1
|
Córdova-García G, Salazar-Suárez A, Paloma Cabrera-Ferral P, Díaz-Fleischer F, López-Ortega M, Pérez-Staples D. Male condition and seminal fluid affect female host-marking behavior in the Mexican fruit fly. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104699. [PMID: 39197709 DOI: 10.1016/j.jinsphys.2024.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Mating and the transfer of seminal fluid components including male accessory glands (MAGs) proteins can affect oviposition behavior in insects. After oviposition, some species of fruit flies deposit a host-marking pheromone (HMP) on the fruit that discourages oviposition by other females of the same or different species or genus and reduces competition between larvae. However, we know very little about how mating, receiving seminal fluid, or male condition can affect female host marking behavior. Here, we tested how the physiological state of females (mated or unmated), the receipt of seminal fluid, and the condition of the male (wild or sterile) affect oviposition and host-marking behavior (HMB) in Anastrepha ludens (Diptera: Tephritidae). We also determined the efficiency of the host-marking pheromone from mated or unmated females in deterring oviposition. In a further examination of how seminal fluid may be affecting HMB we assessed if there were differences in the size of wild or sterile MAGs and the protein quantity transferred during mating. Our results indicate that receiving seminal fluid increased egg laying and increased time invested in host-marking (HM). Unmated females laid fewer eggs than mated females but invested the same amount of time in depositing host-marking pheromone, which had similar effectiveness in deterring oviposition as that of mated females. Females that mated with sterile males laid the same number of eggs as females that mated with wild males but spent less time depositing host-marking pheromone, which suggests that females detect the condition of the male and invest less in marking hosts. Finally, sterile males had larger accessory glands and transferred more MAGs proteins during mating compared to wild males. Seminal proteins could be manipulating HM behavior and female investment into their current reproductive effort. We are only beginning to understand how male condition and seminal fluid can affect female physiology and maternal investment in HMP.
Collapse
|
2
|
Chang WC, Li SH, Tsai PS. Seminal Vesicle-Derived Exosomes for the Regulation of Sperm Activity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024. [PMID: 39287631 DOI: 10.1007/102_2024_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The seminal vesicle contributes to a large extent of the semen volume and composition. Removal of seminal vesicle or lack of seminal vesicle proteins leads to decreased fertility. Seminal plasma proteome revealed that seminal fluid contained a wide diversity of proteins. Many of them are known to modulate sperm capacitation and serve as capacitation inhibitors or decapacitation factors. Despite identifying secretory vesicles from the male reproductive tract, such as epididymosomes or prostasomes, isolation, identification, and characterization of seminal vesicle-derived exosomes are still unknown. This chapter aims to review the current understanding of the function of seminal vesicles on sperm physiology and male reproduction and provide ultracentrifugation-based isolation protocols for the isolation of seminal vesicle exosomes. Moreover, via proteomic analysis and functional categorization, a total of 726 proteins IDs were identified in the purified seminal vesicle exosomes fraction. Preliminary data showed seminal vesicle-derived exosomes inhibited sperm capacitation; however, more studies will be needed to reveal other functional involvements of seminal vesicle-derived exosomes on the sperm physiology and, more importantly, how these exosomes interact with sperm membrane to achieve their biological effects.
Collapse
Affiliation(s)
- Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, Tamsui, Taiwan.
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Gomez RA, Dallai R, Sims-West DJ, Mercati D, Sinka R, Ahmed-Braimah Y, Pitnick S, Dorus S. Proteomic diversification of spermatostyles among six species of whirligig beetles. Mol Reprod Dev 2024; 91:e23745. [PMID: 38785179 PMCID: PMC11246569 DOI: 10.1002/mrd.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.
Collapse
Affiliation(s)
- R. Antonio Gomez
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Dylan J. Sims-West
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Yasir Ahmed-Braimah
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
4
|
Baud D, Zuber A, Peric A, Pluchino N, Vulliemoz N, Stojanov M. Impact of semen microbiota on the composition of seminal plasma. Microbiol Spectr 2024; 12:e0291123. [PMID: 38349179 PMCID: PMC10913749 DOI: 10.1128/spectrum.02911-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/20/2024] [Indexed: 03/06/2024] Open
Abstract
Several studies have found associations between specific bacterial genera and semen parameters. Bacteria are known to influence the composition of their niche and, consequently, could affect the composition of the seminal plasma. This study integrated microbiota profiling and metabolomics to explore the influence of seminal bacteria on semen metabolite composition in infertile couples, revealing associations between specific bacterial genera and metabolite profiles. Amino acids and acylcarnitines were the predominant metabolite groups identified in seminal plasma. Different microbiota profiles did not result in globally diverse metabolite compositions in seminal plasma. Nevertheless, levels of specific metabolites increased in the presence of a dysbiotic microbiota. Urocanate was significantly increased in abnormal semen samples (adjusted P-value < 0.001) and enriched in samples dominated by Prevotella spp. (P-value < 0.05), which was previously linked to a negative impact on semen. Therefore, varying microbiota profiles can influence the abundance of certain metabolites, potentially having an immunomodulatory effect, as seen with urocanate.IMPORTANCEMale infertility is often considered idiopathic since the specific cause of infertility often remains unidentified. Recently, variations in the seminal microbiota composition have been associated with normal and abnormal semen parameters and may, therefore, influence male infertility. Bacteria are known to alter the metabolite composition of their ecological niches, and thus, seminal bacteria might affect the composition of the seminal fluid, crucial in the fertilization process. Our research indicates that distinct seminal microbiota profiles are not associated with widespread changes in the metabolite composition of the seminal fluid. Instead, the presence of particular metabolites with immunomodulatory functions, such as urocanate, could shed light on the interplay between seminal microbiota and variations in semen parameters.
Collapse
Affiliation(s)
- D. Baud
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - A. Zuber
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
| | - A. Peric
- 360° Fertility Center Zurich, Zollikon, Switzerland
| | - N. Pluchino
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | | | - M. Stojanov
- Materno-Fetal and Obstetrics Research Unit, Mother-Woman-Child Department, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Ejaculation: the Process and Characteristics From Start to Finish. CURRENT SEXUAL HEALTH REPORTS 2023; 15:1-9. [PMID: 36908762 PMCID: PMC9997041 DOI: 10.1007/s11930-022-00340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Purpose of Review Semen analysis serves as the initial step in the evaluation of male infertility. However, given the difficulty in interpreting abnormal findings, physicians and patients often struggle with understanding the results. In this review, we aim to review the normal physiology of ejaculation and create an accessible resource for interpreting abnormal semen volume, viscosity, liquefaction, pH, appearance, and color. Recent Findings Emerging evidence has revealed that men with genitourinary tract infections have a greater number of seminal leukocytes, which may result in clumping of motile sperm and altered morphology. Hence, these patients may have abnormal sperm parameters secondary to their health status. Recent findings have further characterized the semen liquefaction process, suggesting that increased levels of semenogelin and decreased levels of proteases and plasminogen activators (e.g., urokinase and chymotrypsin) may be associated with the failure of semen to convert to a watery consistency. Summary This article creates a resource which may be referenced when abnormalities in semen analysis are encountered. We offer a comprehensive overview of normal ejaculation physiology and abnormal variants in male ejaculate volume-including aspermia, anejaculation, retrograde ejaculation, and hypo- and hyperspermia-and their potential etiologies. Additionally, we discuss several processes (infection, inflammation, and dysfunction of male sex glands) which may affect semen viscosity, liquefaction, and pH. Finally, our discussion of the potential colors of male ejaculate is meant to reduce the anxiety of both patient and provider. Through a better understanding of the process and varying characteristics of ejaculation, physicians may adequately counsel their patients on abnormal findings and concerns regarding infertility.
Collapse
|
6
|
Fricke C, Sanghvi K, Emery M, Lindenbaum I, Wigby S, Ramm SA, Sepil I. Timeless or tainted? The effects of male ageing on seminal fluid. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1066022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Reproductive ageing can occur due to the deterioration of both the soma and germline. In males, it has mostly been studied with respect to age-related changes in sperm. However, the somatic component of the ejaculate, seminal fluid, is also essential for maintaining reproductive function. Whilst we know that seminal fluid proteins (SFPs) are required for male reproductive success across diverse taxa, age-related changes in SFP quantity and composition are little understood. Additionally, only few studies have explored the reproductive ageing of the tissues that produce SFPs, and the resulting reproductive outcomes. Here we provide a systematic review of studies addressing how advancing male age affects the production and properties of seminal fluid, in particular SFPs and oxidative stress, highlighting many open questions and generating new hypotheses for further research. We additionally discuss how declines in function of different components of seminal fluid, such as SFPs and antioxidants, could contribute to age-related loss of reproductive ability. Overall, we find evidence that ageing results in increased oxidative stress in seminal fluid and a decrease in the abundance of various SFPs. These results suggest that seminal fluid contributes towards important age-related changes influencing male reproduction. Thus, it is essential to study this mostly ignored component of the ejaculate to understand male reproductive ageing, and its consequences for sexual selection and paternal age effects on offspring.
Collapse
|
7
|
Najmabadi S, Schliep KC, Simonsen SE, Porucznik CA, Egger MJ, Stanford JB. Characteristics of menstrual cycles with or without intercourse in women with no known subfertility. Hum Reprod Open 2022; 2022:hoac039. [PMID: 36186844 PMCID: PMC9519089 DOI: 10.1093/hropen/hoac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does sexual intercourse enhance the cycle fecundability in women without known subfertility? SUMMARY ANSWER Sexual intercourse (regardless of timing during the cycle) was associated with cycle characteristics suggesting higher fecundability, including longer luteal phase, less premenstrual spotting and more than 2 days of cervical fluid with estrogen-stimulated qualities. WHAT IS KNOWN ALREADY Human females are spontaneous ovulators, experiencing an LH surge and ovulation cyclically, independent of copulation. Natural conception requires intercourse to occur during the fertile window of a woman's menstrual cycle, i.e. the 6-day interval ending on the day of ovulation. However, most women with normal fecundity do not ovulate on Day 14, thus the timing of the hypothetical fertile window varies within and between women. This variability is influenced by age and parity and other known or unknown elements. While the impact of sexual intercourse around the time of implantation on the probability of achieving a pregnancy has been discussed by some researchers, there are limited data regarding how sexual intercourse may influence ovulation occurrence and menstrual cycle characteristics in humans. STUDY DESIGN SIZE DURATION This study is a pooled analysis of three cohorts of women, enrolled at Creighton Model FertilityCare centers in the USA and Canada: 'Creighton Model MultiCenter Fecundability Study' (CMFS: retrospective cohort, 1990-1996), 'Time to Pregnancy in Normal Fertility' (TTP: randomized trial, 2003-2006) and 'Creighton Model Effectiveness, Intentions, and Behaviors Assessment' (CEIBA: prospective cohort, 2009-2013). We evaluated cycle phase lengths, bleeding and cervical mucus patterns and estimated the fertile window in 2564 cycles of 530 women, followed for up to 1 year. PARTICIPANTS/MATERIALS SETTING METHODS Participants were US or Canadian women aged 18-40 and not pregnant, who were heterosexually active, without known subfertility and not taking exogenous hormones. Most of the women were intending to avoid pregnancy at the start of follow-up. Women recorded daily vaginal bleeding, mucus discharge and sexual intercourse using a standardized protocol and recording system for up to 1 year, yielding 2564 cycles available for analysis. The peak day of mucus discharge (generally the last day of cervical fluid with estrogen-stimulated qualities of being clear, stretchy or slippery) was used to identify the estimated day of ovulation, which we considered the last day of the follicular phase in ovulatory cycles. We used linear mixed models to assess continuous cycle parameters including cycle, menses and cycle phase lengths, and generalized linear models using Poisson regression with robust variance to assess dichotomous outcomes such as ovulatory function, short luteal phases and presence or absence of follicular or luteal bleeding. Cycles were stratified by the presence or absence of any sexual intercourse, while adjusting for women's parity, age, recent oral contraceptive use and breast feeding. MAIN RESULTS AND THE ROLE OF CHANCE Most women were <30 years of age (75.5%; median 27, interquartile range 24-29), non-Hispanic white (88.1%), with high socioeconomic indicators and nulliparous (70.9%). Cycles with no sexual intercourse compared to cycles with at least 1 day of sexual intercourse were shorter (29.1 days (95% CI 27.6, 30.7) versus 30.1 days (95% CI 28.7, 31.4)), had shorter luteal phases (10.8 days (95% CI 10.2, 11.5) versus 11.4 days (95% CI 10.9, 12.0)), had a higher probability of luteal phase deficiency (<10 days; adjusted probability ratio (PR) 1.31 (95% CI 1.00, 1.71)), had a higher probability of 2 days of premenstrual spotting (adjusted PR 2.15 (95% CI 1.09, 4.24)) and a higher probability of having two or fewer days of peak-type (estrogenic) cervical fluid (adjusted PR 1.49 (95% CI 1.03, 2.15)). LIMITATIONS REASONS FOR CAUTION Our study participants were geographically dispersed but relatively homogeneous in regard to race, ethnicity, income and educational levels, and all had male partners, which may limit the generalizability of the findings. We cannot exclude the possibility of undetected subfertility or related gynecologic disorders among some of the women, such as undetected endometriosis or polycystic ovary syndrome, which would impact the generalizability of our findings. Acute illness or stressful events might have reduced the likelihood of any intercourse during a cycle, while also altering cycle characteristics. Some cycles in the no intercourse group may have actually had undocumented intercourse or other sexual activity, but this would bias our results toward the null. The Creighton Model FertilityCare System (CrM) discourages use of barrier methods, so we believe that most instances of intercourse involved exposure to semen; however, condoms may have been used in some cycles. Our dataset lacks any information about the occurrence of female orgasm, precluding our ability to evaluate the independent or combined impact of female orgasm on cycle characteristics. WIDER IMPLICATIONS OF THE FINDINGS Sexual activity may change reproductive hormonal patterns, and/or levels of reproductive hormones may influence the likelihood of sexual activity. Future work may help with understanding the extent to which exposure to seminal fluid, and/or female orgasm and/or timing of intercourse could impact menstrual cycle function. In theory, large data sets from women using menstrual and fertility tracking apps could be informative if women can be appropriately incentivized to record intercourse completely. It is also of interest to understand how cycle characteristics may differ in women with gynecological problems or subfertility. STUDY FUNDING/COMPETING INTERESTS Funding for the research on the three cohorts analyzed in this study was provided by the Robert Wood Johnson Foundation #029258 (Creighton Model MultiCenter Fecundability Study), the Eunice Kennedy Shriver National Institute of Child Health and Human Development 1K23 HD0147901-01A1 (Time to Pregnancy in Normal Fertility) and the Office of Family Planning, Office of Population Affairs, Health and Human Services 1FPRPA006035 (Creighton Model Effectiveness, Intentions, and Behaviors Assessment). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- S Najmabadi
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - K C Schliep
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - S E Simonsen
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
- College of Nursing, University of Utah, Salt Lake City, UT, USA
| | - C A Porucznik
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - M J Egger
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - J B Stanford
- Office of Cooperative Reproductive Health, Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Extracellular vesicles from seminal plasma improved development of in vitro-fertilized mouse embryos. ZYGOTE 2022; 30:619-624. [PMID: 35730539 DOI: 10.1017/s0967199422000041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vitro fertilization (IVF) has wide application in human infertility and animal breeding. It is also used for research on reproduction, fertility and development. However, IVF embryos are still inferior to their in vivo counterparts. Some substances in seminal plasma appear to have important roles in embryo development, and during the traditional IVF procedure, the seminal plasma is washed away. In this study, extracellular vesicles (EVs) were concentrated from seminal plasma by ultracentrifugation, visualized using transmission electron microscopy, and particle size distributions and concentrations were determined with a NanoSight particle analyzer. We found particles of various sizes in the seminal plasma, the majority having diameters ranging from 100 to 200 nm and concentrations of 6.07 × 1010 ± 2.91 × 109 particles/ml. Addition of seminal plasma EVs (SP-EVs) to the IVF medium with mouse oocytes and sperm significantly increased the rate of blastocyst formation and the inner cell mass (ICM)/trophectoderm (TE) cell ratio, and reduced the apoptosis of blastocysts. Our findings provide new insights into the role of seminal plasma EVs in mediating embryo development and it suggests that SP-EVs may be used to improve the developmental competence of IVF embryos, which has important significance for assisted reproduction in animals and humans.
Collapse
|
9
|
Sepil I, Perry JC, Dore A, Chapman T, Wigby S. Experimental evolution under varying sex ratio and nutrient availability modulates male mating success in Drosophila melanogaster. Biol Lett 2022; 18:20210652. [PMID: 35642384 PMCID: PMC9156920 DOI: 10.1098/rsbl.2021.0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster, using experimental evolution. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved under protein restriction. By contrast, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success. Males that evolved under protein restriction were relatively poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.
Collapse
Affiliation(s)
- Irem Sepil
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jennifer C Perry
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alice Dore
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
DeLecce T, Shackelford TK, Zeigler-Hill V, Fink B, Abed MG. Mate Retention Behavior and Ejaculate Quality in Humans. ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:3821-3830. [PMID: 34713428 DOI: 10.1007/s10508-021-01992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Males of some species use mate retention behavior and investment in ejaculate quality as anti-cuckoldry tactics concurrently while others do so in a compensatory fashion. Leivers, Rhodes, and Simmons (2014) reported that men who performed mate retention less frequently produced higher-quality ejaculates, suggesting that humans use these tactics compensatorily. We conducted a conceptual replication of this research in a sample of 41 men (18-33 years; M = 23.33; SD = 3.60). By self-report, participants had not had a vasectomy and had never sought infertility treatment. We controlled for several covariates known to affect ejaculate quality (e.g., abstinence duration before providing an ejaculate) and found no statistically significant relationships between mate retention behavior and four components of ejaculate quality: sperm velocity, sperm concentration, slow motility, and ejaculate volume. The present results provide little support for the hypothesis that human males deploy mate retention behavior and ejaculate quality investment compensatorily. We discuss the limitations of this study and highlight the need for research to address questions about the nature of anti-cuckoldry tactic deployment in humans, especially concerning investment in ejaculate quality.
Collapse
Affiliation(s)
- Tara DeLecce
- Department of Psychology, Oakland University, 213B Pryale Hall, Rochester, MI, 48309, USA.
| | - Todd K Shackelford
- Department of Psychology, Oakland University, 213B Pryale Hall, Rochester, MI, 48309, USA
| | - Virgil Zeigler-Hill
- Department of Psychology, Oakland University, 213B Pryale Hall, Rochester, MI, 48309, USA
| | - Bernhard Fink
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Biosocial Science Information, Biedermannsdorf, Austria
| | - Mohaned G Abed
- Educational Graduate Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Scolari F, Khamis FM, Pérez-Staples D. Beyond Sperm and Male Accessory Gland Proteins: Exploring Insect Reproductive Metabolomes. Front Physiol 2021; 12:729440. [PMID: 34690804 PMCID: PMC8529219 DOI: 10.3389/fphys.2021.729440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023] Open
Abstract
Insect seminal fluid, the non-sperm component of the ejaculate, comprises a variegated set of molecules, including, but not limited to, lipids, proteins, carbohydrates, salts, hormones, nucleic acids, and vitamins. The identity and functional role of seminal fluid proteins (SFPs) have been widely investigated, in multiple species. However, most of the other small molecules in insect ejaculates remain uncharacterized. Metabolomics is currently adopted to deepen our understanding of complex biological processes and in the last 15years has been applied to answer different physiological questions. Technological advances in high-throughput methods for metabolite identification such as mass spectrometry and nuclear magnetic resonance (NMR) are now coupled to an expanded bioinformatics toolbox for large-scale data analysis. These improvements allow for the processing of smaller-sized samples and for the identification of hundreds to thousands of metabolites, not only in Drosophila melanogaster but also in disease vectors, animal, and agricultural pests. In this review, we provide an overview of the studies that adopted metabolomics-based approaches in insects, with a particular focus on the reproductive tract (RT) of both sexes and the ejaculate. Progress in the field of metabolomics will contribute not only to achieve a deeper understanding of the composition of insect ejaculates and how they are affected by endogenous and exogenous factors, but also to provide increasingly powerful tools to decipher the identity and molecular interactions between males and females during and after mating.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics (IGM)-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Diana Pérez-Staples
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
12
|
Zhang Y, Zhao C, Ma W, Cui S, Chen H, Ma C, Guo J, Wan F, Zhou Z. Larger males facilitate population expansion in Ophraella communa. J Anim Ecol 2021; 90:2782-2792. [PMID: 34448211 DOI: 10.1111/1365-2656.13579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
One of the most intriguing concepts in animal ecology is the reproductive advantages offered by larger body size, and the females prefer to mate with larger males to gain reproductive advantage. Currently, it is not clear how females recognize signs of male 'quality' and what mechanisms are involved in producing offspring with direct or indirect benefits. Our study aims to assess the preferences of females for males in Ophraella communa, determine the reproductive benefits and reveal the underlying mechanism behind this advantage. We demonstrate that male body size is an important determinant in the evolutionary process of O. communa, affecting female mate choice. Moreover, our study establishes that females prefer males with a larger body size, and this could further improve the developmental and reproductive fitness of their offspring. Finally, we focus on the seminal fluid proteins (SFPs) in O. communa, determine differentially expressed genes (i.e. OcACE, OcCBP and OcSFP) by analysing their proteomes and transcriptomes, and define the role of these SFPs-related genes through RNAi. Our study proved that the reproductive benefit of large males may be regulated by biased expression of crucial SFPs genes. The present study advances our understanding of the biological significance of preferential mating.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenchen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaowei Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Greenway EV, Hamel JA, Miller CW. Exploring the effects of extreme polyandry on estimates of sexual selection and reproductive success. Behav Ecol 2021. [DOI: 10.1093/beheco/arab081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Multiple mating by females can dramatically alter selection on males by creating indirect interactions between rivals via sperm competition. Exactly how this behavior alters the relationship between male mating and fertilization success depends on multiple factors: re-mating frequency, sperm usage patterns, and mating assortment (the extent to which the most promiscuous individuals mate with each other). Here, we explore the role these elements play in determining sexual selection in a highly polygyandrous species, the squash bug Anasa tristis. Using replicated semi-natural enclosures, in which individuals were able to freely interact for a 2-week period, we tracked matings between individuals and subsequent female offspring production. Multiple mating was extremely common, resulting in very high levels of sperm competition intensity. However, network analysis revealed that the most promiscuous males mated with less polyandrous females, and therefore experienced lower levels of sperm competition. As a result, estimated male reproductive success increased with mating success, but this relationship varied according to the mode of sperm utilization with which it was calculated. Furthermore, females with more mating partners produced more offspring, suggesting they also benefit from mating multiply. Our findings highlight that polyandry has numerous and complex effects on sexual selection which may only be exposed when examined under naturalistic conditions.
Collapse
Affiliation(s)
- E V(Ginny) Greenway
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jennifer A Hamel
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Bath E, Buzzoni D, Ralph T, Wigby S, Sepil I. Male condition influences female post mating aggression and feeding in
Drosophila. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eleanor Bath
- Department of Zoology University of Oxford Oxford UK
| | - Daisy Buzzoni
- Department of Zoology University of Oxford Oxford UK
- University of Victoria Victoria BC Canada
| | - Toby Ralph
- Department of Zoology University of Oxford Oxford UK
| | - Stuart Wigby
- Department of Zoology University of Oxford Oxford UK
- Department of Evolution, Ecology, and Behaviour Institute of Infection, Veterinary & Ecological Sciences University of Liverpool Liverpool UK
| | - Irem Sepil
- Department of Zoology University of Oxford Oxford UK
| |
Collapse
|
15
|
Douhard M, Geffroy B. Males can adjust offspring sex ratio in an adaptive fashion through different mechanisms. Bioessays 2021; 43:e2000264. [PMID: 33594712 DOI: 10.1002/bies.202000264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/15/2023]
Abstract
Sex allocation research has primarily focused on offspring sex-ratio adjustment by mothers. Yet, fathers also benefit from producing more of the sex with greater fitness returns. Here, we review the state-of-the art in the study of male-driven sex allocation and, counter to the current paradigm, we propose that males can adaptively influence offspring sex ratio through a wide variety of mechanisms. This includes differential production and motility of X- versus Y-bearing sperms in mammals, variation in seminal fluid composition in haplo-diploid invertebrates, and epigenetic mechanisms in some fish and lizards exhibiting environmental sex determination. Conflicts of interest between mothers and fathers over offspring sex ratios can emerge, although many more studies are needed in this area. While many studies of sex allocation have focused on adaptive explanations with little attention to mechanisms, and vice versa, the integration of these two topics is essential for understanding male-driven sex allocation.
Collapse
Affiliation(s)
- Mathieu Douhard
- Laboratoire de Biométrie & Biologie Evolutive, Université Lyon 1, Villeurbanne, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Palavas-Les-Flots, France
| |
Collapse
|
16
|
Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Bailey ST, Chen X, Oyen K, Didion EM, Chakraborty S, Lee RE, Denlinger DL, Matter SF, Attardo GM, Weirauch MT, Benoit JB. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci Rep 2020; 10:19791. [PMID: 33188214 PMCID: PMC7666147 DOI: 10.1038/s41598-020-76139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.
Collapse
Affiliation(s)
- Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sonya Nandyal
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Carlie Perretta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Drew E Spacht
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Wigby S, Brown NC, Allen SE, Misra S, Sitnik JL, Sepil I, Clark AG, Wolfner MF. The Drosophila seminal proteome and its role in postcopulatory sexual selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200072. [PMID: 33070726 DOI: 10.1098/rstb.2020.0072] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postcopulatory sexual selection (PCSS), comprised of sperm competition and cryptic female choice, has emerged as a widespread evolutionary force among polyandrous animals. There is abundant evidence that PCSS can shape the evolution of sperm. However, sperm are not the whole story: they are accompanied by seminal fluid substances that play many roles, including influencing PCSS. Foremost among seminal fluid models is Drosophila melanogaster, which displays ubiquitous polyandry, and exhibits intraspecific variation in a number of seminal fluid proteins (Sfps) that appear to modulate paternity share. Here, we first consolidate current information on the identities of D. melanogaster Sfps. Comparing between D. melanogaster and human seminal proteomes, we find evidence of similarities between many protein classes and individual proteins, including some D. melanogaster Sfp genes linked to PCSS, suggesting evolutionary conservation of broad-scale functions. We then review experimental evidence for the functions of D. melanogaster Sfps in PCSS and sexual conflict. We identify gaps in our current knowledge and areas for future research, including an enhanced identification of PCSS-related Sfps, their interactions with rival sperm and with females, the role of qualitative changes in Sfps and mechanisms of ejaculate tailoring. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stuart Wigby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK.,Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Abstract
Sexual interactions negatively impact health and longevity in many species across the animal kingdom. C. elegans has been established as a good model to study how mating and intense sexual interactions influence longevity of the individuals. In this chapter, we review the most recent discoveries in this field. We first describe the phenotypes caused by intense mating, including shrinking, fat loss, and glycogen loss. We then describe three major mechanisms underlying mating-induced killing: germline activation, seminal fluid transfer, and male pheromone-mediated toxicity. Next, we summarize the current knowledge of genetic pathways involved in regulating mating-induced death, including DAF-9/DAF-12 steroid signaling, Insulin/IGF-1 signaling (IIS), and TOR signaling. Finally, we discuss the possible fitness benefits of mating-induced death. Throughout this review, we compare and contrast mating-induced death between the sexes and among different species in an effort to discuss this phenomenon and underlying mechanisms from the evolutionary perspective. Further investigation using mated C. elegans will improve our understanding of sexual antagonism, as well as the coordination between reproduction and somatic longevity in response to various external signals. Due to the evolutionary conservation in many aspects of mating-induced death, what we learn from a short-lived mated worm could provide new strategies to improve our own fitness and longevity.
Collapse
Affiliation(s)
- Cheng Shi
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
19
|
Stångberg J, Immonen E, Moreno PP, Bolund E. Experimentally induced intrasexual mating competition and sex-specific evolution in female and male nematodes. J Evol Biol 2020; 33:1677-1688. [PMID: 32945028 PMCID: PMC7756511 DOI: 10.1111/jeb.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Sexual dimorphism in life history traits and their trade-offs is widespread among sexually reproducing animals and is strongly influenced by the differences in reproductive strategies between the sexes. We investigated how intrasexual competition influenced specific life history traits, important to fitness and their trade-offs in the outcrossing nematode Caenorhabditis remanei. Here, we altered the strength of sex-specific selection through experimental evolution with increased potential for intrasexual competition by skewing the adult sex ratio towards either females or males (1:10 or 10:1) over 30 generations and subsequently measured the phenotypic response to selection in three traits related to fitness: body size, fecundity and tolerance to heat stress. We observed a greater evolutionary change in females than males for body size and peak fitness, suggesting that females may experience stronger net selection and potentially harbour higher amounts of standing genetic variance compared to males. Our study highlights the importance of investigating direct and indirect effects of intrasexual competition in both sexes in order to capture sex-specific responses and understand the evolution of sexual dimorphism in traits expressed by both sexes.
Collapse
Affiliation(s)
- Josefine Stångberg
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Pilar Puimedon Moreno
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Bolund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Sepil I, Hopkins BR, Dean R, Bath E, Friedman S, Swanson B, Ostridge HJ, Harper L, Buehner NA, Wolfner MF, Konietzny R, Thézénas ML, Sandham E, Charles PD, Fischer R, Steinhauer J, Kessler BM, Wigby S. Male reproductive aging arises via multifaceted mating-dependent sperm and seminal proteome declines, but is postponable in Drosophila. Proc Natl Acad Sci U S A 2020; 117:17094-17103. [PMID: 32611817 PMCID: PMC7382285 DOI: 10.1073/pnas.2009053117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Declining ejaculate performance with male age is taxonomically widespread and has broad fitness consequences. Ejaculate success requires fully functional germline (sperm) and soma (seminal fluid) components. However, some aging theories predict that resources should be preferentially diverted to the germline at the expense of the soma, suggesting differential impacts of aging on sperm and seminal fluid and trade-offs between them or, more broadly, between reproduction and lifespan. While harmful effects of male age on sperm are well known, we do not know how much seminal fluid deteriorates in comparison. Moreover, given the predicted trade-offs, it remains unclear whether systemic lifespan-extending interventions could ameliorate the declining performance of the ejaculate as a whole. Here, we address these problems using Drosophila melanogaster. We demonstrate that seminal fluid deterioration contributes to male reproductive decline via mating-dependent mechanisms that include posttranslational modifications to seminal proteins and altered seminal proteome composition and transfer. Additionally, we find that sperm production declines chronologically with age, invariant to mating activity such that older multiply mated males become infertile principally via reduced sperm transfer and viability. Our data, therefore, support the idea that both germline and soma components of the ejaculate contribute to male reproductive aging but reveal a mismatch in their aging patterns. Our data do not generally support the idea that the germline is prioritized over soma, at least, within the ejaculate. Moreover, we find that lifespan-extending systemic down-regulation of insulin signaling results in improved late-life ejaculate performance, indicating simultaneous amelioration of both somatic and reproductive aging.
Collapse
Affiliation(s)
- Irem Sepil
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom;
| | - Ben R Hopkins
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Department of Ecology and Evolution, University of California, Davis, CA 95616
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, United Kingdom
| | - Eleanor Bath
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | | | - Ben Swanson
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | - Harrison J Ostridge
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT London, United Kingdom
| | - Lucy Harper
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- School of Biology, University of St Andrews, KY16 9ST St Andrews, United Kingdom
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Rebecca Konietzny
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Marie-Laëtitia Thézénas
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Elizabeth Sandham
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
| | - Philip D Charles
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | | | - Benedikt M Kessler
- Nuffield Department of Medicine, TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Stuart Wigby
- Department of Zoology, University of Oxford, OX1 3SZ Oxford, United Kingdom
- Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
21
|
Cardozo G, Devigili A, Antonelli P, Pilastro A. Female sperm storage mediates post-copulatory costs and benefits of ejaculate anticipatory plasticity in the guppy. J Evol Biol 2020; 33:1294-1305. [PMID: 32614995 DOI: 10.1111/jeb.13673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Males of many species evolved the capability of adjusting their ejaculate phenotype in response to social cues to match the expected mating conditions. When females store sperm for a prolonged time, the expected fitness return of plastic adjustments of ejaculate phenotype may depend on the interval between mating and fertilization. Although prolonged female sperm storage (FSS) increases the opportunity for sperm competition, as a consequence of the longer temporal overlap of ejaculates from several males, it may also create variable selective forces on ejaculate phenotype, for example by exposing trade-offs between sperm velocity and sperm survival. We evaluated the relationship between the plasticity of ejaculate quality and FSS in the guppy, Poecilia reticulata, a polyandrous live-bearing fish in which females store sperm for several months and where stored sperm contribute significantly to a male's lifelong reproductive success. In this species, males respond to the perception of future mating opportunities by increasing the quantity (number) and quality (swimming velocity) of ready-to-use sperm (an anticipatory response called 'sperm priming'). Here we investigated (a) the effect of sperm priming on in vitro sperm viability at stripping and its temporal decline (as an estimate of sperm survival), and (b) the in vivo competitive fertilization success in relation to female sperm storage using artificial insemination. As expected, sperm-primed males produced more numerous and faster sperm, but with a reduced in vitro sperm viability at stripping and after 4 hr, compared with their counterparts. Artificial insemination revealed that the small (nonsignificant) advantage of primed sperm when fertilization immediately follows insemination is reversed when eggs are fertilized by female-stored sperm, weeks after insemination. By suggesting a plastic trade-off between sperm velocity and viability, these results demonstrate that prolonged female sperm storage generates divergent selection pressures on ejaculate phenotype.
Collapse
Affiliation(s)
- Gabriela Cardozo
- Laboratorio de Biología del Comportamiento, Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Biology, University of Padova, Padua, Italy
| | - Alessandro Devigili
- Department of Biology, University of Padova, Padua, Italy.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
DeLecce T, Shackelford TK, Fink B, Abed MG. No Evidence for a Trade-Off Between Competitive Traits and Ejaculate Quality in Humans. EVOLUTIONARY PSYCHOLOGY 2020; 18:1474704920942557. [PMID: 32686550 PMCID: PMC10303540 DOI: 10.1177/1474704920942557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/25/2020] [Indexed: 01/02/2023] Open
Abstract
Research in nonhuman animals (including insects, birds, and primates) suggests a trade-off in males between investment in competitive traits and investment in ejaculate quality. Previous research reported a negative association between perceived strength and ejaculate quality, suggesting that this trade-off also applies to human males. We conducted novel analyses of data secured as part of a larger project to assess the relationship between competitive traits (shoulder-to-hip ratio, handgrip strength, and height) and ejaculate quality (indexed by sperm morphology, sperm motility, and sperm concentration) in a sample of 45 men (ages ranging 18-33 years; M = 23.30, SD = 3.60). By self-report, participants had not had a vasectomy and had never sought treatment for infertility. We controlled for several covariates known to affect ejaculate quality (e.g., abstinence duration before providing an ejaculate) and found no statistically significant relationships between competitive traits and ejaculate quality; our findings therefore do not accord with previous research on humans. We highlight the need for additional research to clarify whether there is a trade-off between investment in competitive traits and investment in ejaculate quality in humans.
Collapse
Affiliation(s)
- Tara DeLecce
- Department of Psychology, Oakland
University, Rochester, MI, USA
| | | | - Bernhard Fink
- Biosocial Science Information,
Biedermannsdorf, Austria
- Department of Behavioral Ecology,
University of Goettingen, Germany
- Department of Evolutionary Anthropology,
University of Vienna, Austria
| | - Mohaned G. Abed
- Educational Graduate Studies, King
Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
DeLecce T, Fink B, Shackelford T, Abed MG. No Evidence for a Relationship between Intelligence and Ejaculate Quality. EVOLUTIONARY PSYCHOLOGY 2020; 18:1474704920960450. [PMID: 32945185 PMCID: PMC10358410 DOI: 10.1177/1474704920960450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Genetic quality may be expressed through many traits simultaneously, and this would suggest a phenotype-wide fitness factor. In humans, intelligence has been positively associated with several potential indicators of genetic quality, including ejaculate quality. We conducted a conceptual replication of one such study by investigating the relationship between intelligence (assessed by the Raven Advanced Progressive Matrices Test-Short Form) and ejaculate quality (indexed by sperm count, sperm concentration, and sperm motility) in a sample of 41 men (ages ranging 18 to 33 years; M = 23.33; SD = 3.60). By self-report, participants had not had a vasectomy, and had never sought infertility treatment. We controlled for several covariates known to affect ejaculate quality (e.g., abstinence duration before providing an ejaculate) and found no statistically significant relationship between intelligence and ejaculate quality; our findings, therefore, do not match those of Arden, Gottfredson, Miller et al. or those of previous studies. We discuss limitations of this study and the general research area and highlight the need for future research in this area, especially the need for larger data sets to address questions around phenotypic quality and ejaculate quality.
Collapse
Affiliation(s)
- Tara DeLecce
- Department of Psychology, Oakland University, Rochester, MI, USA
| | - Bernhard Fink
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Biosocial Science Information, Biedermannsdorf, Austria
- Department of Behavioral Ecology, University of Goettingen, Germany
| | - Todd Shackelford
- Department of Psychology, Oakland University, Rochester, MI, USA
| | - Mohaned G. Abed
- King Abdulaziz University, Educational Graduate Studies, Al Ehtifalat St, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Weber M, Patlar B, Ramm SA. Effects of two seminal fluid transcripts on post-mating behaviour in the simultaneously hermaphroditic flatworm Macrostomum lignano. J Evol Biol 2020; 33:714-726. [PMID: 32064699 DOI: 10.1111/jeb.13606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
The seminal fluid proteins (SFPs) transferred to mating partners along with sperm often play crucial roles in mediating post-mating sexual selection. One way in which sperm donors can maximize their own reproductive success is by modifying the partner's (sperm recipient's) post-copulatory behaviour to prevent or delay re-mating, thereby decreasing the likelihood or intensity of sperm competition. Here, we adopted a quantitative genetic approach combining gene expression and behavioural data to identify candidates that could mediate such a response in the simultaneously hermaphroditic flatworm Macrostomum lignano. We identified two putative SFPs-Mlig-pro46 and Mlig-pro63-linked to both mating frequency and 'suck' frequency, a distinctive behaviour, in which, upon ejaculate receipt, the worm places its pharynx over its female genital opening and apparently attempts to remove the received ejaculate. We, therefore, performed a manipulative experiment using RNA interference-induced knockdown to ask how the loss of Mlig-pro46 and Mlig-pro63 expression, singly and in combination, affects mating frequency, partner suck propensity and sperm competitive ability. None of the knockdown treatments impacted strongly on the mating frequency or sperm competitive ability, but knockdown of Mlig-pro63 resulted in a significantly decreased suck propensity of mating partners. This suggests that Mlig-pro63 may normally act as a cue in the ejaculate to trigger recipient suck behaviour and-given that other proteins in the ejaculate have the opposite effect-could be one component of an ongoing arms race between donors and recipients over the control of ejaculate fate. However, the adaptive significance of Mlig-pro46 and Mlig-pro63 from a donor perspective remains enigmatic.
Collapse
Affiliation(s)
- Michael Weber
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Bahar Patlar
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
25
|
Hopkins BR, Sepil I, Wigby S. Structural variation in Drosophila melanogaster spermathecal ducts and its association with sperm competition dynamics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200130. [PMID: 32269825 PMCID: PMC7137968 DOI: 10.1098/rsos.200130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
The ability of female insects to retain and use sperm for days, months, or even years after mating requires specialized storage organs in the reproductive tract. In most orders, these organs include a pair of sclerotized capsules known as spermathecae. Here, we report that some Drosophila melanogaster females exhibit previously uncharacterized structures within the distal portion of the muscular duct that links a spermatheca to the uterus. We find that these 'spermathecal duct presences' (SDPs) may form in either or both ducts and can extend from the duct into the sperm-storing capsule itself. We further find that the incidence of SDPs varies significantly between genotypes, but does not change significantly with the age or mating status of females, the latter indicating that SDPs are not composed of or stimulated by sperm or male seminal proteins. We show that SDPs affect neither the number of first male sperm held in a spermatheca nor the number of offspring produced after a single mating. However, we find evidence that SDPs are associated with a lack of second male sperm in the spermathecae after females remate. This raises the possibility that SDPs provide a mechanism for variation in sperm competition outcome among females.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Department of Evolution and Ecology, University of California – Davis, One Shields Ave., Davis, CA 95616, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
- Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
26
|
Kekäläinen J, Jokiniemi A, Janhunen M, Huuskonen H. Offspring phenotype is shaped by the nonsperm fraction of semen. J Evol Biol 2020; 33:584-594. [PMID: 31984576 DOI: 10.1111/jeb.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
In a large majority of animal species, the only contribution of males to the next generation has been assumed to be their genes (sperm). However, along with sperm, seminal plasma contains a wide array of extracellular factors that have many important functions in reproduction. Yet, the potential intergenerational effects of these factors are virtually unknown. We investigated these effects in European whitefish (Coregonus lavaretus) by experimentally manipulating the presence and identity of seminal plasma and by fertilizing the eggs of multiple females with the manipulated and unmanipulated semen of several males in a full-factorial breeding design. The presence of both own seminal plasma and foreign seminal plasma inhibited sperm motility, and the removal of own seminal plasma decreased embryo survival. Embryos hatched significantly earlier after both semen manipulations than in control fertilizations; foreign seminal plasma also increased offspring aerobic swimming performance. Given that our experimental design allowed us to control potentially confounding sperm-mediated (sire) effects and maternal effects, our results indicate that seminal plasma may have direct intergenerational consequences for offspring phenotype and performance. This novel source of offspring phenotypic variance may provide new insights into the evolution of polyandry and mechanisms that maintain heritable variation in fitness and associated female mating preferences.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
27
|
DeLecce T, Lopes GS, Zeigler-Hill V, Welling LL, Shackelford TK, Abed MG. A preliminary but methodologically improved investigation of the relationships between major personality dimensions and human ejaculate quality. PERSONALITY AND INDIVIDUAL DIFFERENCES 2020. [DOI: 10.1016/j.paid.2019.109614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Patlar B, Weber M, Temizyürek T, Ramm SA. Seminal Fluid-Mediated Manipulation of Post-mating Behavior in a Simultaneous Hermaphrodite. Curr Biol 2020; 30:143-149.e4. [DOI: 10.1016/j.cub.2019.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/25/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
29
|
Greenway EVG, Cirino LA, Wilner D, Somjee U, Anagnostou ME, Hepple RT, Miller CW. Extreme variation in testes size in an insect is linked to recent mating activity. J Evol Biol 2019; 33:142-150. [PMID: 31765505 DOI: 10.1111/jeb.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
Abstract
Ample sperm production is essential for successful male reproduction in many species. The amount of sperm a male can produce is typically constrained by the size of his testes, which can be energetically expensive to grow and maintain. Although the economics of ejaculate allocation has been the focus of much theoretical and empirical literature, relatively little attention has been paid to individual adult variation and plasticity at the source of sperm production, the testes themselves. We experimentally address this issue using the insect Narnia femorata Stål (Hemiptera: Coreidae). We established the metabolic cost of testicular tissue and then quantified variation in individual testes mass in response to multiple mate quality and quantity treatments. We uncovered extreme variation across individuals and considerable short-term effects of mating activity on testes dry mass. Importantly, the observed variation in testes mass was associated with notable fitness consequences; females paired with males with larger testes had greater hatching success. Overall, pairing with a female resulted in a 11% reduction in dry testes mass. Despite this apparent considerable mating investment, we found no evidence of strategic allocation to higher quality females or longer-term changes in testes mass. The dynamic nature of testes mass and its metabolic cost is vital to consider in the context of re-mating rates, polyandry benefits and general mating system dynamics both in this species and more broadly.
Collapse
Affiliation(s)
- E V Ginny Greenway
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| | - Lauren A Cirino
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| | - Daniela Wilner
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| | - Ummat Somjee
- Entomology and Nematology Department, University of Florida, Gainesville, Florida.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | | | - Russell T Hepple
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, Florida
| |
Collapse
|
30
|
Weber M, Giannakara A, Ramm SA. Seminal fluid-mediated fitness effects in the simultaneously hermaphroditic flatworm Macrostomum lignano. Ecol Evol 2019; 9:13889-13901. [PMID: 31938489 PMCID: PMC6953679 DOI: 10.1002/ece3.5825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/08/2022] Open
Abstract
As a class, seminal fluid proteins are expected to exert strong effects on mating partners due to the selection pressures of sperm competition and sexual conflict. But because of the complexity of this secretion, linking specific proteins to downstream effects on own fitness-via manipulating the reproductive behavior, physiology, and ultimately the sperm utilization of mating partners-is not straightforward. Here, we adopted a systematic gene knockdown approach to screen for seminal fluid-mediated fitness effects in the simultaneously hermaphroditic flatworm Macrostomum lignano. We focused on 18 transcripts in M. lignano seminal fluid, testing how their RNA interference-induced knockdown impacted on three aspects of donor (male) reproductive success: (a) fertility (offspring production of the partner); (b) defensive sperm competitive ability, P 1; and (c) offensive sperm competitive ability, P 2. In general, the knockdown of most individual transcripts appeared to have only a minor impact on male reproductive success, though we found evidence that the knockdown of up to five different transcripts impacted on fertility; the knockdown of two other transcripts resulted in reduced P 2; and knockdown of a further transcript actually increased P 2. We thus identify a number of candidate seminal fluid transcripts that appear to modulate offspring production and sperm competitiveness in M. lignano. That only a minority of transcripts exhibit such a pattern likely reflects both the difficulty of accurately estimating sperm competitiveness and the functional redundancy of seminal fluid.
Collapse
Affiliation(s)
- Michael Weber
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | - Athina Giannakara
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | - Steven A. Ramm
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
31
|
Patlar B, Ramm SA. Genotype‐by‐environment interactions for seminal fluid expression and sperm competitive ability. J Evol Biol 2019; 33:225-236. [DOI: 10.1111/jeb.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology Bielefeld University Bielefeld Germany
| | - Steven A. Ramm
- Evolutionary Biology Bielefeld University Bielefeld Germany
| |
Collapse
|
32
|
BMP signaling inhibition in Drosophila secondary cells remodels the seminal proteome and self and rival ejaculate functions. Proc Natl Acad Sci U S A 2019; 116:24719-24728. [PMID: 31740617 PMCID: PMC6900634 DOI: 10.1073/pnas.1914491116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Seminal fluid proteins (SFPs) exert potent effects on male and female fitness. Rapidly evolving and molecularly diverse, they derive from multiple male secretory cells and tissues. In Drosophila melanogaster, most SFPs are produced in the accessory glands, which are composed of ∼1,000 fertility-enhancing "main cells" and ∼40 more functionally cryptic "secondary cells." Inhibition of bone morphogenetic protein (BMP) signaling in secondary cells suppresses secretion, leading to a unique uncoupling of normal female postmating responses to the ejaculate: refractoriness stimulation is impaired, but offspring production is not. Secondary-cell secretions might therefore make highly specific contributions to the seminal proteome and ejaculate function; alternatively, they might regulate more global-but hitherto undiscovered-SFP functions and proteome composition. Here, we present data that support the latter model. We show that in addition to previously reported phenotypes, secondary-cell-specific BMP signaling inhibition compromises sperm storage and increases female sperm use efficiency. It also impacts second male sperm, tending to slow entry into storage and delay ejection. First male paternity is enhanced, which suggests a constraint on ejaculate evolution whereby high female refractoriness and sperm competitiveness are mutually exclusive. Using quantitative proteomics, we reveal changes to the seminal proteome that surprisingly encompass alterations to main-cell-derived proteins, indicating important cross-talk between classes of SFP-secreting cells. Our results demonstrate that ejaculate composition and function emerge from the integrated action of multiple secretory cell types, suggesting that modification to the cellular make-up of seminal-fluid-producing tissues is an important factor in ejaculate evolution.
Collapse
|
33
|
Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:17925-17933. [PMID: 31431535 PMCID: PMC6731677 DOI: 10.1073/pnas.1906149116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ejaculate quality plays an essential role in fertility, sperm competition, and offspring health. A key modulator of ejaculate quality is the social environment. Although males across taxa are known to strategically allocate sperm in response to rivals, how this applies to myriad other ejaculate components is poorly resolved. Here, we take a multilevel approach, from protein to fitness, to show that Drosophila melanogaster males divergently allocate sperm and seminal fluid proteins along a competition gradient. Using a combination of fluorescence-labeled sperm, quantitative proteomics, and multimating assays, we demonstrate that males are remarkably sensitive to the intensity of competition they perceive, show compositional change across and within portions of the ejaculate, and that this compositional change carries distinct costs and benefits. Sperm competition favors large, costly ejaculates, and theory predicts the evolution of allocation strategies that enable males to plastically tailor ejaculate expenditure to sperm competition threat. While greater sperm transfer in response to a perceived increase in the risk of sperm competition is well-supported, we have a poor understanding of whether males (i) respond to changes in perceived intensity of sperm competition, (ii) use the same allocation rules for sperm and seminal fluid, and (iii) experience changes in current and future reproductive performance as a result of ejaculate compositional changes. Combining quantitative proteomics with fluorescent sperm labeling, we show that Drosophila melanogaster males exercise independent control over the transfer of sperm and seminal fluid proteins (SFPs) under different levels of male–male competition. While sperm transfer peaks at low competition, consistent with some theoretical predictions based on sperm competition intensity, the abundance of transferred SFPs generally increases at high competition levels. However, we find that clusters of SFPs vary in the directionality and sensitivity of their response to competition, promoting compositional change in seminal fluid. By tracking the degree of decline in male mating probability and offspring production across successive matings, we provide evidence that ejaculate compositional change represents an adaptive response to current sperm competition, but one that comes at a cost to future mating performance. Our work reveals a previously unknown divergence in ejaculate component allocation rules, exposes downstream costs of elevated ejaculate investment, and ultimately suggests a central role for ejaculate compositional plasticity in sexual selection.
Collapse
|
34
|
Abstract
The moment of the fertilization of an egg by a spermatozoon-the point of "sperm success"-is a key milestone in the biology of sexually reproducing species and is a fundamental requirement for offspring production. Fertilization also represents the culmination of a suite of sexually selected processes in both sexes and is commonly used as a landmark to measure reproductive success. Sperm success is heavily dependent upon interactions with other key aspects of male and female biology, with the immune system among the most important. The immune system is vital to maintaining health in both sexes; however, immune reactions can also have antagonistic effects on sperm success. The effects of immunity on sperm success are diverse, and may include trade-offs in the male between investment in the production or protection of sperm, as well as more direct, hostile, immune responses to sperm within the female, and potentially the male, reproductive tract. Here, we review current understanding of where the biology of immunity and sperm meet, and identify the gaps in our knowledge.
Collapse
Affiliation(s)
- Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Susan S Suarez
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Brian P Lazzaro
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mariana F Wolfner
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| |
Collapse
|
35
|
Sepil I, Hopkins BR, Dean R, Thézénas ML, Charles PD, Konietzny R, Fischer R, Kessler BM, Wigby S. Quantitative Proteomics Identification of Seminal Fluid Proteins in Male Drosophila melanogaster. Mol Cell Proteomics 2019; 18:S46-S58. [PMID: 30287546 PMCID: PMC6427238 DOI: 10.1074/mcp.ra118.000831] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Seminal fluid contains some of the fastest evolving proteins currently known. These seminal fluid proteins (Sfps) play crucial roles in reproduction, such as supporting sperm function, and particularly in insects, modifying female physiology and behavior. Identification of Sfps in small animals is challenging, and often relies on samples taken from the female reproductive tract after mating. A key pitfall of this method is that it might miss Sfps that are of low abundance because of dilution in the female-derived sample or rapid processing in females. Here we present a new and complementary method, which provides added sensitivity to Sfp identification. We applied label-free quantitative proteomics to Drosophila melanogaster, male reproductive tissue - where Sfps are unprocessed, and highly abundant - and quantified Sfps before and immediately after mating, to infer those transferred during copulation. We also analyzed female reproductive tracts immediately before and after copulation to confirm the presence and abundance of known and candidate Sfps, where possible. Results were cross-referenced with transcriptomic and sequence databases to improve confidence in Sfp detection. Our data were consistent with 125 previously reported Sfps. We found nine high-confidence novel candidate Sfps, which were both depleted in mated versus, unmated males and identified within the reproductive tract of mated but not virgin females. We also identified 42 more candidates that are likely Sfps based on their abundance, known expression and predicted characteristics, and revealed that four proteins previously identified as Sfps are at best minor contributors to the ejaculate. The estimated copy numbers for our candidate Sfps were lower than for previously identified Sfps, supporting the idea that our technique provides a deeper analysis of the Sfp proteome than previous studies. Our results demonstrate a novel, high-sensitivity approach to the analysis of seminal fluid proteomes, whose application will further our understanding of reproductive biology.
Collapse
Affiliation(s)
- Irem Sepil
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK;.
| | - Ben R Hopkins
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Marie-Laëtitia Thézénas
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip D Charles
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Konietzny
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stuart Wigby
- From the ‡Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Singh A, Buehner NA, Lin H, Baranowski KJ, Findlay GD, Wolfner MF. Long-term interaction between Drosophila sperm and sex peptide is mediated by other seminal proteins that bind only transiently to sperm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:43-51. [PMID: 30217614 PMCID: PMC6249070 DOI: 10.1016/j.ibmb.2018.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Seminal fluid proteins elicit several post-mating physiological changes in mated Drosophila melanogaster females. Some of these changes persist for over a week after mating because the seminal protein that causes these changes, the Sex Peptide (SP), binds to sperm that are stored in the female reproductive tract. SP's sperm binding is mediated by a network of at least eight seminal proteins. We show here that some of these network proteins (CG1656, CG1652, CG9997 and Antares) bind to sperm within 2 h of mating, like SP. However, while SP remains bound to sperm at 4 days post-mating, none of the other network proteins are detectable at this time. We also observed that the same network proteins are detectable at 2 h post-mating in seminal receptacle tissue from which sperm have been removed, but are no longer detectable there by 4 days post-mating, suggesting short-term retention of these proteins in this female sperm storage organ. Our results suggest that these network proteins act transiently to facilitate the conditions for SP's binding to sperm, perhaps by modifying SP or the sperm surface, but are not part of a long-acting complex that stably attaches SP to sperm.
Collapse
Affiliation(s)
- Akanksha Singh
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Norene A Buehner
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - He Lin
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA; East China Normal University, Shanghai, China
| | | | - Geoffrey D Findlay
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA; Dept. of Biology, College of the Holy Cross, Worcester, MA, 01610, USA
| | - Mariana F Wolfner
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Borges E, Braga DPDAF, Setti AS. Shorter ejaculatory abstinence interval and maternal endometrium exposure to seminal plasma as tools to improve pregnancy rate in patients undergoing intracytoplasmic sperm injection cycles. JBRA Assist Reprod 2018; 22:160-161. [PMID: 30129352 PMCID: PMC6106623 DOI: 10.5935/1518-0557.20180059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Edson Borges
- Fertility Medical Group. São Paulo/SP, Brazil.,Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Assistida. São Paulo/SP, Brazil
| | | | - Amanda Souza Setti
- Fertility Medical Group. São Paulo/SP, Brazil.,Instituto Sapientiae - Centro de Estudos e Pesquisa em Reprodução Assistida. São Paulo/SP, Brazil
| |
Collapse
|