1
|
Liu B, Yang Q, Xin GL, Wang X, Zhang L, He D, Zhang S, Pan Y, Zou SQ, Zhang J, Liao J, Zou XX. A comprehensive proteomic map revealing the regulation of the development of long-duration, red butterfly-shaped fruit in Euscaphis japonica. Int J Biol Macromol 2024:139061. [PMID: 39730056 DOI: 10.1016/j.ijbiomac.2024.139061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Fruit features are crucial for plant propagation, population growth, biodiversity preservation, and evolutionary survival. However, the synergistic regulatory mechanisms underlying the development of fruit traits such as color, shape and duration are unclear. Euscaphis japonica, whose fruits have a red-winged pericarp and persist for a long period of time, is an important ornamental plant in eastern Asia. In this study, we present a complete proteome spanning multiple time points and the phosphoproteome landscape of E. japonica fruit during the maturation and ripening phases. Quantitative evaluation via two-way proteomics analysis revealed three distinct phases that are consistent with the fruit maturation and ripening stages on a longitudinal time scale. The proteome and phosphoproteome analyses revealed functionally important biological events, including anthocyanin accumulation and phytohormone and light signal transduction. Importantly, our integrated analysis, along with experimental validation and phytohormone treatments, suggests that alterations in EjPHYBS21/S37 and EjPHOT1S394/S429 phosphorylation may lead to auxin accumulation and the inhibition of ethylene biosynthesis, thereby initiating the development of long-duration, red butterfly-shaped E. japonica fruit. Our study reveals a mechanism of E. japonica fruit formation that highlights plant adaptive strategies that potentially evolved through interactions with frugivores.
Collapse
Affiliation(s)
- Bobin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Qixin Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China; College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Gui-Liang Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng 224007, China
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Li Zhang
- College of Agricultural and Biological engineering, Heze Uninversity, Heze, Shandong 274015, China
| | - Dongmei He
- Yancheng Coastal Wetland Ecosystem National Research Station, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Shuning Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuru Pan
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shuang-Quan Zou
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, School of Future Technology and Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiao-Xing Zou
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
2
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
3
|
Song P, Yang Z, Wang H, Wan F, Kang D, Zheng W, Gong Z, Li J. Regulation of cryptochrome-mediated blue light signaling by the ABI4-PIF4 module. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185941 DOI: 10.1111/jipb.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.
Collapse
Affiliation(s)
- Pengyu Song
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zidan Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644000, China
| | - Huaichang Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Wan
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Postdoctoral Station of Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhizhong Gong
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Sun F, Cheng H, Song Z, Yan H, Liu H, Xiao X, Zhang Z, Luo M, Wu F, Lu J, Luo K, Wei H. Phytochrome-interacting factors play shared and distinct roles in regulating shade avoidance responses in Populus trees. PLANT, CELL & ENVIRONMENT 2024; 47:2058-2073. [PMID: 38404129 DOI: 10.1111/pce.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.
Collapse
Affiliation(s)
- Fan Sun
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongli Cheng
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhi Song
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Huiting Yan
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Huajie Liu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyue Xiao
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhichao Zhang
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengting Luo
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Feier Wu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Jun Lu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongbin Wei
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zeng F, Ma Z, Feng Y, Shao M, Li Y, Wang H, Yang S, Mao J, Chen B. Mechanism of the Pulvinus-Driven Leaf Movement: An Overview. Int J Mol Sci 2024; 25:4582. [PMID: 38731801 PMCID: PMC11083266 DOI: 10.3390/ijms25094582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (F.Z.); (Z.M.); (Y.F.); (M.S.); (Y.L.); (H.W.); (S.Y.); (J.M.)
| |
Collapse
|
6
|
Wiśniewska J, Kęsy J, Mucha N, Tyburski J. Auxin resistant 1 gene (AUX1) mediates auxin effect on Arabidopsis thaliana callus growth by regulating its content and distribution pattern. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154168. [PMID: 38176282 DOI: 10.1016/j.jplph.2023.154168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Callus sustained growth relies heavily on auxin, which is supplied to the culture medium. Surprisingly, there is a noticeable absence of information regarding the involvement of carrier-mediated auxin polar transport gene in callus growth regulation. Here, we delve into the role of the AUXIN RESISTANT 1 (AUX1) influx transporter in the regulation of callus growth, comparing the effects under conditions of light versus darkness. It was observed that callus growth was significantly enhanced under light illumination. This growth-stimulatory effect was accompanied by a decrease in the levels of free auxin within the callus cells when compared to conditions of darkness. In the aux1-22 mutant callus, which lacks functional AUX1, there was a substantial reduction in IAA levels. Nonetheless, the mutant callus exhibited markedly higher growth rates compared to the wild type. This suggests that the reduction in exogenous auxin uptake through the AUX1-dependent pathway may prevent the overaccumulation of growth-restricting hormone concentrations. The growth-stimulatory effect of AUX1 deficiency was counteracted by nonspecific auxin influx transport inhibitors. This finding shows that other auxin influx carriers likely play a role in facilitating the diffusion of auxin from the culture medium to sustain high growth rates. AUX1 was primarily localized in the plasma membranes of the two outermost cell layers of the callus clump and the parenchyma cells adjacent to tracheary elements. Significantly, these locations coincided with the regions of maximal auxin concentration. Consequently, it can be inferred that AUX1 mediates the auxin distribution within the callus.
Collapse
Affiliation(s)
- Justyna Wiśniewska
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Jacek Kęsy
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Natalia Mucha
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
7
|
Nawkar GM, Legris M, Goyal A, Schmid-Siegert E, Fleury J, Mucciolo A, De Bellis D, Trevisan M, Schueler A, Fankhauser C. Air channels create a directional light signal to regulate hypocotyl phototropism. Science 2023; 382:935-940. [PMID: 37995216 DOI: 10.1126/science.adh9384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Martina Legris
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anupama Goyal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Emanuel Schmid-Siegert
- SIB, Swiss Institute for Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Fleury
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Damien De Bellis
- Electron Microscopy Facility, EMF, Faculty of Biology and Medicine, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Biophore Building University of Lausanne, 1015 Lausanne, Switzerland
| | - Martine Trevisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Andreas Schueler
- EPFL Renewable Energies Cluster ENAC, 1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Wyka TP. Negative phototropism of the shoots helps temperate liana Hedera helix L. to locate host trees under habitat conditions. TREE PHYSIOLOGY 2023; 43:1874-1885. [PMID: 37334935 DOI: 10.1093/treephys/tpad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Lianas employ a variety of searching mechanisms to find support; however, it is not clear to what extent environmental signals are used to help direct the search. Several adventitious root climbers have been shown to bend away from light and grow toward darker areas or objects, in one case including actual tree trunks. In the literature, this negative phototropism (NP) has also been informally and inconsistently reported from a temperate root climber Hedera helix L. (common ivy). In this study, rigorous laboratory tests have confirmed the occurrence of NP in both seedlings and prostrate shoots of H. helix. Furthermore, a field experiment with potted ivy seedlings placed around tree trunks demonstrated their ability to remotely locate trees. This finding was corroborated by a survey of growth directions in wild-growing prostrate ivy shoots in two woodland habitats. An additional outdoor experiment showed that the ability to locate support is expressed in shade but supressed by full sun conditions. These results show that H. helix uses NP to locate support and indicate that this ability is a component of the species' shade escape strategy.
Collapse
Affiliation(s)
- Tomasz P Wyka
- Faculty of Biology, General Botany Laboratory, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| |
Collapse
|
9
|
Brooks CJ, Atamian HS, Harmer SL. Multiple light signaling pathways control solar tracking in sunflowers. PLoS Biol 2023; 21:e3002344. [PMID: 37906610 PMCID: PMC10617704 DOI: 10.1371/journal.pbio.3002344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways.
Collapse
Affiliation(s)
- Christopher J. Brooks
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Hagop S. Atamian
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
- Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
10
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
11
|
Moulia B, Badel E, Bastien R, Duchemin L, Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. THE NEW PHYTOLOGIST 2022; 233:2354-2379. [PMID: 34890051 DOI: 10.1111/nph.17913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
- INSERM U1284, Center for Research and Interdisciplinarity (CRI), Université de Paris, F-75004, Paris, France
| | - Laurent Duchemin
- Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Christophe Eloy
- Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13013, Marseille, France
| |
Collapse
|
12
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
13
|
Yang XY, Zhang ZW, Fu YF, Feng LY, Li MX, Kang Q, Wang CQ, Yuan M, Chen YE, Tao Q, Lan T, Tang XY, Chen GD, Zeng J, Yuan S. Shade Avoidance 3 Mediates Crosstalk Between Shade and Nitrogen in Arabidopsis Leaf Development. FRONTIERS IN PLANT SCIENCE 2022; 12:800913. [PMID: 35095972 PMCID: PMC8792756 DOI: 10.3389/fpls.2021.800913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
After nitrogen treatments, plant leaves become narrower and thicker, and the chlorophyll content increases. However, the molecular mechanisms behind these regulations remain unknown. Here, we found that the changes in leaf width and thickness were largely compromised in the shade avoidance 3 (sav3) mutant. The SAV3 gene encodes an amino-transferase in the auxin biosynthesis pathway. Thus, the crosstalk between shade and nitrogen in Arabidopsis leaf development was investigated. Both hypocotyl elongation and leaf expansion promoted by the shade treatment were reduced by the high-N treatment; high-N-induced leaf narrowing and thickening were reduced by the shade treatment; and all of these developmental changes were largely compromised in the sav3 mutant. Shade treatment promoted SAV3 expression, while high-N treatment repressed SAV3 expression, which then increased or decreased auxin accumulation in cotyledons/leaves, respectively. SAV3 also regulates chlorophyll accumulation and nitrogen assimilation and thus may function as a master switch responsive to multiple environmental stimuli.
Collapse
Affiliation(s)
- Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ling-Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | | | - Qi Kang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. THE NEW PHYTOLOGIST 2021; 232:510-522. [PMID: 34254313 DOI: 10.1111/nph.17617] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/03/2021] [Indexed: 05/27/2023]
Abstract
Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underlie differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, as well as the crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.
Collapse
Affiliation(s)
- Huibin Han
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
- Research Center for Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Maciek Adamowski
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Linlin Qi
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Saqer S Alotaibi
- Department of Biotechnology, Taif University, PO Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| |
Collapse
|
15
|
Serrano AM, Vanhaelewyn L, Vandenbussche F, Boccalandro HE, Maldonado B, Van Der Straeten D, Ballaré CL, Arana MV. Cryptochromes are the dominant photoreceptors mediating heliotropic responses of Arabidopsis inflorescences. PLANT, CELL & ENVIRONMENT 2021; 44:3246-3256. [PMID: 34181245 DOI: 10.1111/pce.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.
Collapse
Affiliation(s)
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Hernán Esteban Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - Belén Maldonado
- Instituto Argentino de Investigación de las Zonas Áridas, Mendoza, Argentina
| | | | - Carlos Luis Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agronomía (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
16
|
Zhu JD, Wang J, Guo XN, Shang BS, Yan HR, Zhang X, Zhao X. A high concentration of abscisic acid inhibits hypocotyl phototropism in Gossypium arboreum by reducing accumulation and asymmetric distribution of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6365-6381. [PMID: 34145440 DOI: 10.1093/jxb/erab298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Hypocotyl phototropism is mediated by the phototropins and plays a critical role in seedling morphogenesis by optimizing growth orientation. However, the mechanisms by which phototropism influences morphogenesis require additional study, especially for polyploid crops such as cotton. Here, we found that hypocotyl phototropism was weaker in Gossypium arboreum than in G. raimondii (two diploid cotton species), and LC-MS analysis indicated that G. arboreum hypocotyls had a higher content of abscisic acid (ABA) and a lower content of indole-3-acetic acid (IAA) and bioactive gibberellins (GAs). Consistently, the expression of ABA2, AAO3, and GA2OX1 was higher in G. arboreum than in G. raimondii, and that of GA3OX was lower; these changes promoted ABA synthesis and the transformation of active GA to inactive GA. Higher concentrations of ABA inhibited the asymmetric distribution of IAA across the hypocotyl and blocked the phototropic curvature of G. raimondii. Application of IAA or GA3 to the shaded and illuminated sides of the hypocotyl enhanced and inhibited phototropic curvature, respectively, in G. arboreum. The application of IAA, but not GA, to one side of the hypocotyl caused hypocotyl curvature in the dark. These results indicate that the asymmetric distribution of IAA promotes phototropic growth, and the weakened phototropic curvature of G. arboreum may be attributed to its higher ABA concentrations that inhibit the action of auxin, which is regulated by GA signaling.
Collapse
Affiliation(s)
- Jin-Dong Zhu
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jing Wang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xi-Ning Guo
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bao-Shuan Shang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hong-Ru Yan
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiao Zhang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Romero-Montepaone S, Sellaro R, Esteban Hernando C, Costigliolo-Rojas C, Bianchimano L, Ploschuk EL, Yanovsky MJ, Casal JJ. Functional convergence of growth responses to shade and warmth in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:1890-1905. [PMID: 33909310 DOI: 10.1111/nph.17430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Shade and warmth promote the growth of the stem, but the degree of mechanistic convergence and functional association between these responses is not clear. We analysed the quantitative impact of mutations and natural genetic variation on the hypocotyl growth responses of Arabidopsis thaliana to shade and warmth, the relationship between the abundance of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and growth stimulation by shade or warmth, the effects of both cues on the transcriptome and the consequences of warm temperature on carbon balance. Growth responses to shade and warmth showed strong genetic linkage and similar dependence on PIF4 levels. Temperature increased growth and phototropism even within a range where damage by extreme high temperatures is unlikely to occur in nature. Both cues enhanced the expression of growth-related genes and reduced the expression of photosynthetic genes. However, only warmth enhanced the expression of genes involved in responses to heat. Warm temperatures substantially increased the amount of light required to compensate for the daily carbon dioxide balance. We propose that the main ecological function of hypocotyl growth responses to warmth is to increase the access of shaded photosynthetic organs to light, which implies functional convergence with shade avoidance.
Collapse
Affiliation(s)
- Sofía Romero-Montepaone
- Facultad de Agronomía, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
| | - Romina Sellaro
- Facultad de Agronomía, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
| | - Carlos Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, C1405 BWE, Argentina
| | - Cecilia Costigliolo-Rojas
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, C1405 BWE, Argentina
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, C1405 BWE, Argentina
| | - Edmundo L Ploschuk
- Facultad de Agronomía, Cátedra de Cultivos Industriales, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, C1405 BWE, Argentina
| | - Jorge J Casal
- Facultad de Agronomía, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Buenos Aires, C1417DSE, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, C1405 BWE, Argentina
| |
Collapse
|
18
|
Romanowski A, Furniss JJ, Hussain E, Halliday KJ. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. PLANT PHYSIOLOGY 2021; 186:1220-1239. [PMID: 33693822 PMCID: PMC8195529 DOI: 10.1093/plphys/kiab112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.
Collapse
Affiliation(s)
- Andrés Romanowski
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Comparative Genomics of Plant Development, Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - James J Furniss
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Ejaz Hussain
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Author for communication:
| |
Collapse
|
19
|
Dash L, McEwan RE, Montes C, Mejia L, Walley JW, Dilkes BP, Kelley DR. slim shady is a novel allele of PHYTOCHROME B present in the T-DNA line SALK_015201. PLANT DIRECT 2021; 5:e00326. [PMID: 34136747 PMCID: PMC8197431 DOI: 10.1002/pld3.326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 05/06/2023]
Abstract
Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin-regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we called slim shady, in an annotated insertion line in IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR). Overexpression of the IRR gene failed to rescue the slim shady phenotype and characterization of a second T-DNA allele of IRR found that it had a wild-type (WT) hypocotyl length. The slim shady mutant has an elevated expression of numerous genes associated with the brassinosteroid-auxin-phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally, slim shady seedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism in PHYTOCHROME B was responsible for the slim shady phenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase-related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses with phyb-9 confirmed that slim shady is a mutant allele of PHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin-dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T-DNA stocks.
Collapse
Affiliation(s)
- Linkan Dash
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| | - Robert E. McEwan
- Center for Plant BiologyPurdue UniversityWest LafayettINUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayettINUSA
| | - Christian Montes
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Ludvin Mejia
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Brian P. Dilkes
- Center for Plant BiologyPurdue UniversityWest LafayettINUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayettINUSA
- Department of BiochemistryPurdue UniversityWest LafayettINUSA
| | - Dior R. Kelley
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
20
|
Liu Y, Jafari F, Wang H. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. ABIOTECH 2021; 2:131-145. [PMID: 36304753 PMCID: PMC9590540 DOI: 10.1007/s42994-021-00038-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
As sessile organisms, plants are unable to move or escape from their neighboring competitors under high-density planting conditions. Instead, they have evolved the ability to sense changes in light quantity and quality (such as a reduction in photoactive radiation and drop in red/far-red light ratios) and evoke a suite of adaptative responses (such as stem elongation, reduced branching, hyponastic leaf orientation, early flowering and accelerated senescence) collectively termed shade avoidance syndrome (SAS). Over the past few decades, much progress has been made in identifying the various photoreceptor systems and light signaling components implicated in regulating SAS, and in elucidating the underlying molecular mechanisms, based on extensive molecular genetic studies with the model dicotyledonous plant Arabidopsis thaliana. Moreover, an emerging synthesis of the field is that light signaling integrates with the signaling pathways of various phytohormones to coordinately regulate different aspects of SAS. In this review, we present a brief summary of the various cross-talks between light and hormone signaling in regulating SAS. We also present a perspective of manipulating SAS to tailor crop architecture for breeding high-density tolerant crop cultivars.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| |
Collapse
|
21
|
Furuhashi K, Iwase K, Furuhashi T. Role of Light and Plant Hormones in Stem Parasitic Plant (Cuscuta and Cassytha) Twining and Haustoria Induction. Photochem Photobiol 2021; 97:1054-1062. [PMID: 33934364 DOI: 10.1111/php.13441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Cuscuta and Cassytha are two distinct stem parasitic plant genera developing haustoria at their stem. The initial step to parasitization is twining onto the host plant. Although twining is the critical first step, less attention has been paid to this aspect in stem haustoria parasitic plant studies. As tendril coiling is also controlled by light and plant hormones, we investigated the role of light (blue, red and far-red) and hormones (auxin, brassinolide, cytokinin) in twining of stem parasitic plants (Cuscuta japonica and Cassytha filiformis). In general, both Cuscuta and Cassytha showed similar behavior to light cues. The data show that blue light is essential for twining, and a lower far-red/red light (FR/R) ratio is important for subsequent haustoria induction. Regarding plant hormones, seedlings with solely auxin or cytokinin (iP) under blue light showed not only twining but also haustoria induction, demonstrating that auxin and iP appear to be especially important for induction. Seedlings with solely brassinolide showed no positive influence, but brassinolide together with iP caused twining even under dark conditions. This points to the presence of cross-talk between brassinolide and cytokinin for twining.
Collapse
Affiliation(s)
- Katsuhisa Furuhashi
- Department of Parasitic Plant Physiology, Maeda-Institute of Plant Resources, Nagoya, Japan
| | - Koji Iwase
- Department of Natural and Environmental Science, Teikyo University of Science, Tokyo, Japan
| | | |
Collapse
|
22
|
Fernández-Milmanda GL, Ballaré CL. Shade Avoidance: Expanding the Color and Hormone Palette. TRENDS IN PLANT SCIENCE 2021; 26:509-523. [PMID: 33461868 DOI: 10.1016/j.tplants.2020.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Major strides have been made over the past decade in elucidating the mechanisms that mediate shade-avoidance responses. The canonical PHYTOCHROME INTERACTING FACTOR (PIF)-auxin pathway that begins with inactivation of phytochrome B (phyB) by a low red:far-red (R:FR) ratio, and that leads to increased elongation, has been thoroughly characterized in arabidopsis (Arabidopsisthaliana) seedlings. Nevertheless, studies in other life stages and plant species have demonstrated the role of other wavelengths, photoreceptors, and hormones in the orchestration of shade-avoidance responses. We highlight recent developments that illustrate how canopy light cues regulate signaling through auxin, gibberellins (GAs), jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and strigolactones (SLs) to modulate key aspects of plant growth, metabolism, and defense.
Collapse
Affiliation(s)
- Guadalupe L Fernández-Milmanda
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Carlos L Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; Instituto de Investigaciones Biotecnológicas (IIBIO), CONICET, Universidad Nacional de San Martín, B1650HMP Buenos Aires, Argentina.
| |
Collapse
|
23
|
Casal JJ, Estevez JM. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harb Perspect Biol 2021; 13:a040030. [PMID: 33431585 PMCID: PMC8015692 DOI: 10.1101/cshperspect.a040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant fitness depends on the adequate morphological adjustment to the prevailing conditions of the environment. Therefore, plants sense environmental cues through their life cycle, including the presence of full darkness, light, or shade, the range of ambient temperatures, the direction of light and gravity vectors, and the presence of water and mineral nutrients (such as nitrate and phosphate) in the soil. The environmental information impinges on different aspects of the auxin system such as auxin synthesis, degradation, transport, perception, and downstream transcriptional regulation to modulate organ growth. Although a single environmental cue can affect several of these points, the relative impacts differ significantly among the various growth processes and cues. While stability in the generation of precise auxin gradients serves to guide the basic developmental pattern, dynamic changes in the auxin system fine-tune body shape to optimize the capture of environmental resources.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires 1417, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago 8370146, Chile
| |
Collapse
|
24
|
Huber M, Nieuwendijk NM, Pantazopoulou CK, Pierik R. Light signalling shapes plant-plant interactions in dense canopies. PLANT, CELL & ENVIRONMENT 2021; 44:1014-1029. [PMID: 33047350 PMCID: PMC8049026 DOI: 10.1111/pce.13912] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
Plants growing at high densities interact via a multitude of pathways. Here, we provide an overview of mechanisms and functional consequences of plant architectural responses initiated by light cues that occur in dense vegetation. We will review the current state of knowledge about shade avoidance, as well as its possible applications. On an individual level, plants perceive neighbour-associated changes in light quality and quantity mainly with phytochromes for red and far-red light and cryptochromes and phototropins for blue light. Downstream of these photoreceptors, elaborate signalling and integration takes place with the PHYTOCHROME INTERACTING FACTORS, several hormones and other regulators. This signalling leads to the shade avoidance responses, consisting of hyponasty, stem and petiole elongation, apical dominance and life cycle adjustments. Architectural changes of the individual plant have consequences for the plant community, affecting canopy structure, species composition and population fitness. In this context, we highlight the ecological, evolutionary and agricultural importance of shade avoidance.
Collapse
Affiliation(s)
- Martina Huber
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Dept. BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
25
|
Ince YÇ, Galvão VC. Analysis of Shade-Induced Hypocotyl Elongation in Arabidopsis. Methods Mol Biol 2021; 2297:21-31. [PMID: 33656666 DOI: 10.1007/978-1-0716-1370-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The presence of neighbor or overtopping plants is perceived by changes in light quality, which lead to several growth and developmental changes known as shade avoidance syndrome (SAS). Among them, the analysis of hypocotyl elongation is an important SAS physiological output that has been successfully used to investigate photoreceptors and downstream signaling components. Here we describe the experimental setup and growth conditions used to investigate photoreceptors and their signaling mechanisms through the analysis of hypocotyl elongation in laboratory, using simulated low R/FR ratio, low blue light, and true/deep shade conditions.
Collapse
Affiliation(s)
- Yetkin Çaka Ince
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vinicius Costa Galvão
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Pierik R, Ballaré CL. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. MOLECULAR PLANT 2021; 14:61-76. [PMID: 33276158 DOI: 10.1016/j.molp.2020.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina; IIBIO-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Zhou C, Zhang Y, Liu W, Zha L, Shao M, Li B. Light Quality Affected the Growth and Root Organic Carbon and Autotoxin Secretions of Hydroponic Lettuce. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1542. [PMID: 33187202 PMCID: PMC7696194 DOI: 10.3390/plants9111542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Light is a crucial environmental signal and photosynthetic energy for plant growth, development, and primary and secondary metabolism. To explore the effects of light quality on the growth and root exudates of hydroponic lettuce (Lactuca sativa L.), white LED (W, control) and four the mixtures of red (R) and blue (B) LED with different R/B light intensity ratios (R/B = 2, 2R1B; R/B = 3, 3R1B; R/B = 4, 4R1B; and R/B = 8, 8R1B) were designed. The results showed that the biomass of lettuce under 8R1B and W treatments was higher than that under other light quality treatments. The photosynthetic rate (Pn) under red and blue light was significantly higher than that of white light. Total root length, root surface area, and root volume were the highest under 8R1B. 4R1B treatment significant increased root activity by 68.6% compared with W. In addition, total organic carbon (TOC) content, TOC content/shoot dry weight, TOC content/root dry weight, and TOC content/root surface area were the highest under 4R1B. Moreover, 8R1B treatment reduced the concentration of benzoic acid and salicylic acid, and the secretion ability of benzoic acid and salicylic acid by per unit root surface area and accumulation by per unit shoot dry weight. In addition, 2R1B and 3R1B reduced the secretion ability of gallic acid and tannic acid by per unit root surface area and accumulation by per unit shoot dry weight. In conclusion, this study showed that the secretion of autotoxins could be reduced through the mediation of red and blue light composition of LEDs in a plant factory. In terms of autotoxin secretion reduction efficiency and yield performance of lettuce, 8R1B light regime is recommended for practical use.
Collapse
Affiliation(s)
- Chengbo Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (Y.Z.); (L.Z.); (M.S.); (B.L.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yubin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (Y.Z.); (L.Z.); (M.S.); (B.L.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (Y.Z.); (L.Z.); (M.S.); (B.L.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lingyan Zha
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (Y.Z.); (L.Z.); (M.S.); (B.L.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Mingjie Shao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (Y.Z.); (L.Z.); (M.S.); (B.L.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Baoshi Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (Y.Z.); (L.Z.); (M.S.); (B.L.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
28
|
Comparative physiological and transcriptomic analysis of pear leaves under distinct training systems. Sci Rep 2020; 10:18892. [PMID: 33144674 PMCID: PMC7641215 DOI: 10.1038/s41598-020-75794-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Canopy architecture is critical in determining the light interception and distribution, and subsequently the photosynthetic efficiency and productivity. However, the physiological responses and molecular mechanisms by which pear canopy architectural traits impact on photosynthesis remain poorly understood. Here, physiological investigations coupled with comparative transcriptomic analyses were performed in pear leaves under distinct training systems. Compared with traditional freestanding system, flat-type trellis system (DP) showed higher net photosynthetic rate (PN) levels at the most time points throughout the entire monitored period, especially for the interior of the canopy in sunny side. Gene ontology analysis revealed that photosynthesis, carbohydrate derivative catabolic process and fatty acid metabolic process were over-represented in leaves of DP system with open-canopy characteristics. Weighted gene co-expression network analysis uncovered a significant network module positive correlated with PN value. The hub genes (PpFKF1 and PpPRR5) of the module were enriched in circadian rhythm pathway, suggesting a functional role for circadian clock genes in mediating photosynthetic performance under distinct training systems. These results draw a link between pear photosynthetic response and specific canopy architectural traits, and highlight light harvesting and circadian clock network as potential targets for the input signals from the fluctuating light availability under distinct training systems.
Collapse
|
29
|
Markel K. Response to comment on 'Lack of evidence for associative learning in pea plants'. eLife 2020; 9:e61689. [PMID: 32909944 PMCID: PMC7556859 DOI: 10.7554/elife.61689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
In 2016 Gagliano et al. reported evidence for associative learning in plants (Gagliano et al., 2016). A subsequent attempt to replicate this finding by the present author was not successful (Markel, 2020). Gagliano et al. attribute this lack of replication to differences in the experimental set-ups used in the original work and the replication attempt (Gagliano et al., 2020). Here, based on a comparison of the two set-ups, I argue that these differences are unable to explain the lack of replication in Markel, 2020.
Collapse
Affiliation(s)
- Kasey Markel
- Department of Plant Biology, University of California, DavisDavisUnited States
| |
Collapse
|
30
|
Küpers JJ, Oskam L, Pierik R. Photoreceptors Regulate Plant Developmental Plasticity through Auxin. PLANTS 2020; 9:plants9080940. [PMID: 32722230 PMCID: PMC7463442 DOI: 10.3390/plants9080940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Light absorption by plants changes the composition of light inside vegetation. Blue (B) and red (R) light are used for photosynthesis whereas far-red (FR) and green light are reflected. A combination of UV-B, blue and R:FR-responsive photoreceptors collectively measures the light and temperature environment and adjusts plant development accordingly. This developmental plasticity to photoreceptor signals is largely regulated through the phytohormone auxin. The phytochrome, cryptochrome and UV Resistance Locus 8 (UVR8) photoreceptors are inactivated in shade and/or elevated temperature, which releases their repression of Phytochrome Interacting Factor (PIF) transcription factors. Active PIFs stimulate auxin synthesis and reinforce auxin signalling responses through direct interaction with Auxin Response Factors (ARFs). It was recently discovered that shade-induced hypocotyl elongation and petiole hyponasty depend on long-distance auxin transport towards target cells from the cotyledon and leaf tip, respectively. Other responses, such as phototropic bending, are regulated by auxin transport and signalling across only a few cell layers. In addition, photoreceptors can directly interact with components in the auxin signalling pathway, such as Auxin/Indole Acetic Acids (AUX/IAAs) and ARFs. Here we will discuss the complex interactions between photoreceptor and auxin signalling, addressing both mechanisms and consequences of these highly interconnected pathways.
Collapse
|
31
|
Buti S, Hayes S, Pierik R. The bHLH network underlying plant shade-avoidance. PHYSIOLOGIA PLANTARUM 2020; 169:312-324. [PMID: 32053251 PMCID: PMC7383782 DOI: 10.1111/ppl.13074] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Shade is a potential threat to many plant species. When shade-intolerant plants detect neighbours, they elongate their stems and leaves in an effort to maximise their light capture. This developmental programme, known as 'shade-avoidance' is tightly controlled by specialised photoreceptors and a suite of transcriptional regulators. The basic helix-loop-helix (bHLH) family of transcription factors are particularly important for shade-induced elongation. In recent years, it has become apparent that many members of this family heterodimerise and that together they form a complex regulatory network. This review summarises recent work into the structure of the bHLH network and how it regulates elongation growth. In addition to this, we highlight how photoreceptors modulate the function of the network via direct interaction with transcription factors. It is hoped that the information integrated in this review will provide a useful theoretical framework for future studies on the molecular basis of shade-avoidance in plants.
Collapse
Affiliation(s)
- Sara Buti
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| | - Scott Hayes
- Centro Nacional de Biotecnología, CSICMadrid28049Spain
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental BiologyUtrecht UniversityUtrecht3584 CHThe Netherlands
| |
Collapse
|
32
|
Legris M, Boccaccini A. Stem phototropism toward blue and ultraviolet light. PHYSIOLOGIA PLANTARUM 2020; 169:357-368. [PMID: 32208516 DOI: 10.1111/ppl.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Positive phototropism is the process through which plants orient their organs toward a directional light source. While the blue light receptors phototropins (phot) play a major role in phototropism toward blue (B) and ultraviolet (UV) radiation, recent research showed that the UVB light receptor UVR8 also triggers phototropism toward UVB. In addition, new details of the molecular mechanisms underlying the activity of these receptors and interaction with other environmental signals have emerged in the past years. In this review, we summarize the current knowledge about hypocotyledoneous and inflorescence stem growth reorientation toward B and UVB, with a focus on the molecular mechanisms.
Collapse
Affiliation(s)
- Martina Legris
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Alessandra Boccaccini
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
33
|
Zhao Q, Zhu J, Li N, Wang X, Zhao X, Zhang X. Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:614-630. [PMID: 30941890 PMCID: PMC7318699 DOI: 10.1111/jipb.12813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 05/03/2023]
Abstract
Both phototropins (phot1 and phot2) and cryptochromes (cry1 and cry2) were proven as the Arabidopsis thaliana blue light receptors. Phototropins predominately function in photomovement, and cryptochromes play a role in photomorphogenesis. Although cryptochromes have been proposed to serve as positive modulators of phototropic responses, the underlying mechanism remains unknown. Here, we report that depleting sucrose from the medium or adding gibberellic acids (GAs) can partially restore the defects in phototropic curvature of the phot1 phot2 double mutants under high-intensity blue light; this restoration does not occur in phot1 phot2 cry1 cry2 quadruple mutants and nph3 (nonphototropic hypocotyl 3) mutants which were impaired phototropic response in sucrose-containing medium. These results indicate that GAs and sucrose antagonistically regulate hypocotyl phototropism in a cryptochromes dependent manner, but it showed a crosstalk with phototropin signaling on NPH3. Furthermore, cryptochromes activation by blue light inhibit GAs synthesis, thus stabilizing DELLAs to block hypocotyl growth, which result in the higher GAs content in the shade side than the lit side of hypocotyl to support the asymmetric growth of hypocotyl. Through modulation of the abundance of DELLAs by sucrose depletion or added GAs, it revealed that cryptochromes have a function in mediating phototropic curvature.
Collapse
Affiliation(s)
- Qing‐Ping Zhao
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Jin‐Dong Zhu
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Nan‐Nan Li
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiao‐Nan Wang
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiang Zhao
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| | - Xiao Zhang
- Key laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004China
| |
Collapse
|
34
|
Fiorucci AS, Galvão VC, Ince YÇ, Boccaccini A, Goyal A, Allenbach Petrolati L, Trevisan M, Fankhauser C. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. THE NEW PHYTOLOGIST 2020; 226:50-58. [PMID: 31705802 PMCID: PMC7064998 DOI: 10.1111/nph.16316] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 05/06/2023]
Abstract
In response to elevated ambient temperature Arabidopsis thaliana seedlings display a thermomorphogenic response that includes elongation of hypocotyls and petioles. Phytochrome B and cryptochrome 1 are two photoreceptors also playing a role in thermomorphogenesis. Downstream of both environmental sensors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is essential to trigger this response at least in part through the production of the growth promoting hormone auxin. Using a genetic approach, we identified PHYTOCHROME INTERACTING FACTOR 7 (PIF7) as a novel player for thermomorphogenesis and compared the phenotypes of pif7 and pif4 mutants. We investigated the role of PIF7 during temperature-regulated gene expression and the regulation of PIF7 transcript and protein by temperature. Furthermore, pif7 and pif4 loss-of-function mutants were similarly unresponsive to increased temperature. This included hypocotyl elongation and induction of genes encoding auxin biosynthetic or signalling proteins. PIF7 bound to the promoters of auxin biosynthesis and signalling genes. In response to temperature elevation PIF7 transcripts decreased while PIF7 protein levels increased rapidly. Our results reveal the importance of PIF7 for thermomorphogenesis and indicate that PIF7 and PIF4 likely depend on each other possibly by forming heterodimers. Elevated temperature rapidly enhances PIF7 protein accumulation, which may contribute to the thermomorphogenic response.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Vinicius Costa Galvão
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Yetkin Çaka Ince
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Alessandra Boccaccini
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Anupama Goyal
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Laure Allenbach Petrolati
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Martine Trevisan
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| | - Christian Fankhauser
- Faculty of Biology and MedicineCentre for Integrative GenomicsUniversity of LausanneGénopode BuildingLausanneCH‐1015Switzerland
| |
Collapse
|
35
|
Carlson KD, Bhogale S, Anderson D, Zaragoza-Mendoza A, Madlung A. Subfunctionalization of phytochrome B1/B2 leads to differential auxin and photosynthetic responses. PLANT DIRECT 2020; 4:e00205. [PMID: 32128473 PMCID: PMC7047017 DOI: 10.1002/pld3.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Gene duplication and polyploidization are genetic mechanisms that instantly add genetic material to an organism's genome. Subsequent modification of the duplicated material leads to the evolution of neofunctionalization (new genetic functions), subfunctionalization (differential retention of genetic functions), redundancy, or a decay of duplicated genes to pseudogenes. Phytochromes are light receptors that play a large role in plant development. They are encoded by a small gene family that in tomato is comprised of five members: PHYA, PHYB1, PHYB2, PHYE, and PHYF. The most recent gene duplication within this family was in the ancestral PHYB gene. Using transcriptome profiling, co-expression network analysis, and physiological and molecular experimentation, we show that tomato SlPHYB1 and SlPHYB2 exhibit both common and non-redundant functions. Specifically, PHYB1 appears to be the major integrator of light and auxin responses, such as gravitropism and phototropism, while PHYB1 and PHYB2 regulate aspects of photosynthesis antagonistically to each other, suggesting that the genes have subfunctionalized since their duplication.
Collapse
Affiliation(s)
- Keisha D Carlson
- Department of Biology University of Puget Sound Tacoma Washington
| | - Sneha Bhogale
- Department of Biology University of Puget Sound Tacoma Washington
| | - Drew Anderson
- Department of Biology University of Puget Sound Tacoma Washington
| | | | - Andreas Madlung
- Department of Biology University of Puget Sound Tacoma Washington
| |
Collapse
|
36
|
Thoma F, Somborn-Schulz A, Schlehuber D, Keuter V, Deerberg G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:497. [PMID: 32391040 PMCID: PMC7193822 DOI: 10.3389/fpls.2020.00497] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/02/2020] [Indexed: 05/05/2023]
Abstract
In contrast to the primary metabolism, responsible for essential synthesis mechanisms and mass balance in plants, the secondary metabolism is not of particular importance for each cell but for the plant organism as its whole. Most of these metabolites show antioxidant properties and are beneficial for human health. In order to affect accumulation of those metabolites, light is an essential factor. It is possible to select various combinations of light intensity and light quality to address corresponding photoreceptors and synthesis. However, the plethora of additional variables considering environmental conditions such as temperature, relative humidity or cultivation method complicate defining specific "light recipes". This review summarizes experiments dealing with consumable leafy greens such as lettuce or basil and the enhancement of three selected metabolites - anthocyanins, carotenoids and flavonols.
Collapse
|
37
|
The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. Int J Mol Sci 2019; 20:ijms20246343. [PMID: 31888214 PMCID: PMC6941117 DOI: 10.3390/ijms20246343] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Auxin plays essential roles in plant normal growth and development. The auxin signaling pathway relies on the auxin gradient within tissues and cells, which is facilitated by both local auxin biosynthesis and polar auxin transport (PAT). The TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most important and well-characterized pathway that plants deploy to produce auxin. YUCs function as flavin-containing monooxygenases (FMO) catalyzing the rate-limiting irreversible oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to form indole-3-acetic acid (IAA). The spatiotemporal dynamic expression of different YUC gene members finely tunes the local auxin biosynthesis in plants, which contributes to plant development as well as environmental responses. In this review, the recent advances in the identification, evolution, molecular structures, and functions in plant development and stress response regarding the YUC gene family are addressed.
Collapse
|
38
|
Ma L, Li G. Auxin-Dependent Cell Elongation During the Shade Avoidance Response. FRONTIERS IN PLANT SCIENCE 2019; 10:914. [PMID: 31354778 PMCID: PMC6640469 DOI: 10.3389/fpls.2019.00914] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
Plant uses multiple photoreceptors and downstream components to rapidly respond to dynamic changes in environmental light. Under shade conditions, many species exhibit shade avoidance responses that promote stem and petiole elongation, thus helping plants reach the sunlight. In the last few years, the regulatory molecular mechanisms by which plants respond to shade signals have been intensively studied. This review discusses the regulatory mechanisms underlying auxin-mediated cell elongation in the shade avoidance responses. In the early response to shade signals, auxin biosynthesis, transport, and sensitivity are all rapidly activated, thus promoting cell elongation of the hypocotyls and other organs. Under prolonged shade, increased auxin sensitivity-rather than increased auxin biosynthesis-plays a major role in cell elongation. In addition, we discuss the interaction network of photoreceptors and Phytochrome-Interacting Factors, and the antagonistic regulation of Auxin/Indole Acetic Acid proteins by auxin and light. This review provides perspectives to reframe how we think about shade responses in the natural environment.
Collapse
Affiliation(s)
- Lin Ma
- College of Life Science and Technology, Jinan University, Jinan, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- *Correspondence: Lin Ma,
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Gang Li,
| |
Collapse
|
39
|
de Leone MJ, Hernando CE, Romanowski A, García-Hourquet M, Careno D, Casal J, Rugnone M, Mora-García S, Yanovsky MJ. The LNK Gene Family: At the Crossroad between Light Signaling and the Circadian Clock. Genes (Basel) 2018; 10:genes10010002. [PMID: 30577529 PMCID: PMC6356500 DOI: 10.3390/genes10010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022] Open
Abstract
Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHT–INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.
Collapse
Affiliation(s)
- María José de Leone
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Carlos Esteban Hernando
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Andrés Romanowski
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Mariano García-Hourquet
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Daniel Careno
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Joaquín Casal
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Matías Rugnone
- The Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Santiago Mora-García
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Marcelo Javier Yanovsky
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
40
|
Küpers JJ, van Gelderen K, Pierik R. Location Matters: Canopy Light Responses over Spatial Scales. TRENDS IN PLANT SCIENCE 2018; 23:865-873. [PMID: 30037654 DOI: 10.1016/j.tplants.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Plants use light as a signal to determine neighbour proximity in dense vegetation. Far-red (FR) light reflected from neighbour plants elicits an array of growth responses throughout the plant. Recently, various light quality-induced signals have been discovered that travel between organs and tissue layers. These signals share upstream and downstream components, but can have opposing effects on cell growth. The question is how plants can coordinate these spatial signals into various growth responses in remote tissues. This coordination allows plants to adapt to the environment, and understanding the underlying mechanisms could allow precision engineering of crops. To achieve this understanding, plant photobiology research will need to focus increasingly on spatial signalling at the whole-plant level.
Collapse
Affiliation(s)
- Jesse J Küpers
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
41
|
Gommers CMM, Buti S, Tarkowská D, Pěnčík A, Banda JP, Arricastres V, Pierik R. Organ-specific phytohormone synthesis in two Geranium species with antithetical responses to far-red light enrichment. PLANT DIRECT 2018; 2:e00066. [PMID: 31245741 PMCID: PMC6508794 DOI: 10.1002/pld3.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/24/2018] [Accepted: 06/09/2018] [Indexed: 05/23/2023]
Abstract
Plants growing in high densities experience a reduced red (R) to far-red (FR) light ratio and shade-intolerant species respond with accelerated elongation growth to reach the top of the canopy: the shade avoidance syndrome (SAS). FR-enriched light inactivates phytochrome photoreceptors, which results in subsequent action of several plant hormones regulating growth. SAS is adaptive for shade-intolerant plants, but is suppressed in shade-tolerant plant species. Inspired by a previously published transcriptome analysis, we use two species of the genus Geranium here to study the involvement of auxin, brassinosteroids (BRs), and gibberellins (GAs) in supplemental FR-induced elongation growth. G. pyrenaicum, a shade-avoiding species, strongly induces auxin and gibberellin levels, but not BR, in elongating petioles. We show that, in this species, FR light perception, hormone synthesis, and growth are local and restricted to the petiole, and not the leaf lamina. Using chemical hormone inhibitors, we confirm the essential role of auxin and GAs in supplemental FR-induced elongation growth. Shade-tolerant G. robertianum does not display the change in hormone levels upon FR light enrichment, resulting in the lack of a shade avoidance response.
Collapse
Affiliation(s)
- Charlotte M. M. Gommers
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Plant Development and Signal Transduction ProgramCenter for Research in Agricultural Genomics (CRAG)BarcelonaSpain
| | - Sara Buti
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Danuše Tarkowská
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCRFaculty of SciencePalacký UniversityOlomoucCzechia
| | - Aleš Pěnčík
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental Botany ASCRFaculty of SciencePalacký UniversityOlomoucCzechia
| | - Jason P. Banda
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Present address:
Centre for Plant Integrative BiologySchool of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - Vincent Arricastres
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Ronald Pierik
- Plant EcophysiologyInstitute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
42
|
Schumacher P, Demarsy E, Waridel P, Petrolati LA, Trevisan M, Fankhauser C. A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process. Nat Commun 2018; 9:2403. [PMID: 29921904 PMCID: PMC6008296 DOI: 10.1038/s41467-018-04752-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Phototropins are light-activated protein kinases, which contribute to photosynthesis optimization both through enhancement of photon absorption when light is limiting and avoidance responses in high light. This duality is in part endowed by the presence of phototropins with different photosensitivity (phot1 and phot2). Here we show that phot1, which senses low light to promote positive phototropism (growth towards the light), also limits the response in high light. This response depends in part on phot1-mediated phosphorylation of Phytochrome Kinase Substrate 4 (PKS4). This light-regulated phosphorylation switch changes PKS4 from a phototropism enhancer in low light to a factor limiting the process in high light. In such conditions phot1 and PKS4 phosphorylation prevent phototropic responses to shallow light gradients and limit phototropism in a natural high light environment. Hence, by modifying PKS4 activity in high light the phot1-PKS4 regulon enables appropriate physiological adaptations over a range of light intensities. Light conditions modify plant growth and development via photoreceptors such as phototropins. Here the authors show that while phot1 promotes phototropism under low light, it can act to suppress phototropism in high-light environments through phosphorylation of PKS4.
Collapse
Affiliation(s)
- Paolo Schumacher
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Emilie Demarsy
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland.,Department of Botany and Plant Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Martine Trevisan
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
43
|
Zhao Y. Essential Roles of Local Auxin Biosynthesis in Plant Development and in Adaptation to Environmental Changes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:417-435. [PMID: 29489397 DOI: 10.1146/annurev-arplant-042817-040226] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
It has been a dominant dogma in plant biology that the self-organizing polar auxin transport system is necessary and sufficient to generate auxin maxima and minima that are essential for almost all aspects of plant growth and development. However, in the past few years, it has become clear that local auxin biosynthesis is required for a suite of developmental processes, including embryogenesis, endosperm development, root development, and floral initiation and patterning. Moreover, it was discovered that local auxin biosynthesis maintains optimal plant growth in response to environmental signals, including light, temperature, pathogens, and toxic metals. In this article, I discuss the recent progress in auxin biosynthesis research and the paradigm shift in recognizing the important roles of local auxin biosynthesis in plant biology.
Collapse
Affiliation(s)
- Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
44
|
Xu F, He S, Zhang J, Mao Z, Wang W, Li T, Hua J, Du S, Xu P, Li L, Lian H, Yang HQ. Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2018; 11:523-541. [PMID: 29269022 DOI: 10.1016/j.molp.2017.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 05/04/2023]
Abstract
Light is a key environmental cue that inhibits hypocotyl cell elongation through the blue and red/far-red light photoreceptors cryptochrome- and phytochrome-mediated pathways in Arabidopsis. In contrast, as a pivotal endogenous phytohormone auxin promotes hypocotyl elongation through the auxin receptors TIR1/AFBs-mediated degradation of AUX/IAA proteins (AUX/IAAs). However, the molecular mechanisms underlying the antagonistic interaction of light and auxin signaling remain unclear. Here, we report that light inhibits auxin signaling through stabilization of AUX/IAAs by blue and red light-dependent interactions of cryptochrome 1 (CRY1) and phytochrome B with AUX/IAAs, respectively. Blue light-triggered interactions of CRY1 with AUX/IAAs inhibit the associations of TIR1 with AUX/IAAs, leading to the repression of auxin-induced degradation of these proteins. Our results indicate that photoreceptors share AUX/IAAs with auxin receptors as the same direct downstream signaling components. We propose that antagonistic regulation of AUX/IAA protein stability by photoreceptors and auxin receptors allows plants to balance light and auxin signals to optimize their growth.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengbo He
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jingyi Zhang
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhilei Mao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenxiu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jie Hua
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shasha Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengbo Xu
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Ling Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongli Lian
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
45
|
Demarsy E, Goldschmidt-Clermont M, Ulm R. Coping with 'Dark Sides of the Sun' through Photoreceptor Signaling. TRENDS IN PLANT SCIENCE 2018; 23:260-271. [PMID: 29233601 DOI: 10.1016/j.tplants.2017.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 05/19/2023]
Abstract
Plants grow in constantly changing environments, including highly variable light intensities. Sunlight provides the energy that drives photosynthesis and is thus of the utmost importance for plant growth and the generation of oxygen, which the majority of life on Earth depends on. However, exposure to either insufficient or excess levels of light can have detrimental effects and cause light stress. Whereas exposure to insufficient light limits photosynthetic activity, resulting in 'energy starvation', exposure to excess light can damage the photosynthetic apparatus. Furthermore, strong sunlight is associated with high levels of potentially damaging UV-B radiation. Different classes of photoreceptors play important roles in coping with the negative aspects of sunlight, for which specific mechanisms are emerging that are reviewed here.
Collapse
Affiliation(s)
- Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
46
|
Harmer SL, Brooks CJ. Growth-mediated plant movements: hidden in plain sight. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:89-94. [PMID: 29107827 PMCID: PMC5826749 DOI: 10.1016/j.pbi.2017.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 05/18/2023]
Abstract
While fast plant movements are spectacular but rare, almost all plants exhibit relatively slow, growth-mediated tropic movements that are key to their survival in the natural world. In this brief review, we discuss recent insights into the molecular mechanisms underlying phototropism, gravitropism, hydrotropism, and autostraightening. Careful molecular genetic and physiological studies have helped confirm the importance of lateral auxin gradients in gravitropic and phototropic responses. However, auxin signaling does not explain all tropisms: recent work has shown that abscisic acid signaling mediates root hydrotropism and has implicated mechanosensing in autostraightening, the organ straightening process recently modeled as a proprioceptive response. The interactions between distinct tropic signaling pathways and other internal and external sensory processes are also now being untangled.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Christopher J Brooks
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
47
|
Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ. Multiple links between shade avoidance and auxin networks. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:213-228. [PMID: 29036463 DOI: 10.1093/jxb/erx295] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin has emerged as a key player in the adjustment of plant morphology to the challenge imposed by variable environmental conditions. Shade-avoidance responses, including the promotion of stem and petiole growth, leaf hyponasty, and the inhibition of branching, involve an intimate connection between light and auxin signalling. Low activity of photo-sensory receptors caused by the presence of neighbouring vegetation enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs), which directly promote the expression of genes involved in auxin biosynthesis, conjugation, transport, perception, and signalling. In seedlings, neighbour signals increase auxin levels in the foliage, which then moves to the stem, where it reaches epidermal tissues to promote growth. However, this model only partially accounts for shade-avoidance responses (which may also occur in the absence of increased auxin levels), and understanding the whole picture will require further insight into the functional significance of the multiple links between shade and auxin networks.
Collapse
Affiliation(s)
- María José Iglesias
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Argentina
| | - Romina Sellaro
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Germany
| | - Jorge José Casal
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Argentina
| |
Collapse
|
48
|
Ballaré CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. PLANT, CELL & ENVIRONMENT 2017; 40:2530-2543. [PMID: 28102548 DOI: 10.1111/pce.12914] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
49
|
Abstract
The luxurious vegetation at Sanya, the most southern location in China on the island of Hainan, provided a perfect environment for the 'Auxin 2016' meeting in October. As we review here, participants from all around the world discussed the latest advances in auxin transport, metabolism and signaling pathways, highlighting how auxin acts during plant development and in response to the environment in combination with other hormones. The meeting also provided a rich perspective on the evolution of the role of auxin, from algae to higher plants.
Collapse
Affiliation(s)
- Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphanie Robert
- Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå 90183, Sweden
| |
Collapse
|
50
|
|