2 transgene enhances the symbiotic permissiveness to arbuscular endomycorrhizal fungi. Such engineered plants may possess enhanced capacities for nutrient uptake. However, the trade-off of this strategy on plant development or other symbiotic interactions, like nodulation, is yet to be fully understood. Method We used the nodulating Cannabaceae species Parasponia andersonii as an experimental system to study the effect of ectopic NSP2 expression. Parasponia and legumes (Fabaceae) diverged 100 million years ago, providing a unique comparative system to dissect the nodulation trait. Results Six independent transgenic Parasponia lines were generated that differed in the level of NSP2 expression in the root from 6 to 95-fold higher when compared to the empty vector control plants. Analysis of these plants revealed a positive correlation between mycorrhization and the NSP2 expression level, as well as with the expression of the symbiosis transcription factor CYCLOPS and the rate-limiting enzyme in the carotenoid biosynthetic pathway PHYTOENE SYNTHASE1 (PSY1). Yet ectopic expression of NSP2 affected plant architecture and root nodule organogenesis. Discussion This indicates a significant trade-off when leveraging NSP2 over-expression to enhance endomycorrhization.
Collapse
Affiliation(s)
- Sultan Alhusayni
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nick Kersten
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Rik Huisman
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Rene Geurts
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Joël Klein
- Laboratory of Molecular Biology, Cluster of Plant Development, Plant Science Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
4
|
Avilés-Cárdenas JD, Molinero-Rosales N, Pérez-Tienda J, Rosas-Díaz T, Castillo AG, García-Garrido JM. Enhancing arbuscular mycorrhiza symbiosis effectiveness through the involvement of the tomato GRAS transcription factor SCL3/SlGRAS18. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109019. [PMID: 39146911 DOI: 10.1016/j.plaphy.2024.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi improve plant growth, nutrition, fitness and stress tolerance while AM fungi obtain carbohydrates and lipids from the host. This whole process of mutual benefit requires substantial alterations in the structural and functional aspects of the host root cells. These modifications ultimately culminate in the formation of arbuscules, which are specialized intraradical and highly branched fungal structures. Arbuscule-containing cells undergo massive reprogramming to hosting arbuscule and members of the GRAS transcription factor family have been characterized as AM inducible genes which play a pivotal role in these process. Here, we show a functional analysis for the GRAS transcription factor SCL3/SlGRAS18 in tomato. SlGRAS18 interacts with SlDELLA, a central regulator of AM formation. Silencing of SlGRAS18 positively impacts arbuscule development and the improvement in symbiotic status, favouring flowering and therefore progress in the formation and development of fruits in SlGRAS18 silenced plants which parallel to a discernible pattern of mineral nutrient redistribution in leaves. Our results advance the knowledge of GRAS transcription factors involved in the formation and establishment of AM symbiosis and provide experimental evidence for how specific genetic alterations can lead to more effective AM symbiosis.
Collapse
Affiliation(s)
- Jonathan D Avilés-Cárdenas
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Nuria Molinero-Rosales
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Tábata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010, Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010, Málaga, Spain
| | - José M García-Garrido
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain.
| |
Collapse
|
5
|
Ho-Plágaro T, Tamayo-Navarrete MI, Ćavar Zeljković S, Tarkowski P, García-Garrido JM. A dual regulatory role for the arbuscular mycorrhizal master regulator RAM1 in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5021-5036. [PMID: 38726891 PMCID: PMC11349867 DOI: 10.1093/jxb/erae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/09/2024] [Indexed: 08/29/2024]
Abstract
The REQUIRED FOR ARBUSCULAR MYCORRHIZATION1 (RAM1) transcription factor from the GRAS family is well known for its role as a master regulator of the arbuscular mycorrhizal (AM) symbiosis in dicotyledonous and monocotyledonous species, being essential in transcriptional reprogramming for the development and functionality of the arbuscules. In tomato, SlGRAS27 is the putative orthologue of RAM1 (here named SlRAM1), but has not yet been characterized. A reduced colonization of the root and impaired arbuscule formation were observed in SlRAM1-silenced plants, confirming the functional conservation of the RAM1 orthologue in tomato. However, unexpectedly, SlRAM1-overexpressing (UBIL:SlRAM1) plants also showed decreased mycorrhizal colonization. Analysis of non-mycorrhizal UBIL:SlRAM1 roots revealed an overall regulation of AM-related genes and a reduction of strigolactone biosynthesis. Moreover, external application of the strigolactone analogue GR244DO almost completely reversed the negative effects of SlRAM1 overexpression on the frequency of mycorrhization. However, it only partially recovered the pattern of arbuscule distribution observed in control plants. Our results strongly suggest that SlRAM1 has a dual regulatory role during mycorrhization and, in addition to its recognized action as a positive regulator of arbuscule development, it is also involved in different mechanisms for the negative regulation of mycorrhization, including the repression of strigolactone biosynthesis.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| | - María Isabel Tamayo-Navarrete
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - José Manuel García-Garrido
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| |
Collapse
|
6
|
Betz R, Heidt S, Figueira-Galán D, Hartmann M, Langner T, Requena N. Alternative splicing regulation in plants by SP7-like effectors from symbiotic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:7107. [PMID: 39160162 PMCID: PMC11333574 DOI: 10.1038/s41467-024-51512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Most plants in natural ecosystems associate with arbuscular mycorrhizal (AM) fungi to survive soil nutrient limitations. To engage in symbiosis, AM fungi secrete effector molecules that, similar to pathogenic effectors, reprogram plant cells. Here we show that the Glomeromycotina-specific SP7 effector family impacts on the alternative splicing program of their hosts. SP7-like effectors localize at nuclear condensates and interact with the plant mRNA processing machinery, most prominently with the splicing factor SR45 and the core splicing proteins U1-70K and U2AF35. Ectopic expression of these effectors in the crop plant potato and in Arabidopsis induced developmental changes that paralleled to the alternative splicing modulation of a specific subset of genes. We propose that SP7-like proteins act as negative regulators of SR45 to modulate the fate of specific mRNAs in arbuscule-containing cells. Unraveling the communication mechanisms between symbiotic fungi and their host plants will help to identify targets to improve plant nutrition.
Collapse
Affiliation(s)
- Ruben Betz
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Sven Heidt
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - David Figueira-Galán
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Meike Hartmann
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Thorsten Langner
- Max Planck Institute for Biology Tübingen - Max-Planck-Ring 5, Tübingen, Germany
| | - Natalia Requena
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
7
|
He L, Liu Y, Mao Y, Wu X, Zheng X, Zhao W, Mo X, Wang R, Wu Q, Wang D, Li Y, Yang Y, Bai Q, Zhang X, Zhou S, Zhao B, Liu C, Liu Y, Tadege M, Chen J. GRAS transcription factor PINNATE-LIKE PENTAFOLIATA2 controls compound leaf morphogenesis in Medicago truncatula. THE PLANT CELL 2024; 36:1755-1776. [PMID: 38318972 PMCID: PMC11062474 DOI: 10.1093/plcell/koae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.
Collapse
Affiliation(s)
- Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Mao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinq Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Youhan Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuanfan Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changning Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
8
|
Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, Malmstrom RR, Visel A, Scheller HV, Cole B. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2024; 10:673-688. [PMID: 38589485 PMCID: PMC11035146 DOI: 10.1038/s41477-024-01666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.
Collapse
Affiliation(s)
- Karen Serrano
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret Bezrutczyk
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thai Dao
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan O'Malley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Henrik V Scheller
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Cole
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Wang Q, Liu M, Wang Z, Li J, Liu K, Huang D. The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Front Microbiol 2024; 14:1323881. [PMID: 38312502 PMCID: PMC10835807 DOI: 10.3389/fmicb.2023.1323881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can penetrate plant root cortical cells, establish a symbiosis with most land plant species, and form branched structures (known as arbuscules) for nutrient exchange. Plants have evolved a complete plant-AMF symbiosis system to sustain their growth and development under various types of abiotic stress. Here, we highlight recent studies of AM symbiosis and the regulation of symbiosis process. The roles of mycorrhizal symbiosis and host plant interactions in enhancing drought resistance, increasing mineral nutrient uptake, regulating hormone synthesis, improving salt resistance, and alleviating heavy metal stress were also discussed. Overall, studies of AM symbiosis and a variety of abiotic stresses will aid applications of AMF in sustainable agriculture and can improve plant production and environmental safety.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| | - Junrong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Dong Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Pradhan M, Baldwin IT, Pandey SP. Argonaute7 (AGO7) optimizes arbuscular mycorrhizal fungal associations and enhances competitive growth in Nicotiana attenuata. THE NEW PHYTOLOGIST 2023; 240:382-398. [PMID: 37532924 DOI: 10.1111/nph.19155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 08/04/2023]
Abstract
Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that modulates this interaction remains unknown, including in Nicotiana attenuata. We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-competitive ability under low-P conditions when they interact with AMF. Furthermore, the roles of seven miRNAs, predicted to regulate signaling and phosphate homeostasis, were evaluated by transient overexpression. Only NaAGO7 silencing by RNAi (irAGO7) significantly reduced the competitive ability under P-limited conditions, without changes in leaf or root development, or juvenile-to-adult phase transitions. In plants growing competitively in the glasshouse, irAGO7 roots were over-colonized with AMF, but they accumulated significantly less phosphate and the expression of their AMF-specific transporters was deregulated. Furthermore, the AMF-induced miRNA levels were inversely regulated with the abundance of their target transcripts. miRNA overexpression consistently decreased plant fitness, with four of seven-tested miRNAs reducing mycorrhization rates, and two increasing mycorrhization rates. Overexpression of Na-miR473 and Na-miRNA-PN59 downregulated targets in GA, ethylene, and fatty acid metabolism pathways. We infer that AGO7 optimizes competitive ability and colonization by regulating miRNA levels and signaling pathways during a plant's interaction with AMF.
Collapse
Affiliation(s)
- Maitree Pradhan
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| |
Collapse
|
11
|
Zhang Q, Wang S, Xie Q, Xia Y, Lu L, Wang M, Wang G, Long S, Cai Y, Xu L, Wang E, Jiang Y. Control of arbuscule development by a transcriptional negative feedback loop in Medicago. Nat Commun 2023; 14:5743. [PMID: 37717076 PMCID: PMC10505183 DOI: 10.1038/s41467-023-41493-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
Most terrestrial plants establish a symbiosis with arbuscular mycorrhizal fungi (AMF), which provide them with lipids and sugars in exchange for phosphorus and nitrogen. Nutrient exchange must be dynamically controlled to maintain a mutually beneficial relationship between the two symbiotic partners. The WRI5a and its homologues play a conserved role in lipid supply to AMF. Here, we demonstrate that the AP2/ERF transcription factor MtERM1 binds directly to AW-box and AW-box-like cis-elements in the promoters of MtSTR2 and MtSTR, which are required for host lipid efflux and arbuscule development. The EAR domain-containing transcription factor MtERF12 is also directly activated by MtERM1/MtWRI5a to negatively regulate arbuscule development, and the TOPLESS co-repressor is further recruited by MtERF12 through EAR motif to oppose MtERM1/MtWRI5a function, thereby suppressing arbuscule development. We therefore reveal an ERM1/WRI5a-ERF12-TOPLESS negative feedback loop that enables plants to flexibly control nutrient exchange and ensure a mutually beneficial symbiosis.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Shuangshuang Wang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yuanjun Xia
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Lei Lu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Siyu Long
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Yina Jiang
- School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
12
|
Parra-Aguilar TJ, Sarmiento-López LG, Santana O, Olivares JE, Pascual-Morales E, Jiménez-Jiménez S, Quero-Hostos A, Palacios-Martínez J, Chávez-Martínez AI, Cárdenas L. TETRASPANIN 8-1 from Phaseolus vulgaris plays a key role during mutualistic interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1152493. [PMID: 37465390 PMCID: PMC10352089 DOI: 10.3389/fpls.2023.1152493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and rhizobia form two of the most important plant-microbe associations for the assimilation of phosphorus (P) and nitrogen (N). Symbiont-derived signals are able to coordinate the infection process by triggering multiple responses in the plant root, such as calcium influxes and oscillations, increased reactive oxygen species (ROS), cytoskeletal rearrangements and altered gene expression. An examination was made of the role of tetraspanins, which are transmembrane proteins that self-organize into tetraspanin web regions, where they recruit specific proteins into platforms required for signal transduction, membrane fusion, cell trafficking, and ROS generation. In plant cells, tetraspanins are scaffolding proteins associated with root radial patterning, biotic and abiotic stress responses, cell fate determination, plasmodesmata and hormonal regulation. Some plant tetraspanins, such as Arabidopsis thaliana TETRASPANIN 8 and TETRASPANIN 9 (AtTET8 and AtTET9) are associated with exosomes during inter-kingdom communication. In this study, a homolog of AtTET8, PvTET8-1, in common bean (Phaseolus vulgaris L. var. Negro Jamapa) was examined in roots during interactions with Rhizobium tropici and Rhizophagus irregularis. The promoter of PvTET8-1 contained several cis-acting regulatory DNA elements potentially related to mutualistic interactions, and PvTET8-1 was transcriptionally activated during AM fungal and rhizobial associations. Silencing it decreased the size and number of nodules, nitrogen fixation, and mycorrhizal arbuscule formation, whereas overexpressing it increased the size and number of nodules, and mycorrhizal arbuscule formation but decreased nitrogen fixation. PvTET8-1 appears to be an important element in both of these mutualistic interactions, perhaps through its interaction with NADPH oxidase and the generation of ROS during the infection processes.
Collapse
Affiliation(s)
- Thelma J. Parra-Aguilar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis G. Sarmiento-López
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, Mexico
| | - Olivia Santana
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Juan Elías Olivares
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Pascual-Morales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Saul Jiménez-Jiménez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Andrea Quero-Hostos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Janet Palacios-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ana I. Chávez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
13
|
Leng J, Wei X, Jin X, Wang L, Fan K, Zou K, Zheng Z, Saridis G, Zhao N, Zhou D, Duanmu D, Wang E, Cui H, Bucher M, Xue L. ARBUSCULAR MYCORRHIZA-INDUCED KINASES AMK8 and AMK24 associate with the receptor-like kinase KINASE3 to regulate arbuscular mycorrhizal symbiosis in Lotus japonicus. THE PLANT CELL 2023; 35:2006-2026. [PMID: 36808553 DOI: 10.1093/plcell/koad050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 05/30/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus. Nine AMKs are only conserved in AM-host lineages, among which the SPARK-RLK-encoding gene KINASE3 (KIN3) and the RLCK paralogues AMK8 and AMK24 are required for AM symbiosis. KIN3 expression is directly regulated by the AP2 transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), which regulates the reciprocal exchange of nutrients in AM symbiosis, via the AW-box motif in the KIN3 promoter. Loss of function mutations in KIN3, AMK8, or AMK24 result in reduced mycorrhizal colonization in L. japonicus. AMK8 and AMK24 physically interact with KIN3. KIN3 and AMK24 are active kinases and AMK24 directly phosphorylates KIN3 in vitro. Moreover, CRISPR-Cas9-mediated mutagenesis of OsRLCK171, the sole homolog of AMK8 and AMK24 in rice (Oryza sativa), leads to diminished mycorrhization with stunted arbuscules. Overall, our results reveal a crucial role of the CBX1-driven RLK/RLCK complex in the evolutionarily conserved signaling pathway enabling arbuscule formation.
Collapse
Affiliation(s)
- Junchen Leng
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaotong Wei
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinyi Jin
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Longxiang Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kai Fan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ke Zou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zichao Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Georgios Saridis
- Institute for Plant Science, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47b, Cologne D-50674, Germany
| | - Ningkang Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dan Zhou
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Deqiang Duanmu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haitao Cui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Marcel Bucher
- Institute for Plant Science, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47b, Cologne D-50674, Germany
| | - Li Xue
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
14
|
Zeng Z, Liu Y, Feng XY, Li SX, Jiang XM, Chen JQ, Shao ZQ. The RNAome landscape of tomato during arbuscular mycorrhizal symbiosis reveals an evolving RNA layer symbiotic regulatory network. PLANT COMMUNICATIONS 2023; 4:100429. [PMID: 36071667 PMCID: PMC9860192 DOI: 10.1016/j.xplc.2022.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal symbiosis (AMS) is an ancient plant-fungus relationship that is widely distributed in terrestrial plants. The formation of symbiotic structures and bidirectional nutrient exchange requires the regulation of numerous genes. However, the landscape of RNAome during plant AMS involving different types of regulatory RNA is poorly understood. In this study, a combinatorial strategy utilizing multiple sequencing approaches was used to decipher the landscape of RNAome in tomato, an emerging AMS model. The annotation of the tomato genome was improved by a multiple-platform sequencing strategy. A total of 3,174 protein-coding genes were upregulated during AMS, 42% of which were alternatively spliced. Comparative-transcriptome analysis revealed that genes from 24 orthogroups were consistently induced by AMS in eight phylogenetically distant angiosperms. Seven additional orthogroups were specifically induced by AMS in all surveyed dicot AMS host plants. However, these orthogroups were absent or not induced in monocots and/or non-AMS hosts, suggesting a continuously evolving AMS-responsive network in addition to a conserved core regulatory module. Additionally, we detected 587 lncRNAs, ten miRNAs, and 146 circRNAs that responded to AMS, which were incorporated to establish a tomato AMS-responsive, competing RNA-responsive endogenous RNA (ceRNA) network. Finally, a tomato symbiotic transcriptome database (TSTD, https://efg.nju.edu.cn/TSTD) was constructed to serve as a resource for deep deciphering of the AMS regulatory network. These results help elucidate the reconfiguration of the tomato RNAome during AMS and suggest a sophisticated and evolving RNA layer responsive network during AMS processes.
Collapse
Affiliation(s)
- Zhen Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Yu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Mei Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Shi J, Zhao B, Jin R, Hou L, Zhang X, Dai H, Yu N, Wang E. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses. THE NEW PHYTOLOGIST 2022; 236:2282-2293. [PMID: 36254112 DOI: 10.1111/nph.18546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Most land plants associate with arbuscular mycorrhizal (AM) fungi to secure mineral nutrient acquisition, especially that of phosphorus. A phosphate starvation response (PHR)-centered network regulates AM symbiosis. Here, we identified 520 direct target genes for the rice transcription factor OsPHR1/2/3 during AM symbiosis using transcriptome deep sequencing and DNA affinity purification sequencing. These genes were involved in strigolactone biosynthesis, transcriptional reprogramming, and bidirectional nutrient exchange. Moreover, we identified the receptor-like kinase, Arbuscule Development Kinase 1 (OsADK1), as a new target of OsPHR1/2/3. Electrophoretic mobility shift assays and transactivation assays showed that OsPHR2 can bind directly to the P1BS elements within the OsADK1 promoter to activate its transcription. OsADK1 appeared to be required for mycorrhizal colonization and arbuscule development. In addition, hydroponic experiments suggested that OsADK1 may be involved in plant Pi starvation responses. Our findings validate a role for OsPHR1/2/3 as master regulators of mycorrhizal-related genes involved in various stages of symbiosis, and uncover a new RLK involved in AM symbiosis and plant Pi starvation responses.
Collapse
Affiliation(s)
- Jincai Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Boyu Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rui Jin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ling Hou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
16
|
Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, Kumar S. Multifaceted Roles of GRAS Transcription Factors in Growth and Stress Responses in Plants. iScience 2022; 25:105026. [PMID: 36117995 PMCID: PMC9474926 DOI: 10.1016/j.isci.2022.105026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mrinalini Kakkar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
- Corresponding author
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
17
|
Cope KR, Kafle A, Yakha JK, Pfeffer PE, Strahan GD, Garcia K, Subramanian S, Bücking H. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. MYCORRHIZA 2022; 32:281-303. [PMID: 35511363 DOI: 10.1007/s00572-022-01077-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a root endosymbiosis with many agronomically important crop species. They enhance the ability of their host to obtain nutrients from the soil and increase the tolerance to biotic and abiotic stressors. However, AM fungal species can differ in the benefits they provide to their host plants. Here, we examined the putative molecular mechanisms involved in the regulation of the physiological response of Medicago truncatula to colonization by Rhizophagus irregularis or Glomus aggregatum, which have previously been characterized as high- and low-benefit AM fungal species, respectively. Colonization with R. irregularis led to greater growth and nutrient uptake than colonization with G. aggregatum. These benefits were linked to an elevated expression in the roots of strigolactone biosynthesis genes (NSP1, NSP2, CCD7, and MAX1a), mycorrhiza-induced phosphate (PT8), ammonium (AMT2;3), and nitrate (NPF4.12) transporters and the putative ammonium transporter NIP1;5. R. irregularis also stimulated the expression of photosynthesis-related genes in the shoot and the upregulation of the sugar transporters SWEET1.2, SWEET3.3, and SWEET 12 and the lipid biosynthesis gene RAM2 in the roots. In contrast, G. aggregatum induced the expression of biotic stress defense response genes in the shoots, and several genes associated with abiotic stress in the roots. This suggests that either the host perceives colonization by G. aggregatum as pathogen attack or that G. aggregatum can prime host defense responses. Our findings highlight molecular mechanisms that host plants may use to regulate their association with high- and low-benefit arbuscular mycorrhizal symbionts.
Collapse
Affiliation(s)
- Kevin R Cope
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Arjun Kafle
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jaya K Yakha
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Philip E Pfeffer
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary D Strahan
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Senthil Subramanian
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
18
|
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, Aslam MM. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol Biol Rep 2022; 49:9673-9685. [PMID: 35713799 DOI: 10.1007/s11033-022-07425-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
GRAS transcription factors play multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses. The structural and functional features of GRAS TFs have been unveiled in the last two decades. A typical GRAS protein contained a C-terminal GRAS domain with a highly variable N-terminal region. Studies on these TFs increase in numbers and are reported to be involved in various important developmental processes such as flowering, root formation, and stress responses. The GRAS TFs and hormone signaling crosstalk can be implicated in plant development and to stress responses. There are relatively few reports about GRAS TFs roles in plants, and no related reviews have been published. In this review, we summarized the features of GRAS TFs, their targets, and the roles these GRAS TFs playing in plant development and multiple stresses.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Botany, University of Narowal, Narowal, Punjab, Pakistan. .,College of Life Science, Hainan University, Hainan, P.R. China.
| | - Oswald Nkurikiyimfura
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Sylvain Niyitanga
- Department of Plant Pathology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Bello Hassan Jakada
- College of Life Science, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Iffat Shaheen
- Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
19
|
Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2022; 23:ijms23115960. [PMID: 35682640 PMCID: PMC9180548 DOI: 10.3390/ijms23115960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Plant-microorganism interactions at the rhizosphere level have a major impact on plant growth and plant tolerance and/or resistance to biotic and abiotic stresses. Of particular importance for forestry and agricultural systems is the cooperative and mutualistic interaction between plant roots and arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycotina, since about 80% of terrestrial plant species can form AM symbiosis. The interaction is tightly regulated by both partners at the cellular, molecular and genetic levels, and it is highly dependent on environmental and biological variables. Recent studies have shown how fungal signals and their corresponding host plant receptor-mediated signalling regulate AM symbiosis. Host-generated symbiotic responses have been characterized and the molecular mechanisms enabling the regulation of fungal colonization and symbiosis functionality have been investigated. This review summarizes these and other recent relevant findings focusing on the molecular players and the signalling that regulate AM symbiosis. Future progress and knowledge about the underlying mechanisms for AM symbiosis regulation will be useful to facilitate agro-biotechnological procedures to improve AM colonization and/or efficiency.
Collapse
|
20
|
The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. Microbiol Res 2022; 261:127056. [DOI: 10.1016/j.micres.2022.127056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022]
|
21
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
22
|
Liu CC, Liu YN, Cheng JF, Guo R, Tian L, Wang B. Dual Roles of OsGH3.2 in Modulating Rice Root Morphology and Affecting Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:853435. [PMID: 35481141 PMCID: PMC9037295 DOI: 10.3389/fpls.2022.853435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Several angiosperm GRETCHEN HAGEN 3 (GH3) genes, including tomato SlGH3.4 and rice OsGH3.2 are induced during arbuscular mycorrhizal (AM) symbiosis, but their functions remain largely unclear. Recently, tomato SlGH3.4 was suggested to negatively regulate arbuscule incidence via decreasing auxin levels in colonized cells. In this study, by acquiring rice OsGH3.2pro:β-glucuronidase (GUS) transgenic plants and generating Osgh3.2 mutants via CRISPR/Cas9 technique, the roles of OsGH3.2 in modulating rice root morphology and affecting AM symbiosis were investigated through time course experiments. Unlike SlGH3.4, OsGH3.2 showed asymbiotic expression in rice young lateral roots, and its mutation resulted in a "shallow" root architecture. Such root morphological change was also observed under symbiotic condition and it likely promoted AM fungal colonization, as the mutants exhibited higher colonization levels and arbuscule incidence than wild-type at early stages. Similar to SlGH3.4, OsGH3.2 showed symbiotic expression in cortical cells that have formed mature arbuscules. At late stages of symbiosis, Osgh3.2 mutants showed elongated cortical cells and larger arbuscules than wild-type, indicating elevated auxin level in the colonized cells. Together, these results revealed both asymbiotic and symbiotic roles of OsGH3.2 in modulating rice root architecture and controlling auxin levels in arbusculated cells, which further affected colonization rate and arbuscule phenotype.
Collapse
|
23
|
Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation-a review. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:404-416. [PMID: 34854195 DOI: 10.1111/plb.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The GRAS (derived from GAI, RGA and SCR) gene family consists of plant-specific genes, works as a transcriptional regulator and plays a key part in the regulation of plant growth and development. The past decade has witnessed significant progress in understanding and advances on GRAS transcription factors in various plants. A notable concern is to what extent the mechanisms found in plants, particularly crops, are shared by other species, and what other characteristics are dependent on GRAS transcription factor (TFS)-mediated gene expression. GRAS are involved in many processes that are intimately linked to plant growth regulation. However, GRAS also perform additional roles against environmental stresses, allowing plants to function more efficiently. GRAS increase plant growth and development by improving several physiological processes, such as phytohormone, biosynthetic and signalling pathways. Furthermore, the GRAS gene family plays an important role in response to abiotic stresses, e.g. photooxidative stress. Moreover, evidence shows the involvement of GRAS in arbuscule development during plant-mycorrhiza associations. In this review, the diverse roles of GRAS in plant systems are highlighted that could be useful in enhancing crop productivity through genetic modification, especially of crops. This is the first review to report the role and function of the GRAS gene family in plant systems. Furthermore, a large number of studies are reviewed, and several limitations and research gaps identified that must be addressed in future studies.
Collapse
Affiliation(s)
- Y Khan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Xiong
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - H Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - S Liu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - T Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - T Hui
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
24
|
Ho-Plágaro T, García-Garrido JM. Multifarious and Interactive Roles of GRAS Transcription Factors During Arbuscular Mycorrhiza Development. FRONTIERS IN PLANT SCIENCE 2022; 13:836213. [PMID: 35419017 PMCID: PMC8996055 DOI: 10.3389/fpls.2022.836213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhiza (AM) is a mutualistic symbiotic interaction between plant roots and AM fungi (AMF). This interaction is highly beneficial for plant growth, development and fitness, which has made AM symbiosis the focus of basic and applied research aimed at increasing plant productivity through sustainable agricultural practices. The creation of AM requires host root cells to undergo significant structural and functional modifications. Numerous studies of mycorrhizal plants have shown that extensive transcriptional changes are induced in the host during all stages of colonization. Advances have recently been made in identifying several plant transcription factors (TFs) that play a pivotal role in the transcriptional regulation of AM development, particularly those belonging to the GRAS TF family. There is now sufficient experimental evidence to suggest that GRAS TFs are capable to establish intra and interspecific interactions, forming a transcriptional regulatory complex that controls essential processes in the AM symbiosis. In this minireview, we discuss the integrative role of GRAS TFs in the regulation of the complex genetic re-programming determining AM symbiotic interactions. Particularly, research being done shows the relevance of GRAS TFs in the morphological and developmental changes required for the formation and turnover of arbuscules, the fungal structures where the bidirectional nutrient translocation occurs.
Collapse
|
25
|
Tamayo E, Figueira-Galán D, Manck-Götzenberger J, Requena N. Overexpression of the Potato Monosaccharide Transporter StSWEET7a Promotes Root Colonization by Symbiotic and Pathogenic Fungi by Increasing Root Sink Strength. FRONTIERS IN PLANT SCIENCE 2022; 13:837231. [PMID: 35401641 PMCID: PMC8987980 DOI: 10.3389/fpls.2022.837231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root colonization by filamentous fungi modifies sugar partitioning in plants by increasing the sink strength. As a result, a transcriptional reprogramming of sugar transporters takes place. Here we have further advanced in the characterization of the potato SWEET sugar transporters and their regulation in response to the colonization by symbiotic and pathogenic fungi. We previously showed that root colonization by the AM fungus Rhizophagus irregularis induces a major transcriptional reprogramming of the 35 potato SWEETs, with 12 genes induced and 10 repressed. In contrast, here we show that during the early colonization phase, the necrotrophic fungus Fusarium solani only induces one SWEET transporter, StSWEET7a, while represses most of the others (25). StSWEET7a was also induced during root colonization by the hemi-biotrophic fungus Fusarium oxysporum f. sp. tuberosi. StSWEET7a which belongs to the clade II of SWEET transporters localized to the plasma membrane and transports glucose, fructose and mannose. Overexpression of StSWEET7a in potato roots increased the strength of this sink as evidenced by an increase in the expression of the cell wall-bound invertase. Concomitantly, plants expressing StSWEET7a were faster colonized by R. irregularis and by F. oxysporum f. sp. tuberosi. The increase in sink strength induced by ectopic expression of StSWEET7a in roots could be abolished by shoot excision which reverted also the increased colonization levels by the symbiotic fungus. Altogether, these results suggest that AM fungi and Fusarium spp. might induce StSWEET7a to increase the sink strength and thus this gene might represent a common susceptibility target for root colonizing fungi.
Collapse
|
26
|
Xu Y, Liu F, Wu F, Zhao M, Zou R, Wu J, Li X. A novel SCARECROW-LIKE3 transcription factor LjGRAS36 in Lotus japonicus regulates the development of arbuscular mycorrhizal symbiosis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:573-583. [PMID: 35465207 PMCID: PMC8986927 DOI: 10.1007/s12298-022-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED The symbiosis with arbuscular mycorrhizal (AM) fungi improves plants' nutrient uptake. During this process, transcription factors have been highlighted to play crucial roles. Members of the GRAS transcription factor gene family have been reported involved in AM symbiosis, but little is known about SCARECROW-LIKE3 (SCL3) genes belonging to this family in Lotus japonicus. In this study, 67 LjGRAS genes were identified from the L. japonicus genome, seven of which were clustered in the SCL3 group. Three of the seven LjGRAS genes expression levels were upregulated by AM fungal inoculation, and our biochemical results showed that the expression of LjGRAS36 was specifically induced by AM colonization. Functional loss of LjGRAS36 in mutant ljgras36 plants exhibited a significantly reduced mycorrhizal colonization rate and arbuscular size. Transcriptome analysis showed a deficiency of LjGRAS36 led to the dysregulation of the gibberellic acid signal pathway associated with AM symbiosis. Together, this study provides important insights for understanding the important potential function of SCL3 genes in regulating AM symbiotic development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01161-z.
Collapse
Affiliation(s)
- Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, 650500 Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, 650500 Kunming, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
- School of Agriculture, Yunnan University, 650500 Kunming, China
| | - Fulang Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Manli Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Ruifan Zou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, 650500 Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, 650500 Kunming, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China
| |
Collapse
|
27
|
Syrova DS, Shaposhnikov AI, Yuzikhin OS, Belimov AA. Destruction and Transformation of Phytohormones By Microorganisms. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Seemann C, Heck C, Voß S, Schmoll J, Enderle E, Schwarz D, Requena N. Root cortex development is fine-tuned by the interplay of MIGs, SCL3 and DELLAs during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2022; 233:948-965. [PMID: 34693526 DOI: 10.1111/nph.17823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Root development is a crucial process that determines the ability of plants to acquire nutrients, adapt to the substrate and withstand changing environmental conditions. Root plasticity is controlled by a plethora of transcriptional regulators that allow, in contrast to tissue development in animals, post-embryonic changes that give rise to new tissue and specialized cells. One of these changes is the accommodation in the cortex of hyperbranched hyphae of symbiotic arbuscular mycorrhizal (AM) fungi, called arbuscules. Arbuscule-containing cells undergo massive reprogramming to coordinate developmental changes with transport processes. Here we describe a novel negative regulator of arbuscule development, MIG3. MIG3 induces and interacts with SCL3, both of which modulate the activity of the central regulator DELLA, restraining cortical cell growth. As in a tug-of-war, MIG3-SCL3 antagonizes the function of the complex MIG1-DELLA, which promotes the cell expansion required for arbuscule development, adjusting cell size during the dynamic processes of the arbuscule life cycle. Our results in the legume plant Medicago truncatula advance the knowledge of root development in dicot plants, showing the existence of additional regulatory elements not present in Arabidopsis that fine-tune the activity of conserved central modules.
Collapse
Affiliation(s)
- Christine Seemann
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Carolin Heck
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stefanie Voß
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Jana Schmoll
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Eileen Enderle
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Diana Schwarz
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| |
Collapse
|
29
|
Shi J, Zhao B, Zheng S, Zhang X, Wang X, Dong W, Xie Q, Wang G, Xiao Y, Chen F, Yu N, Wang E. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 2021; 184:5527-5540.e18. [PMID: 34644527 DOI: 10.1016/j.cell.2021.09.030] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022]
Abstract
To secure phosphorus (P) from soil, most land plants use a direct phosphate uptake pathway via root hairs and epidermis and an indirect phosphate uptake pathway via mycorrhizal symbiosis. The interaction between these two pathways is unclear. Here, we mapped a network between transcription factors and mycorrhizal symbiosis-related genes using Y1H. Intriguingly, this gene regulatory network is governed by the conserved P-sensing pathway, centered on phosphate starvation response (PHR) transcription factors. PHRs are required for mycorrhizal symbiosis and regulate symbiosis-related genes via the P1BS motif. SPX-domain proteins suppress OsPHR2-mediated induction of symbiosis-related genes and inhibit mycorrhizal infection. In contrast, plants overexpressing OsPHR2 show improved mycorrhizal infection and are partially resistant to P-mediated inhibition of symbiosis. Functional analyses of network nodes revealed co-regulation of hormonal signaling and mycorrhizal symbiosis. This network deciphers extensive regulation of mycorrhizal symbiosis by endogenous and exogenous signals and highlights co-option of the P-sensing pathway for mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Jincai Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Boyu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shuang Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yunping Xiao
- Shanghai OE Biotech Co., Ltd., Shanghai 201114, China
| | - Fan Chen
- Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
30
|
Russo G, Genre A. Divide and Be Conquered-Cell Cycle Reactivation in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:753265. [PMID: 34759945 PMCID: PMC8573090 DOI: 10.3389/fpls.2021.753265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/01/2021] [Indexed: 05/31/2023]
Affiliation(s)
- Giulia Russo
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Turin, Italy
| | - Andrea Genre
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Yang D, Liu X, Yin X, Dong T, Yu M, Wu Y. Rice Non-Specific Phospholipase C6 Is Involved in Mesocotyl Elongation. PLANT & CELL PHYSIOLOGY 2021; 62:985-1000. [PMID: 34021760 DOI: 10.1093/pcp/pcab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Mesocotyl elongation of rice is crucial for seedlings pushing out of deep soil. The underlying mechanisms of phospholipid signaling in mesocotyl growth of rice are elusive. Here we report that the rice non-specific phospholipase C6 (OsNPC6) is involved in mesocotyl elongation. Our results indicated that all five OsNPCs (OsNPC1, OsNPC2, OsNPC3, OsNPC4 and OsNPC6) hydrolyzed the substrate phosphatidylcholine to phosphocholine (PCho), and all of them showed plasma membrane localization. Overexpression (OE) of OsNPC6 produced plants with shorter mesocotyls compared to those of Nipponbare and npc6 mutants. Although the mesocotyl growth of npc6 mutants was not much affected without gibberellic acid (GA)3, it was obviously elongated by treatment with GA. Upon GA3 treatment, SLENDER RICE1 (SLR1), the DELLA protein of GA signaling, was drastically increased in OE plants; by contrast, the level of SLR1 was found decreased in npc6 mutants. The GA-enhanced mesocotyl elongation and the GA-impaired SLR1 level in npc6 mutants were attenuated by the supplementation of PCho. Further analysis indicated that the GA-induced expression of phospho-base N-methyltransferase 1 in npc6 mutants was significantly weakened by the addition of PCho. In summary, our results suggest that OsNPC6 is involved in mesocotyl development via modulation of PCho in rice.
Collapse
Affiliation(s)
- Di Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoming Yin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tian Dong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Min Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Laskar P, Bhattacharya S, Chaudhuri A, Kundu A. Exploring the GRAS gene family in common bean (Phaseolus vulgaris L.): characterization, evolutionary relationships, and expression analyses in response to abiotic stresses. PLANTA 2021; 254:84. [PMID: 34561734 DOI: 10.1007/s00425-021-03725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide identification reveals 55 PvuGRAS genes belonging to 16 subfamilies and their gene structures and evolutionary relationships were characterized. Expression analyses highlight their prominence in plant growth, development and abiotic stress responses. GRAS proteins comprise a plant-specific transcription factor family involved in multiple growth regulatory pathways and environmental cues including abiotic/biotic stresses. Despite its crucial importance, characterization of this gene family is still elusive in common bean. A systematic genome-wide scan identified 55 PvuGRAS genes unevenly anchored to the 11 common bean chromosomes. Segmental duplication appeared to be the key driving force behind expansion of this gene family that underwent purifying selection during evolution. Computational investigation unraveled their intronless organization and identified similar motif composition within the same subfamily. Phylogenetic analyses clustered the PvuGRAS proteins into 16 phylogenetic clades and established extensive orthologous relationships with Arabidopsis and rice. Analysis of the upstream promoter region uncovered cis-elements responsive to growth, development, and abiotic stresses that may account for their differential expression. The identified SSRs could serve as putative molecular markers facilitating future breeding programs. 37 PvuGRAS transcripts were post-transcriptionally regulated by different miRNA families, miR171 being the major player preferentially targeting members of the HAM subfamily. Global expression profile based on RNA-seq data indicates a clade specific expression pattern in various tissues and developmental stages. Additionally, nine PvuGRAS genes were chosen for further qPCR analyses under drought, salt, and cold stress suggesting their involvement in acclimation to environmental stimuli. Combined, the present results significantly contribute to the current understanding of the complexity and biological function of the PvuGRAS gene family. The resources generated will provide a solid foundation in future endeavors for genetic improvement in common bean.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Atreyee Chaudhuri
- Aquatic Bioresource Research Laboratory, Department of Zoology , University of Calcutta, Kolkata, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
33
|
Zhu X, Wang B, Wei X. Genome wide identification and expression pattern analysis of the GRAS family in quinoa. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:948-962. [PMID: 34092279 DOI: 10.1071/fp21017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
GRAS, a key transcription factor in plant growth and development, has not yet been reported in quinoa. Therefore, this study used the latest quinoa genomic data to identify and analyse GRAS genes in quinoa: 52 GRAS genes were identified in quinoa, these being unevenly distributed on 19 chromosomes. Fragment duplication and tandem duplication events were the main reasons for the expansion of the GRAS gene family in quinoa. Protein sequence analysis showed that there were some differences in amino acid numbers and isoelectric points amongst different subfamilies, and the main secondary structures were α-helix and random coil. The CqGRAS gene was divided into 14 subfamilies based on results from phylogenetic analysis. The genes located in the same subfamily had similar gene structures, conserved motifs, and three-level models. Promoter region analysis showed that the GRAS family genes contained multiple homeostasis elements that responded to hormones and adversity. GO enrichment indicated that CqGRAS genes were involved in biological processes, cell components, and molecular functions. By analysing the expression of CqGRAS genes in different tissues and different treatments, it was found that GRAS genes had obvious differential expression in different tissues and stress, which indicates that GRAS genes had tissue or organ expression specificity and thus might play an important role in response to stress. These results laid a foundation for further functional research on the GRAS gene family in quinoa.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; and Corresponding author.
| |
Collapse
|
34
|
Moore WM, Chan C, Ishikawa T, Rennie EA, Wipf HML, Benites V, Kawai-Yamada M, Mortimer JC, Scheller HV. Reprogramming sphingolipid glycosylation is required for endosymbiont persistence in Medicago truncatula. Curr Biol 2021; 31:2374-2385.e4. [PMID: 33857428 DOI: 10.1016/j.cub.2021.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2020] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Plant endosymbiosis relies on the development of specialized membranes that encapsulate the endosymbiont and facilitate nutrient exchange. However, the identity and function of lipids within these membrane interfaces is largely unknown. Here, we identify GLUCOSAMINE INOSITOL PHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) as a sphingolipid glycosyltransferase highly expressed in Medicago truncatula root nodules and roots colonized by arbuscular mycorrhizal (AM) fungi and further demonstrate that this enzyme functions in the synthesis of N-acetyl-glucosamine-decorated glycosyl inositol phosphoryl ceramides (GIPCs) in planta. MtGINT1 expression was developmentally regulated in symbiotic tissues associated with the development of symbiosome and periarbuscular membranes. RNAi silencing of MtGINT1 did not affect overall root growth but strongly impaired nodulation and AM symbiosis, resulting in the senescence of symbiosomes and arbuscules. Our results indicate that, although M. truncatula root sphingolipidome predominantly consists of hexose-decorated GIPCs, local reprogramming of GIPC glycosylation by MtGINT1 is required for the persistence of endosymbionts within the plant cell.
Collapse
Affiliation(s)
- William M Moore
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Candace Chan
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama 388-8570, Japan
| | - Emilie A Rennie
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Heidi M-L Wipf
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Veronica Benites
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama 388-8570, Japan
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Liu JJ, Sniezko RA, Sissons R, Krakowski J, Alger G, Schoettle AW, Williams H, Zamany A, Zitomer RA, Kegley A. Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:557672. [PMID: 33042181 PMCID: PMC7522202 DOI: 10.3389/fpls.2020.557672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | | | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Rachel A. Zitomer
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
36
|
Tominaga T, Miura C, Takeda N, Kanno Y, Takemura Y, Seo M, Yamato M, Kaminaka H. Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular Mycorrhizal Symbiosis in Eustoma grandiflorum. PLANT & CELL PHYSIOLOGY 2020; 61:565-575. [PMID: 31790118 DOI: 10.1093/pcp/pcz222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizas (AMs) are divided into two types according to morphology: Arum- and Paris-type AMs. Gibberellins (GAs) mainly inhibit the establishment of Arum-type AM symbiosis in most model plants, whereas the effects of GAs on Paris-type AM symbiosis are unclear. To provide insight into the mechanism underlying this type of symbiosis, the roles of GAs were investigated in Eustoma grandiflorum when used as the host plant for Paris-type AM establishment. Eustoma grandiflorum seedlings were inoculated with the model AM fungus, Rhizophagus irregularis, and the effects of GA and the GA biosynthesis inhibitor uniconazole-P on the symbiosis were quantitatively evaluated. Exogenous GA significantly increased hyphopodium formation at the epidermis, thus leading to the promotion of fungal colonization and arbuscule formation in the root cortex. By contrast, the suppression of GA biosynthesis and signaling attenuated fungal entry to E. grandiflorum roots. Moreover, the exudates from GA-treated roots strongly induced the hyphal branching of R. irregularis. Our results show that GA has an contrasting effect on Paris-type AM symbiosis in E. grandiflorum compared with Arum-type AM symbiosis. This finding could be explained by the differential regulation of the early colonization stage, where fungal hyphae make contact with and penetrate the epidermis.
Collapse
Affiliation(s)
- Takaya Tominaga
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, 680-8553 Japan
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, 680-8553 Japan
| | - Naoya Takeda
- School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337 Japan
| | - Yuri Kanno
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045 Japan
| | | | - Mitsunori Seo
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045 Japan
| | - Masahide Yamato
- Faculty of Education, Chiba University, Chiba, 263-8522 Japan
| | | |
Collapse
|
37
|
Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. THE NEW PHYTOLOGIST 2020; 225:1852-1872. [PMID: 31774564 DOI: 10.1111/nph.16340] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.
Collapse
Affiliation(s)
- Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA
| | - Andrea Pitzschke
- Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| |
Collapse
|
38
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
39
|
Wang N, Wang K, Li S, Jiang Y, Li L, Zhao M, Jiang Y, Zhu L, Wang Y, Su Y, Wang Y, Zhang M. Transcriptome-Wide Identification, Evolutionary Analysis, and GA Stress Response of the GRAS Gene Family in Panax ginseng C. A. Meyer. PLANTS 2020; 9:plants9020190. [PMID: 32033157 PMCID: PMC7076401 DOI: 10.3390/plants9020190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/22/2022]
Abstract
GRAS transcription factors are a kind of plant-specific transcription factor that have been found in a variety of plants. According to previous studies, GRAS proteins are widely involved in the physiological processes of plant signal transduction, stress, growth and development. The Jilin ginseng (Panax ginseng C.A. Meyer) is a heterogeneous tetraploid perennial herb of the Araliaceae family, ginseng genus. Important information regarding the GRAS transcription factors has not been reported in ginseng. In this study, 59 Panax ginseng GRAS (PgGRAS) genes were obtained from the Jilin ginseng transcriptome data and divided into 13 sub-families according to the classification of Arabidopsis thaliana. Through systematic evolution, structural variation, function and gene expression analysis, we further reveal GRAS’s potential function in plant growth processes and its stress response. The expression of PgGRAS genes responding to gibberellin acids (GAs) suggests that these genes could be activated after application concentration of GA. The qPCR analysis result shows that four PgGRAS genes belonging to the DELLA sub-family potentially have important roles in the GA stress response of ginseng hairy roots. This study provides not only a preliminary exploration of the potential functions of the GRAS genes in ginseng, but also valuable data for further exploration of the candidate PgGRAS genes of GA signaling in Jilin ginseng, especially their roles in ginseng hairy root development and GA stress response.
Collapse
Affiliation(s)
- Nan Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Shaokun Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Yanfang Wang
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yingjie Su
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
- Correspondence: (Y.W.); (M.Z.)
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
- Correspondence: (Y.W.); (M.Z.)
| |
Collapse
|
40
|
Chen B, Zhang G, Li P, Yang J, Guo L, Benning C, Wang X, Zhao J. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:155-171. [PMID: 31161718 PMCID: PMC6920143 DOI: 10.1111/pbi.13183] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 05/09/2023]
Abstract
It has been reported that lipid biosynthesis in plant host root cells plays critical roles in legume-fungal or -rhizobial symbioses, but little is known about its regulatory mechanism in legume-rhizobia interaction. Soybean WRINKLED1 (WRI1) a and b, with their alternative splicing (AS) products a' and b', are highly expressed in developing seeds and nodules, but their functions in soybean nodulation are not known. GmWRI1a and b differently promoted triacylglycerol (TAG) accumulation in both Arabidopsis wild-type and wri1 mutant seeds and when they ectopically expressed in the soybean hairy roots. Transcriptome analysis revealed that 15 genes containing AW boxes in their promoters were targeted by GmWRI1s, including genes involved in glycolysis, fatty acid (FA) and TAG biosynthesis. GmWRI1a, GmWRI1b and b' differentially transactivated most targeted genes. Overexpression of GmWRI1s affected phospholipid and galactolipid synthesis, soluble sugar and starch contents and led to increased nodule numbers, whereas GmWRI1 knockdown hairy roots interfered root glycolysis and lipid biosynthesis and resulted in fewer nodules. These phenomena in GmWRI1 mutants coincided with the altered expression of nodulation genes. Thus, GmWRI1-regulated starch degradation, glycolysis and lipid biosynthesis were critical for nodulation. GmWRI1 mutants also altered auxin and other hormone-related biosynthesis and hormone-related genes, by which GmWRI1s may affect nodule development. The study expands the views for pleiotropic effects of WRI1s in regulating soybean seed filling and root nodulation.
Collapse
Affiliation(s)
- Beibei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Jihong Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Christoph Benning
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Xuemin Wang
- Department of BiologyUniversity of MissouriSt. LouisMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
41
|
Li W, Bai Z, Pei T, Yang D, Mao R, Zhang B, Liu C, Liang Z. SmGRAS1 and SmGRAS2 Regulate the Biosynthesis of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2019; 10:1367. [PMID: 31737003 PMCID: PMC6831727 DOI: 10.3389/fpls.2019.01367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/04/2019] [Indexed: 05/24/2023]
Abstract
Salvia miltiorrhiza is one of the most widely used traditional Chinese medicinal plants because of its excellent performance in treating heart diseases. Tanshinones and phenolic acids are two important classes of effective metabolites, and their biosynthesis has attracted widespread interest. Here, we functionally characterized SmGRAS1 and SmGRAS2, two GRAS family transcription factors from S. miltiorrhiza. SmGRAS1/2 were highly expressed in the root periderm, where tanshinones mainly accumulated in S. miltiorrhiza. Overexpression of SmGRAS1/2 upregulated tanshinones accumulation and downregulated GA, phenolic acids contents, and root biomass. However, antisense expression of SmGRAS1/2 reduced the tanshinones accumulation and increased the GA, phenolic acids contents, and root biomass. The expression patterns of biosynthesis genes were consistent with the changes in compounds accumulation. GA treatment increased tanshinones, phenolic acids, and GA contents in the overexpression lines, and restored the root growth inhibited by overexpressing SmGRAS1/2. Subsequently, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays (EMSA) showed SmGRAS1 promoted tanshinones biosynthesis by directly binding to the GARE motif in the SmKSL1 promoter and activating its expression. Yeast two-hybrid assays showed SmGRAS1 interacted physically with SmGRAS2. Taken together, the results revealed that SmGRAS1/2 acted as repressors in root growth and phenolic acids biosynthesis but as positive regulators in tanshinones biosynthesis. Overall, our findings revealed the potential value of SmGRAS1/2 in genetically engineering changes in secondary metabolism.
Collapse
Affiliation(s)
- Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenqing Bai
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tianlin Pei
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Renjun Mao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bingxue Zhang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chuangfeng Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
42
|
Guo P, Wen J, Yang J, Ke Y, Wang M, Liu M, Ran F, Wu Y, Li P, Li J, Du H. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response. PLANTA 2019; 250:1051-1072. [PMID: 31161396 DOI: 10.1007/s00425-019-03199-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Genome-wide identification, classification, expression analyses, and functional characterization of GRAS genes in oil crop, Brassica napus, indicate their importance in root development and stress response. GRAS proteins are a plant-specific transcription factor gene family involved in tissues development and stress response. We classified 87 putative GRAS genes in the Brassica napus genome (BnGRASs) into 13 subfamilies by phylogenetic analysis. The C-terminal GRAS domains of Brassica napus (B. napus) proteins were less conserved among subfamilies, but were conserved within each subfamily. A series of analyses revealed that 89.7% of the BnGRASs did not have intron insertions, and 24 specific-motifs were found at the N-terminal. A highly conserved microRNA 171 (miRNA171) target was observed specifically in the HAM subfamily across land plants. A total of 868 pairs of interaction proteins were predicted, the primary of which were transcription factors involved in transcriptional regulation and signal transduction. Integrated comparative analysis of GRAS genes across 26 species of algae, mosses, ferns, gymnosperms, and angiosperms revealed that this gene family originated in early mosses and was classified into 19 subfamilies, 14 of which may have originated prior to bryophyte evolution. RNA-Seq analysis demonstrated that most BnGRASs were widely expressed in different tissues/organs at different stages in B. napus, and 24 BnGRASs were highly/specifically expressed in roots. Results from a qRT-PCR analysis suggested that two BnGRASs belonging to SCR and LISCL subfamilies potentially have important roles in the stress response of roots.
Collapse
Affiliation(s)
- Pengcheng Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunzhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mangmang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunwen Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Pengfeng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
43
|
Genome-Wide Characterization and Expression Profiling of Squamosa Promoter Binding Protein-like (SBP) Transcription Factors in Wheat (Triticum aestivum L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) play fundamental roles in the developmental processes of all living organisms. Squamosa Promoter Binding Protein-like (SBP/SBP-Box) is a major family of plant-specific TFs, which plays important roles in multiple processes involving plant growth and development. While some work has been done, there is a lot more that is yet to be discovered in the hexaploid wheat SBP (TaSBP) family. With the completion of whole genome sequencing, genome-wide analysis of SBPs in common hexaploid wheat is now possible. In this study, we used protein–protein Basic Local Alignment Search Tool (BLASTp) to hunt the newly released reference genome sequence of hexaploid wheat (Chinese spring). Seventy-four TaSBP proteins (belonging to 56 genes) were identified and clustered into five groups. Gene structure and motif analysis indicated that most TaSBPs have relatively conserved exon–intron arrangements and motif composition. Analysis of transcriptional data showed that many TaSBP genes responded to some biological and abiotic stresses with different expression patterns. Moreover, three TaSBP genes were generally expressed in the majority of tissues throughout the wheat growth and also responded to many environmental biotic and abiotic stresses. Collectively, the detailed analyses presented here will help in understanding the roles of the TaSBP and also provide a reference for the further study of its biological function in wheat.
Collapse
|
44
|
Jimenez-Jimenez S, Santana O, Lara-Rojas F, Arthikala MK, Armada E, Hashimoto K, Kuchitsu K, Salgado S, Aguirre J, Quinto C, Cárdenas L. Differential tetraspanin genes expression and subcellular localization during mutualistic interactions in Phaseolus vulgaris. PLoS One 2019; 14:e0219765. [PMID: 31437164 PMCID: PMC6705802 DOI: 10.1371/journal.pone.0219765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal fungi and rhizobia association with plants are two of the most successful plant-microbe associations that allow the assimilation of P and N by plants, respectively. These mutualistic interactions require a molecular dialogue, i.e., legume roots exude flavonoids or strigolactones which induce the Nod factors or Myc factors synthesis and secretion from the rhizobia or fungi, respectively. These Nod or Myc factors trigger several responses in the plant root, including calcium oscillations, and reactive oxygen species (ROS). Furthermore, superoxide and H2O2 have emerged as key components that regulate the transitions from proliferation to differentiation in the plant meristems. Similar to the root meristem, the nodule meristem accumulates superoxide and H2O2. Tetraspanins are transmembrane proteins that organize into tetraspanin web regions, where they recruit specific proteins into platforms required for signal transduction, membrane fusion, cell trafficking and ROS generation. Plant tetraspanins are scaffolding proteins associated with root radial patterning, biotic and abiotic stress responses, cell fate determination, and hormonal regulation and recently have been reported as a specific marker of exosomes in animal and plant cells and key players at the site of plant fungal infection. In this study, we conducted transcriptional profiling of the tetraspanin family in common bean (Phaseolus vulgaris L. var. Negro Jamapa) to determine the specific expression patterns and subcellular localization of tetraspanins during nodulation or under mycorrhizal association. Our results demonstrate that the tetraspanins are transcriptionally modulated during the mycorrhizal association, but are also expressed in the infection thread and nodule meristem development. Subcellular localization indicates that tetraspanins have a key role in vesicular trafficking, cell division, and root hair polar growth.
Collapse
Affiliation(s)
- Saul Jimenez-Jimenez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Olivia Santana
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Fernando Lara-Rojas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, León, Guanajuato, México
| | - Elisabeth Armada
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Sandra Salgado
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
45
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
46
|
Hartmann RM, Schaepe S, Nübel D, Petersen AC, Bertolini M, Vasilev J, Küster H, Hohnjec N. Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Sci Rep 2019; 9:3360. [PMID: 30833646 PMCID: PMC6399340 DOI: 10.1038/s41598-019-40214-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
To improve access to limiting nutrients, the vast majority of land plants forms arbuscular mycorrhizal (AM) symbioses with Glomeromycota fungi. We show here that AM-related GRAS transcription factors from different subgroups are upregulated during a time course of mycorrhization. Based on expression studies in mutants defective in arbuscule branching (ram1-1, with a deleted MtRam1 GRAS transcription factor gene) or in the formation of functional arbuscules (pt4-2, mutated in the phosphate transporter gene MtPt4), we demonstrate that the five AM-related GRAS transcription factor genes MtGras1, MtGras4, MtGras6, MtGras7, and MtRad1 can be differentiated by their dependency on MtRAM1 and MtPT4, indicating that the network of AM-related GRAS transcription factors consists of at least two regulatory modules. One module involves the MtRAM1- and MtPT4-independent transcription factor MtGRAS4 that activates MtGras7. Another module is controlled by the MtRAM1- and MtPT4-dependent transcription factor MtGRAS1. Genome-wide expression profiles of mycorrhized MtGras1 knockdown and ram1-1 roots differ substantially, indicating different targets. Although an MtGras1 knockdown reduces transcription of AM-related GRAS transcription factor genes including MtRam1 and MtGras7, MtGras1 overexpression alone is not sufficient to activate MtGras genes. MtGras1 knockdown roots display normal fungal colonization, with a trend towards the formation of smaller arbuscules.
Collapse
Affiliation(s)
- Rico M Hartmann
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Sieke Schaepe
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Daniel Nübel
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Arne C Petersen
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Martina Bertolini
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.,Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Jana Vasilev
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Helge Küster
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| | - Natalija Hohnjec
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| |
Collapse
|
47
|
Fonouni-Farde C, Miassod A, Laffont C, Morin H, Bendahmane A, Diet A, Frugier F. Gibberellins negatively regulate the development of Medicago truncatula root system. Sci Rep 2019; 9:2335. [PMID: 30787350 PMCID: PMC6382856 DOI: 10.1038/s41598-019-38876-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
The root system displays a remarkable plasticity that enables plants to adapt to changing environmental conditions. This plasticity is tightly linked to the activity of root apical meristems (RAMs) and to the formation of lateral roots, both controlled by related hormonal crosstalks. In Arabidopsis thaliana, gibberellins (GAs) were shown to positively control RAM growth and the formation of lateral roots. However, we showed in Medicago truncatula that GAs negatively regulate root growth and RAM size as well as the number of lateral roots depending at least on the MtDELLA1 protein. By using confocal microscopy and molecular analyses, we showed that GAs primarily regulate RAM size by affecting cortical cell expansion and additionally negatively regulate a subset of cytokinin-induced root expansin encoding genes. Moreover, GAs reduce the number of cortical cell layers, resulting in the formation of both shorter and thinner roots. These results suggest contrasting effects of GA regulations on the root system architecture depending on plant species.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Ambre Miassod
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
48
|
Ho-Plágaro T, Molinero-Rosales N, Fariña Flores D, Villena Díaz M, García-Garrido JM. Identification and Expression Analysis of GRAS Transcription Factor Genes Involved in the Control of Arbuscular Mycorrhizal Development in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:268. [PMID: 30930915 PMCID: PMC6429219 DOI: 10.3389/fpls.2019.00268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/19/2019] [Indexed: 05/15/2023]
Abstract
The formation and functioning of arbuscular mycorrhizal (AM) symbiosis are complex and tightly regulated processes. Transcriptional regulation mechanisms have been reported to mediate gene expression changes closely associated with arbuscule formation, where nutrients move between the plant and fungus. Numerous genes encoding transcription factors (TFs), with those belonging to the GRAS family being of particular importance, are induced upon mycorrhization. In this study, a screening for candidate transcription factor genes differentially regulated in AM tomato roots showed that more than 30% of known GRAS tomato genes are upregulated upon mycorrhization. Some AM-upregulated GRAS genes were identified as encoding for transcription factors which are putative orthologs of previously identified regulators of mycorrhization in other plant species. The symbiotic role played by other newly identified AM-upregulated GRAS genes remains unknown. Preliminary results on the involvement of tomato SlGRAS18, SlGRAS38, and SlGRAS43 from the SCL3, SCL32, and SCR clades, respectively, in mycorrhization are presented. All three showed high transcript levels in the late stages of mycorrhization, and the analysis of promoter activity demonstrated that SlGRAS18 and SlGRAS43 are significantly induced in cells containing arbuscules. When SlGRAS18 and SlGRAS38 genes were silenced using RNA interference in hairy root composite tomato plants, a delay in mycorrhizal infection was observed, while an increase in mycorrhizal colonization was observed in SlGRAS43 RNAi roots. The possible mode of action of these TFs during mycorrhization is discussed, with a particular emphasis on the potential involvement of the SHR/SCR/SCL3 module of GRAS TFs in the regulation of gibberellin signaling during mycorrhization, which is analogous to other plant developmental processes.
Collapse
|
49
|
Limpens E, Geurts R. Transcriptional Regulation of Nutrient Exchange in Arbuscular Mycorrhizal Symbiosis. MOLECULAR PLANT 2018; 11:1421-1423. [PMID: 30447333 DOI: 10.1016/j.molp.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen 6708PB, The Netherlands.
| | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen 6708PB, The Netherlands.
| |
Collapse
|
50
|
Mohammadi-Dehcheshmeh M, Niazi A, Ebrahimi M, Tahsili M, Nurollah Z, Ebrahimi Khaksefid R, Ebrahimi M, Ebrahimie E. Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1550. [PMID: 30483277 PMCID: PMC6240842 DOI: 10.3389/fpls.2018.01550] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/03/2018] [Indexed: 05/25/2023]
Abstract
Plant root symbiosis with Arbuscular mycorrhizal (AM) fungi improves uptake of water and mineral nutrients, improving plant development under stressful conditions. Unraveling the unified transcriptomic signature of a successful colonization provides a better understanding of symbiosis. We developed a framework for finding the transcriptomic signature of Arbuscular mycorrhiza colonization and its regulating transcription factors in roots of Medicago truncatula. Expression profiles of roots in response to AM species were collected from four separate studies and were combined by direct merging meta-analysis. Batch effect, the major concern in expression meta-analysis, was reduced by three normalization steps: Robust Multi-array Average algorithm, Z-standardization, and quartiling normalization. Then, expression profile of 33685 genes in 18 root samples of Medicago as numerical features, as well as study ID and Arbuscular mycorrhiza type as categorical features, were mined by seven models: RELIEF, UNCERTAINTY, GINI INDEX, Chi Squared, RULE, INFO GAIN, and INFO GAIN RATIO. In total, 73 genes selected by machine learning models were up-regulated in response to AM (Z-value difference > 0.5). Feature weighting models also documented that this signature is independent from study (batch) effect. The AM inoculation signature obtained was able to differentiate efficiently between AM inoculated and non-inoculated samples. The AP2 domain class transcription factor, GRAS family transcription factors, and cyclin-dependent kinase were among the highly expressed meta-genes identified in the signature. We found high correspondence between the AM colonization signature obtained in this study and independent RNA-seq experiments on AM colonization, validating the repeatability of the colonization signature. Promoter analysis of upregulated genes in the transcriptomic signature led to the key regulators of AM colonization, including the essential transcription factors for endosymbiosis establishment and development such as NF-YA factors. The approach developed in this study offers three distinct novel features: (I) it improves direct merging meta-analysis by integrating supervised machine learning models and normalization steps to reduce study-specific batch effects; (II) seven attribute weighting models assessed the suitability of each gene for the transcriptomic signature which contributes to robustness of the signature (III) the approach is justifiable, easy to apply, and useful in practice. Our integrative framework of meta-analysis, promoter analysis, and machine learning provides a foundation to reveal the transcriptomic signature and regulatory circuits governing Arbuscular mycorrhizal symbiosis and is transferable to the other biological settings.
Collapse
Affiliation(s)
- Manijeh Mohammadi-Dehcheshmeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | | | - Zahra Nurollah
- Department of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Reyhaneh Ebrahimi Khaksefid
- Department of Biotechnology, Shahrekord University, Shahrekord, Iran
- School of Agriculture Food and Wine, Department of Plant Science, The University of Adelaide, Adelaide, SA, Australia
| | - Mahdi Ebrahimi
- Max-Planck-Institute for Informatics, Saarbrucken, Germany
| | - Esmaeil Ebrahimie
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, Australia
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
- Faculty of Science and Engineering, School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|